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Abstract

This thesis is comprised of two parts, applying concepts from automatic
control to different application areas.

The first part of this thesis concerns the development of an optimization-
based algorithm, determining the size of insulin doses for patients suffering
from Diabetes Mellitus and treated with multiple insulin injections.

Diabetes Mellitus is a chronic disease characterized by elevated blood
glucose levels, either because of missing insulin production due to failure of
the pancreatic beta-cells, or because of the body cell’s reduced sensitivity to
insulin. The therapy usually consists of insulin injections to substitute for
the missing insulin. The amount of insulin to be administered is decided by
the patient, usually using empirically developed rules of thumb.

Thus, the first part of this thesis presents an algorithm determining the
dose intakes of insulin and counteracting glucose, which bring the blood
glucose concentration back to a normal range. The proposed algorithm uses
optimization methods and predictions of the blood glucose concentration to
determine these doses. The predictions are based on individualized patient
models describing the blood glucose dynamics. The cost function used in the
optimization algorithm reflects the risk associated with the blood glucose
values. For evaluation, the control algorithm was tested in a simulation
study using a virtual patient and was compared to a simple bolus calculator
from the literature. It was found that the proposed control algorithm could
improve the time of the simulated patient’s blood glucose in a safe range,
as compared to a bolus calculator.

The second part of this thesis aims at applying inverted decoupling to the
area of temperature control in buildings. Inverted decoupling is commonly
used in process control and chemical engineering. Using this decoupling
technique, it is possible to cancel out cross-couplings in a multi-variable
system. With this, the multi-variable system can be controlled as several
single input single output systems, for example using PID control.

Buildings are multi-variable systems with a variety of different inter-
acting variables, for example the temperature dynamics of several adjacent
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rooms, or variables such as air flow rate and the temperature of the air in
a ventilation system. In the second part of this thesis, inverted decoupling
is applied to these two examples to decrease the couplings in the dynamics.
For the first example, the aim was to use the decoupling method to decrease
the interactions of the temperature dynamics of adjacent rooms, in order
to be able to regulate the temperature of each room without influence from
another room. In the second example, the room temperature was to be reg-
ulated using the temperature of the air in a ventilation system. However,
changing the air flow rate in the ventilation system, for example to regulate
the CO2 concentration, influences the room temperature as well. The aim
was to use inverted decoupling to decrease this coupling, so that a change
in air flow rate does not influence the room temperature. In simulation
studies, the proposed decoupled controller could reduce the effect of the
couplings in both examples.
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Publications and

Contributions

Contributions Part 1

• The amount of insulin and glucose a diabetic patient should take
around mealtimes is determined using an algorithm based on opti-
mization and using predictions of future blood glucose levels. Fur-
thermore, patient models tailored to the individual patient’s blood
glucose dynamics are used.

• The blood glucose predictions and the algorithm determining the in-
sulin and glucose dose sized are based on dynamic models describing
the blood glucose dynamics of an individual patient.

• The results of this research show that, when using multiple insulin
injections, a trade-off is to be made between the time which the blood
glucose values lie in a safe range, and the amount of insulin taken per
day. It seems that the higher the amount of time, which blood glucose
values lie in a range safe for a diabetic patient, the larger the amount
of insulin taken per day.

• The proposed algorithm gives the opportunity to tune this previously
mentioned trade-off, i.e., to decide upon the importance of time in
safe range versus amount of insulin per day. The conventional insulin
therapy does not provide this opportunity.

Contributions Part 2

• Inverted decoupling, commonly used within the process industry, is
applied to two examples within the control of temperature in buildings.
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• Inverted decoupling provides a possibility to improve temperature
regulation is multi-zone buildings with several interacting variables,
by adding a decoupling network to already existing local PI controllers
with supervisory control.

• In simulation studies, inverted decoupling could reduce the tempera-
ture coupling between two adjacent room, by using first-order models.

• The interaction between the air flow rate and the air temperature in
a ventilation system could be reduced using inverted decoupling in
simulation studies.

Publications

Note: the author of this thesis has changed name from Meike Stemmann to
Meike Rönn.

This thesis is based on the following publications:

Stemmann, M. and R. Johansson (2012). “Control of type 1 diabetes via
risk-minimization for multi dose injection patients”. In: 5th Interna-

tional Conference on Advanced Technologies and Treatments for Diabetes

(ATTD 2012), Barcelona, Spain.

A control algorithm based on solving an optimization algorithm is presented,
which aims at helping patients using multiple dose injection therapy to
determine the doses of insulin and glucose intakes which stabilize their
blood glucose concentration. As a cost function for the optimization, an
asymmetrical cost function representing the risk related to a certain blood
glucose value is used.
M Stemmann was the main author of this publication. She came up with the
details of the control algorithm and was the main responsible for algorithm
development, implementation and testing. R Johansson contributed by the
conceptual idea of the algorithm and feedback both concerning algorithm
development and preparation of the publication.

Stemmann, M. and R. Johansson (2012). “Diabetic blood glucose control via
optimization over insulin and glucose doses”. In: 8th IFAC Symposium on

Biological and Medical Systems (IFAC BMS 2012), Budapest, Hungary.

The algorithm proposed in this publication aims at helping diabetic patients
using multi-dose injection therapy to determine the dose and time of in-
sulin and glucose intakes to stabilize their blood glucose concentration. The
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control was done by minimizing the risk associated with the blood glucose
concentrations over the doses and times of insulin and glucose intakes.
M Stemmann was the main author of this publication. She came up with the
details of the control algorithm and was the main responsible for algorithm
development, implementation and testing. R Johansson contributed by the
conceptual idea of the algorithm and feedback both concerning algorithm
development and preparation of the publication.

Cescon, M., M. Stemmann, and R. Johansson (2012). “Impulsive predictive
control of T1DM glycemia: an in-silico study”. In: 5th Annual Dynamic

Systems and Control Conference (ASME 2012), Ft. Lauderdale, FL, USA.

In this publication, a basal-bolus regiment for a diabetic patient is imple-
mented for a virtual patient. A low-order transfer function model repre-
senting the physiological patient dynamics for an individual patient was
estimated for each virtual patient. Using this model, an optimization-based
control algorithm was implemented, determining insulin-boluses to be ad-
ministered to the virtual patient.
The estimation of the patient models was done by M Cescon. M Stemmann
was responsible for the control algorithm, using the estimated models.
Manuscript preparation was done by both M Cescon and M Stemmann
in collaboration. R Johansson contributed by the conceptual idea of the
algorithm and feedback both concerning algorithm development and prepa-
ration of the publication.

Stemmann, M. and A. Rantzer (2014). “Temperature control of two inter-
acting rooms with decoupled PI control”. In: 19th IFAC World Congress.
Cape Town, South Africa.

The room temperature of two adjacent rooms with interacting temperature
dynamics were controlled using a PI controller plus a decoupling network.
The idea of the decoupling network is to cancel the interactions arising from
the coupled temperature dynamics, such that the temperature of each room
can be regulated by its respective PI controller without being influenced by
the temperature of the adjacent room.
M Stemmann was responsible for algorithm development, implementation
and testing. A Rantzer contributed by feedback on both the algorithm
development and the manuscript preparation, and by the conceptual idea.

The material in Part 1 of this thesis has been published in the Licentiate
Thesis of the author of this thesis:
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Stemmann, M. (2013). Predictive Control of Diabetic Glycemia. Licentiate
Thesis TFRT-3258. Department of Automatic Control, Lund University,
Sweden.

The author of this thesis was also involved in the following publications,
but they are not part of this thesis:

Stemmann, M., F. Stahl, J. Lallemand, E. Renard, and R. Johansson (2010).
“Sensor calibration models for a non-invasive blood glucose measurement
sensor”. In: 2010 Annual International Conference of the IEEE Engi-

neering in Medicine and Biology Society (EMBC 2010), Buenos Aires,

Argentina, pp. 4979–4982.

A calibration model was developed for a noninvasive blood glucose sensor, to
determine how the blood glucose data measured by this sensor is related to
blood glucose data measured with laboratory capillary finger sticks and to
corrupting noise. The variability of calibration models for different patients
was analyzed as well as the dynamics of the non-invasive blood glucose
sensor according to reference blood glucose measurements and corrupting
noise.
M Stemmann was the main author of this publication. She came up with the
details of the control algorithm and was the main responsible for algorithm
development, implementation and testing. R Johansson contributed by the
conceptual idea of the algorithm and feedback both concerning algorithm
development and preparation of the publication.

Ghazaei, M., M. Stemmann, A. Robertsson, and R. Johansson (2015). “An
analytic solution to fixed-time point-to-point trajectory planning”. In:
2015 IEEE Conference on Control Applications (CCA). Sydney, Australia.

An analytic solution to the problem of fixed-time trajectory generation with
a quadratic cost function under velocity and acceleration constraints was
developed.
M Ghazaei came up with the idea for the problem and the concept for the
solution. The solution was worked out together by M Ghazaei and M Stem-
mann, within a project for a course about Optimal Control. R Johansson
and A Robertsson contributed by feedback concerning algorithm develop-
ment and preparation of the publication.
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1

Introduction

Diabetes Mellitus is a chronic disease caused either by the inability of the
body to produce insulin (Type 1) or because the cells in the body do not
respond to the effect of insulin (Type 2). In type 1 diabetes, a failure of the
β -cells in the pancreas caused by, e.g., injuries, infections or autoimmune
disorders, leads to a lack of insulin secretion. This lack of insulin secretion
leads to chronically elevated blood glucose levels, which results in compli-
cations affecting, for example, the heart, liver, kidneys or nerves [Guyton
and Hall, 2006].

Diabetes is one of the leading causes of blindness, amputation and
kidney failure in the world [World Health Organization, 2013]. There are
331 million people with diabetes worldwide and more than 55 million in
Europe. The number of people with diabetes is projected to increase from
8.3 % of the world population in 2012 to 9.9 % of the world population in
2030 [International Federation of Diabetes, 2012b]. Although 85− 95 % of
adult people with diabetes are suffering from type 2 diabetes, the number
of people with type 1 diabetes is increasing around the world each year.
Furthermore, the majority of young people suffering from diabetes have
type 1 diabetes [International Federation of Diabetes, 2011].

For treatment, patients with type 1 diabetes have to substitute the miss-
ing insulin by administrating insulin externally. This is done either through
multiple insulin injections during the day or by continuous insulin infusion
subcutaneously with a pump. Patients treated with multiple daily injections
usually take basal insulin to cover the body’s basal insulin needs and addi-
tional bolus insulin doses at times when the blood glucose concentration is
high, e.g., around meal times. The challenge in diabetes treatment is that
the patient needs to self-reliantly determine the doses of insulin required to
maintain the blood glucose concentration within the normoglycemia range.
This means solving an optimization problem several times throughout the
day.

To help the patient with this task, blood glucose prediction algorithms
as well as many different control algorithms have been proposed [Ståhl
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Chapter 1. Introduction

and Johansson, 2009] [Cescon et al., 2009]. These control algorithms reach
from proportional–integral–derivative (PID) control, pole placement over
adaptive and run-to-run methods to model predictive control (MPC) [Co-
belli et al., 2009] [Harvey et al., 2010] [Parker et al., 2001]. Many of the
proposed controllers aim at having a continuous insulin signal injected into
the diabetic patient via an insulin pump.

