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Abstract

The market of connected devices, IoT devices in particular, is hotter than ever. To-
day, lightweight IoT devices are used in several sectors, such as smart cities, smart
homes, healthcare, and the manufacturing industry. IoT solutions help increase
productivity by predictive maintenance and resource management in the indus-
try. Devices with voice interfaces are spreading rapidly in the home automation
markets. Hospitals utilize these “smart” devices to monitor patients and present
diagnostics data, aiding physicians in their work.

It is safe to say that we will be surrounded with more and more connected
devices. This opens up to potential attacks, where adversaries may try to disrupt
critical services or steal sensitive information. To combat this, data needs to be
secured in different ways. This dissertation presents cryptographic algorithms and
their performance in constrained environments.

First, a new lightweight cryptographic algorithm, Grain-���AEAD, is pre-
sented. Grain-���AEAD is a stream cipher designed to be implemented in hard-
ware at a low cost while still being fast. The new design improves on earlier versions
by making previous attacks more difficult.

Next, Grain-���AEAD is implemented in hardware using multiple optimiza-
tion techniques to fit different criteria. Trade-offs between throughput, power,
and area are evaluated to analyze the suitability for both constrained devices but
also for server back-ends.

Finally, the overhead when adding confidentiality and authenticity for com-
munication in an IoT device is evaluated. Here, modern lightweight protocols are
utilized in multiple use-cases to give an overview of the overhead in terms of bytes,
time, and energy.
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Introduction

Ever considered that your smart-home could kill you? While that may be an exag-
geration, connecting random things to the Internet might pose a significant prob-
lem.

Today, more and more “smart” devices are being manufactured and sold, both
in industrial markets and to regular households. Heating, Ventilation, and Air
Conditioning (HVAC) is one example of industrial entities transformed by the
latest IoT technologies. Adding connectivity allows for a vast flow of information,
both to and from the HVAC devices, such as weather feeds, sensor data. This
may be used to perform data analysis on a larger scale, which may help reducing
power consumption and increase efficiency. Connectivity also allows for remote
management of the complete system.

Another example is self-driving cars. Connecting cars, or general automotive
vehicles, to the Internet allows for distribution of software updates in real-time.
Manufacturers may also analyze the performance and usage of the vehicles and
adjust properties accordingly. Connectivity would aid the self-driving system by
gathering relevant data of its surroundings, preventing potential accidents. It is not
difficult to see that even though the benefits are many, by allowing remote com-
munication, an attacker could send bogus data or also gain access to the control
mechanisms in the car, allowing the attacker to cause fatal incidents.

A less obvious example of abusing an IoT device might be a temperature sys-
tem, including sensors and heaters, in a villa controllable from a smartphone app.
An attacker could use the current temperature information to deduct if the house
is empty, to break in. If the house is equipped with an alarm system, this too may
be exploited.

What, then, needs to be done to protect companies and households from hav-
ing their IoT devices exploited? There is little surprise that the answer to this
question is cybersecurity. However, there is no single solution to all problems.
The infrastructure and computational resources of self-driving cars are entirely
different from temperature sensors. For the smallest of devices, there are strict
requirements on speed, physical area, and power consumption. Being that most
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smaller devices run on batteries, they can not afford any high-power solutions. In-
stead, one must design cryptographic primitives suitable in a constrained environ-
ment, without weakening the security. The design aspect ranges from the physical
hardware design and implementation of circuits to the software that utilizes the
hardware components.

�.� Dissertation Outline

This dissertation is organized as follows. The following chapter, Chapter �, intro-
duces the topics related to the research conducted in this dissertation.

Section �.� presents the possibilities and limitations of constrained devices
and their role in modern society. Here, we also present some current lightweight
protocols adapted to keep the overhead and power consumption at a minimum.
The section introduces the concepts used in Paper III. In Section �.�, the area of
cryptography is presented with a focus on symmetric ciphers, especially stream
ciphers. The area of cryptography is the basis of all papers in this dissertation.
Finally, in Section �.�, the reader is introduced to the process of designing digital
circuits, i.e., hardware design, and how to implement digital logic running at high
speed and consuming low power. This section is closely related to Paper II, where
a stream cipher is implemented in hardware.

Chapter � summarizes the contributions of the research, followed by conclu-
sions.

Finally, the second part of this dissertation contains the publications.



Background

Today, products such as watches, clothes�, smart grids, and industrial sensor net-
works are being connected to the Internet, aggregating and exchanging data. These
products are commonly referred to as the Internet of Things, or IoT. Some of these
products are made up of small and cheap embedded devices, such as microcon-
trollers (MCUs). Being connected to the Internet poses a risk for the devices, due
to the exposure to attackers. To avoid exploitation and data leakage, one needs to
implement security measures.

Such small devices usually lack the resources to perform heavy computation.
Thus, to prevent or mitigate attacks, careful design and implementation is a must,
ranging from the design process from the hardware chip to the selection of cryp-
tographic algorithms and software implementation.

In this chapter, we introduce the general concepts behind constrained devices,
cryptography, and hardware design.

�.� Constrained Devices and Lightweight Protocols

Following IETF, a device is said to be constrained if it consists of a limited CPU,
small memory such as ROM and RAM, low bandwidth, low energy consump-
tion, or a combination of these [BEK��]. IETF also specifies different classes of
constrained devices, ranging from class �, including small sensors that do not di-
rectly communicate with the Internet, up to class �, including devices that can run
standard protocols but would benefit from running lightweight protocols due to
energy and bandwidth.

Generally speaking, a constrained device can not, or should not, run the usual
protocols such as TCP/IP, TLS, HTTP, and so on. Instead, many lightweight
protocols have been developed to be used in a constrained device, described in
Section �.�.�.

A microcontroller unit (MCU) is a single integrated circuit (IC), comprising of
a CPU along with memory and peripherals for I/O. Microcontrollers range from

�
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the smallest architectures such as Atmel AVR �-bit products, e.g., ATmega�A, to
Espressif ��-bit microcontrollers with integrated WiFi and support for Over-the-
Air (OTA) updates, e.g., ESP��. An MCU typically consists of the following:

• A central processing unit, CPU.

• Flash memory, for storing program instructions and non-volatile data.

• Volatile memory, RAM, for temporary data storage during run-time.

• General purpose input/output, GPIO, configurable to act as either an input,
when reading, e.g., sensor data, or an output when controlling, e.g., LEDs
or motors.

• Serial communication protocols, such as UART, I2C, and SPI.

• Timers and PWM generators.

• Analog-to-Digital converters, ADCs.

Some microcontrollers also include crypto modules, i.e., hardware-accelerated
cryptographic functions such as RSA, AES, ECC, RNG, and hash functions. Hav-
ing these algorithms run in hardware instead of software saves energy and increases
throughput. The general architecture of a microcontroller is depicted in Figure �.�.
Some common microcontrollers, along with an excerpt of their specifications, are
shown in Table �.�. As seen in the table, the devices are quite constrained in terms
of speed and memory, with the ARM Cortex-M�+ being the most lightweight
processor.

Table 2.1: Comparison of popular IoT development boards. All have an operating voltage
of 3.3 V.

Board CPU Arch Clock RAM Connectivity

Particle
Photon ARM Cortex M3 32-bit 120 MHz 128 KiB WiFi

Particle
Argon ARM Cortex-M4F 32-bit 64 MHz 256 KiB WiFi + BLE

ESP32 Tensilica Xtensa 32-bit 240 MHz 520 KiB WiFi + BLE
Arduino
MKR1000 ARM Cortex-M0+ 32-bit 48 MHz 32 KiB WiFi

It is not only microcontrollers who benefit from hardware acceleration. In
����, Intel released the first set of CPUs with an instruction set for running AES
in hardware, known as AES-NI [Gue��]. AES is such a widespread and com-
mon algorithm that the increase in speed and reduction in power consumption
outweighs the hardware cost [CLG��].



�.� Constrained Devices and Lightweight Protocols �
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Core

CPU
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Figure 2.1: A general architecture of a microcontroller.

Today, most microcontrollers are programmed using C/C++, but even Python
and Javascript may be used in some cases. However, due to the variety of mi-
crocontrollers, the standard implementations of programming languages might
not be feasible. Many flavors of standard languages, such as Embedded C [Int��],
nesC [Gay+��], and MicroPython� have been implemented to better fit embed-
ded systems.

�.�.� Low-Power Solutions

Since many IoT devices run on batteries, the circuits employ functionality to help
reduce power consumption. A common solution is to use a set of sleep modes. A
sleep mode can be thought of as a set of active components used in the system.
The deeper the sleep, the fewer components are active, lowering the used power.

The technique for powering down certain parts of a circuit is known as clock
gating. Clock gating implies that the clock signal is gated, i.e., activated or deac-
tivated for some time. By disabling the clock pulses, the digital logic no longer
switches states. It is the switching activity that consumes dynamic power.

An example of sleep mode levels is described next, assuming a microcontroller
with communication capabilities, like in the architectural overview in Figure �.�.
Note that we here express power consumption in terms of current, which is com-
mon practice. While it is technically wrong to do so, the power consumption for
a microcontroller is proportional to the current, since the voltage is kept constant.

Active mode Here, the device operates normally with all components in the active
state. Active mode is the state where the device consumes the most power. It
is not unusual for the power consumption to be a few ��� mA. For example,
the ESP�� with the communication blocks active consumes around �� mA

�
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in idle state, and around ��� mA during transmission. A Raspberry Pi Zero
consumes roughly ��� mA while being ��� mA for Raspberry Pi ��.

Sleep mode Communication is one of the most expensive operations in an em-
bedded system. Hence, this is the first part to power down in sleep mode.
The CPU is also paused in the sense that it does not execute any instructions.
The high-frequency clock generator is active in order to quickly resume reg-
ular operation once we exit sleep mode via an interrupt, for example. Pe-
ripherals may be active, along with the SRAM, to allow computation and
storage via DMA without the need for CPU intervention. A typical value
for power consumption in this state is a few mA. An ESP�� in sleep mode
consumes ca � mA�.

Deep sleep This is as close to the system being completely shut down as we can
get, without actually shutting down the system. The high-frequency clock
is powered off, and only critical parts are active, such as the real-time clock
and watchdog timer. The content previously stored in CPU registers and
RAM is also erased. If some data needs to be saved, one can utilize the non-
volatile flash memory. The power consumption in this state may be as low
as a few µA. For example, the ATmega���P uses around �.� µA at � V [Atm].

�.�.� Over-the-Air Updates

As software is being continuously developed with new features, bug fixes, or secu-
rity patches, the already deployed systems need to be updated. In systems with-
out communication capabilities, this is usually done by manually flashing a new
firmware via UART, SPI, JTAG, or similar, requiring physical access.

Many IoT devices are deployed in areas that are physically cumbersome to ac-
cess [Bar+��]. Other devices are located in home environments, measuring hu-
midity, temperatures, power consumption, and so on. A home environment may
make it hard to update the devices since ordinary residents do not possess the tools
nor skills to perform a system update. In such cases, Over-the-Air updates may
assist.

Over-the-air, or OTA, refers to the wireless medium used to distribute con-
tent, such as firmware. With OTA, there is no need for physical presence while
performing an update, which solves many of the above problems. However, im-
plementing OTA support is not a trivial task, not only from an implementation
point of view but also from a management point of view. Some potential issues
are given next.

• You need to handle devices that lose connection and which devices have and
have not already been updated.

�
https://www.raspberrypi.org/documentation/hardware/raspberrypi/power/

README.md
�
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• Installing a new firmware may cause the system to hang or break.

• There needs to be sufficient space for temporarily storing the latest firmware
before it can be applied.

Next, let us look at some known architectures for OTA.
Modern Android implements so-called A/B system updates�. Upon update,

the new firmware is downloaded and stored in /data. After the full firmware is re-
trieved, it is installed in a partition different from the currently running firmware,
called A and B partitions. The installation process does not interrupt the user as
the current firmware is running until the user reboots the device. Upon booting,
the new firmware is applied. If it fails, the device will load the previous firmware,
known as roll-back. Since Android �.�, it is now possible to use streaming A/B
updates. This means that the firmware is written directly to partition B without
having to store it in /data temporarily. To reduce the size of the new firmware,
one may use compression algorithms such as Brotli�.

IETF has proposed an update-architecture for the IoT [Mor+��]. The docu-
ment highlights that the update process must ensure that the firmware has integrity
protection to prevent modification or injection attacks. The update process must
be able to provide confidentiality protection since the first step of an attacker is
usually to obtain the firmware and reverse engineer it. Other requirements include:

• The firmware distribution mechanism must support a variety of protocols,
such as UART, BLE, HTTP, and CoAP. Supporting multiple protocols adds
redundancy and compatibility.

• The device should not accept old firmware, preventing an attacker from ex-
ploiting a previous vulnerability. This attack is known as a roll-back attack.

• Updating the bootloader should be kept at a minimum since failure to up-
date the bootloader properly may ultimately break the system.

• Updates can be client-initiated via polling. Polling only consumes energy
upon checking for new firmware, but the time difference between the release
of new firmware and the client checking for it may be significant, causing a
window of risk (or opportunity). A server-initiated update method requires
the clients to have a persistent connection to the server, but the client may
receive the firmware as soon as it is published.

All in all, this puts high demands on small devices, requiring careful and efficient
implementation. Luckily, there exists a plethora of both circuits and libraries to
handle the security requirements.

�
https://source.android.com/devices/tech/ota

�
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�.�.� Lightweight Protocols

As described earlier, the old and well-established protocols like HTTP, TCP, and
so on are not always applicable in a constrained setting. Imagine that we are to
send ��� kB of data from a mobile phone to a friend in a secure way. We may use
TCP/IP along with TLS to achieve this. We make the following assumptions:

• We are using IPv�.

• The maximum transmission unit, MTU, is ���� bytes.

• The maximum segment size, MSS, of a TCP packet is ����. That is, we are
not using any options in neither TCP nor IP.

This means that we need to send
⌈
100k
1460

⌉
= 69 packets. Using the numbers

in [Mat��] means that the overhead is 69 · 40 = 2760 bytes for TCP and IP
itself, along with 69 · 30 = 2070 bytes for TLS packet overhead, and around
� kB for the TLS handshake. All in all, the total overhead is circa �� kB bytes,
which equals 10k

100k = 10% overhead, which is not too bad. Now, imagine that
we have an IoT device transmitting ��� bytes to a gateway. The data fits into a
single packet, and the overhead is around � kB, using the same setup as before.
However, this equals a 5k

100 = 5000% overhead.
A lightweight protocol tries to combat the issues of large overheads and compu-

tational costs by using less complex designs and small memory footprints. Lower
complexity usually results in using fixed header lengths for ease of parsing and re-
ducing the number of options that are part of the standard.

Next, we briefly present some of the most common lightweight protocols.

IEEE ���.��.�

The IEEE ���.��.� standard defines low-rate wireless personal area networks, LR-
WPANs [IEE��]. The standard specifies the physical layer along with the media
access control (MAC) layer of the OSI model. It supports data rates up to ���
kb/s. The standard specifies the �.� GHz band as one of the allowed frequency
bands for worldwide use.

�LoWPAN

�LoWPAN, short for IPv� over Low-Power Wireless Personal Area Network, is a
protocol for devices conforming to IEEE ���.��.� [KMS��]. A LoWPAN may
be characterized by the following:

• Devices are transmitting small-sized packets.

• Low bandwidth communication.

• The devices are battery operated.
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• Devices may be put into sleep mode for longer periods.

�LoWPAN utilizes IPv� as the network protocol due to already existing infras-
tructure. IP-based networks have been used and analyzed for a long time; hence
management and diagnostics for these networks are well known. The connectivity
to other IP-based devices is straightforward since there is no need for gateways or
proxies.

ZigBee

ZigBee is a low-power wireless mesh network protocol based on IEEE ���.��.�,
adding networking functionality, such as network formation and routing [Zig��].
ZigBee also defines a framework for user applications. ZigBee operates typically
at �.� GHz, making it compatible in many markets.

ZigBee has been used in many commercial products� such as Philips Hue�,
IKEA’s Trådfri products�, and HVAC systems��. The most interesting product, in
the author’s opinion, is the Hue Tap switch from Philips, using only the kinetic
energy from physically pushing the buttons. That is, there is no battery involved.

A ZigBee device acts as one of three types within the network:

Coordinator The coordinator node initializes the network by configuring the fre-
quency and network ID. The coordinator becomes the parent of all nodes
connecting to the network through it.

Router The routers handle the packet routing in the network. These nodes are
not required, but it is common to use them.

End Device An end device only sends and receives messages; hence it does not
perform any other actions in the network. Only end devices may be put
into sleep mode. The parent node then buffers messages until the device is
awake again.

Even though IEEE ���.��.� specifies encryption at the MAC layer, it lacks
key management schemes and how to handle authentication. ZigBee implements
these schemes at higher layers. ZigBee uses AES-��� for encryption and specifies
three methods for key distribution: pre-installation, placing keys on the device
before deployment; transport, sending keys over the network to the devices; and
establishment, where keys are negotiated over the network.

ZigBee specifies two security models, described next.
�
https://zigbeealliance.org/product_type/certified_product

�
https://www2.meethue.com

�
https://www.ikea.com/us/en/cat/smart-lighting-36812/

��
https://www.airconditioning-systems.com/zigbee.html

https://zigbeealliance.org/product_type/certified_product
https://www2.meethue.com
https://www.ikea.com/us/en/cat/smart-lighting-36812/
https://www.airconditioning-systems.com/zigbee.html
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Centralized Security Networks In this model, there is a security component called
theTrust Center responsible for authenticating devices joining the network.
TheTrust Center also generates network keys, which is periodically changed.

Distributed Security Networks This model is simpler but also less secure. There
is no Trust Center, but only routers and end devices.

Even though the security in ZigBee is considered to be strong, there are po-
tential weaknesses due to the actual implementation, but also due to many de-
vices not being tamper resistant [Zil��]. Due to most ZigBee devices are con-
strained and battery-powered, they are susceptible to DoS and battery depletion
attacks [Cao+��].

CoAP

The Constrained Application Protocol, or CoAP [SHB��], is a client-server based
web transfer protocol designed to be used within constrained devices and net-
works. CoAP, similar to HTTP, is based on the REST model, where resources are
available under a URL. Clients may then access the resources using methods like
GET, POST, PUT, and DELETE. CoAP may be seen as a lightweight version of
HTTP.

CoAP has the following features:

• Small header overhead

• Low parsing complexity

• Allows proxy and chaining

• Stateless HTTP binding, which allows access to CoAP resources via HTTP
and vice versa

• Compatible with DTLS

The message header is of fixed length and only requires � bytes, using no
options. CoAP runs over UDP due to UDP being more lightweight than TCP.
Due to UDP not having mechanisms for reliable transmission, CoAP implements
support for reliable messaging by marking a message as confirmable. A message
marked as confirmable is retransmitted, using timeouts and exponential back-off,
until the receiver has sent an acknowledgment message. For unreliable transmis-
sion, a message can be marked as non-confirmable instead.

Since CoAP runs over UDP, it is common to use DTLS for securing the com-
munication channel. Another method for securing communication is to use OS-
CORE [Sel+��]. Since CoAP is mappable to HTTP via proxies, which terminates
the (D)TLS connection, the proxy servers may access and manipulate the data.
OSCORE provides CoAP with an end-to-end encrypted channel. OSCORE has
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a smaller overhead compared to DTLS, making it faster in some settings, as shown
in [Gün+��].

CoAP is one of the protocols analyzed in Paper III with and without DTLS
using different encryption schemes.

