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LQG-Optimal versus Simple Event-Based PID Controllers

Anton Cervin and Marcus Thelander Andrén

Abstract— In this paper, we study event-based PID control
from an optimal stochastic control perspective. The purpose is
to better understand what implementation features are critical
for achieving good event-based PID performance. For this end,
we formulate an LQG control design problem for a double
integrator process with an integral disturbance, where the
solution is an ideal PID controller. We then consider the trade-
off between LQG cost and average sampling rate and give an
interpretation of the optimal sampled-data controller and event-
based sampling policy in terms of PID control. Based on insights
from the optimal solution, we finally discuss how suboptimal but
simple event-based PID controllers can be implemented. The
proposed implementation is evaluated in a simulation study
and compared to earlier work in event-based PID control.
The results highlight the importance of considering both the
triggering rule and the transmitted information in order to
obtain an event-based PID controller with good performance.

I. INTRODUCTION

Event-based feedback control has a history reaching back

to at least the middle of the last century, but the field has

received renewed interest since the publication of [1] and

[2], now two decades ago. The former paper studied optimal

event-based impulse control of a first-order stochastic sys-

tem, and analyzed the trade-off between average sampling

rate and output variance. The latter proposed a simple

event-based PID controller and evaluated its performance

in simulations. Since then, several theoretical and practical

research studies of event-based control have been performed,

see the survey papers [3] and [4].

One possible structure for an event-based controller is

shown in Fig. 1. Typically, we are interested in the trade-

off between regulatory performance and the average event

rate (corresponding to, e.g., network usage) in the loop.

A proposal to close the gap between theoretical, optimal

event-based control and practical, heuristic event-based PID

control via a simple benchmark problem was put forward in

[5]. In this paper, we continue that development and study

a modified benchmark problem from both LQG and PID

perspectives. The work is prompted by recent theoretical

breakthroughs by Mirkin and co-authors [6]–[8], who have

provided an LQG-optimal controller structure under inter-

mittent sampling. The resulting optimal controller may in

general not be practical to design nor to implement, but it

provides a lower bound on the achievable LQG cost with

any event-based controller.

There are two main aspects to consider in the design

of event-based control: (i) the rule for triggering events
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Fig. 1. An event-based controller structure for a single-input–single-output
process. The solid lines represent continuous signal transmission, while the
dashed lines indicate event-based communication.

and (ii) control signal generation in between events. The

design of (i) is the topic of several works, ranging from

simple but well-known rules such as send-on-delta [9]–[11]

and integral triggering [12], [13], to more complex model-

dependent rules [7], [14]. While model-based rules often

achieve better performance in theory, they are also more

difficult to implement in practice. This is also true for (ii)

where options range from a simple zero-order hold to more

involved signal generators (a.k.a. generalized holds) [15],

[16]. One of the main motivators of this paper is the study

of reasonable choices of (i) and (ii) for event-based PID,

striking a balance between performance and simplicity of

implementation.

The main contributions of this paper are

• the formulation of an LQG design problem, where the

optimal solution is an ideal PID controller;

• an interpretation of the optimal sampled-data controller

and event-based sampling policy in terms of PID con-

trol;

• a numerical evaluation of some common heuristic trig-

gering rules and control generators in comparison to the

optimal solution.

The rest of this paper is outlined as follows. In Sec. II, we

formulate the LQG design problem that results in an ideal

PID controller. In Sec. III we review Mirkin’s LQG-optimal

sampled-data controller structure and give an interpretation

of it for the considered design problem in terms of PID con-

trol. In Sec. IV we discuss various heuristic event-based PID

implementations and how they relate to the optimal solution.

A performance comparison is presented in Sec. V, where

the benefit of different controller structures and sampling

policies are evaluated. Finally, Sec. VI concludes the paper

and suggests some future work.
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Fig. 2. Double integrator process with integral input disturbance.