However, in the scope of the European project DIAdvisorTM [Poulsen et
al., 2010] [The DIAdvisor Consortium, 2012] aiming at developing a blood
glucose prediction and treatment advisory system, the patient should be
able to use, e.g., an insulin pen instead of a pump. Whereas continuous
insulin administration can be useful for patients using an insulin pump,
this is not suitable for patients using for example insulin pens to administer
insulin. Instead, insulin dose advices should in such a case be in the form
of impulses.

This thesis aimed at developing a control algorithm, that calculates
impulse-formed insulin and glucose dose advices. These advices should not
be given very frequently, but rather only a few times a day. Here the need for
insulin and glucose intakes was determined in case of a meal or if the blood
glucose concentration left a safe range. To determine the amounts of insulin
and glucose to be taken, two different approaches were proposed. The first
approach was to formulate an optimization problem, whose solution gave
the amounts of insulin and glucose to be taken. The second approach was
to evaluate a cost function for given sets of insulin and glucose intakes. The
insulin and glucose doses resulting in the lowest cost were then chosen to
be applied to the patient. It is assumed that the basal insulin need of the
patient is covered.

This first part of the thesis is structured in the following way:

• Chapter 1 gives an introduction, formulates the problem for this thesis
and presents the European project DIAdvisor, within which this work
was done.

• Chapter 2 gives a background about the Diabetes Mellitus disease, how
the blood glucose is regulated by the human body and how Diabetes

Mellitus is treated. Also, an overview of research about automatic
control in diabetes is given.

• Chapter 3 presents the nonlinear model used as a virtual patient to
simulate a patient with type 1 diabetes.

• Chapter 4 introduces the mathematical models describing the patient
dynamics used in the prediction and control algorithms, since the
proposed control algorithms are model-based.
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1.1 The DIAdvisor Project

• Chapter 5 describes the optimization-based control algorithm devel-
oped in this thesis. The cost function used as well as the formulation of
the optimization problem are presented. Furthermore, it is described
how this optimization problem was solved and how it was embedded
within an algorithm to form a controller.

• Chapter 6 describes the simulation environment, the metrics used
for controller evaluation and presents the results. Moreover, a bolus
calculator serving as a comparative reference for the proposed control
algorithm is introduced.

• Chapter 7 discusses the results and Ch. 8 concludes the work.

1.1 The DIAdvisor Project

The work presented in this thesis was done within the European Project
DIAdvisorTM [Poulsen et al., 2010; The DIAdvisor Consortium, 2016]. The
goal of the project was to develop a mobile short-term blood glucose predictor
and treatment advisory system, that helps diabetic patients to manage their
therapy, minimize the time spent outside the normal glycemic range and
give them an improved quality of life. The negative effects of long-term
hyperglycemia, i.e. too high blood glucose values, should be reduced without
increasing the occurrence of hypoglycemia, i.e. too low blood glucose values.
The objective of the project was to develop a system, which predicts blood
glucose levels and gives treatment advice to the patient [Poulsen et al.,
2010; The DIAdvisor Consortium, 2016].

The concept of the DIAdvisorTM project is shown in Figure 1.1. The
DIAdvisorTM system incorporates both a blood glucose predictor, predicting
the future blood glucose development, and an advisor informing the patient
about corrective actions needed to best reach a blood glucose target range. It
needs inputs provided by the patient, e.g., about meals and insulin intakes
and from sensors such as blood glucose sensors. With the help of these
inputs, the DIAdvisorTM system provides a prediction of future blood glucose
development and based on this calculates advices on corrective actions in
terms of insulin and food intakes. The blood glucose prediction and advices
are given to the patient as an instruction. The patient then has to administer
the doses using, e.g., an insulin pen or pump. The patient data are also sent
to the health care provider.

The DIAdvisorTM system was evaluated in clinical trials at three differ-
ent sites, collecting data from 50 different patients [The DIAdvisor Consor-
tium, 2016].

Up to date patients decide upon insulin doses either using personal ex-
perience, or using rules of thumbs to calculate the correct insulin dose based
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Chapter 1. Introduction

Figure 1.1 The concept of the DIAdvisor mobile short-term blood glucose
predictor and treatment advisory system [The DIAdvisor Consortium, 2012].

on consumed carbohydrates and measured blood glucose values. Simple bo-
lus calculators can assist with the calculations. By giving information about
future blood glucose development and insulin intake recommendations to
the patient, the DIAdvisorTM system intends to empower patients into tak-
ing own decisions in their diabetes treatment [The DIAdvisor Consortium,
2016].

1.2 Problem Statement: Diabetic Impulse Control

In the sense of the DIAdvisorTM project described in Sec. 1.1, the aim of this
thesis was to develop a control algorithm, which gives advice about insulin
injections to the patient while still allowing the patient some flexibility
during the day. In this context, to keep flexibility means that the dose of
insulin is determined when needed, e.g. at mealtime, and does not need to
be planned for the whole coming day. To fit the DIAdvisorTM system, advices
should not be given in a continuous manner, but instead be in the shape of
impulses, and they should be given rather seldom. Based on blood glucose
predictions and measurements, the control algorithm should determine the
insulin doses to be administered by the patient and the amount of glucose
to be consumed with a food intake. Furthermore, the control algorithm
should be based on an individual mathematical patient model describing
the patient dynamics. Similar as described in Sec. 1.1, the goal was to
minimize time spent outside the normal glycemic range.
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2

Background

2.1 Blood Glucose Regulation in the Body

Glucose is one of the most important energy sources of the human body and
is used as fuel by almost all cells, e.g., muscles, adipose tissue or the cells
in the brain. A stable concentration of glucose in the blood is essential. The
healthy human body has an in-built, complex feedback system to regulate
the concentration of glucose in the blood and make sure it remains in
balance. The main regulator of this so called glucose homeostasis is the
hormone insulin, which is produced by the β -cells in the pancreas [Shrayyef
and Gerich, 2010]. It stimulates the uptake of glucose by the cells of insulin-
dependent tissue and the storage of glucose in the liver. In addition, there
are counter regulatory hormones such as glucagon, epinephrine, cortisol or
growth hormone, which work to prevent hypoglycemia, i.e., too low blood
glucose concentration [Guyton and Hall, 2006] [Warrell et al., 2012].

When a patient consumes a meal, the blood glucose concentration in-
creases, which stimulates the pancreas to secrete insulin. Insulin then
promotes the utilization of the glucose by insulin-dependent body tissues,
such as muscles and adipose tissue, as well as the storage of glucose in the
liver and muscles as glycogen, compare to Fig. 2.1. Moreover, it inhibits the
liver from producing more glucose and thus brings the blood glucose back to
normal. Between meals, when the blood glucose concentration drops, the se-
cretion of insulin from the pancreas is decreased, stimulated by the counter
regulatory hormones mentioned above. If the blood glucose concentration
drops too low, glucose is released into the blood by splitting glycogen from
the liver back into glucose [Guyton and Hall, 2006] [Cobelli et al., 2009].

In a healthy patient, the insulin production is a process that is very
closely controlled by the body, and in which the body closely monitors the
glucose levels. If the blood glucose levels drop too low nevertheless, there
are three mechanisms in the body that should protect from hypoglycemia,
i.e., too low blood glucose level [Fowler, 2011]. When the blood glucose level
drops under the normal level of 80 mg/dL, the release of insulin is decreased
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Chapter 2. Background

Figure 2.1 Scheme of the insulin-glucose regulating system in the body
[Cobelli et al., 2009]

and kept at low levels. Moreover, the low glucose level stimulates the glu-
cose production in liver and kidneys in order to increase the blood glucose
levels. If the blood glucose level falls further, i.e., below 65 − 70 mg/dL,
the hormone glucagon is released from the alpha cells in the pancreas and
also epinephrine is released. Glucagon and epinephrine both stimulate the
production of glucose in the liver, while epinephrine also stimulates glucose
production in the kidneys. It also induces symptoms that can be felt by the
patient like increased heart rate, nervousness or anxiousness. An increased
release of cortisol and growth hormone occurs, if the blood glucose level
stays low for a prolonged time. If the blood glucose levels fall below 50
mg/dL, cognitive dysfunction, seizures and loss of consciousness may occur,
since the delivery of glucose to the brain is insufficient [Fowler, 2011].

2.2 Diabetes Mellitus

Due to either a deficiency of insulin or the inability of the body to use insulin
efficiently, the chronic disease Diabetes Mellitus, often only called diabetes,
leads to hyperglycemia. There are several kinds of diabetes, each having
different pathophysiological mechanisms. The two most common kinds are
type 1 and type 2 diabetes [Williams and J.C., 2001].

The most common form is type 2 diabetes (T2DM). It mostly appears in
adults, but has lately also occurred in children and adolescents [Interna-
tional Federation of Diabetes, 2011]. It is caused by a combination of insulin
resistance and relative insulin deficiency with increased glucose production
in the liver. This means, that the body can usually produce its own insulin,
but either the amount is not sufficient, or the body is not responding to
its effects, due to a decreased sensitivity of the insulin-dependent tissues
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2.3 Insulin

to insulin [Guyton and Hall, 2006] [Fowler, 2010a] [Fowler, 2010b]. Some
important factors that may promote T2DM are obesity, poor diet, physical
inactivity or increasing age. Not all patients require daily insulin injections,
instead they are treated with a combination of diet advice, oral medications
and physical activity [International Federation of Diabetes, 2011]. In later
stages of T2DM, deterioration of the pancreas can occur so that daily insulin
treatment is necessary.

Type 1 diabetes (T1DM) is characterized by absolute insulin deficiency.
Through an autoimmune reaction, the body’s own immune system attacks
the insulin-producing β -cells in the pancreas and destroys them. This de-
creases the ability of the body to produce insulin and eventually leads to
hyperglycemia. The first symptoms appear when approx. 80 % of the β -cells
are destroyed. Patients suffering from T1DM need to substitute the miss-
ing insulin with externally injected insulin every day to control their blood
glucose concentration. To achieve good control, they need to closely mon-
itor their blood glucose concentration and adjust insulin intakes and diet
to achieve normal blood glucose levels every day [Guyton and Hall, 2006]
[Fowler, 2010a] [Fowler, 2010b].

During long-term high levels of blood glucose concentration, diabetes
leads to diseases affecting the heart and blood vessels, eyes, kidneys and
nerves. It is one of the main causes of cardiovascular disease, blindness
and kidney failure in high-income countries [International Federation of
Diabetes, 2011].

2.3 Insulin

To control hyperglycemia in diabetes, insulin has been used since the 1920s.
Pioneering efforts to use insulin in diabetes treatment were made in 1922
[Banting and Best, 1922]. Initially, insulin was extracted from animal pan-
creatic tissue, but nowadays a recombinant DNA technique employing mi-
croorganisms is used to produce insulin [Fowler, 2008].

There are different kinds of insulin available with different on-set and
duration times. For regular insulin, it takes about 30 to 60 minutes until it
starts having an effect. Its peak effect is reached after 2− 3 hours and the
total duration is 8 to 10 hours [Fowler, 2008]. It is a short acting insulin
that is used to cover meal-time glucose excursions. Through modification
and combination with additives at the molecular level, the insulin can
be modified to be absorbed more quickly. Such modified insulin analogs
reach the maximum peak in less time and have a higher maximum insulin
concentration [Fowler, 2008].