MQTT

The Message Queuing Telemetry Transport protocol, or MQTT [Ban+��], is a
lightweight publish-subscribe protocol used to transport messages between de-
vices. An MQTT network consists of two entity types: a message broker and
clients. The broker acts as a router, receiving messages from clients, and rout-
ing the messages to the appropriate destination. A client is a device running an
MQTT application, communicating with the broker to send and receive messages.
MQTT usually typically runs over TCP/IP but supports other protocols as well.

Clients subscribe to specific topics. When a client sends a message with a
specific topic, the broker distributes this to all clients subscribing to this topic. A
client may both be a publisher and a subscriber.

An MQTT message packet consists of a header and payload, with a fixed-size
header of � bytes. The length variable is a single byte, allowing for message sizes
up to ��� bytes. For longer messages, MQTT supports a variable-length header
using an encoding scheme. The largest supported message is approximately ���
MiB. The four first bits (MSB) in the header determines the message type, such as
connect, publish, subscribe, and disconnect.

The security in MQTT is left to the implementer, but it is common to useTLS,
allowing for password-based and certificate-based authentication. Management
of keys and certificates for heterogeneous networks becomes cumbersome as the
networks grow. The scalability issues have led to research on other approaches,
such as using Attribute-Based Encryption (ABE) over elliptic curves, supporting
broadcast encryption, as done in SMQTT [Sin+��].

MQTT-SN [ST��] is a continuation of the MQTT protocol, targeting small
sensor nodes with minimal resources. MQTT-SN runs over UDP, which reduces
the size of the messages. There is an MQTT-SN gateway translating between
MQTT and MQTT-SN. Just like for MQTT, there have been several proposed
security architectures for MQTT-SN, such as SMQTT-SN [Sin+��].

MQTT is the other protocol, along with CoAP, analyzed in Paper III.
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�.� Cryptography

The word cryptography originates from the Greek words kryptós “secret”, and
graphein “to write”. In other words, secret writing.

The desire for hiding information has been around for a very long time - the
oldest known use of cryptography dates back to ���� B.C. [Kah��], used for hid-
ing the formula of making pottery glaze. Monoalphabetic substitution ciphers
were later invented, such as the Atbash cipher and the Caesar cipher. The ciphers
use a fixed bijective mapping from an alphabet to itself, e.g., the letter “A” is al-
ways replaced with the letter “Q” and so on. Polyalphabetic ciphers build upon
monoalphabetic, with the mapping being changed during the encryption or de-
cryption process. For example, for the first five letters, “A” maps to “Q”, while for
the next five, we map “A” to “M”, and so on.

In the modern age, there are two basic cryptographic primitives when it comes
to encryption - asymmetric, known as public-key cryptography, and symmetric,
known as symmetric-key cryptography.

�.�.� Asymmetric Ciphers

In the asymmetric case, we have two different, mathematically linked, keys: a
public key for encryption and a private key for decryption. It is hard to find the
private key given the public key, whereas it is easy to get the public key if we have
access to the private one. Next, we describe some commonly used asymmetric
algorithms.

RSA

Dating back to ����, RSA [RSA��] is one of the first published public-key algo-
rithms and is still today widely used in communication protocols. The security of
RSA is known as the RSA problem. The RSA problem is related to the integer fac-
torization problem, which is believed to be difficult. At the time of writing, no
published algorithm solves the integer factorization problem in polynomial time.

Definition (Integer Factorization Problem). Given a positive integer
n, find the prime factorization of n, such that n = pe11 pe22 · · · pekk , pi
being pairwise distinct primes with ei ≥ 1.

RSA consists of two parts: a public key consisting of the pair 〈e, n〉, and a
private key d. In practice, more values are stored along with the private key, to
speed up computations. The n parameter is calculated by multiplying a set of
prime numbers, usually two, denoted p and q. The public exponent e is generated
such that it is co-prime to φ(n), usually 216 + 1, with φ being Euler’s totient
function. This is sometimes replaced by Carmichael’s totient function, λ(n), for
efficiency. Keeping e small allows for more efficient encryption, due to the reduced
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amount of computation carried out. The private key is calculated as the inverse of
e mod φ(n). To summarize,

n = p · q,
e = {e | 2 < e < φ(n), gcd(e, φ(n)) = 1},
d ≡ e−1 mod φ(n).

The encryption and decryption process, of a message m and ciphertext c, is then
given by

c = me mod n,

m = cd mod n.

The security relates to the size of n. NIST recommends using at least ���� bits
in today’s systems, with an estimated security level of ��� bits [Bar+��]. Plain RSA
is un-padded and deterministic, making it vulnerable to several attacks. Schemes
like RSA-OAEP [Mor+��] have been proposed, which adds padding and random-
ness. RSA is not only used for encryption, but also for providing digital signatures.
In this case, the private key, d, is used for signing, and the public exponent, e, is
used for verification. Due to the usually small value of e, encryption and signature
verification is fast, whereas decryption and signature creation is more expensive.

The introduction of quantum computers and Shor’s algorithm [Sho��] poses
a serious problem against algorithms like RSA, since it would be possible to break
RSA fairly efficiently [GE��]. Post-quantum resistant versions of RSA have been
proposed, such as the one in [Ber+��], but are impractical and require a vast
amount of computational power.

Diffie-Hellman

The first publicly known public-key algorithm was the Diffie-Hellman (DH) key
exchange algorithm, proposed in ���� [DH��]. The underlying structure of DH is
based on modular exponentiation, and the security relates to the discrete logarithm
problem, DLP.

Definition (DLP). Given a prime p, a generator g of Z∗
p, and an ele-

ment α ∈ Z∗
p, it is difficult to find the integer x, 1 ≤ x ≤ p− 1, such

that gx ≡ α mod p. The integer x is called the discrete logarithm of
α in base g, denoted logg α.

Assume that Alice and Bob want to exchange a key using DH. They perform
the following actions, with all operations performed mod p:

�. They agree on a finite cyclic group G with a primitive root (generator) g
and a modulus p. These values are all public.



�� Background

�. Alice chooses a secret random number a ∈ Z/pZ, sending ga to Bob.

�. Bob chooses a secret random number b ∈ Z/pZ, sending gb to Alice.

�. Alice now computes (gb)a, while Bob computes (ga)b. Alice and Bob now
share the secret gab.

Due to the Pohlig-Hellman algorithm [PH��], the security of a group G is
limited by the largest, prime order, subgroup of G. Hence, it is common to gener-
ate a so-called safe prime, using a Sophie Germain prime q to calculate p = 2q+1.
This prime makes the order of the group G divisible only by � and q.

The number field sieve [Len+��] is one of the most effective attacks against
discrete logarithms. It was used in the LogJam attack in ���� to break ���-bit
Diffie-Hellman groups [Adr+��] by performing precomputation based on p, lead-
ing them to attack any Diffie-Hellman instance using the prime p. The authors
estimate that the attack is plausible even at ���� bits, using nation-state resources.
Finally, they recommend the usage of ���� bit primes or switching to elliptic
curves instead. NIST also recommends using at least ���� bit primes for discrete
logarithm based protocols��.

Plain Diffie-Hellman (DH), also known as anonymous Diffie-Hellman, is vul-
nerable to Man-in-the-Middle (MitM) attacks due to the keys not being authen-
ticated. One solution is to digitally sign the transmitted parameters, ga and gb, by
using, e.g., RSA. If the keys used in DH are long-term keys, we call it static Diffie-
Hellman. Ephemeral Diffie-Hellman (DHE) uses a new public key for every in-
stance of the protocol. For DHE, if the long-term signing key is compromised, it
does not affect the security of past sessions, resulting in Forward Secrecy (FS).

The current best practice for (D)TLS is to only use forward-secrecy-only ci-
phers [SHS��]. In TLS �.�, all public-key based key exchange schemes provide
forward secrecy [Res��].

Elliptic Curve Cryptography

Instead of performing calculations in the finite group Zp, we can define an elliptic
curve over a field K. An elliptic curve is defined as a set of solutions of an elliptic
function, e.g., the curve, in Weierstrass form,

y2 = x3 + ax+ b, a, b ∈ GF(q), (�.�)

q being an odd prime. The points on the curve form an ordered pair 〈x, y〉, with
the coordinates being elements of GF(q) that satisfies the curve equation. There
is a particular point, O, known as the point at infinity. This set of points forms a
group under addition, using the chord-tangent process.

The strength of elliptic curves is related to discrete logarithms, known as the
elliptic curve discrete logarithm problem, ECDLP. That is, for an integer m, we

��
https://www.keylength.com/en/4/

https://www.keylength.com/en/4/
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denote the summation of a point P with itself m times, as [m]P . This multipli-
cation is easy to compute, but it is believed to be hard to invert.

The best-known attack against a general elliptic curve is the parallel Pollard’s
Rho algorithm [VW��], with a complexity of aboutO(

√
q). To achieve a security

level of ��� bits, we need to let q ≈ 2256. Note that this is much smaller than the
group size of Diffie-Hellman.

The key generation for ECC is shown to be significantly faster compared to
RSA. The time for generating ECC keys is linear with respect to the key size, while
it is exponential for RSA [JA��]. It is also shown that signature verification is
faster for RSA, due to the small e. The smaller key size for ECC also results in
reduced memory footprint and less bandwidth during transmission.

The are multiple standardized elliptic curves, which are believed to be se-
cure, described next [Che+��]. Curves recommended by NIST include P-���,
P-���, P-���, and P-���. These curves are all so-called Weierstrass curves, given
in Eq. �.�. The prime field used in the NIST curves are based on generalized
Mersenne primes.

Definition (Generalized Mersenne Prime). A generalized Mersenne
prime is a prime of the form

2cn +

(
n−1∑
i=1

−1bi2ci

)
− 1,

where
bi ∈ {0, 1},

c1 > 0, ci−1 < ci, cn ≥ n.

This allows for efficient modular reduction without using division [Sol+��].
The elliptic curve Curve����� [Ber��] is a Montgomery curve, which allows

for fast x-coordinate point operations, which may offer better performance than
the NIST curves. A Montgomery curve is defined by

By2 = x3 +Ax2 + x, A,B ∈ K (�.�)

over a field K, usually GF(q).
Brainpool curves [LM��] use verifiable pseudo-random primes, compared to

the NIST curves. These primes may prevent attacks using backdoored designs.
However, due to the randomness, fast reduction algorithms are no longer possible,
leading to performance penalties��.

As new attacks are invented, we increase the parameters of the cryptographic
algorithms. While this may be a good enough solution to make the algorithms

��
https://tls.mbed.org/kb/cryptography/elliptic-curve-performance-nist-vs-

brainpool

https://tls.mbed.org/kb/cryptography/elliptic-curve-performance-nist-vs-brainpool
https://tls.mbed.org/kb/cryptography/elliptic-curve-performance-nist-vs-brainpool
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secure, the more complex the algorithms are, the more resources it requires to
perform the computations. This complexity is not desirable in small, constrained
systems. This is a case where the system architect needs to decide to either increase
parameters or replace the algorithms with new, hopefully more lightweight, ones.

Let us now shift our focus to symmetric ciphers. In a symmetric cipher, a key
is generated and shared between entities. The key must be kept a secret for other
parties not to be able to decrypt the data. Symmetric ciphers are categorized as
either block ciphers or stream ciphers, described next.

�.�.� Block Ciphers

A block cipher operates on blocks of text, mapping n-bit plaintext to n-bit cipher-
text, where n is the block size. For example, AES uses a block size of ��� bits. The
encryption function C = EK(P ) of a block cipher must be invertible, with the
inverse function, P = DK(C), being the decryption function, for a given key,
K, and plaintext, P . How messages larger than a block are handled is described
next.

For messages exceeding the block size, n, we split the message into n-bit
chunks. The way the chunks are processed is known as the mode of operation of a
block cipher. In the simplest case, known as electronic-codebook, or ECB, each
chunk is processed separately. This mode has weaknesses, e.g., if two blocks of
plaintexts are identical, so will the corresponding ciphertexts be. Modern modes
of operation are based on block chaining or counters, such as CBC and CTR
mode.

If a scheme also allows for authenticating unencrypted data, we call it an au-
thenticated encryption with associated data, or AEAD, scheme [Rog��]. Authen-
ticated encryption has been studied for a long time with several proposed ways of
achieving secure designs. A message authentication code (MAC) is a piece of data
providing integrity and authenticity to a message. A MAC is generated and verified
using a shared secret key. It is a symmetric version of a digital signature. MACs can
be constructed using cryptographic primitives such as block ciphers and universal
hash functions [CW��]. Generally, there are three ways of combining a symmet-
ric encryption scheme and a MAC: Encrypt-then-MAC, EtM; Encrypt-and-MAC,
E&M; MAC-then-Encrypt, MtE. The authors in [BN��] show that the MtE and
E&M schemes are insecure in some settings.

Modern AEAD schemes include the GCM [MV��] and CCM [WHF��]
modes, both recommended to use according to NIST [Dwo��; Dwo��], de-
scribed next.

GCM This mode combines counter mode encryption with Galois mode authen-
tication, calculated over a field GF(2w), commonly GF(2128) defined by

F2 [x] /(x
128 + x7 + x2 + x+ 1).
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Like the counter mode, GCM uses an incrementing counter and an IV as
input to the block cipher, which essentially turns it into a stream cipher.
For authentication, the GHASH [WC��] function is used, which requires
multiplications in the above described field.

GCM allows for parallel computation and efficient use of CPU pipelines,
making it fast and efficient, both in software and in hardware [MV��].

CCM This mode combines the counter mode encryption with the CBC-MAC
authentication code. This combination is an application of the Authenticate-
then-Encrypt scheme. The authors in [KR��b] show that CCM is slightly
faster than GCM for smaller messages on x�� and ARM Cortex-A�, but
slower for larger message sizes.

CCM-� uses eight octets for the authentication tag, compared to the usual
��, which reduces the message size at the cost of security.

CCM* is a variant used in low-rate wireless networks, IEEE ���.��.�. Be-
sides the normal CCM operations, CCM* also supports an encryption-only
mode.

Let us now dive deep into the area of stream ciphers. Even though there exists
public-key stream ciphers such as the Blum-Goldwasser scheme [BG��], we only
look at the symmetric case.

�.�.� Stream Ciphers

A stream cipher operates on a stream of symbols, see Figure �.� for a general archi-
tecture. Compared to a block cipher, a stream cipher has a state which is updated as
it produces keystream. A stream cipher is an approximation of the Vernam cipher,
which is known to be information-theoretically secure [Sha��]. A cryptographic
primitive is said to be information-theoretically secure if there exists a proof that
an attacker, even with infinite computational power, can not break it. More for-
mally,

H(M |C) = H(M),

where H(X) is the entropy of X . That is, an attacker observing a ciphertext does
not gain any information about the plaintext.

The Vernam cipher uses a key of the same size as the message, a require-
ment that is not applicable to most modern use cases. Instead, a limited finite-
state is used to derive a keystream used for encrypting a message. Since the state
is finite and the algorithm is deterministic, a conventional stream cipher is not
information-theoretically secure. Instead, a stream cipher is an instantiation of a
pseudo-random generator, PRG, and offers semantic security [GM��; Gol��].

The general advantage of a stream cipher compared to a block cipher, in hard-
ware, is higher speed and lower circuit complexity. Stream ciphers are also capa-
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Figure 2.2: General model of a stream cipher, with the initial state µ0, the key k, the
initialization vector IV, the next-state function f , the keystream generator g,
the keystream zi, the output function h, along with the plaintext mi and the
ciphertext ci.
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Figure 2.3: An LFSR in Fibonacci configuration.

ble of processing streaming data, e.g., network or mobile traffic, on-the-fly, while
block ciphers need to buffer the data up to whole blocks.

There are multiple ways of constructing a stream cipher. One common ap-
proach is to use a linear-feedback shift register (LFSR) design. A shift register is
a composition of multiple flip-flops connected in series. The feedback function
updates the LFSR input with a value based on the previous state. It is common
to use the linear XOR gates to construct the feedback functions. The flip-flops
which are part of the feedback are called taps.

There are two ways of arranging the flip-flops and the feedback functions: Fi-
bonacci and Galois configuration. In the Fibonacci configuration, the flip-flops
are connected directly in series, and only the input of the last flip-flop is updated
with the output from the feedback, see Figure �.�. In Galois configuration, the
XOR gates are located between flip-flops, controlled by the output of the LFSR.
For an LFSR, a Fibonacci configuration may always be transformed into its cor-
responding Galois configuration. Due to their differences, the initial state may be
different in order to produce the same output sequence. The Galois configuration
is usually more efficient in software since it allows operations on multiple bytes si-
multaneously.

The feedback function may be expressed as a polynomial in a finite field mod
�, where the taps correspond to a monomial with coefficient �. This construction
allows us to use the mathematical theory about finite field arithmetic. We know
that a primitive polynomial produces a maximal cycle length, which allows us
to construct an LFSR producing the longest possible sequence before the cycle
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repeats. A sequence produced by a maximal LFSR is known as maximum length
sequence, or m-sequence. An m-sequence is a pseudo-random sequence with many
interesting properties related to randomness [Gol+��]. Some properties are given
below.

• The sequence is almost perfectly balanced. That is, there are 2n−1 ones
and 2n−1 − 1 zeros. The zero-state only generates zeros; hence it is not
particularly useful.

• Half of the runs are of length �, 1
2n of the runs are of length n. There is also

a single run of n ones and n− 1 zeros.

• If a sequence is shifted by any non-zero number, the new sequence will have
2n−1 − 1 elements the same as the original sequence, and 2n−1 elements
different. Interpreting the sequence as containing +�’s and -�’s instead of �
and �, the normalized autocorrelation function is given by

R(m) =

{
1 if m = 0,

− 1
N if 0 < m < N.

with N being the period of the sequence.

• Adding two phase-shifted m-sequences results in another phase-shift of the
same m-sequence.

There are many applications of m-sequences, such as measuring impulse responses
in order to create reverberation effects for musical instruments [Val+��]. The im-
pulse response is extracted from the measured system by a circular cross-correlation
with the m-sequence. This operation works due to the autocorrelation of an m-
sequence approximates the unit impulse, i.e., a Kronecker delta.

Even though m-sequences and general LFSR-based designs are widely used
and work well, one can not only use an LFSR to generate secure keystream, due
to its intrinsic linearity. The famous Berlekamp-Massey (BM) algorithm finds the
shortest LFSR producing a given finite sequence [Ber��; Mas��] in O(n2) time,
only requiring 2n consecutive bits to reconstruct an LFSR with length n. To
mitigate these attacks, different approaches are taken to introduce non-linearity,
described next.

Non-linear Combining Functions

Here, we take the output of multiple LFSRs and combine the outputs via a non-
linear Boolean function, see Figure �.�. With n LFSRs in Fq, the function is the
mapping Fn

q → Fq. The output can be given as

z = f(L1, L2, . . . , Ln).
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Figure 2.4: General architecture of a stream cipher based on a non-linear combiner de-
sign.

A Boolean function needs certain properties to be applicable in stream cipher
applications. Here, we present some of these properties, as given in [SM��].

Balanced A Boolean function, f , of n variables is said to be balanced if the Ham-
ming weight wt(f) = 2n−1. That is, there is an equal distribution of ones
and zeros.

Nonlinearity A Boolean function, f , of n variables is said to have nonliearity
m if the smallest Hamming distance between f and all n-variable affine
functions is m.

Algebraic degree A Boolean function, f , of n variables can be represented as a
polynomial in the algebraic normal form, ANF. The degree of this polyno-
mial is called the algebraic degree, denoted deg(f).

Correlation immunity A Boolean function, f , of n variables is said to be corre-
lation immune of order k if all sets of k variables, or fewer, are statistically
independent of the output of f . That is, the random variable

Z = f (X0, . . . , Xn−1)

is statistically independent from any random vector

(Xi1 , . . . , Xik) .