II. THE LQG DESIGN PROBLEM

As a benchmark problem, consider the system in Fig. 2,

consisting of a double integrator and an input disturbance

integrator. This is a simple control model, but relevant for,

e.g., mechanical systems such as a satellite or a cart on

a rail. We will first show how an LQG design problem

for the system can be formulated such that the solution

is an ideal PID controller. While a similar problem for a

marginally stable process was proposed in [5], a drawback

of that setup was the very complicated expressions for the

resulting PID controller with a derivative filter. Further, not

all PID controllers could be interpreted as LQG controllers,

i.e., the inverse problem was not well-defined. Here we

choose a different process and cost function, which produces

a simpler solution and also permits inverse calculations (i.e.,

from given PID parameters to an LQG problem) in all cases.

The derivation of the LQG controller below is trivial and we

refer to, e.g., [17] for further details.

A. Translation between LQG and PID

For the system in Fig. 2, assume that k > 0 is a scalar gain

parameter and that vz and vx are independent continuous-

time white noise processes with intensities rz > 0 and 1,

respectively. The control objective is to minimize the cost

function

J = E
{

qyy
2 + 2qywyw + w2

}

, (1)

where qy > 0 and q2yw ≤ qy are scalar weights. Note that

we penalize w = z + u rather than the control signal u in

order to allow the controller to have true integral action.

Assuming that the states z, x, and y are available for

continuous feedback, the linear-quadratic control law (e.g.,

[17]) is given by

u = −lxx− lyy − z,

where the feedback gains lx and ly are given by the solution

of the associated algebraic Riccati equation, yielding

lx =
√

2
(√

qy − qyw
)

, (2)

ly =
√
qy. (3)

Next we consider optimal estimation of the state vector.

Since there is no measurement noise on y, we immediately

have x = ẏ/k. The lack of process noise on x allows us to

formulate a reduced-order Kalman–Bucy filter for z as

˙̂z = kz(ÿ/k
2 − u− ẑ), (4)

where the optimal Kalman gain kz is obtained by solving

the associated Riccati equation, yielding

kz =
√
rz. (5)

The complete LQG controller is then given by

˙̂z = kz(ÿ/k
2 − u− ẑ),

u = −lxẏ/k − lyy − ẑ.
(6)

At first glance, it may seem that the controller needs access

to ÿ. However, in input–output form the controller can be

written as

u = − (kz+klx)p
2 + (k2ly+kkzlx)p+ k2kzly

k2p
y, (7)

where p := d
dt

is the differential operator. Comparing this to

an ideal PID controller in parallel form,

u = −K
(

1 +
1

pTi

+ pTd

)

y,

we obtain the algebraic relationships

K =
lyk + kzlx

k
, (8)

Ti =
lyk + kzlx

kzlyk
, (9)

Td =
kz + lxk

lyk2 + kzlxk
. (10)

B. Interpretation of the LQG Controller

The LQG controller (6) is not suitable for implementation

as it stands since it has ÿ as an input. A change of variables,

ẑi = ẑ − kzlx
k

y − kz
k2

ẏ,

separates out the integrator state, ẑi, and moves the direct

terms into the state feedback law. The resulting observer can

be written as

˙̂zi = −kz

(

upi +
kzlx
k

y + ẑi

)

, (11)

where the control signal u = upi + ud has been split into a

PI part and a D part with

upi = −Ky − ẑi,

ud = −KTdẏ.
(12)

In this formulation ẏ does not enter the integrator, which is

reasonable.

The observer (11) can be further modified by introducing

a parameter 0 ≤ α ≤ 1 to split the PI control signal as

upi = αupi + (1− α)upi = −αKy − αẑi + (1− α)upi,

yielding the family of possible observers

˙̂zi = −kz

(

(1− α)(upi + ẑi) +
(

kzlx
k

− αK
)

y
)

.

With α = 0 we retain (11), while with α = 1 we recover

the standard integrator formula that only uses y:

˙̂zi =
K

Ti

y. (13)



ud := u̇

vxvz

w x y
1

s

k

s

k

s

∑∑

Fig. 3. Modified version of the system in Fig. 2, where the input disturbance
and control signal have been merged into a single, controllable state.

With α = kzlx
kK

we obtain the observer

˙̂zi = − 1

Ti

(

upi + ẑi
)

, (14)

which can be recognized as the classical “automatic reset”

realization of integral action (see, e.g., [18]).

In a continuous feedback setting, all of the above observers

behave identically, but in an event-based implementation they

may yield different results depending on when and how the

variables are communicated between the sensor, controller,

and actuator.