Regular insulin can also be modified to prolong its pharmacokinetic
profile. This modification is called long-acting insulin and is used to replace
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Chapter 2. Background

Figure 2.2 Approximate Pharmacokinetic Profiles of Human Insulin and
Insulin Analogues [Hirsch, 2005]

the body’s long acting insulin requirements. One such long-acting insulin is
for example NPH (neutral protamine Hagedorn), with an onset action after
2 to 4 hours, a peak action after 4 to 10 hours and a duration of 10 to 16
hours [Fowler, 2008]. There are also other long-acting insulins available,
which have different maximum peak or half-life. Glargine for example has
a reduced peaking effect, an on-set of 1-2 hours and a duration of 20-30
hours [Heukamp et al., 2012].

2.4 Diabetes Treatment

For both T1DM and T2DM, lifestyle treatment consisting of a healthy diet
and regular physical exercise is important. Because of the absolute insulin
deficiency in patients with T1DM, these patients need to be treated with
externally administered insulin intakes [Fowler, 2008].

The conventional therapy consists of one or two injections of intermediate
and rapid-acting insulin per day, and includes self-monitoring of urine or
blood glucose as well as education about diet and exercise. This therapy
approach does not include daily adjustments of insulin doses [Group, 1993],
which means that a strict daily schedule of meal times with little flexibility
is required.

A more intensive approach [Group, 1993] consists of long-acting insulin
analogs, that are administered one to two times per day, to cover the body’s
basal insulin requirements and rapid-acting insulin analogs to cover meal-
times. The amount of rapid-acting insulin is determined according to the
amount of carbohydrates in a meal, considering the measured blood glucose
concentration at mealtime. The total amount of insulin injections needed
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each day are larger than with the conventional approach, but the intensive
approach replicates more closely the body’s insulin secretion. It also allows
for a greater flexibility concerning mealtimes [Fowler, 2008].

A major risk for patients treated with any kind of insulin therapy is
hypoglycemia, which can be life threatening [Warrell et al., 2012]. While the
intensive insulin treatment is associated with a decrease in micro vascular
complications and decreased risk of kidney failure, it increases the risk for
hypoglycemia [Group, 1993]. The drop of blood glucose can be induced not
only by too large insulin administration, but also by increased activity or
decreased appetite among others. To prevent hypoglycemia, patients are
presented with the task to match the rate of insulin into the bloodstream
with the rate of glucose entering the bloodstream, only by subcutaneous
insulin injections. Usually patients estimate the amount of glucose in the
meal and use a carbohydrate-to-insulin ratio to determine the amount of
insulin that is needed to cover the meal. Furthermore, patients calculate
the amount of insulin necessary to lower the blood glucose concentration
using an insulin sensitivity factor. These ratios and factors are determined
with the help of the health care provider. Factors like stress and physical
activity can alter the amount of insulin needed. This means that these
patients have to solve an optimization problem every day [Fowler, 2011].

2.5 Automatic Control for Diabetes

Many efforts have been made to develop control algorithms that help with
the therapy for diabetic patients. The first closed-loop algorithms were es-
tablished in the ’60s and ’70s and used intravenous glucose measurements
and insulin infusion. In [Albisser et al., 1974] and [Kraegen et al., 1977] for
example, a hyperbolic tangent function relating blood glucose concentration
and rate of change to insulin infusion rate is used as a control law. The
first product commercially available was the Biostator [Connor et al., 1982]
[Cobelli et al., 2011].

In [Steil et al., 2006], the feasibility of using subcutaneous glucose mea-
surements and insulin infusions for closed-loop control of diabetes was
shown using PID control, which became a widely researched algorithm for
control of diabetes [Steil et al., 2004] [Weinzimer et al., 2008] [Panteleon
et al., 2006].

More recently, the most commonly used algorithm for closed-loop control
in diabetes is the model predictive control (MPC) algorithm [Cobelli et al.,
2009] [Harvey et al., 2010] [Parker et al., 2001] [Cobelli et al., 2011]. As the
name suggests, it includes a model of the patient metabolic system. Since
predictions of the future development of the blood glucose concentration
are possible, the effect of insulin on the future blood glucose concentration
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can be determined. Furthermore, constraints can be included to take into
account limitations on, e.g., insulin delivery and the permitted blood glucose
concentration of the patient.

MPC has in earlier years been developed for intravenous insulin infu-
sions and glucose measurements, e.g., in [Parker et al., 1996], [Parker et
al., 2000], where an MPC with constraints on the insulin infusion rate was
used. In [Parker et al., 2000], glucose infusion was added as an additional
controlled variable. Furthermore, an asymmetric cost function was used to
take into consideration that hypoglycemia is much more dangerous than
hyperglycemia.

Later, MPC was mainly used with subcutaneous glucose measurements
and insulin infusions. Using an unconstrained MPC controller gave perfor-
mance improvements over PID control [Magni et al., 2007] in in-silico trials.
To include a prediction of the amount of insulin available in the blood over
time after an intake of insulin, insulin on board was incorporated into the
MPC controller [Ellingsen et al., 2009]. An approach to combine the advan-
tages of MPC control with conventional therapy to cover disturbances like
meals was presented in [Magni et al., 2011]. The conventional therapy was
used as a feed-forward compensation, while the MPC controller provided
feedback control to cover, e.g., meal uncertainties. A way to adjust the con-
troller parameters on a day to day basis was done in [Magni et al., 2009]
by adapting the MPC controller parameters with a run-to-run strategy.

An advisory algorithm based on fuzzy control, which determines the
amounts of insulin to be injected by patients using multiple insulin doses
per day instead of a pump, was developed in [Campos-Delgado et al., 2006].
Using expert knowledge about diabetes treatment, the amounts of insulin
to be injected were determined on a day to day basis. Another algorithm
aimed at determining insulin doses for patients using multiple daily insulin
injections based on run-to-run control was developed in [Campos-Cornejo
et al., 2010], which assumed a prescribed diet regime for the patient.

In [Bondia et al., 2009], basal insulin infusion rate and bolus insulin in-
takes were calculated determining a set of bolus intakes and basal infusion
rates guaranteeing a good postprandial blood glucose response.

An approach to fit the MPC control scheme to optimize therapy for pa-
tients using multiple insulin doses per day was presented in [Kirchsteiger
et al., 2009]. The control signal determined by the MPC controller was
approximated by single control outputs at single time points through sum-
mation of the MPC controller’s output signal. To take into account different
patient dynamics for different blood glucose concentrations, gain scheduling
was used. In an in-silico study it was found that approximating the insulin
signal determined by the MPC by single insulin injections did not reduce
the performance significantly.
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3

The Virtual Patient

A simulator for the glucose-insulin system of a Type 1 diabetic patient was
developed within the DIAdvisor project [The DIAdvisor Consortium, 2016;
Dalla Man et al., 2007a], and used as an in-silico test-bed to test control and
prediction algorithms. In this thesis, this virtual patient test-bed was used
as a simulation model to test the control algorithm described in Chapter 5.

The Virtual Patient is a nonlinear model simulating the glucose-insulin
system in the body. It describes the physiological events happening in the
glucose-insulin system after a meal intake by using compartment modeling
[Dalla Man et al., 2007a]. It is a complex model aiming at modeling the
glucose-insulin dynamics in detail. Because of its complexity, it is not easily
identifiable. However, in this thesis the virtual patient model was used as
a test-bed to evaluate the proposed control algorithm. Models to be used by
the control algorithm are presented in Chapter 4.

The virtual patient model was implemented in Matlab and Simulink
using S-functions [MATLAB, 2011]. Three different sets of parameters were
provided through the DIAdvisorTM project, so that three different patients
could be simulated.

In this chapter the in-silico model used as a test-bed is described, and a
example simulation is given.

3.1 The Glucose-Insulin System

A scheme of the glucose-insulin system is shown in Fig. 3.1. This section
gives an overview over the different parts the virtual patient model is made
up from. For details see [Dalla Man et al., 2007b; Dalla Man et al., 2007a;
Dalla Man et al., 2007a].

The gastro-intestinal tract provides the glucose rate of appearance
for the glucose system after a glucose intake though a meal. It describes
the transit of glucose through the stomach and the upper small intestine
[Dalla Man et al., 2006]. The solid and the liquid phase of the stomach as
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Figure 3.1 Scheme of the glucose-insulin system [Dalla Man et al., 2007b].
The continuous lines denote fluxes of insulin or glucose, the dashed lines
denote insulin or glucose signals controlling the sub-parts of the virtual
patient. Glucose intake and insulin intake are the inputs to the virtual
patient, plasma glucose the measured output.

well as the intestine are modeled here. The model equations for the glucose
absorption are shown in Ep. (3.1)

Qsto = Qsto1 + Qsto2

Q̇sto1(t) = −kgriQsto1(t) + d(t)

Q̇sto2(t) = kgriQsto1(t) − kgut(t, Qsto)Qsto2

Q̇gut(t) = kgut(t, Qsto)Qsto2 − kabsQgut(t)

Ra(t) =
f kabs

Wbody
Qgut(t)

(3.1)

Here Qsto [mg] is the amount of glucose in the stomach, where Qsto1 [mg]
represents the solid phase and Qsto2 [mg] the liquid phase. The glucose
mass in the intestine is denoted by Qgut [mg], kgri [min−1] denotes the
rate of grinding and kabs [min−1] the rate constant of intestinal absorption.
The fraction of intestinal absorption that appears in the plasma is f , and d

[mg/min] is the rate of ingested glucose. The body weight is denoted by Wbody

[kg] and the rate of appearance of glucose in the plasma by Ra [mg/kg/min].
The rate constant of gastric emptying kgut(t, Qsto) [min−1] is a nonlinear
function of Qsto. For details see [Dalla Man et al., 2006]. The glucose rate
of appearance Ra [mg/kg/min] was used by the control algorithm presented
in Chapter 5 as one of the inputs for the prediction algorithm, which the
controller uses.
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3.2 Virtual Patient Simulation

The glucose system describes the insulin-independent glucose utiliza-
tion in, e.g., the brain, kidneys and red blood cells, and the insulin-
dependent glucose utilization in, e.g., muscle and adipose tissue. Taking
into account the meal glucose intake and the glucose produced by the liver,
as well as the mentioned insulin-dependent and insulin-independent uti-
lization, the concentration of glucose in the plasma is calculated.

The insulin system models the degradation of insulin in the liver and
in the plasma. Using the rate of appearance of insulin into the plasma after
an insulin intake, the plasma insulin concentration and the degradation of
insulin are determined.

The subcutaneous insulin infusion determines the rate of appearance
of insulin in the plasma after a subcutaneous intake of insulin by the patient
[Dalla Man et al., 2007a]. The model equations for the subcutaneous insulin
kinetics are shown in Eq. (3.2).

İsc1(t) = RInf(t) − (kd + ka1)Isc1(t)

İsc2 = kd Isc1(t) − ka2 Isc2(t)

Ri(t) = ka1 Isc1(t) + ka2 Isc2(t)

(3.2)

Here Isc1 is the amount of non-monomeric insulin in the subcutaneous space,
Isc2 is the amount of monomeric insulin in the subcutaneous space, RInf(t)
[pmol/kg/min] is the infusion rate of exogenous insulin, kd [min−1] is the
rate constant of insulin dissociation and ka1 [min−1] and ka2 [min−1] are rate
constants connected to non-monomeric and monomeric insulin absorption.
The rate of appearance of insulin in plasma is denoted by Ri(t). This plasma
insulin was used by the control algorithm presented in Chapter 5 as one of
the inputs for the prediction algorithm, which the controller uses.