A balanced Boolean function with correlation immunity of order k is said
to be k-resilient.

This leads to high linear complexity for the keystream; hence the BM algorithm
becomes computationally hard. The Geffe generator [GP��] is an example of
an architecture utilizing a non-linear combiner function. The problem with the
stateless combiner functions is that they are susceptible to correlation attacks such
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as [MS��]. To counter these types of attacks, the authors proposed Boolean func-
tions with no good linear approximation, and which are also correlation immune,
such as stateful combiners.

E0 is a stream cipher used in Bluetooth [Blu��]. Although it is recommended
to use AES-CCM when possible, E0 is kept for legacy reasons. E0 consists of
four LFSRs with lengths ��, ��, ��, and ��, all using primitive polynomials. The
output is generated by an FSM, called a summation combiner, thus being a stateful
combiner. By using only a small number of memory cells, E0 is still vulnerable to
attacks, such as that in [Cou��].

Another approach for increasing non-linearity is to use a nonlinear-feedback
shift register, NFSR. An NFSR uses a feedback function, which is a non-linear
function of the FSR state, usually by including AND and OR gates. Such con-
struction is found in the Achterbahn cipher.

The Achterbahn stream cipher exists in two versions: Achterbahn-�� and
Achterbahn-���, consisting of �� and �� NFSRs, respectively, with lengths ranging
from �� to ��. The output of the cipher is fed into a non-linear combiner function.
For example, the combiner function, F , used in Achterbahn-��� has properties
such as:

• It is balanced

• It is correlation-immune of order �

• It has non-linearity ����

Due to all NFSRs being rather short and independent, attacks, where the
output functions are linearized, are shown to be effective [JMM��]. The authors
in [HJ��] observed a stronger dependency between the input to the Boolean func-
tion and its output than previously assumed. This dependency led the authors to
mount an attack requiring less complexity than brute force.

Non-linear Filter

Instead of using multiple LFSRs, we can use a single LFSR and use the state values
to be the input to a non-linear output function, see Figure �.�. That is, given the
internal states s1, s2, . . . , sL, the output is given by

z = f(s1, s2, . . . , sL).

A non-linear filter design may be transformed into a non-linear combiner design
by replicating the LFSR L times and shifting the initial state accordingly. The
properties of the filter function are equal to the properties described for the com-
biner case.

The SNOW cipher, introduced in [EJ��], is a word-oriented stream cipher
based on non-linear filter design. It has been updated as SNOW �.� in [EJ��],
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Figure 2.5: General architecture of a stream cipher based on a non-linear filter design.

and as SNOW �G in [�GP��]. Due to the non-random behavior of the ciphers,
the authors in [KY��] were able to mount an attack based on related-key pairs. The
latest version, SNOW-V, was proposed in [Ekd+��]. Instead of operating on bits,
SNOW-V uses symbols in F216 . SNOW uses two LFSRs of length �� from where
symbols enter an FSM, similar to E0. The FSM consists of three ���-bit registers:
R�, R�, and R�. Two blocks from the LFSR part are used as input to the FSM,
which produces a ���-bit keystream. A tag is generated using GMAC. The FSM
also uses an S-box based on the Rijndael (AES) round function, to provide strong
diffusion. Utilizing AES building blocks allows for fast software implementations
due to AES instructions, such as _mm_aesenc_si128, being hardware-accelerated
in most modern high-end architectures.

Due to linearity, stream ciphers based on LFSRs are susceptible to attacks such
as algebraic attacks [Cou��b] and fast correlation attacks. The authors in [BL��]
analyze the security on non-linear filters and combiners, based on known families
of attacks, such as trade-off attacks, Berlekamp-Massey attacks, distinguishing at-
tacks, fast correlation attacks, and algebraic attacks. The authors conclude that it
is more challenging to protect combiner functions against certain attacks; hence
they favor the non-linear filter generator.

The Grain family of stream ciphers is built on the non-linear filter design but
uses one LFSR and one NFSR to further increase the non-linearity.
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�.� Hardware Design

���� marks a valuable time in history - the birth of the transistor. The creators:
John Bardeen, Walter Brattain, and William Shockley were rewarded with the
Nobel Prize in Physics ����. The transistor revolutionized the field of electronics,
replacing vacuum tubes, making it easier and cheaper to manufacture electronic
devices such as computers and radios.

Today, the most common type of transistor used in electronics is the Metal–Ox-
ide–Semiconductor Field-Effect Transistor, or MOSFET for short. Estimations
show that the MOSFET is the most manufactured component in the history of
humanity��, with a count of 1.3 × 1022. In digital circuits, it is most common to
use Complementary MOS, CMOS, which consists of symmetrical pairs of n-type
and p-type MOSFETs. CMOS circuits are known for having excellent character-
istics, such as low power consumption, high noise immunity, and low propagation
delay.

Integrated circuits range from general to application-specific devices. Gen-
eral programmable devices include microcontrollers, usually found in embedded
systems, such as Atmel AVR, processors such as those in a modern computer,
e.g., AMD Ryzen. Domain-specific devices can perform general computations
but are more focused on a specific area, or domain, such as Digital Signal Pro-
cessors (DSPs) and Graphics Processing Units (GPUs), e.g., Nvidia RTX. Field-
Programmable Gate Arrays (FPGAs) are re-programmable devices used for im-
plementing both general and specific applications. In contrast, an Application-
Specific Integrated Circuit (ASIC) is a hardware component implementing spe-
cific functionality very efficiently but can not be re-configured.

Next, we describe the synthesis process, along with optimization techniques
for speed, area, and energy.

�.�.� Hardware Synthesis

Designing hardware is easy; designing efficient hardware is hard. Today, hardware
is implemented using a Hardware Description Language (HDL) such as VHDL
and Verilog for describing the circuit at a register-transfer level (RTL), an abstrac-
tion model for the flow of data between registers. Just like compiling high-level
source code into executable machine code in software design, the process is simi-
lar for hardware. Hardware synthesis is the process where an abstract description
of the circuit, from HDL, gets translated into logic gates.

To produce a list of components and their connections, i.e., a netlist, we need
to map a standard-cell library. This library contains all building blocks needed
to realize the design, such as AND gates, XOR gates, and flip-flops. The exact
implementation of the gates is vendor-specific, which leads to different results

��
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in terms of speed, area, and power. Conventional technologies used in industry
are �� nm and �� nm, but even older technologies such as �� nm and ��� nm
occur. One exception is the desktop and server market, where modern circuits use
a process technology of only a few nanometers, such as the �rd generation Ryzen
architectures with a � nm technology.

As previously stated, the synthesis tool is responsible for translating the RTL
code into physical logic gates, e.g., NAND and NOR, using as “efficient” imple-
mentation as possible. By efficient, we usually refer to the number of gate equiv-
alents (GE). A GE is the area of a �-NAND gate. Although the Boolean circuit
minimization problem is

∑P
2-complete [BU��], there exist efficient algorithms,

using potential non-optimal heuristics, to facilitate the minimization process, such
as Espresso [LS��]. The algorithm utilizes Boolean cubes to represent the ON-,
OFF- and DC-sets of the function.

�.�.� Optimizing Speed

To increase the speed of a design, the first step is to find the bottlenecks. In hard-
ware design, these bottlenecks are known as critical paths. The critical path de-
notes the longest path a signal must propagate between two flip-flops. This path
determines the maximum clock frequency. If a higher clock is used, the signal on
the critical path will not have propagated to its destination; hence the circuit will
behave erroneously. Once the critical path has been identified, the next step is to
make it shorter without altering the circuit behavior. Next, we present some con-
ventional optimization techniques for speed.

Pipelining

The fundamental concept of pipelining is simple; insert a flip-flop in the critical
path, optimally dividing the path in two. If the critical path remains in the same
path, the clock frequency may now be doubled. Of course, it is not as easy as this
in reality.

First of all, we must make sure that pipelining is applicable. This is done by
depicting the design as a graph, with arrows pointing in the data-flow direction.
We are only allowed to insert pipeline steps in the feedforward cutset [Pro��]. A
cutset is a set of edges such that if they are removed (cut), it results in two disjoint
graphs. If data only flows forward on all cutsets, we call it a feedforward cutset.
By inserting a pipeline step, we delay the computations by one clock cycle and
introduce more hardware.

Even though the pipeline is strategically placed, there might be new paths that
become the next critical path. For example, assume that the first critical path has
a delay of ���� ps. We insert a pipeline, dividing the path into two. This yields a
��� ps delay. Now, the next critical path might be somewhere else in the system,
with a delay of ��� ps. The effective speed in the system is limited by ��� ps, not
��� ps. Pipelining, while simple, requires a thorough analysis of the whole system.
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Loop Unrolling

Loop unrolling is a technique for improving the execution speed of a loop at the
expense of the area. Unrolling a loop by a factorN , the body of the loop is repeated
N times, and the total amount of loop iterations is reduced, see Figure �.�. This
reduces the amount of overhead from the loop itself.

Comb. logic

Register

MUX

(a) Normal loop.

Comb. logic

Comb. logic

Register

MUX

Round 1

Round N

. . .

(b) Loop unrolling by a factor N .

Figure 2.6: Implementation of a loop in hardware.

There is, of course, a trade-off to be made between area and speed, and it is not
always obvious what unrolling factor N results in the “best” design. An example
of a design using unrolling is found in [GC��], where the authors implement
and analyze AES with different levels of unrolling, showing that the throughput
increases with N , but higher degrees of unrolling has a minimal increase in speed
but a high area penalty.

�.�.� Optimizing Energy

Minimizing energy consumption is an essential goal in circuit design, especially
for circuits used in constrained systems. One important note to make here is that
low power does not necessarily imply low energy.

Assume that we have a system performing some computation in time t1, con-
suming the power P1. We manage to reduce the power consumption to P2 =
0.5P1, which increases the computation time to t2 = 4t1. Now the total energy
consumption after reducing the power is actually twice the initial energy consump-
tion, i.e., E2 = 2E1. Since the lifetime of a battery is proportional to the energy
consumption, we should stick to the initial implementation.
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The relation between power and energy is not obvious; it depends on the sys-
tem design and optimization techniques used. Analysis is a must to achieve the
required result.

Loop unrolling is not only used for increasing the speed of a circuit. It may
also lower energy consumption, as shown in [BBR��].

Clock Gating

Clock gating is a technique where the clock signal to a circuit, or part thereof,
is disabled. This results in the flip-flops not being switched, which reduces the
dynamic power consumption of the transistors. As described in Section �.�.�,
clock gating may be used to implement sleep modes in a system.

Studies show that the clock signals in digital circuits consume a significant
fraction of the total power. Applying a clock gating scheme may have a tremendous
impact on the total power consumption of the system [Mah+��].

�.�.� Optimizing Area

The cost of the die is proportional to its area��. Hence, it is beneficial to make
the chip as small as possible. Next, we present conventional area-optimization
techniques.

Logic Reuse

One way to save area is to reuse existing functionality by time-multiplexing. The
goal is to determine the smallest amount of basic functional blocks required to
implement the functionality. Assume that we need to implement the following
function,

y = x1 + x2 + x3 + x4.

A naïve implementation requires three adders. The corresponding hardware archi-
tecture is shown in Figure �.�a.

Another description of the function would be given as we can instead describe
the function as

y =

4∑
i=1

xi,

thereby using only a single adder, but in a loop over time. This reduces the area
of the adders, at the cost of latency. However, we need a state machine to control
the flow of data in the second case, since it executes serially. The corresponding
architecture is shown in Figure �.�b. As seen in the figure, for this small example, it
is not apparent which of the designs would yield a smaller area. For more complex

��
https://mycmp.fr/technologies/price-list.html

https://mycmp.fr/technologies/price-list.html


�.� Hardware Design ��

+
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x1 x2 x3 x4

y
(a) Parallel implementation.

x1 x2 x3 x4

MUX

+FSM

ACC

y
(b) Serialized implementation.

Figure 2.7: Hardware implementation of an adder circuit. The serialized implementation
uses an accumulator (ACC) to store intermediate values adding up to the final
sum. A finite state machine (FSM) is used for controlling the dataflow.

functions, there could be lots to gain in area reduction, but this has to be carefully
analyzed.

Custom Logic

During synthesis, the tool maps the RTL code to a specific cell library. This li-
brary contains all fundamental gates necessary to realize any logic function, such
as NAND, NOR, XOR, multiplexers, and flip-flops. The gates are usually imple-
mented using CMOS logic.

When talking about area optimization, one usually refers to the number of
fundamental gates, like those listed above. However, even if any logic function
can be described in terms of a minimal amount of NAND and NOR gates, it does
not necessarily mean the realization uses a minimal number of transistors.

The most common approach when designing logic gates is to use complemen-
tary MOS, CMOS, technology. A CMOS gate consists of two parts - a pull-up
network (PUN) and a pull-down network (PDN). The PUN provides a connection
from the power supply, Vdd, to the output when the corresponding Boolean func-
tion equals �. The PDN connects the output to ground, Vss, when the function
equals �. The two networks are mutually exclusive, in the sense that only one net-
work is active at a time, sourcing or sinking current. The PUN consists of PMOS
transistors due to their ability to source current. Conversely, the PDN consists of
NMOS transistors due to their ability to sink current [RCN��].

NMOS transistors in series correspond to a NAND function, whereas NMOS
in parallel resembles a NOR function. Similarly, PMOS transistors in series corre-
spond to a NOR function, while PMOS in parallel realizes a NAND function. By
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Table 2.2: Common transistor count for NAND and NOR gates.

Gate Transistors

2-NAND 4
3-NAND 6
2-NOR 4

De Morgan’s theorems, one can show that the PUN and PDN are dual networks,
hence one only needs to construct one of the networks, with the other one being
easily derived. CMOS logic is inverting and can only implement functions such
as NAND and NOR. An additional inverter is required to implement AND and
OR functions.

The power of synthesizing CMOS gates directly, not using standard gates, is
apparent when the gates get complex. Consider the Boolean function

F = D +A · (B + C).

Minimizing the expression in disjunctive form yields

F = BCD +AD,

which requires a �-input NAND, a �-input NAND, and a NOR gate. From
Table �.�, we see that the cost of the function, F , in number of transistors is ��.
Using methods for designing complex CMOS gate, we can implement the PDN
using four transistors where B and C are in parallel, A is in series with B and C,
and finally, D is in parallel with A, B, and C. Due to the PUN being the dual to
the PDN, it uses an equal amount of transistors. Thus, we conclude that F can
be implemented using eight transistors, which is ≈ 43% less than before.

It is worth noticing that the CMOS design of a Boolean function minimizes
the transistor count, using that technology. That being said, other technologies
may be used, resulting in an even lower transistor count.

Transistor Technology

A popular alternative to CMOS logic is pass-transistor logic (PTL), intending to
minimize the number of transistors required to implement a Boolean function.
The difference is that we allow the input signals to drive both the gates and the
source-drain terminals, whereas in CMOS logic, we only let the gates be driven by
the input signals. Using this approach enables us to design a �-AND gate using
only four transistors, instead of six.

One drawback with this approach is that an NMOS, as stated earlier, effi-
ciently sinks current, but is poor at sourcing current. That is, the NMOS can
not pull a node high, but will only output Vdd − Vth. A widely used solution
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to the problem with dropped voltage is to utilize so-called transmission gates. The
idea is to use an NMOS to pull down (sink) and a PMOS to pull up (source). This
is realized by placing the NMOS and PMOS in parallel, with complementary
control signals to the gates. This allows for efficient implementation of complex
gates without the voltage drop problems. For example, an XOR gate may be real-
ized using only six transistors, compared to �� for a complementary implementa-
tion [WFF��]. These kinds of transistor-reducing techniques were utilized by the
designers of the Zilog Z�� CPU [Shi��].
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Conclusions

�.� Contributions

In this chapter, we summarize the contributions of the papers included in this
dissertation. This chapter ends with some conclusions.

�.�.� An AEAD Variant of the Grain Stream Cipher

In Paper I, a new version of the stream cipher Grain is presented, Grain-���AEAD.
Following the latest recommendations from NIST, Grain offers authenticated en-
cryption with associated data at a ���-bit security level. Grain is designed to be
lightweight to fit in the most constrained environments. At the time of writing,
Grain-���AEAD is currently one of �� ciphers managing to proceed to round �
of the NIST lightweight cryptography standardization process�.

To mitigate attacks on previous versions of Grain, Grain-���AEAD no longer
supports encryption only. The authentication tag has been extended to �� bits.
During the initialization, the key is re-introduced in order to randomize the state,
thwarting key-recovery attacks. The keystream is also limited to 280, to make
attacks using linear approximations more difficult.

With the new design, we present a straightforward hardware implementation
of the cipher, using a �� nm library in VHDL. We use three different levels of
parallelizations: �, �, and �� times, in two scenarios. First, the clock frequency
is fixed to ��� kHz, matching the frequency to that of RFID. This yields very
low power consumption, ��� nW in the best case, and ��� nW in the worst.
Next, we synthesize for maximum clock frequency, thus throughput. The highest
throughput is reached for a parallelization level of ��, with ��.�� Gbit/s.

�
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�.�.� Efficient Hardware Implementations of Grain-���AEAD

In Paper II, we present an in-depth analysis of hardware implementations of Grain-
���AEAD. Synopsys design compiler is utilized along with a �� nm library. When
evaluating the designs, three properties are measured: area in terms of gates, power
consumption, and throughput.

We utilize several optimization techniques, such as Galois transforms, pipelin-
ing, FSM optimizations, and unrolling. The first step is to implement a straight-
forward version of the architecture, for comparison, along with a simple FSM to
keep track of the phases. We then implement parallelized versions by powers of
two, from � to ��, and compare throughput, area, and power.

During synthesis, there are multiple compiler optimization flags to be used,
such as structuring, flattening, and ungrouping. We show that for our implemen-
tations, only the ungrouping option affects the results. However, we note that for
different designs, all options should be analyzed. Another parameter to specify
is the transistor type. In this paper, we utilize LVT and HVT transistors. LVT
transistors have a lower threshold voltage, resulting in a higher maximum clock
frequency but also higher static power consumption. For HVT transistors, the
outcome is the opposite - low static power consumption, but lower maximum
clock frequency. We use LVT for the high-speed implementations and HVT for
the low-power implementations. The results show that the low-power implemen-
tation has a higher energy consumption since computations take a longer time.

Finally, we conclude that Grain-���AEAD is a fast and energy-efficient cipher,
with a small hardware footprint, suitable for IoT environments with a need for
authenticated encryption.

�.�.� Energy Consumption for Securing Lightweight IoT Protocols

In Paper III, we measure and analyze the energy overhead when adding security
to CoAP and MQTT. For CoAP, we use DTLS �.�, whereas, for MQTT, we use
TLS �.�.

Our experimental setup consists of an ESP-�� IoT device, along with an Otii
Arc for measuring energy, and a router connected to a desktop hosting CoAP and
MQTT server applications.

We split the (D)TLS analysis into a handshake part and a data transmission
part. In the handshake, we compare the impact of using different cipher suites.
We show that RSA performs better than ECDSA when no client certificate is
used, while being worse when using client certificates. This is due to RSA signing
being much more costly than verification. We also note that ECDHE is much
more efficient than the corresponding DHE suites. The most energy and time-
efficient cipher suites are the PSK ones since there is no need for key negotiation.
However, PSK suites require keys to be distributed to the devices or pre-loaded,
which is not always possible.
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We measure the energy difference between modes of operation using AES,
along with different key sizes when sending bulk data. There are only minor dif-
ferences in energy when using various modes of operation. We see that MQTT
performs better for larger payload sizes compared to CoAP. Due to the communi-
cation overhead, it is more beneficial to send aggregated data compared to send-
ing smaller packets, both for CoAP and MQTT. When sending a full firmware, a
packet size of ≈ 1 MiB, MQTT is roughly four times more energy-efficient than
CoAP.