To further guide the design of event-based implementa-

tions, we continue in the next section with a review of

Mirkin’s LQG-optimal sampled-data controller.

III. MIRKIN’S LQG-OPTIMAL CONTROLLER

The LQG-optimal controller under any given sampling

sequence was originally derived by Mirkin in [6], and

subsequently adapted to event-based sampling in [7], [8].

The optimal solution retains elements of the continuous-time

implementation in the form of an LQ control law and a

Kalman-Bucy filter. We will here review the optimal design

applied to the double integrator system in Fig. 2, where

the controller elements can be interpreted in terms of PID

control.

A. Preliminaries

The design of the optimal controller assumes a well-posed

H2 design problem according to the conditions in [19, Sec.

14.5]. However, the system in Fig. 2 does not satisfy these

conditions due to the uncontrollable state z and lack of

measurement noise. We will therefore instead consider the

design for a slightly modified problem, which in the limit

will be equivalent to the original one.

The first modification is to transform the system in Fig. 2

into the system shown in Fig. 3. This is done by regarding the

controller integrator as part of the process, and then merging

the input disturbance state z and the control signal u into the

controllable state w = z+u. The “new” input to the system

is then the derivative of the original input, ud := u̇. Note

that, so far the original and modified design problems are

equivalent, since regardless of whether the system in Fig. 2

or 3 is considered, the optimal control design will still result

in the same closed-loop system and cost.

Secondly, we proceed similarly to [7] and add an (arti-

ficial) white noise signal vy with intensity ry > 0 to the

system output y and a small artificial penalty qud
> 0 to the

input signal ud. As long as ry and qud
are close to zero, the

modified design problem will only differ slightly, and in the

limit ry, qud
→ 0+ the original problem is recovered.

ud

v

θ
Process, ηLQR, ηa

Kalman
filter, η̂

Fig. 4. Representation of the LQG-optimal sampled-data controller
structure. The vectors η, ηa and η̂ are the state vectors in each subsystem
respectively. Solid and dashed lines represent continuous and sampled
signals respectively.

With these modifications the design problem is well-

posed and can be summarized by the following generalized

process with state vector η = [x, y, w]⊺, noise vector v =
[vx, vy, vz]

⊺, cost vector ξ and system output θ:










η̇ = Aη +Bvv +Bud
ud,

ξ̇ = Cξη +Dξud
ud,

θ = Cθη +Dθvv.

(15)

The system parameters in (15) are given by

A =





0 0 k
k 0 0
0 0 0



 , Bv =





k 0 0
0 0 0
0 0 1



 , Bud
=





0
0
1



 ,

Cξ =







0 qyw 1

0
√

qy − q2yw 0

0 0 0






, Dξud

=





0
0√
qud



 ,

Cθ =
[

0 1 0
]

, Dθv =
[

0 1 0
]

.

The cost in the modified design problem is given by

Jmod = E
{

ξ⊺ξ
}

= E
{

qyy
2+2qywyw+w2+qud

u2
d

}

. (16)

B. The Optimal Controller

While the optimal solution has a realization divided into a

discrete-time controller and a generalized sampler and hold

[7, Remark 2], we will here instead opt for the more intuitive

realization shown in Fig. 4. The controller is then divided

into a Kalman-Bucy filter on the sensor side,

˙̂η = Aη̂ +Bud
ud +Ks(θ − Cθη̂), (17)

and an LQR signal generator on the actuator side. The

control signal is based on a continuous-time simulation of

the process, whose state vector ηa is reset to the current

state-estimate η̂ at each sampling time ti:
{

η̇a = (A−Bud
La)ηa, ηa(ti) = η̂(ti),

ud = −Laηa.
(18)

The vectors Ks and La are the Kalman–Bucy filter and LQR

gains respectively from the corresponding continuous-time

LQG controller.

As ry, qud
→ 0+ we retain the original design problem.

The simulated LQR together with the input integrator on the

actuator side are then reduced to an ideal PID controller

u = −Kya − zi,a −KTdẏa,



where the “measurement” ya and integral action zi,a are

generated by the intermittently reset simulation

ÿa + klxẏa + k2lyya = 0, ya(ti) = y(ti), ẏa(ti) = ẏ(ti),

żi,a =
K

Ti

ya, zi,a(ti) = ẑi(ti).