The liver produces glucose, controlled by insulin and glucose levels in
the plasma. There is a delay between the insulin plasma concentration and
the effect of the insulin on the glucose production by the liver.

The glucose in the plasma is used by the muscle and adipose tissues,
which is as well controlled by insulin and glucose concentrations in plasma.

3.2 Virtual Patient Simulation

The glucose-insulin system shown in Fig. 3.1 has a glucose intake in [g] and
a subcutaneous insulin intake in insulin units (IU) as inputs, and gives out
the concentration of glucose in the blood plasma.

As an example, 10 [g] of glucose were applied to the glucose input of the
virtual patient model shown in Fig. 3.1, while the insulin input was set to
zero. In another example, 1 unit of insulin was applied to the insulin input
of the virtual patient, while the glucose input was set to zero.
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Figure 3.2 Glucose rate of appearance Ra(t) (lower panel) as a response
to 10 g glucose intake (upper panel). The rate of appearance is shown for
three different virtual patients.
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3.2 Virtual Patient Simulation

First, the virtual patient model calculates the rates of appearances of
insulin and glucose in the blood plasma. The glucose rate of appearance
resulting from an intake of 10 [g] of glucose as calculated by the virtual
patient is shown in Fig. 3.2. The insulin rate of appearance resulting from
a subcutaneous insulin intake of 1 unit is shown in Fig. 3.3.

Then, these rates of appearance are used by the glucose and insulin sys-
tem models to calculate the blood glucose concentration. The blood glucose
concentrations resulting from the two examples are shown in Fig. 3.4. The
upper panel shows the blood glucose concentration when there are 10 [g]
of glucose intake, and no insulin intake. The lower panel shows the blood
glucose concentration when there is no glucose intake, but 1 unit of insulin
intake.
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Figure 3.4 The blood glucose concentration of the three virtual patients
as a response to 10 g of glucose intake (upper panel) and 1 unit of insulin
(lower panel). A glucose intake increases the blood glucose concentration,
while an insulin intake decreases it.

Rates of appearances and plasma glucose concentrations are shown for
the three virtual patients used in this thesis. It can be seen, that 10 g
of glucose increase the blood glucose concentration between ca. 20 and 30
[mg/dL]. It takes ca 16 hours, until a steady-state value is reached again.
For an intake of 1 unit insulin, the blood glucose concentration decreases
between 10 and 20 [mg/dL], and a steady-state is reached after ca. 25
hours. Hence, the dynamics from an insulin intake to the blood glucose
concentration are slower than the dynamics from a glucose intake to the
blood glucose concentration.
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4

Patient Models and

Predictions

The control algorithms proposed in this thesis to calculate the doses of
insulin and glucose were based on a mathematical model of the patient
dynamics. Moreover, they used predictions of the blood glucose concentration
to take decisions about insulin and glucose intakes. Hence, models of the
glucose-insulin dynamics of the diabetic patient were needed.

Two different model structures were used to describe the dynamics of
the diabetic patient to be controlled. While the model in the previous chap-
ter served as a simulator of virtual patients, the models presented here
were used in the control and prediction algorithms. These models are lower
in complexity than the nonlinear model used as a virtual patient. A lin-
ear state-space model was used in a prediction algorithm to predict future
blood glucose concentration. For the optimization-based control algorithm,
a model taking the amount of glucose and insulin and the time they are ap-
plied and giving out the change of blood glucose con concentration over time,
was used. In this chapter, these two models and the prediction algorithm
are presented.

4.1 State-Space Models

The linear state-space model used in the prediction algorithm and in one of
the control algorithms to describe the insulin-glucose dynamics of a diabetics
patient is shown in Eq. (4.1).

xk+1 = Axk + Buk + K ek

yM,k = Cxk + ek

(4.1)

Here, the input uk is a vector including the insulin rate of appearance
Ri(t) and glucose rate of appearance Ra(t). The output yM,k is the blood
glucose concentration in [mg/dL].
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Figure 4.1 The data used for estimating the state-space model for patient
2. The first panel shows the blood glucose concentration in [mg/dL], which is
the output of the estimated state-space model. The second panel shows the
insulin intakes in [IU], and the third panel the insulin rate of appearance
in [pmol/l/min] resulting from the insulin intakes. The fourth panel shows
the glucose intakes in [g], and the fifth panel the glucose rate of appearance
in [mg/kg/min] resulting from the glucose intakes. The glucose and insulin
rates of appearance were the inputs for the estimated state-space model.

Since a discrete time model was to be estimated, the rates of appearance
and the blood glucose concentration at the output of the virtual patient
were sampled with 1 minute sampling time. For model estimation, the
function n4sid.m from the Matlab System Identification Toolbox [Ljung and
MathWorks, Inc, 2011] was used, following guidelines in [Cescon, 2011].

The estimation data consisted of 24 glucose intakes a� [g] distributed
over 9 days and 24 insulin intakes ai [IU] for all three patients, which were
placed in between the glucose intakes. The data for patient 2 is shown in Fig.
4.1. The sizes and times of the intakes were not chosen in a physiologically
correct manner, but in order to get a good fit between the output of the
estimated model and the output of the virtual patient. A discussion about
identifying patient models using data measured from real patients can be
found in, e.g., [Cescon, 2011] and [Ståhl, 2012].

For validation data, a data set of 3 days was taken, with meals three

35



Chapter 4. Patient Models and Predictions

time per day and reasonable amounts of glucose in the meals. The insulin
dose was given with the meal and its size was chosen in order to cover the
carbohydrate amount of the meal, according to, e.g., [Gross et al., 2003].

A state-space model was estimated using n4sid for model orders be-
tween 1 and 12 for the three virtual patients. The model with the
model order leading to the best FIT value for a 300 steps ahead predic-
tion for both estimation and validation data was chosen. The FIT value
FIT [%] = (1− (ppyBG − yM pp)/(ppyBG − ȳBGpp)) · 100, where yBG is the blood
glucose concentration at the output of the virtual patient, ȳBG its mean
value and yM the output of the estimated model, represents the percentage
of the output variation that is explained by the estimated model [Ljung and
MathWorks, Inc, 2011] and was calculated for the 300 step ahead prediction
using the Matlab function compare.m. For the validation data, a FIT of 86%,
88% and 87% could be reached for virtual patients 1, 2 and 3, respectively.

4.2 Predictions

Since the control algorithms used predictions of the blood glucose concen-
tration to determine the amounts of glucose and insulin to be applied to the
patient, a prediction algorithm was needed. This prediction algorithm used
the state-space model in Eq. (4.1) to estimate the blood glucose concentra-
tion at the output of the virtual patient for a future horizon Hp.

A scheme of the inputs and outputs for the prediction algorithm is shown
in Fig. 4.2. The insulin and glucose intake doses are recalculated into their
rates of appearance in plasma using Eq. (3.2) and Eq. (3.1). These are used
as inputs uk to the prediction algorithm.

Glucose
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Insulin
intake

Prediction

Algorithm

Tract

Subcutaneous
Insulin
Infusion

Gastro-Inestinal

UHp

Blood Glucose

ŶHp

insulin RA

glucose RA

Figure 4.2 Scheme of the prediction algorithm predicting the blood glucose
concentration. The prediction algorithm uses the insulin and glucose rates
of appearances to calculate blood glucose predictions.

Using the rates of appearance of insulin and glucose as inputs uk, and
the state-space model in Eq. (4.1), the blood glucose concentration p time
steps ahead can be calculated as shown in Eq. 4.2. The current time step
is denoted by k.
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4.3 The Controller Model

ŷk+p = C Ap xk +

p−1
∑

m=0

C Ap−1−m Buk+m (4.2)

Collecting the predictions for p = 1...Hp in one vector ŶHp
results in Eq.

(4.3), representing all blood glucose predictions for the prediction horizon
Hp.

ŶHp
= Sx xk + SuUHp

(4.3)

with

ŶHp
=

(

ŷk+1 ... ŷk+Hp

)T

UHp
=

(

uk ... uk+Hp

)T

Sx =
(

C A C A2 ... C AHp
)T

Su =















CB D 0 0 . . . 0
C AB CB D 0 . . . 0

...
...

. . .
. . .

. . .
...

C AHp−1 B C AHp−2 B . . . CB D 0
C AHp B C AHp−1 B . . . C AB CB D















where here D = 0.
The states xk of the patient model were estimated using a Kalman filter

[Åström and Wittenmark, 1997]. The inputs ui for i = k...k + p − 1 were
the glucose and insulin rate of appearance calculated for the future horizon
Hp. The rates of appearance were determined from the insulin and glucose
intakes using Eq. (3.1) and Eq, (3.2), respectively.

4.3 The Controller Model

The optimization-based control algorithm proposed in this thesis needed a
model having single insulin and glucose intakes as inputs, not their rates
of appearance, and the change in blood glucose concentration as a response
to those inputs over time as an output. A model in this form can be found
in [Trogmann et al., 2010b] [Trogmann et al., 2010a], which was used here.

For use in a discrete optimization problem, this model was discretized
with sampling time h, here h = 1 min. The sampling instant is denoted by
k.
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The model takes the doses and times of glucose or insulin intakes as
inputs and has the change of blood glucose concentration over time as an
output. Equation (4.4) shows this model for insulin and glucose intakes,
where yh,�(k, k�, a�) is the change in blood glucose concentration as re-
sponse to a glucose intake of size a� [g] at time t� = h · k� [min] and
yh,i(k, ki, ai) the change in blood glucose concentration for an insulin intake
with the size ai [IU] at time ti = h · ki [min]. The model is linear in the
intake doses ai and a�.

yh,�(k; k�, a�) =

{

n1e−n2 h(k−k�)hn3(k− k�)
n3 a� if k ≥ k�

0 else

yh,i(k; ki, ai) =

{

n4e−n5 h(k−ki)hn6(k− ki)
n6 ai if k ≥ ki

0 else

(4.4)

The parameters n1 to n6 were estimated individually for the patient to
be controlled. This was done using nonlinear constrained optimization [The
Mathworks, 2011], solving the optimization problem (4.5). The blood glucose
concentration at the output of the virtual patient is denoted by. An initial
offset coffset,BG in the blood glucose data yBG was subtracted from yBG. The
parameters n1 and n4 were constrained to ensure a physiologically correct
gain of the model considered.

min
n1...n6

N
∑

k=0

pyh,�(k; k�, a�) + yh,i(k; ki, ai) − (yBG(k) − coffset,BG)p
2

n1 > 0

n4 < 0

(4.5)

Figure 4.3 shows yh,�(k, k�, a�) and yh,i(k, ki, ai) with a� = 10 g and ai = 1
unit at times k� = ki = 100 as inputs for a sample patient. To form the
total change of blood glucose concentration from an initial value when both
insulin and glucose are taken at different times, those two functions were
added.

Note that both yh,�(k, k�, a�) and yh,i(k, ki, ai) start at zero, since they
describe the deviation of the blood glucose concentration caused by intakes
of insulin or glucose.