For lossy networks, the benefits of using TCP compared to UDP is obvious.
CoAP requires 5− 10 times more energy to transmit a fixed-size packet at a given
loss rate.

In conclusion, we present real-world measurements of the cost of security for
CoAP and MQTT under different settings. We recognize that the measurements
are hardware, software, and environment-specific, but we aim to give a better un-
derstanding of the relative difference rather than the absolute numbers.

�.� Conclusions

This dissertation aims to present new results on lightweight cryptography and its
use in constrained devices. For resource-constrained devices being connected to
the Internet, there is a need for protocols of high security, while being energy-
efficient.

We look at stream cipher design and present a new version of the lightweight
cipher Grain, designed to be small in terms of circuit area and using low power
while offering a ���-bit security level. The latest version also provides AEAD, for
ensuring confidentiality and authenticity.

Further, we implement and analyze Grain-���AEAD in VHDL using a ��
nm standard cell library. Using multiple optimization techniques, we come up
with various implementations of Grain, targeting different requirements and con-
straints. We show that Grain-���AEAD is suitable both for the smallest of devices,
but also capable of handling large data streams at a high pace in, e.g., server envi-
ronments.

Choosing cryptographic algorithms for a system is difficult since the impact
of an algorithm depends on many variables. The engineer should research com-
parisons and analyze the relative differences between the algorithms. It is also im-
portant to understand the circumstances under which the comparisons have been
carried out, e.g., if the system utilizes hardware acceleration, which libraries have
been used, and so on. If the conditions change ever so slightly, it may have a con-
siderable impact on the result; hence the engineer must carefully plan for various
scenarios.

The security of an algorithm lie not only in the mathematical description,
but also in the actual implementation. This means that both the algorithms and
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the implementaions must stay up-to-date in today’s rapid development, as attacks
never get worse, they only get better.

If shit were to hit the fan and you end up with a broken stream cipher, you
can always convert it into a guitar pedal.
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An AEAD variant of the
Grain stream cipher

Abstract

A new Grain stream cipher, denoted Grain-���AEAD is presented, with support
for authenticated encryption with associated data. The cipher takes a ���-bit key
and a ��-bit IV and produces a pseudo random sequence that is used for encryp-
tion and authentication of messages. The design is based on Grain-���a but in-
troduces a few changes in order to increase the security and protect against recent
cryptanalysis results. The MAC is �� bits, as specified by the NIST requirements
in their lightweight security standardization process.

� Introduction

Due to widespread usage of Internet of Things (IoT) technology, the need of
protection from security threats on resource-constrained devices has been con-
tinuously growing. Since ����, the cryptography community has already recog-
nized the importance of this need, and researchers and developers have focused on
cryptography tailored to limited computation resources in hardware and software
implementations. This has resulted in opening up a new subfield of cryptogra-
phy, namely, lightweight cryptography, which led to the launch of the eSTREAM
project. This project running from ���� to ���� can be viewed as the most im-
portant research activity in the area of lightweight stream ciphers. The eSTREAM
portfolio contains four software-oriented ciphers and three hardware-oriented ci-
phers.

Martin Hell, Thomas Johansson, Willi Meier, Jonathan Sönnerup, and Hirotaka Yoshida. “An
AEAD Variant of the Grain Stream Cipher”. In Codes, Cryptology and Information Security: Third
International Conference, C�SI ����, Rabat, Morocco. Springer Nature Switzerland AG. pp. ��-��.
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From an industrial point of view, it has been widely recognized that matu-
rity is important regarding deployment of cryptographic mechanisms. In fact, the
ISO/IEC �����-� [Int��a] standard states this property as one criteria for inclu-
sion of cryptographic mechanisms. The concept behind this it that, if crypto-
graphic mechanisms are standardized, they should be in the public domain for
many years. In this way, security and performance analysis of them can be per-
formed by third parties, which would give the users a significant amount of con-
fidence in security. The above mentioned eSTREAM project activity affected in-
dustry: one of the eSTREAM portfolio cipher, Trivium [CP��], is standardized
in the lightweight stream cipher standard, ISO/IEC �����-� [Int��] together with
Enocoro [Wat+��]. Grain-���a, which is based on the eSTREAM portfolio cipher
Grain v�, is standardized in ISO/IEC �����-�� [Int��b] for the RFID application
standard.

Despite of the above extensive academic and industry efforts, there is still an
important gap to fill. There has been no authenticated encryption with associ-
ated data (AEAD) mechanism that meets very severe performance requirements
in hardware and still offers ���-bit security, accompanied by serious evidence on
cryptanalysis. In ����, NIST initiated a lightweight cryptography project, fol-
lowed by two workshops on the same subject. In ����, NIST published a call
for submissions for lightweight cryptographic mechanisms. One remarkable fea-
ture is that NIST requires each submission to implement the AEAD functional-
ity. In [Ban+��a], it was shown that lightweight stream ciphers are typically more
suitable than lightweight block ciphers for energy optimization when encrypting
longer messages, in particular when the speed can be increased at the expense of
moderate extra hardware. Thus, a lightweight stream cipher seems to be a good
starting point for a lightweight AEAD design.

This paper presents Grain-���AEAD, an authenticated encryption algorithm
with support for associated data. The specification is in line with the requirements
given by NIST and is based on the Grain stream cipher family. More specifically,
it is closely based on Grain-���a, introduced in ����, which has, already for several
years, been analyzed in the literature. To benefit from the maturity of the Grain
family, our strategy in the design of Grain-���AEAD is to have the changes made
to Grain-���a as small as possible. Grain-���a is in turn based on Grain v� and
Grain-���, which have both been extensively analyzed, providing much insight
into the security of the design approach. All Grain stream ciphers also allow the
throughput to be increased by adding additional copies of the Boolean functions
involved.

Industrial relevance of the Grain family can be explained as follows: Grain-
���a receives a lot of attention from industry. ISO/IEC �����-��:���� specifying
Grain-���a has been adopted in industrial applications. For instance, the passive
IT�� RFID tag [Hon��] that Honeywell has designed for automotive applications
implements this security standard.

The outline of the paper is as follows. In Section � the specification of the
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Figure 1: An overview of the building blocks in Grain-128AEAD.

new primitive is given. Then the overall design rationale, motivating the design
choices, are given in Section �. A security analysis, focusing on cryptanalysis of
Grain-���a is then given in Section �. The hardware implementation is described
in Section � and the paper is concluded in Section �.

� Design Details

Grain-���AEAD consists of two main building blocks. The first is a pre-output
generator, which is constructed using a Linear Feedback Shift Register (LFSR), a
Non-linear Feedback Shift Register (NFSR) and a pre-output function, while the
second is an authenticator generator consisting of a shift register and an accumu-
lator. The design is very similar to Grain-���a, but has been modified to allow for
larger authenticators and to support AEAD. Moreover, the modes of usage have
been updated.

�.� Building Blocks and Functions

The pre-output generator generates a stream of pseudo-random bits, which are
used for encryption and the authentication tag. It is depicted in Fig. �. The content
of the ���-bit LFSR is denoted St = [st0, s

t
1, . . . , s

t
127] and the content of the ���-

bit NFSR is similarly denoted Bt = [bt0, b
t
1, . . . , b

t
127]. These two shift registers

represent the ���-bit state of the pre-output generator.
The primitive feedback polynomial of the LFSR, defined over GF(�) and de-

noted f(x), is defined as

f(x) = 1 + x32 + x47 + x58 + x90 + x121 + x128.
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The corresponding update function of the LFSR is given by

st+1
127 = st0 + st7 + st38 + st70 + st81 + st96

= L(St).

The nonlinear feedback polynomial of the NFSR, denoted g(x) and also defined
over GF(�), is defined as

g(x) = 1 + x32 + x37 + x72 + x102 + x128 + x44x60 + x61x125

+ x63x67 + x69x101 + x80x88 + x110x111 + x115x117

+ x46x50x58 + x103x104x106 + x33x35x36x40

and the corresponding update function is given by

bt+1
127 = st0 + bt0 + bt26 + bt56 + bt91 + bt96 + bt3b

t
67 + bt11b

t
13

+ bt17b
t
18 + bt27b

t
59 + bt40b

t
48 + bt61b

t
65 + bt68b

t
84

+ bt22b
t
24b

t
25 + bt70b

t
78b

t
82 + bt88b

t
92b

t
93b

t
95

= st0 + F(Bt).

Nine state variables are taken as input to a Boolean function h(x). Two of
these bits are taken from the NFSR and seven are taken from the LFSR. The func-
tion is defined as

h(x) = x0x1 + x2x3 + x4x5 + x6x7 + x0x4x8,

where the variables x0, . . . , x8 correspond to the state variables bt12, st8, st13, st20,
bt95, s

t
42, s

t
60, s

t
79 and st94, respectively.

The output of the pre-output generator, is then given by the pre-output func-
tion

yt = h(x) + st93 +
∑
j∈A

btj ,

where A = {2, 15, 36, 45, 64, 73, 89}.
The authenticator generator consists of a shift register, holding the most recent

�� odd bits from the pre-output, and an accumulator. Both are of size �� bits. We
denote the content of the accumulator at instance i as Ai = [ai0, a

i
1, . . . , a

i
63].

Similarly, the content of the shift register is denoted Ri = [ri0, r
i
1, . . . , r

i
63].

�.� Key and IV Initialization

Before the pre-output can be used as keystream and for authentication, the inter-
nal state of the pre-output generator and the authenticator generator registers are
initialized with a key and IV. Denote the key bits as ki, 0 ≤ i ≤ 127 and the IV
bits as IV i, 0 ≤ i ≤ 95. Then the state is initialized as follows. The ��� NFSR
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bits are loaded with the bits of the key b0i = ki, 0 ≤ i ≤ 127 and the first ��
LFSR elements are loaded with the IV bits, s0i = IVi, 0 ≤ i ≤ 95. The last �� bits
of the LFSR are filled with �� ones and a zero, s0i = 1, 96 ≤ i ≤ 126, s0127 = 0.
Then, the cipher is clocked ��� times, feeding back the pre-output function and
XORing it with the input to both the LFSR and the NFSR, i.e.,

st+1
127 = L(St) + yt, 0 ≤ t ≤ 255,

bt+1
127 = st0 + F(Bt) + yt, 0 ≤ t ≤ 255.

Once the pre-output generator has been initialized, the authenticator generator
is initialized by loading the register and the accumulator with the pre-output
keystream as

a0j = y256+j , 0 ≤ j ≤ 63,

r0j = y320+j , 0 ≤ j ≤ 63.

When the register and the accumulator are initialized, the key is simultaneously
shifted into the LFSR,

st+1
127 = L(St) + kt−256, 256 ≤ t ≤ 383,

while the NFSR is updated as

bt+1
127 = st0 + F(Bt), 256 ≤ t ≤ 383.

Thus, when the cipher has been fully initialized the LFSR and the NFSR states
are given by S384 and B384, respectively, and the register and accumulator are
given by R0 and A0, respectively. The initialization procedure is summarized in
Fig �.

�.� Operating Mode

For a messagem of lengthL, denotedm0,m1, . . . ,mL−1, setmL = 1 as padding
in order to ensure that m and m‖0 have different tags.

After initializing the pre-output generator, the pre-output is used to generate
keystream bits zi for encryption and authentication bits z′i to update the register
in the accumulator generator. The keystream is generated as

zi = y384+2i,

i.e., every even bit (counting from �) from the pre-output generator is taken as a
keystream bit. The authentication bits are generated as

z′i = y384+2i+1,
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Figure 2: An overview of the initialization in Grain-128AEAD. Note that, in hardware, the
accumulator initialization is realized by first loading 64 pre-output bits into the
register, followed by moving them to the accumulator.

i.e., every odd bit from the pre-output generator is taken as an authentication bit.
The message is encrypted as

ci = mi ⊕ zi, 0 ≤ i < L.

The accumulator is updated as

ai+1
j = aij +mir

i
j , 0 ≤ j ≤ 63, 0 ≤ i ≤ L,

and the shift register is updated as

ri+1
63 = z′i,

ri+1
j = rij+1, 0 ≤ j ≤ 62.

An AEAD scheme allows for data that is authenticated, but unencrypted.
Grain-���AEAD achieves this simply by explicitly setting y384+2i = 0 for bits
that should not be encrypted, but should still be authenticated. This means that
it is possible to control the associated data on bit level, and this data can appear
anywhere in the message.

� Design Rationale

This section presents a short overview of the Grain stream ciphers and how the
design has evolved through the different versions. It also enumerates and discusses



� Design Rationale ��

the differences between Grain-���a and the proposed Grain-���AEAD.

�.� A Short History of the Grain Family of Stream Ciphers

The Grain family of stream ciphers are based on the idea behind the nonlinear
filter generator. In a nonlinear filter, an LFSR is used to provide a sequence with
large period, and a nonlinear function, taking parts of the LFSR sequence as in-
put, is used to add nonlinearity to the keystream sequence. Much work has been
put into analyzing the nonlinear filter generator and it is clear that it is very diffi-
cult to design a secure nonlinear filter generator with a reasonable hardware foot-
print [BL��]. In particular algebraic attacks have been shown to be very strong
against this design, see e.g., [Cou��a; MPC��].

In order to better withstand algebraic attacks, and to make the relation be-
tween state/key and keystream more complex, Grain adds an NFSR to the non-
linear combiner. The initial submission to the ECRYPT eSTREAM project was
analyzed in [KHK��; BGM��], showing that the nonlinear functions required
higher resiliency and nonlinearity. The modified design was subsequently pub-
lished as Grain v� [HJM��] and was later selected for the final portfolio in eS-
TREAM. Grain v� uses an ��-bit key, and a ���-bit key variant was proposed
in [Hel+��b]. Based on previous results on the Grain construction, Grain-���
was more aggressively designed, making the nonlinear NFSR feedback function of
degree �, but with high nonlinearity and resiliency. The relatively small functions
compensated for the fact that the shift registers were increased to ��� bits each,
which increased the hardware footprint. The low degree functions were exploited
in [Aum+��; Sta��] in order to cryptanalyze a significant number of initializations
rounds. These results suggested that the nonlinear functions needed a higher secu-
rity margin. Grain-���a was proposed in [Ågr+��b], and in addition to increasing
the degree of the nonlinear feedback function, an optional authentication mode
was added. Work on Grain-��� were subsequently improved [DS��a; Din+��;
Fu+��; KHS��], emphasizing the need for more complex Boolean functions, and
Grain-��� is considered broken and should not be used. The design proposed
in this paper, Grain-���AEAD, is closely based on Grain-���a, using the same
feedback and output functions. However, slight modifications have been made in
order to add security and make it resistant to the attack proposed in [Tod+��].

�.� Differences Between Grain-���AEAD and Grain-���a.

Grain-���AEAD takes Grain-���a as starting point, but introduces a number of
slight modifications. The modifications are primarily motivated by the NIST
Lightweight Cryptography Standardization Process, but inspiration also comes
from recent results in [Tod+��; HK��].
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Larger MACs

The register and the authenticator has been increased to �� bits (instead of �� bits)
in order to allow for authentication tags (MACs) of size �� bits.

No Encryption-only Mode

Grain-���a allowed for an operation mode with only encryption, where the au-
thentication was removed. This mode resulted in smaller hardware footprint since
the two additional registers, and their associated logic, could be left out from an
implementation. The encryption-only mode was also more efficient since the ini-
tialization process does not include initializing the register and the accumulator,
and every pre-output bit was used as keystream. The proposed Grain-���AEAD
is a pure authenticated encryption algorithm, and authentication of data is always
supported. Thus, there is only one mode of operation.

Initialization Hardening

Based on the ideas in [HK��] and used in Lizard [HKM��], Grain-���AEAD
re-introduces the key into the internal state during the initialization clock cycles.
More specifically, it is serially shifted into the LFSR in parallell to the initializa-
tion of the register and the accumulator. Several variants can be considered here,
including where and when to add the key. The LFSR is chosen due to the fact
that if the LFSR is recovered (e.g., in a fast correlation attack as in [Tod+��]),
it is comparably easy to recover the NFSR state. Moreover, since the LFSR out-
put is XORed with the NFSR input, the key bits will continue to affect also the
NFSR during pre-output generation. As for when, we choose to re-introduce it
during the last ��� clocks of the initialization. This provides maximum separation
between its first introduction in the key loading part, where the key is loaded into
the NFSR, and when it is re-introduced. Relations between keys are e.g., more
difficult to exploit if the key is properly mixed into the state before the key is re-
introduced.

By introducing the key as the last part of the initialization, we achieve the at-
tractive effect that a state recovery attack does not immediately imply key recovery,
as was the case for previous versions of Grain. While a state recovery would still
render the cipher to be considered broken, the practical effect to deployed devices
is highly limited. Recovering the state will only compromise the security of the
current message, and not all messages using the same key.

Keystream Limitation

Grain stream ciphers have been designed to allow for encrypting large chunks of
data using the same key/IV pair. Previously, the Grain ciphers have not had any ex-
plicit limitation on the keystream length. However, to rule out attacks that use very
large keystream sequences, Grain-���AEAD restricts the number of keystream bits
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for each key/IV to 280. We believe that this is well above what will be needed
in the foreseeable future. Restricting the number of keystream bits will also make
attacks that use linear approximations more difficult, e.g., [Tod+��].

� Security Analysis

The security of the Grain family of stream ciphers has been investigated by a large
number of third party analysts, publishing various analysis results on the different
variants of Grain. Since its first introduction in ����, much have been learned
about the construction and the design approach. There have also been several
published ciphers inspired by the design, e.g., Sprout [AM��] and its successor
Plantlet [MAM��]. Also Fruit [GHX��] and Fruit-�� [AH��] are based on the
same design idea. These ciphers have in common that they attempt to realize
extremely resource constrained encryption. To minimize the hardware footprint,
the key is assumed to be stored in non-volatile memory (NVM) on a device, and
this memory is made part of the cryptographic algorithm. Since the key needs to
be stored on a device anyway, using the key directly from NVM in the algorithm
does not impose additional hardware to the construction. This is not the case for
Grain, as we allow the key to be updated in the device, and the key storage is
not a part of the cipher. Still, the fact that the above mentioned ciphers use the
Grain design idea shows that the design seems to be very suitable for lightweight
cryptography.

�.� General Security Analysis

A main class of attacks on stream ciphers is theTime/Memory/Data tradeoff (TMD-
TO) attack, an efficient method of finding either the key or the state of ciphers
by balancing between time, memory and keystream data. This can sometimes be
much more efficient and more practically applicable than a simple exhaustive key
search attack. Some stream ciphers are vulnerable to TMD-TO attacks and their
effective key lengths could then be reduced. This typically happens if the state size
is too small. A famous practical TMD-TO attack on A�/� was given in [BSW��].

A TMD-TO attack consists of two parts. The first is a preprocessing phase,
during which a table is constructed. The mapping of different keys or internal
states to some keystream segment is computed and stored in the table. It is sorted
on keystream segments and this process is assumed to use time complexity P
and memory M . In the second (real-time) phase, the attacker has intercepted D
keystream segments and search for a collision with the table with time complexity
T . A collision will recover the corresponding input. By a trade-off between pa-
rameters P,D,M , and T , attackers can devise attacks according to available time,
memory and data. Examples of tradeoffs are Babbage-Golic (BG) [Bab��; Gol��]
and Biryukov-Shamir (BS) [BS��] with curves TM = N , P = M with T ≤ D;
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and MT 2D2 = N2, P = N/D with T ≥ D2, where N is the input space, re-
spectively.