(19)

On the sensor side, the signals y and ẏ are directly available,

while ẑi is given by (13). At sampling times {ti}, the data

(y, ẏ, ẑi) is transmitted to the actuator side and resets the

simulation according to (19).

Naturally, this continuous-time scheme is difficult to re-

alize in practice, but from a theoretical point of view it

provides a useful performance baseline for comparisons to

more practical implementations.

C. Event-Based Sampling

Define the error η̃ := ηa − η̂. Whenever η̃ = 0 holds,

the optimal sampled-data controller will behave identically

to its continuous-time counterpart. This is the case just after

sampling, but in between sampling actions the error will drift

due to disturbances in the system. The dynamics of η̃ will

fundamentally determine the closed-loop performance, and

it can be shown that (16) can be re-expressed as [8, Thm. 1]

Jmod = γ0 + qud
E{

(

Laη̃
)2}, (20)

where γ0 is continuous-time LQG optimal cost. The value

of the second term in (20) is determined by the choice of

sampling policy, which ideally should be as small as possible

for a given average sampling rate.

As detailed in [14], the event-based sampling policy that

minimizes (20) is in the form of a threshold on η̃. Finding

the optimal threshold for a given setup generally requires

computationally demanding numerical methods. However, as

seen in Fig. 5, the optimal threshold can in this case be

well approximated by two parallel hyperplanes, orthogonal

to the vector [lx , ly, 1]
⊺. This approximation corresponds to

a policy which triggers sampling whenever

|ũ| > ∆. (21)

where ũ := K(y − ya) +KTd(ẏ − ẏa) + (ẑi − zi,a) is the

difference in control signal between two ideal PID controllers

with feedback from the true process and the simulation (19)

respectively.

We will use (21) as the (near optimal) event-based thresh-

old policy for the optimal controller structure, where the

design parameter ∆ > 0 is chosen as a trade-off between

LQG-cost and average sampling rate.

IV. SIMPLE EVENT-BASED PID IMPLEMENTATIONS

Event-based implementations of PID controllers are usu-

ally motivated by improved resource efficiency, especially

in networked control systems, where savings in energy

and bandwidth can be achieved by transmitting data less

often. However, the computational capacity in the sensor

and actuator nodes are usually limited in embedded imple-

mentations, which makes complex triggering conditions and

Fig. 5. Numerical approximation of the optimal sampling threshold (blue
surface) for the LQG-optimal controller described in Sec. III. A line parallel
to the LQ feedback gain vector [lx, ly , 1] (red) is plotted for reference. The
threshold was obtained using the method described in [20].

signal generators infeasible. Arguably, this is the case for the

optimal controller of the previous section, which motivates

the need for suboptimal but simpler implementations. In

this section we will highlight some features of previously

proposed event-based PID controllers from the literature, and

discuss which features are useful yet practical to achieve

good LQG performance.

A. Årzén’s Simple Event-Based PID Controller

Most proposals of event-based PID controllers in the

literature can be traced back to the seminal paper of Årzén

[2]. We therefore start by giving a brief review of the

algorithm here.

On the sensor side, the system output y is monitored

periodically with a fixed, short period hnom, and the decision

to transmit data to the controller on the actuator side is based

on a simple send-on-delta condition combined with a time-

out hmax. The sensor operation is described by the following

pseudo-code, in which h act denotes the actual sampling

period:

y := AnalogIn();

h_act := h_act + h_nom;

IF abs(y - y_old) >= delta OR h_act >= h_max THEN

Send(y);

y_old := y;

ENDIF

An on-the-fly discretized version of the PID algorithm is

then implemented on the actuator side. It runs at each sensor

event and is represented by the following pseudo code:

y := Receive();

h_act := Time() - time_old;

u_p := -K * y;

a_d := T_d / (N * h_act + T_d);

u_d := a_d * u_d - K * N * a_d * (y - y_old);

u := u_p + u_i + u_d;

AnalogOut(u);

u_i := u_i - K / T_i * h_act * y;

y_old := y;

time_old := Time();

Here, N represents the maximum derivative gain in the

controller. If there is no measurement noise, we can let

N→ ∞ and the derivative part becomes a pure backward

difference.