The model presented here was used in the optimization-based control
algorithm to describe the effects of intakes of insulin and glucose on the
blood glucose concentration. Based on this and predictions of future blood
glucose concentration, the optimization-based control algorithm calculated
doses of insulin and glucose.
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Figure 4.3 Output of the nonlinear model for patient 2. Upper panel:
Change of blood glucose as response to 10 g of Glucose intake at time
t� = 100. Lower panel: Change of blood glucose as response to 1 unit of
insulin intake at time ti = 100.
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5

Diabetic Glycemia Control

via Optimization

The proposed control algorithm determined the amounts of insulin and
glucose a patient with type 1 diabetes should take in order to bring the
blood glucose concentration back to normoglycemia through solving an opti-
mization problem. This optimization problem was solved at distinct points
in time, e.g., when a meal occurs or when the blood glucose concentration
left the normal range of 70 − 180 [mg/dL]. Hence, the insulin and glucose
control signals were pulse shaped.

While insulin treatment is important in most of the every day situations,
additional glucose intakes can be important to prevent hyperglycemia under
special conditions like exercise or stress [Guyton and Hall, 2006]. Therefore,
apart from insulin dose advice, also glucose dose advices were determined
by the control algorithm proposed in this chapter.

The structure of the control loop is shown in Fig. 5.1. A virtual patient

as described in Sec. 4.3 was used to simulate the diabetic patient to be
controlled. A prediction algorithm (see Sec. 4.2) determined the blood glu-
cose concentration in a future horizon using information about the blood
glucose concentration at the output of the virtual patient and the insulin
and glucose applied to the virtual patient. The controller used the blood
glucose predictions and the blood glucose concentration at the output of the
virtual patient in an optimization algorithm to determine the amount of
insulin and glucose the patient should take. The optimization problem was
solved at specific points in time. When a meal occurred or when the blood
glucose concentration was predicted to leave the normal range of 70− 180
[mg/dL], the optimization was called to determine the dose of insulin and
glucose that should be administered to the virtual patient.

This chapter is organized as follows. First, the cost function used by
the optimization problem is introduced. Next, the optimization problem
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Virtual
Patient

Prediction

Controller

∑
meal [g]

yBG(t)

ŷ(t)

ui(t)

u�(t)

Figure 5.1 Scheme showing the structure of the control algorithm. The
prediction algorithm uses the measured blood glucose concentration and past
insulin and glucose intakes to predict the future blood glucose concentration.
This predicted blood glucose concentration and the measured blood glucose
concentration are used by the optimization-based controller to determine
insulin and glucose doses to be administered to the virtual patient.

is formulated and last, the control algorithm invoking the optimization
problem is described.

5.1 The Asymmetric Cost Function

The cost function used in the optimization problem had an asymmetric
shape over the blood glucose concentration. The reason for this was that low
blood glucose values were associated with much worse complications than
high blood glucose values. Through the asymmetric shape, the cost function
in Eq. (5.1) [Cameron et al., 2011] used here took this circumstance into
account.

J =

Hp
∑

k=k0

L(k)

L(y(k)) = a · y(k) + b+ c · max{(d− y(k))3, 0}

(5.1)

The advantage of an asymmetric over a quadratic cost function for con-
trol was already addressed in [Kirchsteiger and del Re, 2009] and [Dua
et al., 2009] for example.

The blood glucose concentration is denoted by y(k). The time at which
the optimization algorithm is called is denoted by k0 and the prediction
horizon over which the blood glucose concentration y(k) is predicted is
Hp = 120 [min] (compare to Sec. 4.2). The parameters a, b, c and d have
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replacements
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Figure 5.2 The asymmetric cost function in Eq. (5.1). This cost function
takes into account, that different risks are related to high and low blood
glucose values. Moreover, it is a convex cost function.

been adjusted to have a the minimum of the asymmetric cost L(y(k)) at 126
[mg/dL], so that a = 0.237, b = −32.66, c = 6 ·10−5 and d = 162. Figure 5.2
shows L over the blood glucose concentration y. One of the advantages of the
cost function (5.1) over, e.g., the asymmetric cost presented in [Kovatchev
et al., 2000] is that it is convex. The convexity is shown in Appendix A.

For the optimization problem convexity means that the optimal solution
to the problem is guaranteed to be found [Boyd and Vandenberghe, 2004].

A technical advantage of the cost function (5.1) is that it handles negative
blood glucose values [Cameron et al., 2011]. Negative blood glucose values
are indeed not possible in reality. However, if the prediction algorithm
calculates negative value for the predicted blood glucose concentration, the
cost function should work with these negative values.

5.2 The Optimization Problem

In order to determine the amounts of insulin and glucose to be taken by the
diabetic patient, an optimization problem was solved. The solution to this
problem was calculated if a meal occured, if the blood glucose concentration
was predicted to fall below 80 [mg/dL] or if it rose over 180 [mg/dL], see
also Sec. 5.3. The optimization used the predicted blood glucose values ŷ

from Eq. (4.2) and added the effect of insulin and glucose intakes on the
blood glucose concentration according to Eq. (4.4). Together, they form the
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5.2 The Optimization Problem

expected future blood glucose concentration as shown in Eq. (5.2):

y(k; a�, ai) = yh,�(k; k�, a�) + yh,i(k; ki, ai) + ŷ(k) (5.2)

The effect that intakes of insulin and glucose have on the blood glucose
concentration is denoted by yh,i(k; ki, ai) and yh,�(k; k�, a�), respectively.
The size of the insulin intake ai and the size of the glucose intake a� are
the optimization variables to be determined by the optimization problem.
The times of insulin and glucose intake ki and k� were set before the
optimization problem was solved. Hence, in Eq. (5.2), y(k; a�, ai) depends
linearly on the dose sizes and not on the intake times.

The optimization problem to be solved is shown in Eq. (5.3).

minimize
ai,a�

Hp
∑

k=1

L(y(k; a�, ai)) + c3paip + c4pa�p

subject to 0 < ai < clim,i,

0 < a� < clim,g,

(5.3)

where

L(y(k; a�, ai)) = a (yh,�(k; k�, a�) + yh,i(k; ki, ai) + ŷ(k)) + b

+ c max (d− (yh,�(k; k�, a�) + yh,i(k; ki, ai) + ŷ(k))3, 0)

It used the cost function (5.1), where the blood glucose concentration
y(k) was substituted by Eq. (5.2). This gives a cost function, which depends
on the size of the insulin dose ai [IU] and the size of the glucose dose a� [g].
Since Eq. (5.2) is affine in ai and a� and the cost function (5.1) is convex,
the composition is convex as well [Boyd and Vandenberghe, 2004]. Linear
constraints were added to the optimization problem, which constrained the
amount of insulin and glucose determined by the optimization. The convex
cost function and the linear constraints on the optimization variables give
a convex optimization problem.

Solving the Optimization Problem

To solve the optimization problem (5.3), the Optimization Toolbox from
Matlab [The Mathworks, 2011] was used. This toolbox offers algorithms to
solve constrained and unconstrained optimization problems. Among others,
functions for linear, quadratic and nonlinear optimization are available.

The optimization problem (5.3) had a smooth and nonlinear cost function
with more than one optimization variable. The constraints were bounds on
the optimization variables. Therefore, the function fmincon was used to
solve (5.3). This function solves constrained optimization problems in the
form shown in Eq. (5.4).
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minimize
z

f (z)

subject to Gi(z) = 0, i = 1, ..., me,

Gi(z) ≤ 0, i = me + 1, ..., m,

(5.4)

The function f (z) is the cost function to be minimized over the optimization
variables in the vector z, where f (z) can be nonlinear. The constraints
Gi(z) represents the constraints on the optimization problem. There are
me equality constraints and m − me inequality constraints, which can be
nonlinear as well. Comparing this to the optimization problem (5.3), the
cost function f (z) was the nonlinear function J in Eq. (5.1), where y(k)
was substituted by y(k; ai, a�) in Eq. (5.2). The optimization variables were
the doses of insulin and glucose, i.e., z = [a� ai]. There were no equality
constraints, but linear inequalities to limit the allowed doses for insulin and
glucose.

The active-set algorithm was used here within fmincon to solve the
optimization problem. The active-set algorithm does not need a gradient to
be provided and it can take large steps, to improve simulation speed [The
Mathworks, 2011]. The optimization variables, i.e. the amount of insulin
and glucose, were constrained to be positive.

5.3 The Control Algorithm

The control algorithm took predictions ŷ of the blood glucose concentration
during a future horizon, as produced by the predictor (see Sec. 4.2), and
the actual measured blood glucose concentration as inputs, and gave out
values for the amount of insulin and glucose to be taken. Meals taken by
the virtual patient were, if not stated otherwise, assumed to be unknown
disturbances.

The amount of glucose and insulin to be taken was determined through
the optimization problem (5.3). This was solved in the following cases:

1. A meal occured,

2. The blood glucose concentration increased over 180 [mg/dL] and was
rising,

3. The blood glucose concentration was predicted to drop lower than 80
[mg/dL] within the next 15 minutes.

Note that since the blood glucose concentration increases after a meal, no
optimization was performed within the two hours following a meal insulin
bolus. An exception was a too low blood glucose concentration.
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5.3 The Control Algorithm

The amounts of insulin and glucose determined by the optimization
(5.3) were applied to the virtual patient. Moreover, they were applied to
the prediction algorithm. In this way, future predictions take past glucose
as well as insulin intakes into account. Hence, the blood glucose predic-
tions ŷ included information about the effect of past insulin intakes on the
future blood glucose concentration. Through the predictions, the optimiza-
tion problem within the controller had access to this information and could
determine new intakes accordingly.
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6

Simulation Studies

In order to test and evaluate the control algorithm proposed in Chapter 5 in
a closed-loop manner, the virtual patient described in Sec. 3 was used. The
control algorithm, the predictor and the virtual patient were implemented
in Matlab Simulink [MATLAB, 2011].

In this chapter, the simulation setup for the control algorithm is pre-
sented. Furthermore, a bolus calculator formula from the literature is
described. The bolus calculator is used to compare the control algorithm
proposed in this thesis.

For simulations with the optimization-based controller described in Ch.
5, the structure shown in Fig 5.1 was implemented. The virtual patient
takes glucose u�(t) and insulin ui(t) as inputs and gives out the blood
glucose concentration signal yBG(t). All these signals are used by a pre-
diction algorithm to predict the measured blood glucose concentration over
a future horizon. The predictor uses a linear model of the patient, here a
virtual patient, and a Kalman filter to calculate the predictions, see Sec.
4.2. The predictions of the blood glucose concentration and the blood glu-
cose concentration at the output of the virtual patient are used by the
optimization-based control algorithm to determine the doses of insulin and
glucose to be given to the virtual patient, as described in Ch. 5.

The parameters to be set within the control algorithm are the weights
c3 and c4, which punish the norm of the insulin and glucose dose sizes in
the optimization problem (5.3). Table 6.1 shows these parameters for the
virtual patients. They were chosen individually for each of the patients, in
order to maximize the time spent in the safe range of blood glucose values.