For Grain-���AEAD, attackers have no direct way to reconstruct the internal
state, since the cipher has an internal state of size ��� bits (���-bit LFSR + ���-bit
NFSR), i.e. N = 2256. The best attack complexity achieved under BG tradeoff is
with T = M = D = N1/2 = 2128, which is not favourable compared to exhaus-
tive key search. Also the BS tradeoff does not give complexity parameters of partic-
ular interest. Some improvements to TMD-TO attacks can be achieved through
socalled BSW sampling [BSW��] and the performance of such an approach is
characterized by the sampling resistance of the stream cipher. Various generaliza-
tions of the concept of sampling resistance can be considered, e.g. [JZW��], but it
seems unlikely that this will lead to an attack with better performance than a stan-
dard Hellman-type time-memory tradeoff attack on the keyspace, a generic attack
applicable to any cipher. Also, our limit on the length of keystreams affects such
attacks.

Another class of general attacks are algebraic attacks, where the attacker derives
a system of nonlinear equations in unknown key bits or unknown state bits and
then solves the system. In general, solving a system of nonlinear equations is not
known to be solvable in polynomial time, but there might be special cases that
can be solved efficiently [Cou+��]. Due to the NFSR, the degree of the equations
will gradually increase and it does not look promising to try to derive a system of
nonlinear equations due to this property as well as the algebraic degree of the h
function.

A general cryptanalytic technique is a guess-and-determine attack, where one
guesses parts of the state and then from the keystream tries to determine other parts
of the state. The goal is to guess as few positions as possible and determine as many
as possible from equations involving the keystream. Again, since the dependence
between a keystream symbol and the state includes many different positions in the
state and some of them in nonlinear expressions, one has to guess a large portion
of state variables in order to use an equation to determine a single state variable.

Being a binary additive stream cipher, Grain-���AEAD does not allow reuse
of a key/IV pair since this will leak information about the corresponding plaintexts.
Moreover, since Grain-���AEAD closely resembles Grain-���a, a key/IV pair used
in one cipher may also not be reused in the other. Such cross-cipher key/IV reuse
in a related cipher model is outside the security model of Grain-���AEAD.

In the subsequent subsections, we now describe the attacks that we consider as
the main threat against lightweight stream ciphers in general and Grain-���AEAD
in particular.

�.� Correlation Attacks

Grain-���a was designed to resist conventional (fast) correlation attacks that ex-
ploit correlations between the state of the LFSR and the corresponding key stream.
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There has been devised a fast correlation attack on small state Grain-like stream
ciphers in [ZGM��]. Due a much bigger state, this attack does not apply to Grain-
���a. On the other hand, a recent paper [Tod+��] reveals that there are multiple
linear approximations in Grain-���a that together with a viewpoint based on a fi-
nite field allow a fast correlation attack on the raw encryption mode of Grain-���a
(and on the other members of the Grain family), where every keystream bit is as-
sumed to be accessible by an opponent. This attack recovers the state of Grain-
���a with data and time complexity of about 2114. The data needs to come from
the same secret key and the same IV.

It should be noted that this fast correlation attack does not apply to Grain-
���a in authentication mode, as then only every second key stream bit may be
accessible to an opponent. Thus, it does not apply to Grain-���AEAD.

�.� Chosen IV Attacks

A variety of chosen IV attacks on Grain have been proposed, in both fixed key
scenario as well as in the related key setting, and either for distinguishing purpose
or for key recovery. In a fixed key scenario, chosen IV attacks have been devised
on reduced-round versions using conditional differentials and using cube attacks,
or combinations of both [KMN��; LM��; GH��; MTQ��]. On Grain-���, a
dynamic cube attack has been developed that succeeds in finding the secret key for
the full ���-round initialization for a fraction of keys, [Din+��]. Dynamic cube
attacks have not been successful on Grain-���a thus far. Most of these results are
experimental in nature, and do work only if the computational effort is practically
feasible.

More recently, division property has been developed to improve cube attacks.
Division property is an iterated technique for integral distinguishers introduced by
Todo, in [Tod��] and was applied initially to block ciphers. It turned out that
it also applies to the initialization of stream ciphers, not only for distinguishers
but also for key recovery. As opposed to conventional cube attacks, it can provide
theoretical results. The latest result on Grain-���a in this direction is a key recov-
ery on ��� initialization rounds, [Wan+��]. The data complexity is 295, and the
computational complexity corresponds to about 2110 operations.

An attack that reaches the largest number of initialization rounds of Grain-
���a in a fixed key scenario thus far is a conditional differential distinguishing
attack and reaches ��� initialization rounds, but it works only for a fraction of all
keys, [MTQ��].

The relevance of related key cryptanalysis of stream ciphers has been a sub-
ject of debate. A related key attack on Grain-���a in [DG��] recovers the secret
key with a computational complexity 296, requiring 296 chosen IVs and about
2104 keystream bits. It requires only � related keys. Another related key attack
in [Ban+��] recovers the secret key using 264 chosen IVs and 232 related keys,
where these figures need to be multiplied by some factor (about 28).
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�.� Fault Attacks

In the scenario of fault attacks on stream ciphers, the attacker is allowed to inject
faults into the internal state, which means either flipping a binary value in memory
or assigning a value to zero. By analyzing the difference in keystreams for the
faulty and the fault-free case, one attempts to deduce the complete or some partial
information about the internal state or the secret key. Fault attacks on stream
ciphers have recently received some attention, starting with the work of Hoch and
Shamir [HS��]. The most common methods of injecting faults is by using laser
or through clock glitches. Fault attacks usually rely on assumptions that is beyond
the model of cryptanalysis and for this reason one can often find rather efficient
fault attacks on most ciphers. In some scenarios they are, however, not unrealistic
and the exact complexity and the related requirements are of interest to study.

Fault attacks on the Grain family of stream ciphers were studied in [Cas+��]
and [KR��a]. More recently, there was a number of papers providing improved
attacks, [BMS��b; SBM��; BMS��a; BMS��c]. In [SBM��] the model is the
most realistic one as it considers that the cipher has to be re-initialized only a
few times and faults are injected to any random location and at any random clock
cycle. No further assumptions are needed over location and timing for injections.
In the attack one constructs algebraic equations based on the description of the
cipher by introducing new variables so that the degrees of the equations do not
increase. Following algebraic cryptanalysis, such equations based on both fault-
free and faulty key-stream bits are collected. Then a solving phase using the SAT
Solver recovers the state of any Grain member in minutes, For Grain v�, Grain-
��� and Grain-���a, it uses only ��, � and �� injected faults, respectively.

We stress that we are not claiming resistance against fault attacks for Grain-
���AEAD. Rather, when fault attacks is a realistic threat, one has to implement
protection mechanisms against fault injection.

� Implementation

Lightweight ciphers are important in constrained devices. A minimal design is
desirable, e.g., minimum area and very low power consumption since they often
must operate for an extended period of time, without a battery change. In some
cases, devices run without its own power supply, something that is often the case
with RFID tags.

Grain-���AEAD can be constructed using primitive hardware building blocks,
such as NAND gates, XOR gates and flip flops. In order to get an idea of the
hardware footprint related to an implementation of the cipher, we implement the
stream cipher using �� nm library from ST Microelectronics, stm065v536. For
synthesis and power simulation, the Synopsys Design Compiler ����.�� is used.
It can be noted that the result is highly dependent on what kind of gates are avail-
able and how the tool utilizes the standard cells. We define a �-input NAND gate
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Table 1: The gate count for different functions.

Function Gate Count

NAND2 1.0
NAND3 1.5
NAND4 2.0
XOR2 2.5
XOR3 6.5
Flip flop 8.0

to have a gate count of � and other gate counts are given in relation to this NAND
gate. An excerpt from the standard-cell library documentation is given in Table �.

Table 2: Gate count for the different building blocks, for different levels of parallelization,
s.

Building Block
Gate Count

s = 1 s = 2 s = 32

LFSR 1024 1024 1024
NFSR 1024 1024 1024
f 19 38 608
g 62.5 125 2000
h 41.5 83 1328
Control logic 219.5 475.5 942.5
Accumulator 512 512 512
Register 512 512 512
Accumulator logic 224 224 4160

Total 3638.5 4017.5 12110.5

We synthesize the design and extract the gate count for each building block. A
summary of the gate count for each building block, and for different parallelization
levels, is given inTable �. The control logic and accumulator logic is extra circuitry
and state machines for controlling the stream cipher, i.e., loading key and IV,
multiplexing data, etc.

The gate count remains constant during synthesis, but the physical area, power
and speed changes based on the optimization techniques employed. First, we syn-
thesize the design at clock frequency ��� kHz. The design is synthesized for three
levels of parallelization; �, �, and �� times. The result is given in Table �.

We also synthesize for the maximum possible speed, to achieve maximum
throughput, without constraints on area. The results are given in Table �.
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Table 3: Implementation results running at 100 kHz, for different levels of parallelization.

Parallelization Area Power Throughput

1 4934 µm2 313 nW 50 kbit/s
2 5336 µm2 368 nW 100 kbit/s
32 16853 µm2 574 nW 1600 kbit/s

Table 4: Implementation results running at maximum possible speed, for different levels
of parallelization.

Parallelization Speed Area Power Throughput

1 1.12 GHz 5258 µm2 3.6 mW 560 Mbit/s
2 1.18 GHz 5629 µm2 4.3 mW 1.18 Gbit/s
32 662 MHz 17632 µm2 4.0 mW 10.59 Gbit/s

� Conclusions

We have presented Grain-���AEAD, a new cipher in the Grain family. It is closely
based on Grain-���a and takes advantage of the well-analyzed design principle
behind the Grain stream ciphers. By making slight modifications to Grain-���a,
the cipher meets the requirements in the NIST lightweight standardization pro-
cess, providing ��-bit MAC, ���-bit key and ��-bit IV. The hardware footprint
makes the cipher well suited for constrained environments, but the design is flex-
ible enough to allow for also very high speed requirements at the expense of addi-
tional hardware.
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Test Vectors

Here, we give some test vectors for different keys, IVs, and messages. The test
vectors are given in hexadecimal, e.g., the key

0x01234FFFFFFFFFFFFFFFFFFFFFFFFFFF

corresponds to

(k0, ..., k127) = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, ..., 1).

The message stream is given with the padding included. A padding bit of
� equals a padding byte of �x��. Note that for an empty message, the message
stream is just the padding.

Key: 0x00000000000000000000000000000000

IV: 0x000000000000000000000000

Keystream: 0xc800a52f948b89b85cee6cfd8571f90f

Message: 0x80

Tag: 0xaab555c073e67664

Key: 0x0123456789abcdef123456789abcdef0

IV: 0x0123456789abcdef12345678

Keystream: 0xc2b918c6baf6dea0865200d46858a37b

Message: 0xFF80

Tag: 0x782f4c4a8907ba7f
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Abstract

We implement the Grain-���AEAD stream cipher in hardware, using a �� nm li-
brary. By exploring different optimization techniques, both at RTL level but also
during synthesis, we first target high throughput, then low power. We reach over
�� Gb/s targeting a high-speed design, at expense of power and area. We also show
that, when targeting low power, the design only requires �.�� µW running at
��� kHz. By unrolling the design, the energy consumed when encrypting a fixed
length message decreases, making the �� parallelized version the most energy effi-
cient implementation, requiring only ��.� nJ when encrypting a �� kbit message.
At the same time, the best throughput/power ratio is achieved at a parallelization
of �.

� Introduction

Due to the growth and widespread use of resource-constrained connected devices,
e.g., in the Internet of Things (IoT), the need for protection against security threats
has increased. RFID devices, smart cards, and sensor networks often require low
power consumption as they are driven by batteries. The cost of manufacturing
an IC chip is correlated to the area. Hence, area efficient designs are needed to

Jonathan Sönnerup, Martin Hell, Mattias Sönnerup, and Ripudaman Khattar. “Efficient
Hardware Implementations of Grain-���AEAD”. In Progress in Cryptology – INDOCRYPT ���� -
��th International Conference on Cryptology Proceedings, Hyderabad, India. Springer Gabler. pp.
���-���.
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reduce the cost when producing large quantities. This puts a demand, not only
on the architectural design, but also on the implementation. The implementation
may vary largely depending on what techniques are being utilized, both during
programming (HDL), but also during synthesis, if aiming for an ASIC. At the
same time, high-speed implementations are required for environments with much
data, and where low latency is needed.

There are a large number of proposed cryptographic algorithms and several
attempts have been made towards identifying suitable algorithms for widespread
adoption, e.g., NESSIE, ECRYPT, CRYPTREC and the NIST AES contest. The
successful standardization of AES has been followed by more NIST initiatives,
most notably the SHA-� competition, the Post-Quantum Cryptography Stan-
dardization Process and the recent Lightweight Cryptography Standardization Pro-
cess. The latter particularly addresses the need for algorithms that are specifically
targeting resource constrained environments [Nat��].

Grain-���AEAD is an instance of the Grain family of stream ciphers. Grain
was first proposed in ����, as an ��-bit stream cipher. The ���-bit variant Grain-
��� was presented in ���� [Hel+��a], and was successfully cryptanalyzed in [DS��b].
Building upon previous analysis results, a new ���-bit variant with authentication
(MAC) support, Grain-���a, was proposed in ���� [Ågr+��a]. It has also been
adopted as an ISO standard [Int��b]. Most recently, Grain-���AEAD support-
ing Authenticated Encryption with Associated Data, was proposed in ���� and
also submitted to the above mentioned NIST Lightweight Cryptography Stan-
dardization Process [Hel+��a; Hel+��b]. It is built upon the Grain-���a cipher,
but with some added features. There have been several implementations of Grain-
���a, most notably the work in [MD��], where the authors utilize Galois trans-
forms, pipelining and multiple clocks, targeting a high-throughput implementa-
tion. While this is important in high-speed applications such as �G (and beyond)
and in servers and gateways which handle multiple connections simultaneously,
low energy consumption for certain packet sizes is essential for constrained de-
vices. In [Ban+��b], the authors target low-energy implementations of stream
ciphers, including Grain-���a, discussing multiple techniques for reducing power
consumption. In this paper, we discuss several optimization techniques applied
to Grain-���AEAD, targeting both high-speed implementations and low-power
implementations. Optimizations are considered in both the RTL and at the syn-
thesis level. A small area does not necessarily mean low energy consumption for
encrypting a network packet. Adding some area to Grain will reduce the energy
for encrypting a packet, even though the power consumption is slightly higher.
Our results can be used to better understand the trade-offs between area, power,
energy and throughput for the Grain-���AEAD stream cipher. They also provide
new benchmark figures for its hardware performance, allowing better and more
transparent comparison with other ciphers supporting AEAD. The code is made
available at https://github.com/Grain-128AEAD.

The paper is outlined as follows. In Section �, a high-level overview of the

https://github.com/Grain-128AEAD
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Figure 1: An architectural overview of Grain-128AEAD.

Grain-���AEAD design is presented. Section � presents a straightforward imple-
mentation providing results from where optimization strategies are derived. In
Section �, the utilized RTL optimizations are discussed, whereas in Section �,
different synthesis level optimizations are introduced. Finally, the results are pre-
sented in Section � and the conclusions are given in Section �.

� Grain-���AEAD

This section will provide a brief overview of the Grain-���AEAD design in order to
support the optimization approaches discussed later. For a comprehensive design
description, we refer to the specification [Hel+��a; Hel+��b].

Grain-���AEAD is a cipher in the Grain family. It supports Authenticated
Encryption with Associated Data (AEAD) to simultaneously assure confidential-
ity and authenticity of the data. The overall design is similar to the other ciphers
in the family, in particular Grain-���a. It consists of two main building blocks.
The first is a pre-output generator consisting of a Linear Feedback Shift Register
(LFSR) with feedback function f , a Non-linear Feedback Shift Register (NFSR)
with feedback function g, and a pre-output function denoted h. The pre-output
generator outputs a stream yt. The second block is the authentication block con-
sisting of a shift register and an accumulator. A multiplexer (MUX) is used to
control if the pre-output stream yt is used for authentication, z′i, or for keystream,
zi. The architectural overview of Grain-���AEAD is depicted in Fig. �.
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�.� Phases of Grain-���AEAD

For the hardware implementation, we logically divide the cipher into three phases.
The first phase is the loading phase, in which the shift registers are loaded with the
key and the nonce. Next, Grain-���AEAD enters the initialization phase in which
the registers and the authentication module are initialized. Finally, the cipher
enters the running phase, in which pre-output is generated both for encryption
and authentication.

�.� Pre-output Generation

The pre-output generator uses a ���-bit LFSR and a ���-bit NFSR. The content,
at instance t, of the LFSR is denoted as St =

[
st0, s

t
1, . . . , s

t
127

]
, and similarly

for the NFSR, Bt =
[
bt0, b

t
1, . . . , b

t
127

]
. Together, the two FSRs form the ���-bit

state of the generator. The feedback polynomial of the LFSR, f , may be written
as the recurrence relation given by

st+1
127 = st0 + st7 + st38 + st70 + st81 + st96

= L(St).

The feedback polynomial of the NFSR, g, may be written as the recurrence relation
given by

bt+1
127 = st0 + bt0 + bt26 + bt56 + bt91 + bt96 + bt3b

t
67 + bt11b

t
13

+ bt17b
t
18 + bt27b

t
59 + bt40b

t
48 + bt61b

t
65 + bt68b

t
84

+ bt22b
t
24b

t
25 + bt70b

t
78b

t
82 + bt88b

t
92b

t
93b

t
95

= st0 + F(Bt).

The Boolean function ht uses bits from both the LFSR and the NFSR, and is
defined as

ht = bt12s
t
8 + st13s

t
20 + bt95s

t
42 + st60s

t
79 + bt12b

t
95s

t
94.

The output, yt, from the pre-output generator is given by

yt = ht + st93 +
∑
j∈A

btj ,

where A = {2, 15, 36, 45, 64, 73, 89}.
After the initialization phase, the pre-output is used to generate keystream bits

zi for encryption and authentication bits z′i to update the register in the accumu-
lator generator. The keystream is generated as

zi = y384+2i,
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i.e., every even bit (counting from �) from the pre-output generator is taken as a
keystream bit. The authentication bits are generated as

z′i = y384+2i+1,

i.e., every odd bit from the pre-output generator is taken as an authentication bit.

�.� Authentication Module

The authenticator generator consists of a ��-bit shift register and a ��-bit ac-
cumulator. The content of the shift register, at instance i, is denoted Ri =[
ri0, r

i
1, . . . , r

i
63

]
, and similarly for the accumulator, the content is denoted Ai =[

ai0, a
i
1, . . . , a

i
63

]
. The accumulator is updated as

ai+1
j = aij +mir

i
j , 0 ≤ j ≤ 63, 0 ≤ i ≤ L, (�)

where mi is the ith message bit, and the shift register is updated as

ri+1
63 = z′i,

ri+1
j = rij+1, 0 ≤ j ≤ 62.

�.� Loading and Initialization

After reset, the cipher must be loaded and initialized. The loading is performed
as follows. Let ki be the key bits where 0 ≤ i ≤ 127, and let IVi be the nonce
(IV) bits where 0 ≤ i ≤ 95. The NFSR is loaded with the key, i.e., b0i =
ki, 0 ≤ i ≤ 127. The first �� bits of the LFSR is loaded with the nonce, i.e.,
s0i = IVi, 0 ≤ i ≤ 95, and the last �� bits are filled with �� ones and a zero, i.e.,
s0i = 1, 96 ≤ i ≤ 126, s0127 = 0. Next, in the initialization phase, the cipher
is clocked ��� times, feeding back the pre-output adding it with the input to the
NFSR and LFSR, using the XOR operation, i.e.,

st+1
127 = L(St) + yt, 0 ≤ t ≤ 255,

bt+1
127 = st0 + F(Bt) + yt, 0 ≤ t ≤ 255.