B. Choice of Measurement Filter and Triggering Rule

Årzén’s event-based controller and many subsequent ones

uses the send-on-delta rule [9], possibly after filtering out

measurement noise [10]. It has been pointed out in several

works, e.g., [12], [13] that integral sampling is less sensitive

to noise and also eliminates the deadband effect.

The optimal solution contains a Kalman-Bucy filter at the

sensor that filters out measurement noise and estimates the

full state vector. It triggers on the difference in control signal

between the sensor and actuator side, hence utilizing the

entire state vector.

For PID control, it would seem like a reasonable com-

promise to trigger on the PD part of the control signal, i.e.,

whenever
∣

∣K(y − yold) +KTd(ẏ − ẏold )
∣

∣ > ∆.

This would also be relatively simple to implement in analog

electronics, in conjunction with a second-order anti-aliasing

filter (see [18]). We will refer to this option as PD triggering.

To avoid stationary errors in the case of zero process noise

and no events, the trigger needs to be combined with a time-

out hmax, similar to Årzén’s solution.

C. Choice of Data to Communicate

Most heuristic methods only communicate the sensor

value y to the actuator side at events, although some works

have proposed separate triggers and transmissions for the

different parts of the PID controller, e.g., [11].

The optimal solution, however, transmits an estimate of

the full state vector. Sending a few extra bytes in a network

packet costs very little, and, if PD triggering is used, both

y and ẏ are already available in the sensor node and should

be communicated to the actuator.

D. Choice of Integrator Implementation

Årzén’s integrator implementation does not work well for

long inter-event times. Durand & Marchand therefore pro-

posed to include a forgetting factor to alleviate the problem

[21]. Another solution is to implement the integrator in the

form of an automatic reset, Eq. (14). This has for instance

been adopted in the PIDplus commercial controller [22] and

has been proven to work well for event-based PI control [13].

The optimal solution estimates the integral state as part of

the full state vector. It is however of practical advantage to

have the integrator separately, since it becomes easier to deal

with practical issues such as anti-reset windup and controller

mode switches [18].

E. Choice of Control Signal Generator

At the actuator side, zero-order hold (ZOH) between

events is often assumed in heuristic implementations. Setting

the correct feedback gain for each output however requires

knowledge of the next hold interval. Better choices may

therefore be impulse generators or general control signal

generators as discussed in [16].

The optimal solution includes a full-state plant model at

the actuator as a control generator. One compromise is to

u

vz

w

z vx

y

1

s

1

(s+ 1)3
∑∑

Fig. 6. Process considered for Setup B in the performance comparisons.

utilize a simplified model in the actuator [15]. A further

possible solution is to use ZOH but adapt the feedback gain

according to the recently experienced hold intervals. We will

refer to this heuristic method as adaptive PD gain.

V. PERFORMANCE EVALUATION

In this section we evaluate the performance of several

combinations of the heuristic event-based methods discussed

in the previous section and compare the results to Mirkin’s

optimal controller with event-based sampling. Higher re-

source efficiency being one of the main motivators for event-

based control, we focus on the trade-off between average

sampling rate (equivalent to mean network or CPU usage)

and the LQG cost as measured by (1). Two different setups

are considered:

A. The double integrator process in Fig. 2 with the gain,

cost, and noise parameters k = 1, qy = 4, qyw = 0,

rz = 1. The LQG-optimal controller is a PID controller

with the parameters K = 4, Ti = 2, Td = 0.75.

B. The stable third-order process in Fig. 6 with the cost

and noise parameters qy = 5.5, qyw = 0, rz = 0.1. For

this higher-order process, the LQG-optimal controller

is not a PID controller. We can however find the best

possible PID parameters using nonlinear optimization,

yielding K = 2.15, Ti = 2.67, Td = 1.23.

Setup A matches the studied problem exactly, while Setup B

is representative of a lag-dominated stable process from

process industry. In both cases, the LQG costs found in the

evaluation have been normalized so that the continuous PID

controller has a relative cost of 1.0.