The algorithm was first tested without constraints on insulin and glu-
cose intakes to test the ability of the controller to keep the blood glucose
concentration in the safe range of 70− 180 [mg/dL]. Furthermore, the con-
trol algorithm was tested with constraints on insulin intakes to reduce the
amount of glucose and insulin given to the patient per day.
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6.1 The Bolus Calculator

Table 6.1 Parameters used for the optimization-based controller presented
in chapter 5

Virtual Patient c3 c4

1 0 0
2 100 10
3 60 70

6.1 The Bolus Calculator

To compare the performance of the control algorithms presented in this
thesis, an insulin bolus calculation formula as described in [Shapira et al.,
2010], [Gross et al., 2003] or [Wang et al., 2010] is used to determine the
amount of insulin to be taken with meals. As shown in Eq. (6.1), this formula
uses the current measured blood glucose concentration yBG of the virtual
patient, the amount of carbohydrates in the meal M[g] and a reference
blood glucose concentration yr, here yr = 126 [mg/dL], to determine the
meal insulin bolus.

ui,BC =
M

cITC
+

yBG − yr

cISF
(6.1)

The patient’s insulin-to-carbohydrate ratio cITC [g/IU] and insulin sensitiv-
ity factor cISF [mg/dL/IU] can be determined using the total dose of insulin
cTDD a patient takes per day through cITC = 500/cTDD and cISF = 1800/cTDD

[Diabetes Education Online, 2012], [BD Diabetes, 2012]. If the total dose
of insulin per day for a patient is not known through previous treatment,
as it is the case for the virtual patients here, it can be approximated us-
ing cTDD = 0.66 · Wbody, where Wbody is the patient’s body weight in [kg]
[Diabetes Education Online, 2012].

6.2 Evaluation Methods

To evaluate the glycemic control for the control algorithm presented and
compare it to the bolus calculator, the low blood glucose and high blood
glucose indices as presented in [Kovatchev et al., 2000; Kovatchev et al.,
2005; Cobelli et al., 2009] and the percentage of time spent in the normal
blood glucose range of 70 to 180 [mg/dL] Tsafe[%] are used.

The low blood glucose index (LBGI) and high blood glucose index (HBGI)
evaluate the glycemic control of a diabetic patient considering the risk for
hypoglycemia and hyperglycemia, respectively [Kovatchev et al., 2000]. The
LBGI gives a measure of the frequency and magnitude of low blood glucose
readings, while the HBGI gives a measure of the frequency and magnitude
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of high blood glucose readings [Kovatchev et al., 2005]. They are calculated
based on a risk function, which emphasizes the higher risk connected to low
blood glucose readings compared to high blood glucose readings. This risk
function is given in Eq. (6.2) [Kovatchev et al., 2005], [Cobelli et al., 2009].

r(yBG) = 10 · f (yBG)
2

f (yBG) = 1.509 · ((ln(yBG))
1.084 − 5.381)

(6.2)

The left branch rl(yBG) of the risk function (6.2) is connected to the risk
for hypoglycemia and its right branch rh(yBG,i) to the risk of hypoglycemia.
These branches are calculated as given in Eq. (6.3) [Kovatchev et al., 2005],
[Cobelli et al., 2009].

rl(yBG) =

{

r(yBG) f (yBG) < 0

0 otherwise

rh(yBG) =

{

r(yBG) f (yBG) > 0

0 otherwise

(6.3)

With this, the LBGI and HBGI are calculated as stated in Eq. (6.4) [Ko-
vatchev et al., 2005], [Cobelli et al., 2009].

LBGI =
1
n

n
∑

i=1

rl(yBG,i)

HBGI =
1
n

n
∑

i=1

rh(yBG,i)

(6.4)

In order to avoid both hypoglycemia and hyperglycemia, both LBGI and
HBGI should be small. According to [Kovatchev et al., 2005], patients can
be classified according to the clinical risk connected to their measured blood
glucose concentration into three zones representing low, medium and high
risk for hypoglycemia and hyperglycemia for both LBGI and HBGI, as shown
in Table 6.2.

Table 6.2 Clinical risk of a a measured blood glucose concentration ob-
tained through LBGI and HBGI, to classify the quality of the glycemic
control [Kovatchev et al., 2005]. L (low), M (medium), H (high)

HBGI

< 4.5 4.5− 9 > 9

L
B

G
I < 2.5 L L/M L/H

2.5− 5 M/L M M/H
> 5 H/L H/M H
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6.3 Results

6.3 Results

In this section the results of the simulation study on the three virtual pa-
tient are shown, evaluating the proposed control algorithm, and comparing
it to the bolus calculator.

A summary of the results using the evaluation methods from section 6.2
is shown in the table 6.3. Each row of the tables shows the results for one of
the control algorithms. The bolus calculator described in Sec. 6.1 is denoted
by BC and the optimization-based controller from Ch. 5 by Opt.

Table 6.3 Result Summary for the three Virtual Patients.
BC (Bolus Calculator), Opt (Optimization); LBGI (low blood glucose index),
HBGI (high blood glucose index), clin. risk (clinical risk according to Table
6.2), Itotal (total daily insulin dose), Gtotal (total daily carbohydrate consump-
tion, without meals)

LBGI HBGI clin. risk Tsafe[%] Itotal [U] Gtotal [g]

Virtual patient 1

BC 0 12.59 L/H 53 17.2 0
Opt 0.22 3.59 L 85 85.7 152.3

Virtual patient 2

BC 0.19 2.66 L 87 17.6 0
Opt 0.35 1.11 L 100 34.5 136.5

Virtual patient 3

BC 0.47 4.45 L 76 13.8 0
Opt 0.25 2.61 L 80 42.6 172.3

The goal for the HBGI and LBGI is to have them as low as possible
(compare to Sec. 6.2), where the clinical risk connected to the HBGI and
LBGI as shown in Table 6.2 helps for the evaluation of these two indices.
Furthermore, the time Tsafe[%] spent in safe blood glucose range and the
total daily insulin and glucose dose advices are supposed to be low as well.

For all three tested virtual patients, the optimization-based control al-
gorithm Opt presented in Ch. 5 achieved a lower LBGI and HBGI than the
bolus calculator, which implies a lowered risk for low and high blood glucose
values. Furthermore, the percent of time spent in the safe range 70 − 180
[mg/dL] was higher than the bolus calculator for all tested virtual patients.
This decreased risk for blood glucose values outside the safe range had to
be paid for by increased doses of insulin and glucose.

For an example patient, the simulation results obtained with the bolus

49



Chapter 6. Simulation Studies

y
B

G
(t
)

50

100

150

200

250

06 : 00 12 : 00 18 : 00

time [h]

u
i(

t)
u
�
(t
)

m
ea

l
[g

]

0

0

0

5

1

10

50

100

06 : 00

06 : 00

06 : 00

12 : 00

12 : 00

12 : 00

18 : 00

18 : 00

18 : 00

Figure 6.1 Simulation results for Virtual Patient 2 with Bolus Calculator.
The bolus calcuator determined an insulin dose for each meal, bringing the
blood glucose concentration back into a safe range.

calculator are shown in Fig. 6.1 and those obtained with the optimization-
based controller are shown in Fig. 6.2. In this case, the amount of insulin
for the optimization-based controller was not constrained. As can be seen
in Fig. 6.1, the bolus calculator determined insulin doses bringing the blood
glucose concentration back into safe range after a meal. However, it is
conservative concerning the size of the insulin doses, leading to a shorter
time in safe range than for the optimization-based controller. The results
for the optimization-based controller in Fig. 6.2 show that without further
restrictions of the size of the insulin and glucose doses, the controller was
more aggressive than the bolus calculator. Alongside with the counteracting
carbohydrates, this leads to an increase of time spent in safe range compared
to the bolus calculator, but also an increase in the amount of insulin and
carbohydrates taken by the patient.

Figures showing the simulation results for the other two virtual patients
can be found in Appendix B.

By constraining the amounts of insulin and glucose in the optimization
problem, less insulin and glucose per day could be achieved. Table 6.4 shows
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Figure 6.2 Simulation results for Virtual Patient 2 with the optimization-
based controller, tuned for good control. The optimizatin-based controller
determines insulin doses at meal times, as well as counteracting glucose in-
takes in between the meals. For this patient, the blood glucose concentration
is kept in safe range for 100% of the simulated time.

results when the amount of insulin per injection were restricted to 15 units
per intake for patient 1 and to 5 units per intake for patient 2 and patient 3.
It can be seen that the amount of insulin and glucose per day was reduced,
but the time in safe range Tsafe[%] decreased and the HBGI increased,
compare also to Fig. 6.2 and Fig. 6.3. Figure 6.2 shows the case when the
amount of insulin per injection is not restricted, and Fig. 6.3 shows when it
is restricted. When restricting the insulin dose, it seems from Fig. 6.3 that
the behavior of the optimization-based control algorithm got closer to that
of the bolus calculator. The optimization-based algorithm was still slightly
more aggressive than the bolus calculator, and it had a longer residence
time in the safe range. Similar results can be seen for other simulated
patients, see Appendix B.
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Table 6.4 Results of the optimization-based controller, tuned to give less
insulin and glucose dose advices. The amount of insulin has been constrained
to 15 units for patient 1, 5 units for patient 2 and 5 units for patient 3; LBGI
(low blood glucose index), HBGI (high blood glucose index), clin. risk (clinical
risk according to Table 6.2), Itotal (total daily insulin dose), Gtotal (total daily
carbohydrate consumption, without meals)

LBGI HBGI clin. risk Tsafe[%] Itotal [U] Gtotal [g]

Pat 1 0.28 5.36 L 78 47.85 24.68
Pat 2 0.20 2.32 L 90 15.01 0
Pat 3 0.17 4.27 L 76 15.01 16.31
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Figure 6.3 Simulation results for Virtual Patient 2 with the optimization-
based controller, tuned for less insulin and glucose dose advice. The con-
troller determines insulin intakes at meal times, bringing the blood glucose
concentration back into the safe range.
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7

Discussion

In order to help diabetic patients using multiple insulin intakes per day,
the intention was to develop an algorithm calculating insulin and glucose
dose advises using optimization methods. The goal was to spend as much
time as possible to the target blood glucose range of 70−180 [mg/dL], while
avoiding hyperglycemia and, more importantly, hypoglycemia (see Sec. 1.2).

Here, a control algorithm giving insulin and glucose dosing advises at
mealtimes and in case of too low blood glucose concentration has been pro-
posed. The reason that dosing advice was determined only in the mentioned
cases is that it is assumed that the basal insulin needs were covered. There
have been many efforts to develop control algorithms, which determine
the basal insulin needs (see Section 2.5). Here, insulin and glucose dosing
advises for mealtimes and too low blood glucose values are covered instead.

For evaluation, the proposed algorithm was compared to a bolus calcu-
lator as found in e.g. [Shapira et al., 2010], [Gross et al., 2003] or [Wang
et al., 2010].

As shown in the Table 6.3, the risk for low and high blood glucose values
could be reduced using the optimization-based control algorithm presented
in Ch. 5. On the other hand, the reduced risk came with an increase of the
amount of insulin and glucose to be taken by the patient. This result is not
surprising, since the objective function of the optimization problem did not
include penalty on the dose sizes.

As shown in Table 6.4, the optimization-based control algorithm could
be tuned to give less insulin and glucose to the diabetic patient. However,
this led to a decreased control performance, i.e., less time in safe range and
a higher HBGI. With the limited insulin and glucose amounts, for two out
of the three patients the time in safe range was still higher than for the
bolus calculator, and in none of the cases did the performance get worse
than the bolus calculator.