Next, the shift register and accumulator in the authenticator are initialized with
the pre-output stream as

a0j = y256+j , 0 ≤ j ≤ 63,

r0j = y320+j , 0 ≤ j ≤ 63.
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Figure 2: An architectural overview of the initialization in Grain-128AEAD.

At the same time, the key is added to the feedback of the LFSR as

st+1
127 = L(St) + kt−256, 256 ≤ t ≤ 383,

while the NFSR is updated as

bt+1
127 = st0 + F(Bt), 256 ≤ t ≤ 383.

The loading phase and the initialization phase are summarized in Fig. �.

� A Straightforward Approach

The stream cipher is implemented in hardware using RTL design in VHDL. For
synthesis and power simulation, the Synopsys Design Compiler ����.�� is used
along with a �� nm library from ST Microelectronics, stm065v536. The number
of required gates, and the number of transistors in a gate depends on the library
used and may vary by a large degree. In this paper, the area of the designs are
given in gate equivalents (GE), which is the physical area divided by the area of a
�-input NAND gate for the given library.

A straightforward approach is taken when implementing the cipher, closely
following the proposed architectural design in [Hel+��a; Hel+��b] - the FSRs are
in Fibonacci configuration parallelized at most �� times. The key and nonce are
simultaneously loaded serially, and the accumulator is loaded by first loading the
shift register, then moving the values to the accumulator. For the parallelized im-
plementations, the loading phase is sped up by a factor n, where n is the paral-
lelization level. A simple Finite State Machine (FSM) is used to keep track of the
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different phases, or states, in order to control the data paths. Finally, we let the
synthesizing tool optimize for speed. This implementation and synthesis is used
for benchmarking and comparison with our optimized implementations.

In order to improve the bottlenecks in the synthesized design, we must analyze
the critical paths. Similar to [MD��], we define the following delays:

• Dn: the maximal delay from any NFSR or LFSR flip-flop to any other
NFSR or LFSR flip-flop.

• Dy: the maximal delay from any NFSR or LFSR flip-flop to the output,
via the y function.

• Dya: the maximal delay from any NFSR or LFSR flip-flop to any accumu-
lator flip-flip, via the y function.

• Da: the maximal delay from any flip-flop in the authentication section to
any accumulator flip-flop, or output.

• Dyn: the maximal delay from a flip-flop of the NFSR or LFSR through the
y function to the first flip-flop of the NFSR. This path only exists during
initialization of the cipher, via a MUX.

The critical paths are highlighted in Fig. �. Note that yout, after initialization,
corresponds to z as in Fig. �. Similarly, yaccum, after initialization, corresponds to
z′.

Table 1: Clock periods and critical paths of the straightforward implementation, for dif-
ferent levels of parallelization.

x1 x2 x4 x8 x16 x32

Period (ns) 490 610 640 690 770 840
Critical Path Dyn Dyn Dyn Dyn Dya Dya

Synthesizing the design yields the results shown inTable �, where the propaga-
tion delay of the critical path is listed. Dyn is only available during initialization.
In the running state of the cipher, it is instead Dn which is the critical path. These
critical delays, together with Dya, will be targeted in the next section.

� RTL Level Optimizations

Here, we present the architectural optimization techniques utilized when targeting
speed, area, and power. In particular, for speed improvements, we aim to lower
the delay induced by the critical paths in Table �. We start by presenting a general
optimization technique, Galois transform, to reduce theDn path. Then, we utilize
a similar technique in order to reduce the path Dyn, discussed in Section �.�.
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Figure 3: Architectural overview of Grain-128AEAD with the following potential critical
paths highlighted: Dn (blue), Dy (purple), Dya (green), Da (yellow), and Dyn

(red).

�.� Galois Transformation

As described earlier, the Dn path lies between two flip-flops (any flip-flop to the
right most flip-flop in Fig. �) in the FSRs, for the �, �, �, and � parallelized versions,
causing a bottleneck in the running mode. The usual strategy would be to pipeline
the FSRs by inserting flip-flops at well chosen positions. In order to pipeline
a design, the delay elements can only be inserted in the feed-forward cutset of
the corresponding graph [PM��]. This is not possible for the FSRs due to their
intrinsic feedback property. In order to decrease the propagation delay in the Dn

path, the cipher may be transformed from its normal Fibonacci configuration to
a Galois configuration. In the Fibonacci configuration, the flip-flops are updated
with the value of the previous flip-flop every clock cycle, i.e., xi = xi+1, except for
xn−1 which gets updated with the result of the feedback polynomial, i.e., xn−1 =
f(x). In the Galois configuration, some of the flip-flops get updated with the
result of a function of other flip-flops, i.e., xi = g(x). The Galois configuration
leads to shorter propagation delays due to the feedback function in Fibonacci being
split up and put in between flip-flops.

For an LFSR, the Fibonacci to Galois transform is a one-to-one mapping. For
an NFSR, multiple Galois configurations exist for a given Fibonacci configura-
tion [Dub��]. The Galois transform is identical to Grain-���a, hence we refer
to [MD��] for details. Grain-���a can not be transformed to a Galois configura-
tion for a parallelization level above ��. The same holds for Grain-���AEAD.
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�.� Transforming the y Function

During the initialization phase, the y function is being fed back to the shift regis-
ters, forming an FSR. As in the previous section, it is not possible to insert pipelines
due to the lack of a feed-forward cutset. Instead, similar to the Galois transform, it
is possible to transform the y function in such way that it is split up and fed back
to different registers, which reduces the critical path, Dyn. The transformed func-
tions are denoted as Y125, Y126, and Y127. For a parallelization level of � and ��,
only Y126 and Y127 may be used. As an example for the non-parallelized version,
the functions are given by

Y127 = b12s8 + s13s20 + b95s42,

Y126 = b11b94s93 + b72 + b1 + s50s78,

Y125 = s91 + b87 + b13 + b34 + b43 + b62.

After initialization, during the running state, the feedback loop is discon-
nected. This allows for insertion of pipelines steps. By combining both Galois-like
transformation and pipelining, both Dyn and Dy may be reduced, see Fig. �. The
controller switches between the two methods when required.

�.� Isolating the Authentication Module

The accumulator is updated using the values in the shift register as in Eq. (�). When
parallelizing the design, the accumulator is updated with the corresponding shift
register plus values from the shift registers with larger index as

ai+1
j = aij +

p
2
−1∑

k=0

mi+k · rij+k, p ≥ 4,



�� Paper II: Efficient Hardware Implementations of Grain-���AEAD

Accumulator

Register

yaccum

...
Logic Logic

Figure 5: Isolating the authentication module using pipelining.

where p is the parallelization level. For p = 2, the update expression is equivalent
to Eq. �, since � bit is generated every clock cycle for authentication. Note that for
a parallelization level of � and above, some values have not yet been shifted in to
the shift register, e.g., for p = 4, the register a63 is updated as

ai+1
63 = ai63 +

(
mi · ri63

)
+
(
mi+1 · ri64

)
,

where r64 has been generated but is not located in the shift register. This can be
seen as a future value, and requires extra combinational logic to handle. This means
that the path Dya becomes longer and, for the higher levels of parallelization,
affects the timing of the design, as seen in Table �.

In order to make the Dya path shorter, a pipeline step is inserted between
the y function and the accumulator logic, as shown in Fig. �. This allows for the
throughput to increase due to a higher clock frequency, but adds a � clock cycle
delay to the accumulator calculation. Note that this does not affect the security.

�.� Optimizing the Controller

A controller is a unit responsible for managing the data flow and operations, such
as the feedback loop, when to accumulate data, and when to encrypt the plaintext.

The straightforward implementation of the controller is a finite state machine
(FSM) with states corresponding to loading, initialization, and the running phase.
The controller can also be implemented using a LFSR with some combinational
logic. Experiments with LFSRs gave roughly the same results as the FSM generated
by the synthesizer. Here, we explore an alternative strategy to keep track of the
state by using a clock divider and a shift register, which often, but not always, gave
better performance.

The idea is to start from an empty shift register (all zeroes), and shifting in a
� each clock cycle. This means that after n clock cycles, there is a � at index n
in the shift register. We can use this to control the logic in the cipher via, e.g.,
MUXes. However, Grain requires ��� clock cycles before it produces the first
bit, i.e., ��� for loading key and nonce plus ��� for the initialization rounds. This
results in a shift register with ��� flip-flops, which is not desirable due to the huge
increase in size. Instead, note that the resolution given by ��� registers is not fully
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utilized, since we ignore most of the intermediate values, hence we can reduce the
size. With a reduced size, we must compensate with a lower clock frequency for
controlling the design at the correct time instances. This is done using a clock
divider to slow the shift register down by a factor 2k. The value of 2kp can not
exceed ���, since the least amount of clock cycles that we need to keep track of are
���, for loading key and nonce. The number of registers required depends on the
level of parallelization, p, and the k value as 512/(2kp). Taking the clock divider
registers into account gives an expression for the total number of registers required
as

512

2kp
+ k.

This design does not require much hardware, e.g., letting p = 16, k = 3 results
in � flip-flops. In this paper, the largest value of k is selected, for every level of
parallelization, i.e., k = log2(128/p).

The index of the shift register corresponding to the different phases are calcu-
lated as

iload =
128

kp
, iinit =

128 + 256

kp
, irun =

512

kp
.

For the control MUXes that remain in their state after being activated may be
directly connected to the controller. For the control MUXes that are only activated
during a single state, an inverter together with an AND-gate is required.

�.� Unrolling

Grain natively supports parallelization up to �� times by using multiple feedback
and output functions, f , g and y. However, there is nothing preventing us to go
further, at RTL level. Consider AES, where multiple rounds of the AES round
function is executed one after the other, in a loop structure. The block is fed back
via MUXes to realize successive iterations. Unrolling the AES rounds to a level L
means that we put L AES round functions serially in a single combinational block
as done in [ZNC��].

When unrolling Grain, we do not utilize multiple instances of the FSRs, but
rather the feedback functions. When reaching a parallelization level above ��, the
feedback functions start to interact. Revising the feedback function f of the LFSR,
we can extend this to include multiple copies of f , denoted as fk. The index k is
related to the level of parallelization, where the highest k value plus � (max(k)+1)
equals the parallelization level. Expressing the bits as a sequence, we can write the
expression as

si+128+k = si+0+k + si+7+k + si+38+k + si+70+k + si+81+k + si+96+k.

With k = 31, the bit with the highest index in f31 is si+96+31 = si+127, by
design. However, k = 32 includes bit index si+128 in f32, which is not a reg-
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Figure 6: Example of unrolling above the specified level of 32. The bottom picture shows
the structure when using a parallelization level of 33. The last feedback function,
f32, needs to read the value from a flip flop that does not exist, the register
index 128. Instead, this value is the output from f0, which would have been
stored in register index 128 if it existed. We can therefore take the output from
f0 as an input to f32. From this it is clear that the propagation delay increases
when exceeding the specified level of parallelization.

ister index, but rather the output from the function f0. Thus, the two feedback
functions are connected, as seen in Fig. �. Increasing k leads to more interconnec-
tion between the feedback functions, thus increasing the propagation delay. Paral-
lelization of higher degrees for the authentication module continues the approach
described in Section �.�.

Apart from an increase in throughput, unrolling also allows for energy saving
as more data is processed in a single clock cycle which reduces the total switching
activity and the number of clock cycles it takes to complete a computation [BBR��].

� Synthesis Level Optimization

Synthesis is the process where high-level RTL code, like VHDL and Verilog, is
used to generate a gate-level netlist. There are � steps involved during synthesis:

�. Translation: The RTL code is converted to a technology-independent rep-
resentation of Boolean expressions.

�. Optimization: The Boolean expressions are minimized, with respect to gates,
using a minimization algorithm.

�. Technology mapping: The Boolean expressions are mapped to a library,
based on the used technology, in order to produce a gate-level netlist.

Design Vision requires the RTL code, design constraints, and a standard cell
library, in order to generate a netlist. Design Vision offers two commands used
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for compiling - compile and compile_ultra. The compile_ultra command
is used for designs with tight timing constraints, and produces better quality of
results compared to compile. Hence, only compile_ultra is used during syn-
thesis.

There are several compiler options to be utilized during synthesis. Here, we
highlight some of the most commonly used features:

• Structuring - The process where intermediate variables are added to the
design, in order to reduce area. The synthesis tool factors out common
sub functions that mostly reduces the area and turn them into intermediate
variables.

• Flattening - Here, the tool converts combinational logic paths into a sum-
of-products representation. This often leads to a faster design due to the
combinational logic requiring only two levels. Consequently, it may lead to
an increase in area.

• Ungrouping - A common strategy when implementing a design is to group
different parts of the code, to have a hierarchical design. This leads to well
structured design and it is easy to analyze the synthesized design. By un-
grouping, the tool is less constrained and may reorganize the design as it see
fits, which may lead to a faster design, at the expense of area.

• Clock Gating - Insert control logic in order to regulate the clock signal,
either to shut it down at time instances, or to modify the clock pulse. This
may be used to save energy.

�.� Transistor Types

In a complementary MOS (CMOS) design, both NMOS and PMOS are used.
When one is conducting, the other is not, resulting in very small static power
consumption, given by

Ps = Vdd · Ileakage,

where Vdd is the supply voltage. The leakage current depends on the threshold
voltage, Vth, and

a transistor with lowVth, LVT, has higher leakage current than a transistor with
a high Vth, HVT. To minimize leakage current, HVT transistors are most suitable
for power efficient implementations. For the high-speed implementations, LVT
transistors are most suitable since they allow to increase the switching speed.

� Synthesis Results

Providing results for all possible combinations of implementations, synthesis op-
tions and transistors would become very verbose. Instead, to facilitate a more clear
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and concise presentation and basis for comparison, the implementations consid-
ered will be as follows.

• Straightforward implementation. This implementation will closely follows
the architectural design, using no optimization techniques. The design is
synthesized for high speed utilizing LVT transistors, and different synthesis
flags to achieve the best result.

• High speed implementation. Here, we apply all viable optimizations at
RTL and synthesis level and synthesize for high speed using LVT transistors.

• Low Power implementation. In the low power scenario, we cut back the
clock frequency, employing only unrolling and the improved controller as
optimization techniques. Both the LVT and HVT transistors are used for
comparison of power consumption.

�.� Straightforward Implementation

Results for the straightforward implementation are shown in Table �, using no
RTL optimizations, but synthesized for maximum speed. Synthesis options such
as flattening, structuring, and ungrouping were utilized. Neither flattening nor
structuring affected the result significantly. Only the grouping/ungrouping option
made a difference. This difference was typically in the order of �.�� ns for the
period. In the result tables, the best result is presented, and we also highlight
whether grouping (G) or ungrouping (U) yielded the result.

Similar to [Ban+��b], we also calculate the energy consumed when encrypt-
ing � block of data (�� bits) and ���� blocks, shown in Table �. For example,
encrypting � block of data, in the non-parallelized (n = 1) version at �.�� GHz,
requires ��� (loading key and IV) + ��� (initialization) + ��� (�� keystream bits
+ �� bits for authentication) = ��� clock cycles. The energy consumed results in
640 × 0.49 ns × 170 µW = 0.053 nJ. Note that the number of clock cycles re-
quired for encryption is inversely proportional to n.

The non-parallelized version has the highest clock frequency, but the lowest
throughput (thrp). The clock period does not scale at the same rate as n, which
allows the higher levels of parallelization to have higher throughput. Between
n = 1 and n = 32, the throughput increases by a factor ��, whereas the area
only increases by a factor �.�. For n = 32, we achieve the highest throughput to
area ratio. For n = 4, the highest throughput to power is reached along with the
lowest energy consumption, making it the most power efficient version.

The ungrouping option seems to be worse for all versions except n = 1. Using
the ungrouping option led to a higher clock frequency, but the tool reported fanout
violations which it could not resolve. Choosing to only consider results without
any violations, these results were omitted.
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Table 2: Straightforward implementation synthesized for high speed. The throughput per
area is given in kbit/s per GE. The throughput per power is given in Gb/s per mW.
The synthesis optimization (Opt.) shows whether grouping (G) or ungrouping (U)
gave the best result.

n Period Freq. Thrp. Area Power Thrp. / Thrp. / Opt.
Area Power

(ns) (GHz) (Gb/s) (GE) (mW)

1 0.49 2.04 1.02 2689 0.17 182 5.99 U
2 0.61 1.64 1.64 2776 0.14 284 11.76 G
4 0.64 1.56 3.12 3333 0.21 450 14.93 G
8 0.69 1.44 5.76 4324 0.42 640 13.70 G

16 0.77 1.29 10.32 6265 0.92 792 11.24 G
32 0.84 1.19 19.04 10226 2.54 895 7.52 G

Table 3: This shows the energy consumption for the straightforward implementation, pro-
cessing 1 and 1000 blocks of data. 1 block equals 64 bits of data.

Energy (nJ) x1 x2 x4 x8 x16 x32

1 Block 0.053 0.027 0.022 0.023 0.028 0.042
1000 Blocks 10.70 5.48 4.31 4.65 5.69 8.57

�.� High Speed Implementation

Here, we apply the techniques described earlier in order to increase the through-
put of the design. For the parallelization levels �, �, �, � and ��, Galois transform
together with y transform, isolation of authentication module, and the optimized
controller are utilized. For the �� (parallelized) and �� (unrolled) versions, only
isolation of authentication and the optimized controller are possible. Transforma-
tion of the y function is not applicable due to similar constraints as for the Galois
transformation of the shift registers.

The results for the optimized implementation are presented inTable �. The en-
ergy consumption for a given message length is given in Table �, where the highest
speed at each level of parallelization fromTable � is used. Table � shows an increase
in throughput for every level of parallelization, at the expense of increased power
consumption. However what is interesting is that the optimized controller actu-
ally reduces the power consumption while increasing the throughput for n = 32
and n = 64. For n = 32, the power consumption is lower than the straight-
forward implementation, while for n = 64, it is just 0.22 mW more than the
straightforward, �� parallelized version, but with a 76% increase in throughput.
We can again note that a parallelization level of � yields the highest throughput



�� Paper II: Efficient Hardware Implementations of Grain-���AEAD

Table 4: Results for the high-speed implementation, with optimized controller on greyed
background and regular controller on white. The throughput per area is given in
kbit/s per GE. The throughput per power is given in Gb/s per mW.

n Period Freq. Thrp. Area Power Thrp. / Thrp. / Opt.
Area Power

(ns) (GHz) (Gb/s) (GE) (mW)

1 0.43 2.3 1.15 2791 0.24 412 4.79 U
0.40 2.5 1.25 2645 0.25 472 5.00 U

2 0.46 2.17 2.17 2800 0.21 776 10.33 G
0.43 2.32 2.32 2695 0.23 861 10.09 G

4 0.47 2.13 4.26 3335 0.29 1277 14.69 G
0.48 2.08 4.16 3199 0.29 1300 14.34 U

8 0.48 2.08 8.32 4537 0.67 1834 12.42 G
0.46 2.17 8.68 4448 0.67 1951 12.96 G

16 0.50 2.00 16.00 6270 1.44 2552 11.11 G
0.48 2.08 16.64 7118 1.55 2338 10.74 U

32 0.69 1.45 23.20 9148 2.66 2536 8.72 G
0.64 1.56 24.96 9206 1.78 2710 14.02 U

64 1.00 1.00 32.00 16618 4.76 1926 6.72 G
0.95 1.05 33.60 16958 2.76 1982 12.17 U

Table 5: This shows the energy consumption for the high-speed implementation, process-
ing 1 and 1000 blocks of data. 1 block equals 64 bits of data.