The performance of the different controllers were evalu-

ated by Monte Carlo simulations in TrueTime [23]. Through-

out, hnom = 0.01 s was used as the simulation timestep

(and hence smallest possible event detection interval). For

each scenario, a 1000 s simulation was run using the same

noise input sequences. For the event-triggered algorithms,

the trigger parameter ∆ was swept over a range of values,

generating different average sampling rates and LQG costs.

A. Triggers and Sent Information

We first study how the choice of event trigger (send-on-

delta or PD trigger) and the information sent between sensor

and actuator (only y or y and ẏ) impact the performance of

the event-based PID controller. The rest of the PID controller

is implemented like Årzén’s (see Sec. IV-A). Results for

Case A are reported in Fig. 7. It is seen that PD triggering



Fig. 7. Trade-off between LQG cost and average sampling rate for Setup A
using different triggers and sent information.

Fig. 8. Trade-off between LQG cost and average sampling rate for Setup B
using different triggers and sent information.

gives a dramatic performance improvement over send-on-

delta. The combination of PD triggering and sending both

y and ẏ gives close to optimal event-based performance

for average event rates down to 1.2 Hz. The results for

Setup B are quite similar as seen in Fig. 8. Note however

the performance gap between the continuous-time PID and

the LQG controllers in this case, as a PID controller cannot

optimally control a third-order process under the given LQG

criterion.

B. Integrator Algorithm and Feedback Gain

Keeping the controller with PD triggering and transmis-

sion of y from the previous subsection, we now try two

alternative integral implementations: Durand & Marchand’s

exponential forgetting integral and the automatic reset imple-

mentation. We also experiment with fixed PD feedback gain

versus an adaptive feedback gain that is adjusted based on the

previous sampling interval. Results for the double integrator

are reported in Fig. 9.

Fig. 9. Trade-off between LQG cost and average sampling rate for Setup A
using different integrator algorithms and fixed or adaptive feedback gain.

Some small differences are visible, but overall the choice

of integrator and PD gain implementation has quite a small

impact on the performance. The automatic reset integrator

performs slightly better than the forgetting integrator, while

the adaptive gain seems to sometimes improve things and

sometimes not. The results for Setup B are very similar and

are omitted here.

C. Overall Comparison

In a final comparison, we study the range of possible

performance under the various event-based PID controllers

and the LQG-optimal periodic and event-based controllers.

We also include the optimal periodic sampled-data controller

[24] as a point of reference. The best heuristic event-based

PID controller is achieved by a combination of PD event

triggering, sending both y and ẏ to the actuator, an automatic

reset integrator, and a fixed PD gain. The results are shown in

Figs. 10 and 11. For the double integrator, the performance of

the best event-based PID controller is very close to Mirkin’s

optimal controller with event-based sampling. For the stable

third-order system, a large performance improvement is also

possible, but the distance to optimality is not exactly known

since the optimal event-based controller in this case only

provides a lower bound on the achievable cost. Overall it

is seen that simple event-based controllers can be made to

perform much better than periodic controllers if the proper

implementation choices are made.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have built upon the work in [5] and

studied a modified benchmark problem for which the LQG-

optimal controller is a PID controller. Using the optimal

sampled-data controller structure by Mirkin as a baseline, we

have studied the LQG-optimal solution of the PID control

problem to gain new insights on how a good but simple

event-based PID controller could be implemented.

The results suggest that a practical yet well-performing

event-based PID should trigger events not only on the



Fig. 10. Trade-off between LQG cost and average sampling rate for Setup A
using different optimal and suboptimal PID and LQG controllers.

Fig. 11. Trade-off between LQG cost and average sampling rate for Setup B
using different optimal and suboptimal PID and LQG controllers.

measurement y but also on its derivative ẏ, here referred

to as ”PD triggering”. Furthermore, the sensor should also

transmit both y and ẏ to the controller at events. Small further

improvements can be achieved if the integral action uses

the automatic reset realization. Adapting the controller gain

based on the length of the recent sampling period is probably

not worth the extra implementation complexity, however.

One possible direction for further performance improve-

ments is to experiment with other control signal generators

than ZOH. The downside of more sophisticated signal gener-

ators is that they require a process model to be implemented,

which is often not available in applications where PID

control is considered. Another research direction would be to

examine how well PD triggering actually approximates the

optimal event trigger for the full-model system.
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