In order to have good glycemic control, the absorption of carbohydrates
into the blood should be matched by the absorption profile of insulin into
the bloodstream to even out the blood glucose concentration [Pickup, 2012].
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Because of delays in the insulin absorption, this is not the case when in-
jecting insulin externally. To reduce the increase of blood glucose after a
meal, larger amounts of insulin had to be given, increasing the risk for
hypoglycemia. According to [Group, 1993], intensified therapy of diabetes
leads to an increased risk for hypoglycemia. The results presented in Ch. 6
and also in the Appendix B show that by giving more insulin than the bo-
lus calculator did, the optimization-based algorithm could decrease glucose
excursions after meals and the time spent outside safe range. However, in
order to avoid hypoglycemia large amounts of extra carbohydrates had to be
given to the patient in case of larger insulin intakes. Furthermore, when
restricting the amount of insulin that the optimization-based algorithm was
allowed to give to the patient per injection, the amount of insulin per day
and as a result also the amount of extra glucose per day could be decreased.
With these results it seemed there was a trade-off to be made between
the blood glucose concentration being in safe range as long as possible and
restricting the amount of insulin and glucose to be taken by the patient.
In the optimization-based control algorithm, adjusting parameters and con-
straints on insulin and glucose intakes could be used to tune the trade-off
and to adjust the aggressiveness of the controller, which influences the time
spent in safe range.

It can be seen in the figures shown in Ch. 6 and in Appendix B, that
the optimization-based control algorithm kept away from hypoglycemia for
all tested patients. This is due to the fact that the amounts of insulin and
glucose doses were determined when the blood glucose concentration was
predicted to drop under 80 [mg/dL] within the next 15 minutes. This allows
for time to react before the blood glucose drops too low.

The approach in this thesis was to give advises for single insulin injec-
tions. Compared to a bolus calculator (see Sec. 6.1), the approaches here
aimed at improving glycemic control by including more knowledge about
the specific patient than the bolus calculator through an individual patient
model in the control algorithm. A mathematical patient model enabled pre-
dictions of future blood glucose concentration to be made. These predictions
allowed the controller to take the expected future development of the blood
glucose concentration and the future expected impact of insulin and glucose
intakes into account when making its decisions. This gave the chance for a
higher degree of individualization than with the bolus calculator. Although
estimating good patient models from real patient data remains challenging
[Cescon, 2011], such a model could describe the patient dynamics, and thus
how a specific patient’s blood glucose concentration reacts to intakes of in-
sulin and glucose, in greater detail than the parameters used in a simple
bolus calculation algorithm.

The optimization-based controller used patient models, which had the
doses of insulin and glucose as inputs. Here, the model parameters were
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estimated from virtual patient data, where the input signals could be chosen
with some freedom in order to provide sufficient excitation to the system to
be estimated. However, this freedom is restricted when these models are to
be estimated from clinical patient data. Hence, estimating a good patient
model is more problematic. In [Cescon, 2011], ARMAX models with insulin
and glucose rates of appearance were estimated for real patient data.

It can be seen in the figures shown in the Appendix B, that the bolus
calculator in general gave smaller insulin doses than the optimization-based
controller, in order to safely stay away from hypoglycemia. For patient 2
however, the last insulin dose lead to hypoglycemia. By predicting the effect
of an insulin or glucose intake on the blood glucose concentration, the
controller had the chance to keep the blood glucose concentration in tighter
bounds. Hence, as seen in the results for the optimization-based controller,
the control algorithm suggested the administration of larger insulin doses.
Furthermore, the prediction of the blood glucose concentration enabled the
control algorithm to suggest counteracting carbohydrates before the blood
glucose concentration falls under 80 [mg/dL], so that hypoglycemia could be
prevented.

Through the mathematical model and the prediction algorithm, the on-
going effect of past insulin intakes on the blood glucose concentration was
already included in the control algorithm. If insulin was taken in the past,
the blood glucose concentration would be predicted to decrease. This blood
glucose prediction was used by the optimization algorithm to determine a
new insulin dose. Using a bolus calculator, this would have to be added
extra as an insulin-on-board module in order to prevent stacking of insulin
intakes. Furthermore, it would be possible to include the effect of future
meals on the blood glucose concentration by using a mathematical model
and a prediction algorithm.

The optimization problem formulated to determine the insulin and glu-
cose doses did not have output constraints, since it was found that intro-
ducing constraints of 70 − 180 [mg/dL] on the output lead to infeasibility
problems when solving the optimization problem. A meal would unavoidably
increase the blood glucose concentration to rise over 180 [mg/dL]. A small
dose of insulin taken to cover the meal would lead to a blood glucose con-
centration that still rises over 180 [mg/dL] within the first 1-2 hours after
the meal, making the optimization algorithm infeasible. If this increased
blood glucose concentration could be avoided by overdosing insulin, the
blood glucose concentration would fall below 70 [mg/dL] within the predic-
tion horizon, leading to infeasibility as well. A way around this infeasibility
problem could be to introduce output constraints with dynamically adjusted
size depending on meal size, within the first 2 hours after a meal. However,
it was found in this thesis that good results could be achieved even without
the use of output constraints.
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Even though it still remained to be tested how the optimization-based
control algorithm presented in this thesis performs compared to a bolus
calculator in the presence of disturbances like stress or exercise, using op-
timization algorithms and blood glucose predictions to decide upon insulin
and glucose intakes has been found to improve glucose control compared to
a bolus calculator in simulation-based tests. Through the use of mathemat-
ical models, more detailed knowledge about the patient dynamics could be
incorporated into the algorithm than a bolus calculator does.

Looking back at the goal formulated in Sec. 1.2, the time spent in the
safe glycemic range could be increased for the optimization-based and the
selection-based control algorithms proposed in this thesis, as compared to a
bolus calculator algorithm found in literature, for all virtual patients tested
here. While the bolus calculator reached maximum 87 % time in safe range
and even as low as 53 %, the optimization-based algorithm could reach
between 80 and 100 % time in safe range and the selection-based control
algorithm between 82 % and 93 %, depending on the individual patient.
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Conclusion and Future

Work

In order to give advice about insulin intakes to diabetic patients, where the
insulin dose advice should be a pulse-shaped signal, a mathematical op-
timization problem was proposed to determine insulin intake at mealtime
and extra insulin and glucose intakes when the blood glucose concentration
leaves the range of 70−180 [mg/dL]. The control algorithm that incorporated
this optimization problem used predictions of future blood glucose concen-
tration, which were determined by a prediction algorithm based on past
and present blood glucose measurements and insulin and glucose intakes.
The optimization problem as well as the prediction algorithm made use of
mathematical models describing the dynamics of a diabetic patient. The
control algorithm was tested in simulations using a virtual implementation
of a diabetic patient.

Moreover, a bolus calculator algorithm from literature was implemented
to compare the results obtained with the proposed control algorithm. It was
found that using mathematical optimization, the time in the safe range of
70−180 [mg/dL] could be increased compared to the bolus calculator for all
tested patients, but at the cost of increased amounts of insulin and glucose
intakes. The proposed algorithm could avoid hypoglycemia in all cases.

The optimization-based control algorithm could be tuned such that the
amounts of insulin and glucose given to the diabetic patient were reduced.
This results in less time spent in safe range and thus characteristics, which
approached those of a bolus calculator.

However, careful tuning of the optimization-based control algorithm had
the potential to improve glycemic control as compared to the bolus calculator.

The proposed algorithms provided freedom for individualization through
individualized mathematical models and controller parameters, so that the
controller could be adjusted specifically to the patient to be treated, to give
individualized advice.
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To improve the algorithm further, insulin intakes should be allowed
before meal intake, since the dynamics of appearance of insulin into the
blood stream are slower than the dynamics of appearance of glucose from a
meal into the blood stream. Furthermore, it should be possible to determine
additional glucose intakes at a later time point within the prediction horizon
and not necessarily at the same time as the insulin intake.

Another approach could be to constrain the blood glucose concentration
of the patient to, e.g., 140 [mg/dL] from two hour after a meal onward.
The International Federation of Diabetes recommended that the two-hour
postmeal blood glucose concentration should not exceed 140 [mg/dL], as
long as hypoglycemia can be avoided [International Federation of Diabetes,
2012a].
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Introduction

In recent years, the use of control algorithms in building management
systems has been an active research area. Many different algorithms to
regulate the temperature, among others, in buildings have been proposed
[Ma et al., 2012; Hazyuk et al., 2012].

Already 40 years ago, the use of control algorithms to regulate the
climate in buildings was of interest. According to [Jensen, 1978], the reasons
were at that time that buildings were becoming more lightweight, and the
energy price was increasing.

Today the energy question is still of concern, many researchers in this
area address this question in their research. Advancements in the building
sector and EU regulations have led to new houses being built very energy-
efficiently with very good insulation. However, many old buildings with
poorly insulated walls are still left. Poor insulation of inner walls in a
building leads to a coupling of temperature dynamics between different
rooms of the building, i.e., the temperature will be influenced not only
by the outside conditions, but also by the temperature of adjacent rooms.
This leads to couplings between the temperature dynamics of the rooms
in a building. Hence, the temperature control of the whole building is a
multi-variable control problem.

To regulate the temperature and other variables concerning the climate
in a building, HVAC (heating ventilation air conditioning) systems are usu-
ally used. These add coupled variables to the system to be controlled, since
many of the properties regulated by an HVAC system influence each other.
For example, if the CO2 level in the room needs to be decreased, the HVAC
system can increase the flow of fresh air from the outside into the room.
However, especially in the winter season in a northern country like Sweden,
this can cause the room temperature to decrease and thus deviate from its
desired value.

To regulate such coupled building systems, a method very popular in
the research community is MPC (model predictive control). This algorithm
is often chosen as the most suitable method to regulate occupant comfort as
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Chapter 9. Introduction

well as energy usage, since it can consider predictions of disturbances such
as weather, occupancy or outside temperature. On the other hand, MPC
requires a complex and accurate model of the building to be regulated and
accurate disturbance predictions to perform well. Furthermore, it requires
the implementation of an optimization algorithm, and thus a solver for this
optimization problem. Therefore, a large cost is required for an initial setup
in a building, which might be worthwhile for new large-scale commercial
buildings, but not necessarily for smaller buildings.

Another control method widely used for temperature control in buildings
and for building components is PID control [Salsbury, 2005a; Dounis and
Caraiscos, 2009]. This is also still the most used control method in industry.
In building management systems, PID controllers are used for low-level
controllers for building or HVAC system components. Another example of
the use of PID controllers are thermostatic valves on radiators [Peffer et al.,
2011]. With this, the temperature of adjacent rooms are often controlled
locally, without the knowledge of the temperature in other rooms.

To coordinate all the different variables to be controlled using the sensors
and actuators of an HVAC system, radiators or other systems, supervisory
control is often implemented. Even though MPC would be beneficial for
this task, because of the above mentioned implementation issues for MPC,
still rule-based supervisory controllers are often used. These can get very
complex with all the couplings present in larger buildings equipped with an
HVAC system.

Decreasing the interactions between the different variables of the multi-
variable building system might help to reduce the complexity of the super-
visory systems. Alternatively, this decoupling could be an addition to the
low-level PID controllers operated by an MPC supervisory controller.