Energy (nJ) x1 x2 x4 x8 x16 x32 x64

1 Block 0.064 0.032 0.022 0.025 0.030 0.023 0.026
1000 Blocks 12.85 6.35 4.38 4.95 5.98 4.58 5.26

per power along with the lowest energy consumption. The optimized controller
also affects the throughput per power the most for n = 32 and n = 64.

As also seen in Table �, ungrouping the design led to a higher throughput
when using the optimized controller.

It is clear that the area increases with higher throughput, due to higher levels
of parallelization. An important metric is the throughput per area, which measures
area efficiency. From the table, we find that the most area efficient implementation
occurs when n = 32, using the improved controller. This is not surprising since
increasing parallelization should only require a “small” increase in area, by design.
This is an important feature in the Grain family of stream ciphers.
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�.� Low Power Implementation

When targeting low power, a clock period must be specified. Many low-power de-
vices run at frequencies around �� MHz. The ISO standard for contactless smart
cards, ISO/IEC �����, defines the frequency to be ��.�� MHz. Older proximity
cards operate at ��� kHz. Thus, for low power applications, we choose to synthe-
size the design at the clock frequencies ��� kHz and �� MHz, shown in Table �
and �, respectively.

The synthesis script utilizes compile_ultra with clock gating and low power
transistors (HVT). For comparison, we also synthesize the design using the high
speed scripts and select the best result, for comparison. The RTL optimization
implemented for low power is unrolling along with the optimized controller.

Table 6: Result for the low power implementation running at 100 kHz. Here, we compare
the speed script (Ss), the power (Ps) script, and the power script using the
optimized controller (Popt). 1 block equals 64 bits of data.

n
Area (GE) Power (µW) Energy (nJ)

Ss Ps Popt Ss Ps Popt 1 block 1k blocks

1 2509 2375 2337 2.29 0.23 0.26 1.47 296
- -5% -7% - -89% -88% - -

2 2592 2588 2511 2.33 0.28 0.30 0.90 180
- 0% -3% - -87% -86% - -

4 2952 2950 2862 2.33 0.29 0.32 0.46 93.2
- 0% -3% - -87% -86% - -

8 3695 3692 3594 2.76 0.31 0.35 0.25 49.8
- 0% -2% - -88% -87% - -

16 5168 5158 5053 3.77 0.42 0.39 0.16 31.3
- 0% -2% - -89% -90% - -

32 8168 8126 7950 5.93 0.62 0.46 0.09 18.5
- 0% -3% - -90% -92% - -

64 14100 14093 13800 10.89 1.08 0.63 0.06 12.7
- 0% -2% - -90% -94% - -

Overall, there was very little difference in area when synthesizing for high
speed and low power using the standard controller. For such low frequencies, the
timing is easily met and the tool optimizes for area in both cases, thus there is not
much to improve. For the power however, there is a clear difference using HVT
transistors compared to LVT. There is a �� - ��% reduction in power consumption
for all levels of parallelization running at ��� kHz, and a �� - ��% power reduc-
tion for �� MHz. In the design paper of Grain [Hel+��a; Hel+��b], the authors
used HVT transistors when synthesizing for high speed. This led to a lower clock
frequency and a higher power consumption than the figures in Table �. Hence,
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Table 7: Result for the low power implementation running at 10 MHz. Here, we compare
the speed script (Ss), the power (Ps) script, and the power script using the
optimized controller (Popt). 1 block equals 64 bits of data.

n
Area (µm2) Power (µW) Energy (nJ)

Ss Ps Popt Ss Ps Popt 1 block 1k blocks

1 2510 2375 2337 33.66 22.07 25.21 1.41 283
- -5% -6% - -34% -25% - -

2 2592 2589 2511 33.96 26.93 29.13 0.86 173
- 0% -3% - -21% -14% - -

4 2952 2951 2862 34.43 27.38 31.05 0.44 88.0
- 0% -3% - -20% -10% - -

8 3695 3693 3595 36.83 29.38 33.59 0.24 47.2
- 0% -3% - -20% -9% - -

16 5168 5162 5057 44.02 39.49 36.93 0.15 29.7
- 0% -2% - -10% -16% - -

32 8172 8128 7951 66.02 57.08 41.66 0.08 16.7
- 0% -2% - -13% -37% - -

64 14101 14093 13810 117.4 97.39 55.93 0.06 11.2
- 0% -2% - -17% -52% - -

HVT should only be used for lower frequencies where power is the main concern,
whereas LVT should be used for higher frequencies where the target is speed.

Even though the power consumption increases with increasing n, the energy
cost decreases since the computation can be done in much shorter time. This leads
to the unrolled ��-parallelized version being the most energy efficient implemen-
tation for a given message length.

The optimized controller reduces the area in all cases at expense of higher
power consumption for n = 1, 2, 4, 8. For n = 16, 32, 64, the power consump-
tion is reduced when using the optimized controller.

� Conclusions

In this paper, we implemented Grain-���AEAD and investigated the impact of
different implementation strategies, from RTL to synthesis-level design, to either
achieve high throughput or low power consumption.

By utilizing different optimization techniques, we reduced the power by up to
��% compared to a straightforward implementation. By unrolling the design, the
power consumption increases while the energy for encrypting a message of fixed
size decreases. The ��-level parallelization implementation requires only ��.� nJ
when encrypting �� kbits of data compared to ��� nJ for the non-parallelized
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version. For the high-speed implementation, the maximum throughput reached
is ��.� Gb/s. It is not obvious in which cases the (un)grouping option yields the
best result, hence both options should be analyzed in order to find the best result.
We notice that a parallelization level of � yields the most power efficient imple-
mentation, both for the straightforward implementation and the high-speed one.
The experiments show that Grain is well suited both in high-speed applications as
well as on constrained devices requiring low power consumption.
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Energy Consumption for
Securing Lightweight IoT

Protocols

Abstract

In this paper we address the energy consumption of CoAP and MQTT and com-
pare their overhead. We also pay attention to the use case of security in IoT and
analyze the energy consumption when using TLS/DTLS for the two protocols. In
our experiments we use ESP�� with libcoap, MQTT, and mbed TLS libraries and
conduct real-world measurements using Otii, a high precision voltage and current
measurement tool. While the particular numbers are implementations and hard-
ware dependent, we can still make interesting observations. For data transfer, we
find that aggregating data to larger packets can significantly reduce the energy
consumption. We also find that AES-CCM� seems slightly more efficient than
other modes of operation. In comparison, the DTLS handshake for setting up
the secure connection is very expensive, and also very dependent on security level
and algorithm choices. For firmware updates, AES-CCM� is again slightly bet-
ter than the alternatives, but the differences between CoAP and MQTT are much
more significant, favoring MQTT due to the use of the retransmission support in
TCP. This is also evident in lossy networks, where MQTT saves up to ��% energy
compared to CoAP at ��% loss rate. Finally, we find that energy consumption in
CoAP can to some extent be reduced in lossy networks by modifying the retrans-
mission timeout.

Pegah Nikbakht Bideh, Jonathan Sönnerup, and Martin Hell. “Energy Consumption for Securing
Lightweight IoT Protocols”. This paper has been submitted but not yet published.
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� Introduction

Devices connected to the Internet of Things (IoT) are seen as key enablers for
e.g., the smart city, home automation, wearables, and asset tracking. Connected
devices will supposedly also improve or even revolutionize, among other things,
energy management, healthcare and the management of our infrastructure. The
devices will be realized as e.g., sensors for detecting and monitoring physical char-
acteristics of the environment, or actuators to control our environment, machines,
systems or processes. Their interconnection with other devices, gateways and/or
the cloud introduces new security challenges, but it also makes them more ex-
posed to attacks, targeting e.g., unpatched vulnerabilities. The most common
application level communication protocols for IoT are the Constraint Application
Protocol (CoAP) and the Message Queue Telemetry Transport (MQTT). CoAP
is a lightweight protocol, in many aspects similar to HTTP, while MQTT is a
publish/subscribe protocol. Both protocols are widely supported and have gained
widespread adoption, but neither include security functionality. Still, support for
confidentiality and integrity of messages, as well as message authentication, is of-
ten needed, and the natural choice is then to use DTLS for CoAP and TLS for
MQTT.

The ubiquitous nature of IoT devices often requires them to run on batteries,
making energy efficiency a primary concern. The large number of devices make it
costly to replace batteries, and it will also make the total energy consumption con-
siderable, further motivating energy efficient data communication and processing.
At the same time, adding security to the communication will add additional over-
head. Thus, it is important to not only develop lightweight security protocols, but
also to understand to which extent security affects the energy consumption of the
devices. Such understanding will allow vendors and users to make informed deci-
sions when choosing and implementing security in the devices and systems.

The main contribution of this paper is a thorough analysis of CoAP and MQTT
and the investigation of their energy footprint in different scenarios, and how
added security at the transport layer (TLS/DTLS) affects the energy consump-
tion. Important design choices, such as cipher suite, PKI vs. PSK, and client
authentication are also analyzed in order to better understand how such choices
impact the energy consumption. In our real-world experiments, we use ESP�� to
represent a device. For measurements, we use an Otii, which is a high precision
voltage and current measurement unit. Note that the actual numbers given in this
paper are implementation and hardware specific and might differ between libraries
or IoT devices. Still, the main takeaways will apply to the general case.

The paper is organized as follows. In Section �, we first discuss related work.
In Section �, we provide some background on the CoAP, MQTT, TLS and DTLS
protocols. Our experimental setup including the hardware and software used are
discussed in Section �. Then, the methodology and the motivation for our differ-
ent measurements are given in Section �. The results from the measurements are
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given and discussed in Section � and the paper is concluded in Section �.

� RelatedWork

Efficiency and comparisons of IoT protocols have been considered in several pre-
vious works. An important thing to note is that the library or implementation
used can heavily impact performance [IOU��]. Optimized implementations can
be used to lower energy consumption. This was pursued for DTLS in [Cap+��],
where the authors exploited ECC optimizations in order to minimize ROM oc-
cupancy, time and energy. They only considered ECC based operations with two
different cipher suites, one with ECDH and ECDSA, and one with ECDHE and
PSK. The importance of optimized implementations was also noted in [Suá+��]
where it was shown that secp���r� was more efficient than the secp���r� curve due
to a more optimized implementation. The authors compared ECDSA and RSA in
TLS �.� and on ESP��, for different security levels. Their results showed that
ECDSA performs better than RSA. This work was extended in [SFF��], where
a complete fog and mist computing architecture and testbed was presented and
evaluated.

The performance of security updates for IoT were measured and discussed
in [TBK��]. Three different models, CoAP, MQTT, and encapsulating CoAP
inside MQTT, was proposed for delivering Over-the-Air updates and software
patches. While it was shown that MQTT is faster and more reliable than CoAP
to send urgent updates, no energy measurements were made and cryptographic
protection was not considered. Since power consumption differs over time, it is
not possible to draw accurate conclusions for energy consumption by only measur-
ing time. In this paper, we consider both energy and time for the software update
case, while also comparing both CoAP and MQTT using different encryption al-
gorithms.

In [Tha+��], the authors designed a common middleware for MQTT and
CoAP and measured performance of these based on end-to-end delay of single
packets and bandwidth consumption. Their results indicated CoAP has lower
average delay in case of high packet loss, around ��%. No energy measurements
were made. In this paper, we measure energy and looks at a sequence of packets
instead of average time for individual packets.

Energy can also be reduced by instead making changes to the protocol. Lithe
(Lightweight Secure CoAP for the Internet of Things) [Raz+��] is an integration
of DTLS and CoAP for IoT, in which the authors proposed a header compression
scheme which aims to reduce energy consumption by leveraging �LoWPAN. In
their evaluation, they demonstrated that CoAP overhead by using DTLS compres-
sion can be significantly reduced in terms of energy consumption and network
response time. While such modifications are valuable, they require protocol mod-
ifications. In this paper we do not aim to make modifications to the protocols.
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� CoAP and MQTT

�.� CoAP

CoAP [GMS��] is a web transfer protocol for constrained networks and was de-
veloped by IETF CoRE (Constrained RESTful Environments) Working Group.
CoAP was designed for UDP communication over �LoWPAN networks. It uses a
Universal Resource Identifier (URI) to identify available resources on constrained
devices. Messages are exchanged between endpoints using CoAP requests and re-
sponses.

A CoAP message has a �-byte fixed header, consisting of � bits for Version
field, � bits for message Type, � bits of Token Length, � bits of Code field and ��
bits of Message ID. The Message ID is utilized for duplicate detection. A token
can optionally be used to match requests and responses. In our experiments, we
do not include Token or Options, so the Token Length is zero.

The CoAP specification describes four security modes:

• Nosec: No security provided.

• PreSharedKey: Symmetric pre-shared keys are used in one of the PSK ci-
pher suites in DTLS.

• RawPublicKey: DTLS is used with an asymmetric key pair that is pre-
installed on the device, without a corresponding X.��� certificate.

• Certificates: x.��� certificates are used with DTLS.

For CoAP, we may choose to send either confirmable (CON) messages or non-
confirmable (NON). CON messages will be ACKed, or retransmitted in case of
packet loss, whereas NON messages will not.

�.� MQTT

The MQTT protocol is a publish/subscribe messaging protocol designed for low
bandwidth environments, originally for communication over satellite links. It uses
a server (broker), together with a set of clients. A client sends messages tagged
with a topic, and other clients can subscribe to that topic, in which case the server
routes the messages to the subscribing clients. In MQTT, the connections to the
server can be specified with a Quality of Service (QoS). QoS can vary from � to �
in which � has the least overhead. In our experiments, we used the default QoS,
which is �.

MQTT runs over TCP protocol. There is also a variant called MQTT-SN
which can use UDP. It has however not received widespread adoption and is not
considered in this paper.
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�.� Security on the Transport Layer

Both CoAP and MQTT can have security added at the application layer. OS-
CORE (Object Security for Constrained RESTful Environments) [Sel+��], is an
example of object security protocol for CoAP. Still, the two protocols are com-
monly used with DTLS and TLS and both specifications explicitly discuss the
use of these protocols. TLS and DTLS differ primarily by the fact that DTLS,
being used for UDP, must e.g., handle packet loss and out-of-order packets in the
handshake phase.

The two main protocols in TLS are the handshake protocol and the record
protocol. In the handshake protocol, the peers are authenticated and encryption
and message authentication keys are established. A Diffie-Hellman key exchange,
or a pre-shared key, is used to agree on a premaster secret, from which the en-
cryption keys are derived. With Diffie-Hellman, the messages are authenticated
using a digital signature. It is also possible to combine Diffie-Hellman and PSK,
in which case the two values are concatenated to form the premaster secret. For
improved performance, Diffie-Hellman can be computed over elliptic curves (de-
noted ECDHE in the cipher suites). Also the digital signature can be computed
over an elliptic curve (ECDSA), instead of using an RSA signature. Once keys
have been established in the handshake protocol, data can be encrypted and au-
thenticated in the record protocol.

The record layer in DTLS is very similar toTLS, but an explicit epoch (� bytes)
and sequence number (� bytes) are added to the record. This results in DTLS �.�
messages having �� bytes overhead while TLS �.� has only �� bytes overhead.

Other than normal message overheads, DTLS �.� handshake messages have
� extra bytes header overhead. This overhead in the DTLS �.� handshake, in
comparison to TLS �.�, is due to the fact that DTLS handshake messages can be
fragmented over several DTLS records.

� Experimental setup

Here we present the architecture used during the experiments, i.e., the hardware
and software components.

�.� Selected Hardware

To select the development board, based on our requirements including low price,
good documentation, support for CoAP/MQTT and DTLS/TLS and widespread
use, we decided to use ESP��-WROOM-��D [Esp��]. It is relatively cheap, has
support for the software libraries we target, and has good documentation and a
large community. It can also be used in many applications ranging from low-power
sensor networks to very demanding tasks. Moreover, AES hardware acceleration
is supported (and was enabled). It has an Xtensa ��-bit dual-core microprocessor
with ��� MHz clock speed and ��� KiB of RAM.
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Figure 1: CoAP/MQTT testbed architectural overview

As WiFi router, an Asus RT-ACS�U was used. The CoAP server and the
MQTT broker, were run on a ��-bit Linux system with an Intel Core i�-����U
at �.� GHz with � GB RAM.

To measure energy consumption, an Otii Arc was used. Otii is a portable
power supply and data-acquisition module which can be used for very accurate
voltage measuring. It is commonly used by developers in device and application
designs to optimize energy consumption. Otii Arc has a desktop application avail-
able for Windows, Ubuntu and macOS. We used the application on Ubuntu.

�.� Software

The official development framework for ESP��-IDF v�.� [Esp��], denoted ESP-
IDF, was used for development. The CoAP client was developed with libcoap
�.�.�, and the mbed TLS �.��.� library was used to setup the DTLS connection.

The libcoap �.�.� library was also used to setup the CoAP server on the Linux
machine. For transport layer security, libcoap has support for GnuTLS, OpenSSL
and Tinydtls, and can also be configured with mbed TLS. In our testbed libcoap
with mbed TLS �.� was used.

The MQTT library used on the client side is the one included in the ESP-
IDF, running MQTT version �.�.�. The library utilized mbed TLS for TLS �.�,
supporting both PKI-based and PSK-based cipher suites. On the server side, the
Mosquitto broker �.�.� is utilized using OpenSSL �.�.�l.

To do the measurements with the Otii software, the Otii device is connected
to a power supply via a USB port. Then, the Otii device powers the ESP��, allow-
ing it to measure the power used by the ESP��. UART messages are sent from the
ESP�� to the Otii in order to annotate the measurements. This allows us to accu-
rately correlate the energy consumption to the different phases of the application
under test.

The selected components are connected as shown in Fig. �.
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� Methodology and Use Case

In this section, we discuss, and give the rationale behind, our chosen measure-
ments. In the following, the cost will refer to the energy cost of first computing,
and then sending information over the communication channel.

A typical use case would be that of a sensor communicating data back to a
server for aggregation and further analysis. The sensors are developed using a mix
of third party and in-house developed code. They will thus be subject to discovered
security vulnerabilities, requiring new firmware with regular intervals. The sensors
will typically be powered by a battery. The process of changing the battery is
resource consuming, requiring energy efficient computation and communication.

In this paper, we focus on TLS �.� and DTLS �.�. While TLS �.� was final-
ized in August ����, DTLS �.� is still only in draft state. The versions are not
compatible with each other, so to have a reasonable comparison between CoAP
and MQTT, we do not consider TLS �.� for MQTT. Still, we only consider ci-
pher suites that are compatible with TLS �.�, i.e., we exclude RSA key exchange
and we only consider AEAD modes of operation on the record layer.

The main goal is to better understand the following aspects:

• The cost of adding security to CoAP and MQTT and the difference between
AES modes of operation and key sizes when encrypting bulk data.

• The handshake cost, using different cipher suites.

• The cost updating the device firmware in a secure manner.

• The influence of packet loss for bulk data transfer.

Adding TLS/DTLS at the transport layer will incur overhead for both initial
handshake messages and encryption/decryption and authentication of messages in
the record layer.

The choices for comparison will be detailed in the following subsections, while
the results are given in Section �.

�.� Adding Encryption to Data

To understand the cost of encrypting data, and how algorithm choices affect the
cost, we measure the energy used to encrypt messages of different sizes.

According to the CoAP specification [BZ��], CoAP messages should fit into a
single IP datagram to avoid IP fragmentation. Thus, the payload size is bound to
���� bytes. To transfer larger payloads, CoAP supports a block-wise transfer op-
tion. This option enables transferring multiple blocks of information represented
as multiple request-response pairs. The block-wise option enables a server to be
stateless, since the server handles each block separately and there is no need for
any connection setup or memory on server side. In order to cover a wide range of
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use-cases, we measure the energy for message sizes between �� and ���� bytes, i.e.,
up to � blocks.

When measuring the encryption overhead, the TLS/DTLS handshake is not
considered, only the encryption in the record layer. The handshake is measured
separately, as detailed in the next section.

�.� TLS/DTLS Handshake

The TLS/DTLS handshake can be based on asymmetric keys or a symmetric Pre-
Shared Key (PSK). In the case of asymmetric keys, digital signatures are used to
authenticate the key exchange message in the handshake, while in the PSK case it
is possible to either directly agree on a PSK to use as pre-master secret, or to use
Diffie-Hellman key exchange (for perfect forward secrecy), and then adding the
PSK in order to construct the pre-master secret. Since asymmetric operations are
computationally expensive, PSK can be favourable in constrained environments.
Still, digital signatures can be preferred when it is not feasible to pre-share keys.
The RawPublicKey variant is currently not supported in mbed TLS, the library
used by our device. We analyse the energy consumption for the handshake in the
other modes, PreSharedKey and Certificates. The comparison measures both the
difference between the modes and how different algorithms and levels of security
compare to each other. Moreover, we also compare how client authentication
influences the energy and time. All measurements are made for CoAP.

Many cipher suites are available, but we take the NIST guidelines [MC��]
into account for the selection of cipher suites. Apart from PSK, we only consider
ephemeral keys and Diffie-Hellman key exchange (RSA for key exchange is depre-
cated). Since mode of operation and cipher algorithm only marginally effects the
handshake, we fix these to AES in GCM mode.

We use two approximate security levels of ��� (moderate) and ��� (high) bits.
For moderate security level we choose elliptic curves of size ��� and ��� bits. For
RSA signatures, we then use RSA-����. CoAP explicitly mandates the use of the
curve secp���r�, which uses an elliptic curve with a ���-bit prime (also known as
NIST P-���). The curve secp���r� corresponds to the ���-bit security provided
by RSA-����. For the application data, we use AES-��� together with SHA-���.
Since we use GCM/CCM, the hash algorithm is only used for the PRF in the
handshake, not to compute a MAC on the record layer. For high security level, we
instead use ���- and ���-bit curves, and RSA-����. We adjust the encryption key
to ��� bits and use SHA-���. See e.g., [Bar��] for more information on security
levels.

Although the use of PSK is not recommended by NIST, they do list a set of
PSK cipher suites that can be used. We compare both plain PSK, i.e., (PSK as
premaster secret (PSK), and when Diffie-Hellman is used together with the PSK
(DHE_PSK).
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�.� Firmware Update

A new firmware is often relatively large, at least in comparison to the typical data
packets sent by devices. A firmware update process typically consists of:

�. Download the firmware from a server.

�. Store the firmware such that the bootloader can boot into the firmware.

�. Reboot the device, using the new firmware.

The ESP�� has builtin OTA (Over-The-Air) update functionality, combining
steps � and � above. We measure the energy and time used to both download and
store a firmware with size ��� KiB. Rebooting is not part of the measurement.
We compare different encryption key sizes and modes of operation for AES, for
both CoAP and MQTT, in order to analyze the difference for these larger data
transmissions.

�.� Packet Loss

Packet loss can be costly due to retransmission, resulting in more energy consump-
tion. If a CoAP message is marked as CON, it will be retransmitted until the
receiver sends an ACK. For MQTT, retransmission is handled by the TCP layer.

We simulate packet loss with loss rate varying from � to ��% using CoAP and
MQTT, both with and without security. Very high ranges of packet loss may cause
a session to be lost due to timeout and ranges of very low packet loss does not
have much effect on energy consumption. Also, based on used loss rates defined
in [Tha+��], we use packet loss rates up to ��%.

The CoAP messages were marked as CON in our experiments, thus when a
packet loss occurs, the packet will be retransmitted until an ACK is received from
the server. One might believe that NON messages are more efficient, if packet loss
is not a concern, but this is not the case. According to RFC ���� [SHB��], CoAP
is a request and response protocol, this means that CON and NON messages both
are followed by a response. In the case of a CON message, the ACK is usually
piggybacked, resulting in no byte overhead.

In CoAP, the retransmission time is primarily controlled by the ACK_TIMEOUT
parameter, i.e., the time after which a retransmission is made. According to RFC
����, the default value is � seconds, and it is recommended to not be less than �
second. Following this, we vary the timeout between � and � seconds, and analyze
its effect on the energy consumption with different packet loss rates.

� Results and Discussion

In this section we give the results of our measurements. In some measurements, we
also measured the duration time since energy and time is not fully correlated. En-
ergy consumption is not necessarily the same for doing the required computations
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and for sending the actual payload. All our measurement results are given as the
average of �� measurements. The power consumption in the idle state is 108mW ,
which corresponds to 30 µWh during a second. For the PKI-based handshake,
certificates are signed by a CA, so they have a certificate chain of length two.

It is important to note that we are only looking at a specific implementation
of CoAP and MQTT, as well as the crypto library. Other hardware and imple-
mentations will likely give different results. Instead, focus should be on the gen-
eral takeaways from our measurements. Such takeaways will be given at the end
of each subsection below.

�.� Analysis of Adding Encryption to Data

We analyze the energy consumption for sending data from the client to the server.
CoAP and MQTT communication is analyzed, both without security, and with
different variants of channel encryption, as negotiated by the TLS/DTLS hand-
shake. We start the measurement after the client’s finished message in the hand-
shake and stop the measurement when all data has been transmitted.

The total energy consumption for CoAP is given in Fig. �, while the results
for MQTT can be found in Fig. �. Looking at plain data (NULL), CoAP con-
sumes slightly less energy than MQTT and is more efficient for packet sizes up
to ���� bytes. This is reasonable since UDP is more efficient than TCP over a
reliable network. However for larger data chunks (> ���� bytes), CoAP consumes
much more energy, so here MQTT is more efficient. The reason for this can be
found on application level. CoAP has a ���� byte limitation on packets with no
support for fragmentation. Thus, CoAP must send several consecutive chunks of
���� bytes, while MQTT can send a continuous stream of data. Further, we can
note that the energy cost of sending data is constant for up to around � KiB of data
for both CoAP and MQTT. The energy needed to initiate and end the actual WiFi
communication is then significantly larger than the energy cost of the actual data
transmission. For CoAP (UDP), this overhead is around �.� µWh (with standard
deviation �.��) and for MQTT (TCP) it is around �.� µWh (with standard devi-
ation �.�).

From the result in Fig. �, we can see that adding DTLS to CoAP messages
(shown with different cipher suites in Fig. �) adds a small amount of energy (com-
pared to NULL), in the order of �.� µWh for small messages. For larger messages,
the added energy is increasing. Adding TLS to MQTT gives a lower overhead
compared to DTLS, likely since it has less byte overhead compared to DTLS as
discussed earlier. For smaller messages the difference is not visible, and within one
standard deviation of the measurements. For larger messages the difference is evi-
dent.

Looking at Fig. � and �, with different cipher suites, it is clear that there is not
much difference in the choice of keysize (��� vs. ��� bits) and modes of operation
(GCM vs. CCM). Calculating a ��% confidence interval shows that there is no
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Figure 2: Energy consumption for CoAP/CoAPs protocols with different cipher suites and
different payload sizes

statistical difference. One thing that we can notice is that for CoAP messages, the
CCM� variants require (statistically) less overhead compared to the other variants.
For messages of size ���� bytes the energy saving is around � µWh.

From Fig. � and � we also can conclude that aggregating as much data as pos-
sible is beneficial for energy consumption. For instance, sending � kiB in frames
of �� bytes is much more energy consuming than transferring � KiB into frames
of ���� bytes. This is more important if this also can reduce the number of hand-
shakes, as will be seen in the next section.

Key takeaways:

• Though modes of operation and key sizes changes the cryptographic algo-
rithms, for our used hardware and software libraries, this has very little im-
pact on energy consumption. Still, CCM� seems to be somewhat cheaper.

• Since CoAP can send packets of size up to ���� bytes, the overhead of send-
ing several packets makes MQTT less energy consuming for payload sizes
larger than ����.

• In both CoAP and MQTT, sending aggregated data is more beneficial than
sending data in smaller packets.
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Figure 3: Energy consumption for MQTT/MQTTs protocols with different cipher suites and
different payload sizes

�.� Analysis of PSK-based and PKI-based DTLS Handshakes

To measure the handshake part of a secure connection in CoAP, we setup a secure
connection from the ESP�� to the server, forcing the client to support only one
specific cipher suite listed in Table �. To establish the actual connection, the client
sends �� bytes of data to the server. For each cipher suite, we measure the energy
consumption for the handshake, including transferring �� bytes of data and closing
the connection. This is performed both with and without client authentication.
The measured values and duration times, are given in Table �.

For the two PSK-based methods, the addition of Diffie-Hellman (i.e., PFS)
will significantly increase the energy needed.

The remaining cipher suites can be compared from different perspectives. Com-
paring RSA and ECDSA shows that when only the server is authenticated, RSA
performs better, but when also the client is authenticated, RSA becomes less effi-
cient than ECDSA. This is due to the asymmetry in RSA signatures, where signing
is much more costly than verification. For ECDSA, these costs are much more
symmetric.

Comparing the elliptic curves, the increase in energy when increasing the size
is relatively constant, except for the case of RSA signatures. This suggests that
using ����-bit signatures is much more costly than using ����-bit signatures. For
high security levels and mutual authentication, ECDSA is thus highly preferred.
However, without client authentication, RSA can be considered.

DHE (����-bit prime) with RSA signatures requires much energy. The main
reason is that this (Diffie-Hellman) uses an exponentiation with a secret value. It
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is thus clear that ECDHE should always be preferred over DHE.
Looking at the time for the handshake, it is often very slow. Analyzing the

communication using Wireshark, we find that the vast majority of the time is
being spent while waiting for the client to respond with the Client Key Exchange
message.

Comparing the handshake to sending data, it costs around � µWh to send up
to � KiB data, while any (non-PSK) key exchange will cost in the order of ��-���
µWh depending on cipher suite. Thus, minimizing the number of handshakes,
and to make them more efficient, should be prioritized.

Key takeaways:

• Due to the asymmetric cost for signing and verifying RSA signatures, RSA
is a viable option when client authentication is not used.

• ECDHE should always be preferred over DHE.

• Client computations are responsible for most of time and energy. This is
particularly evident when the client computes RSA signatures, as is the case
when we have mutual authentication (and RSA).

• Plain PSK is significantly more efficient than any other alternative.

Table 1: The handshake energy consumption (with standard deviation from 10 measure-
ments is given in parentheses)

Mutual authentication One way authentication

Cipher suite
CoAP energy

consumption (µWh)
CoAP

time (ms)
CoAP energy

consumption (µWh)
CoAP

time (ms)

TLS_DHE_PSK_WITH_AES_128_GCM_SHA256 268.66 (5.13) 4186 (23.06) - -

TLS_PSK_WITH_AES_128_GCM_SHA256 18.53 (0.61) 163.39 (5.28) - -

TLS_ECDHE(224r1)_RSA_AES_128_GCM_SHA256 114.33 (2.88) 1606 (8.14) 48.90 (3.90) 578.96 (34.78)

TLS_ECDHE(256r1)_RSA_AES_128_GCM_SHA256 125.00 (2.00) 1771 (12.16) 57.36 (1.59) 720.66 (9.44)

TLS_ECDHE(384r1)_RSA(4096)_AES_256_GCM_SHA384 463.66 (19.29) 7572 (367.73) 118.37 (20.09) 1678 (326.05)

TLS_ECDHE(521r1)_RSA(4096)_AES_256_GCM_SHA384 473.00 (15.39) 7691 (205.14) 155.00 (4.35) 2209 (112.42)

TLS_DHE_RSA_AES_128_GCM_SHA256 339.00 (1.00) 5395 (30.31) 276.33 (3.51) 4328 (19.15)

TLS_ECDHE_ECDSA(224r1)_AES_128_GCM_SHA256 106.33 (12.22) 1556 (217.41) 75.86 (0.90) 1033 (18.71)

TLS_ECDHE_ECDSA(256r1)_AES_128_GCM_SHA256 135.66 (0.57) 2098 (26.57) 100.23 (1.53) 1475 (7.63)

TLS_ECDHE_ECDSA(384r1)_AES_256_GCM_SHA384 178.00 (8.18) 2721 (151.71) 143.00 (2.64) 2168 (36.17)

TLS_ECDHE_ECDSA(521r1)_AES_256_GCM_SHA384 276.66 (7.37) 4432 (148.67) 213.33 (0.57) 3327 (26.40)

�.� Analysis of Firmware Update

In our experiments, we used the block-wise option in CoAP for transferring a
firmware update. The firmware, which is around ��� KiB, is transferred in ���
consecutive blocks from the server to the client, which the client writes to flash.
We used MQTT as-is, since it handles the data size without problems. Upon
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Figure 4: OTA firmware update energy consumption in CoAP and MQTT protocols with
different cipher suites

completion, the client verifies the firmware. Once verified, the device reboots into
the new firmware.

In the experiments, we measured the required energy between the client re-
ceiving the first and last block of the firmware. The energy required for rebooting
into the new firmware was disregarded. The results of the energy consumption and
also the duration time for receiving all the blocks are shown in Fig. � and �. As
illustrated in Fig. �, there is not much difference between different cipher suites in
case of energy consumption for both CoAP and MQTT. The small differences that
we can see in Fig. � are consistent with the previous measurement in that CCM� is
slightly more efficient than the other options (the two rightmost bars). Calculating
a ��% confidence interval supports this observation. The duration time to re-
ceive all the encrypted firmware blocks in CoAP using CCM� (shown in the two
rightmost bars) is also less than the required time for other ciphers, as illustrated
in Fig. �.

We again notice that CoAP requires more energy and time compared to MQTT.
This is consistent with the previous measurement shown in Fig. � and �.

Key takeaway:

• For transferring the OTA update, MQTT is more efficient with a factor of
� for energy, and almost a factor of � for time. This is because in CoAP, the
firmware is transferred in several small blocks.
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Figure 5: OTA firmware update duration time in CoAP and MQTT protocols with different
cipher suites

�.� Analysis of Packet Loss

We simulated packet loss using the traffic control utility tc along with the network
emulator NetEm on the server side for both CoAP and MQTT with and without
security. NetEm was configured to drop packets from the interface with a given
probability. In our experiments, ��� packets with a fixed size of ��� bytes were
sent from the client to the server (without any delay between sending the packets),
with a loss rate up to �� %. The energy consumption was measured to capture the
effect of retransmission.

In bulk CoAP transmission, the packets will be sent consecutively until a
packet loss occurs. When loss occurs, the client waits until the next retransmis-
sion time and no more packets will be sent before then. In the retransmission, the
lost packet and also the remaining packets will be sent to the server.

Bulk transmission is handled differently in MQTT. Since MQTT utilizesTCP
with its sender window, the sender might send the last packet while it is still waiting
for previous packet acknowledgements. As a result, bulk transmission in MQTT
with packet loss is much faster than CoAP since it does not have to wait for every
packet to be acknowledged.

Since there was not much difference between different key sizes and different
cipher suites as discussed in Section �.�, in the packet loss measurements we only
consider AES with key size of ���. The energy consumption for different packet
loss rates for transferring ��� packets of size ��� bytes for CoAP and MQTT
protocols are given in Fig. � and �. The energy consumption will increase with
increasing packet loss, but this increase in CoAP, as illustrated in Fig. �, is much
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more than in MQTT (note the different scaling of the y-axis). This is due to the
differences in handling bulk transmission as explained above.

In Fig. � and �, there is not any significant difference between different modes
of operation. NULL has the lowest energy consumption in both CoAP and MQTT
protocols but in CoAP, the difference between NULL and other cipher suites
decreases for packet loss rates higher than �� percent. Because, in CoAP, when
packet loss rate increases, the waiting time between retransmissions also increases
and the actual number of retransmissions decreases. The required energy for each
second of waiting time between retransmissions is around �� µWh. Sending the
same number of packets (��� packets) in CoAP and MQTT, the required time in
CoAP for �� percent packet loss is around � minutes while in MQTT this time
is only around � minute. This results in the huge difference between energy con-
sumption in CoAP and MQTT protocols for higher packet loss rates.
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Figure 6: Energy consumption for CoAP/CoAPs protocols with different packet loss rates

The effect of the ACK_TIMEOUT parameter under different packet loss rates is
shown in Table �. Since much energy is consumed while waiting for the next
packet, lowering this waiting time can reduce the energy. Comparing a � second
ACK_TIMEOUT with the default � second value indicates that the control parame-
ters can have significant impact on the energy consumption, in particular in envi-
ronments with high packet loss rates. As seen in Table �, the energy consumption
for �� and ��% packet loss rates with � seconds ACK_TIMEOUT is almost double
the required energy for � second.

The experiments showed that by increasing the ACK_TIMEOUT, the energy con-
sumption will be increased but this increase is more visible in higher packet loss
rates. Therefore, it is important to optimize the retransmission parameters in
CoAP protocol according to the environment.



� Conclusions ���

0 5 10 15 20
0

0.5

1

1.5

2

Loss rate / percentage

En
er

gy
co

ns
um

pt
io

n
/m

W
h AES_���_GCM_SHA���

AES_���_CCM

AES_���_CCM�

NULL

Figure 7: Energy consumption for MQTT/MQTTs protocols with different packet loss rates

Key takeaways:

• For CoAP on lossy networks, the encryption overhead decreases with the
loss rate, since the waiting time between retransmissions also increases and
the actual number of retransmissions decreases.

• MQTT performs significantly better in lossy networks due to the algorithms
used in TCP.

• In CoAP, varying the retransmission control parameters such as ACK_TIMEOUT
can help in reducing energy consumption quite much, if the network sup-
ports this.

� Conclusions

In this paper we give a better understanding of the difference in energy overhead
for two common IoT protocols, CoAP or MQTT. We have done real-world ex-
periments to measure and analyze the energy overhead of adding security to CoAP
and MQTT on an ESP�� IoT deviceDuring data transfer, we show that there is
a constant energy overhead for up to around � KiB of data, which is the cost for
setting up the WiFi connection. Above � KiB, CoAP has a higher penalty com-
pared to MQTT, due to the block-wise transfer mechanism. Thus, for smaller
packet sizes, CoAP and MQTT are comparable, while MQTT is favorable for
larger packets. Due to the overhead of setting up the wireless connection, it is
clear that data should be aggregated, whenever possible.
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Table 2: The effect of ACK_TIMEOUT parameter on CoAP protocol energy consumption

Energy Consumption (mWh)

ACK_TIMEOUT (s) 1 1.5 2 2.5 3

5% packet loss 1.39 1.55 1.88 2.38 2.50
10% packet loss 2.39 3.16 3.85 4.85 6.29
15% packet loss 3.98 6.00 8.05 9.86 10.73
20% packet loss 6.46 7.78 12.20 13.58 16.65

Looking at the DTLS handshake, ECDHE should always be preferred over
DHE, while RSA as digital signature has a slight advantage when client authenti-
cation is not needed.

In most cases, MQTT outperforms CoAP, much due to the window based
retransmission strategy in the underlying TCP protocol. The most suitable use
case for CoAP is on a reliable network, transmitting small packets of data. For
other cases, the strength of TCP becomes evident.

Note that the numbers provided are hardware and implementation specific.
Also there are other factors that can affect the results, such as environmental con-
ditions, network topology, integration of many sensors in IoT systems, device use
case, etc. As a result all of above factors need to be considered in the energy con-
sumption of IoT devices.
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