The idea in this thesis is thus to build on to already existing methods,
by adding a decoupling network [Gagnon et al., 1998] to the PI control
of building variables such as the room temperature or the CO2 level. The
purpose of this decoupling network is to reduce the interaction between
different variables. Two examples of coupled variables are presented in this
thesis.

One example is the control of room temperature for adjacent rooms. The
assumption is that the walls connecting the rooms are badly insulated, so
that a change in temperature in one room influences the temperature in
the neighboring rooms. By the use of inverted decoupling [Gagnon et al.,
1998], the thermal coupling between the rooms is to be decreased. A model
of four adjacent rooms arranged in a square was implemented in Modelica
language using the Modelica Building Library [Wetter et al., 2014]. This
model was used as a simulation model to test the decoupled PI controller.

The second example is the control of the room temperature, when the
flow rate of outside air into the room is changing, e.g., to control the CO2
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level in the room. For this, it is assumed that the outside temperature
is less than the desired room temperature. Here, the change in air flow
rate influences the room temperature to deviate from its desired value. The
coupling is thus only partial, since the CO2 level control influences the
room temperature, but not vice versa. To reduce the coupling between the
two variables, again a decoupling network is connected to the PI controllers
regulating the room temperature. The decoupled PI controller was tested in
simulations, using a dynamic model of the room’s temperature dynamics.
Moreover, tests were performed in a laboratory room at KTH in Stockholm.

This part of the thesis is organized as follows. First, background in-
formation is presented, including an overview of temperature control in
buildings and an introduction to the used decoupling method.

Then, the application of decoupled PI control to temperature regulation
in adjacent rooms is presented. For this, the implementation of a simulation
model in the Modelica language is explained, as well as estimation of simpler
models used for control, the controller implementation and the simulation
results.

After this, the use of a decoupled PI controller for a ventilation system is
presented. This includes the description of the test-bed at KTH in Stockholm
as well as the dynamic model used for simulation tests. Also, the estimation
of simple models for control is presented, and the implementation and
testing using the simulation model as well as the test-bed. The simulation
results and the results from the test-bed experiments are presented in the
end of that section.

At last, the results in this part are discussed and a conclusion is drawn.

69



10

Background

10.1 Temperature Control in Housing

The first digital building automation system was set up in the 60s, which
included communication of sensors and devices, and a schedule to control
these devices. According to [Wang, 2010], building automation had been
done using mechanical and pneumatic equipment before that. When the
energy prices increased during the 70s, buildings became more lightweight
and with upcoming digital computers, the interest in the use of digital
controllers for building automation increased as well [Wong and So, 1997;
Jensen, 1976]. The digital controller had become very widespread in the
80s for building automation, and building management systems were pro-
grammed using high-level languages [Wong and So, 1997], which made
it possible for more advanced control algorithms being used in building
automation.

Since then, a variety of different control algorithms have been inves-
tigated by the research community, ranging from PID over Fuzzy Control
and optimal control to MPC and algorithms based on neural networks and
genetic algorithms [Dounis and Caraiscos, 2009; Afram and Janabi-Sharifi,
2014].

MPC has often been seen by the research community as a suitable
method for building automation, since it can take into account weather pre-
dictions and occupant schedules [Hazyuk et al., 2012]. Hence, this is one of
the most popular methods today for building automation, and many papers
have been published around this topic. An MPC controlling a building and
its HVAC (heating ventilation air conditioning) system on both high-level
and low-level control is presented in [Ma et al., 2012]. In [Hazyuk et al.,
2012], an MPC is developed, which minimizes the energy usage and places
the comfort requirements into the constraints instead of trying to follow
a target temperature. A deterministic MPC is compared to a stochastic
MPC in [Oldewurtel et al., 2012], finding that a stochastic approach better
captures the non-deterministic nature of the disturbances occurring in a
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building. In [Parisio et al., 2014b; Parisio et al., 2014a], a stochastic MPC
was used to control the HVAC system of a student lab, where the algorithm
dynamically learns the weather conditions and the occupant patterns. In
these papers, the building is represented as one zone. When the building
size increases, it can however be of advantage to model the building dy-
namics with more than one zone. Then, a centralized MPC can become
quite computationally expensive [Ma et al., 2012]. Therefore, the authors
of [Moroşan et al., 2010] developed a distributed MPC to control a building
consisting of multiple zones, taking into account thermal coupling between
the zones while avoiding a centralized solution. In [Lamoudi et al., 2012],
a non-linear distributed MPC was developed to control indoor temperature,
CO2 concentration and illumination in a multi-zone building.

However, setting up an MPC to automate a building requires an accu-
rate model describing the building dynamics. Especially in older buildings,
additional equipment needs to be installed, leading to significant initial
costs to the set-up of MPC [Ma et al., 2012].

Therefore, researchers have investigated other methods for building au-
tomation. Another popular algorithm for building automation is Fuzzy
Control. A Fuzzy Controller combined with PID designed to fulfill com-
fort requirements set by the user while giving priority to passive cooling
techniques is presented in [Kolokotsa et al., 2005]. In [Paris et al., 2010],
combinations of PID and MPC and of PID and Fuzzy Control are used to
control a building with multiple energy sources.

In spite of all the research done towards advanced control algorithms for
building automation, the most widespread algorithm used in the building
automation industry is PID [Salsbury, 2005b]. There are several reasons
why the building industry is slow to adopt the new methods popular in
the research community [Salsbury, 2005b; Holmberg, 2001]. One is that
the low-cost hardware typically used by the building industry cannot run
methods that are too computationally demanding. Another reason is that
methods, which increase the set-up time of a building management system
are seen as being impractical.

Therefore, local PID controllers with a basic logic interconnecting the
controllers are still used in the majority of the buildings [Ma et al., 2012].
On the low-level, cascaded PID controllers are designed independently of
each other. On the higher level of control, schedules are determining set-
points for the building components [Ma et al., 2012]. In [Doukas et al.,
2007] for example, a rule-based decision support system for a building
energy management system is developed. There are rules for both energy
efficiency and for indoor comfort. [Mathews et al., 2000] developed a rule-
based algorithm to improve the CO2 level as well as the room temperature.
[Zhou et al., 2014] presented a demand-based supervisory control of a large-
scale room, which was divided into 4 zones, where each zone was equipped
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with a VAV (variable air volume) box. Classical control algorithms such as
PID control or on/off controllers were then used for building components,
such as supply air temperature, supply air pressure, heater control, VAV
unit control and various valves on an HVAC system [Afram and Janabi-
Sharifi, 2014].

For larger buildings, these rule-based algorithms interconnecting several
cascaded PID controllers can quickly become confusing, so that it quickly
evolves into a complex task to overview all interactions happening between
different control loops.

10.2 Decoupling PID control

A building is a multi-variable system, especially when considering several
zones and when it is equipped with an HVAC system. There are interde-
pendencies between many different variables. Particularly for a building
with poorly insulated walls considered as a multi-zone building, there are
couplings between the temperature dynamics of those different zones. Fur-
thermore, coupling occurs between different variables in an HVAC system,
where each of the variables might be regulated by a PID controller.

As depicted in Section 10.1, PID control with rule-based supervisory
control is still used for most of the buildings. A way to decrease interactions
between variables, while keeping PID controllers is to used a decoupling
controller with the PID controllers.

Decoupling methods are quite well-known in the area of distillation, but
they are not common in other fields such as process control [Waller et al.,
2003], much less in the building automation area. Decoupling controllers are
feed-forward controllers having manipulated variables as inputs, which are
designed to reduce interaction between different control loops [Seborg et al.,
2010]. There are static decoupling methods [Seborg et al., 2010; Astrom and
Hagglund, 2006], and dynamical decoupling methods [Liu et al., 2007; Shen
et al., 2010; Gagnon et al., 1998; Garrido et al., 2011]. Static decoupling
methods decouple only static interactions. They need very little process
information, but couplings are still present during transient conditions. In
this thesis, the interest is to achieve decoupling during transient conditions,
e.g., when the temperature of a neighboring room is changed. Hence, static
decoupling methods are not applicable here, and dynamics methods should
be used.

Using decoupling methods, the stability of the closed-loop system can
be reached by stabilizing the single loops [Seborg et al., 2010]. Moreover,
a change in one variable does not affect otherwise coupled variables. On
the other hand, the performance of the decoupling control depends strongly
on the the accuracy of the underlying models describing the system to be
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10.2 Decoupling PID control

decoupled. Also, it needs to be ensured that the transfer functions of the
decoupling controller are realizable.

A popular decoupling method is simplified decoupling [Gagnon et al.,
1998]. For this method, the transfer functions making up the decoupler
are quite simple. However, the apparent process becomes a combination
of the elements of the process transfer matrix, which makes controller
tuning difficult. A less commonly used method is ideal decoupling. Using this
decoupling method, the apparent process consists of the diagonal elements
of the process transfer function, which facilitates controller design. On the
other hand, the elements in the decoupling transfer matrix become more
complex than for simplified decoupling.

In this thesis, a third possible method, namely inverted decoupling, is
used [Gagnon et al., 1998; Garrido et al., 2011]. This method combines the
advantages of simplified decoupling and ideal decoupling. The decoupling
transfer matrix is as simple as for simplified decoupling and the apparent
process consists of the diagonal elements of the process, as for ideal de-
coupling. Hence, it is easier to take into account saturation of manipulated
variables than ideal and simplified decoupling, and an anti-windup strategy
can be implemented in the same way as for SISO processes [Gagnon et al.,
1998].

In [Gagnon et al., 1998] it was found that robust performance and robust
stability are similar for simplified, ideal and inverted decoupling. Hence this
does not play a role when choosing the method. An extension of inverted
decoupling to systems with multiple time delays and non-minimum-phase
zeros is presented in [Chen and Zhang, 2007]. In [Garrido et al., 2011], an
extension to n $ n processes as well as different configurations of inverted
decoupling to ensure realizability are presented.

Inverted Decoupling for 2$ 2 Processes

A block diagram of a 2 $ 2 process with inverted decoupling is shown in
Fig. 10.1. The decoupling network in Fig 10.1 is shown in Eq. (10.1).

u1(s) = −
G12(s)

G11(s)
u2(s) + c1(s)

u2(s) = −
G21(s)

G22(s)
u1(s) + c2(s)

(10.1)

As can be seen in Fig. 10.1, the input to the process is composed of the
output of the respective controller and the output of one of the decoupling
transfer functions. The decoupling transfer functions have a manipulated
variable as their input. In this way, the decoupling transfer functions are a
feed-forward term with a having a manipulated variable as an input instead
of a disturbance. For example, the decoupling transfer function −G12

G11
in Fig.
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Figure 10.1 The control structure of inverted decoupling for a system with
two inputs and two outputs.

10.1 has the manipulated variable u2 as its input. The output is added to
the output of controller C1. Thus, the effect of u2 on the process output y1

is canceled out. This can be seen as follows. The transfer function from u2

to y1, assuming c1 = 0 and going through the decoupling transfer function
is:

y1 = G11 ·

(

−
G12

G11
u2

)

= −G12u2

The transfer function from u2 to y1, now going through the process and
assuming u1 = 0 is:

y1 = G12u2

Taking everything together, the output y1 now becomes:

y1 = G11u1 + G12u2 − G12u2

= G11u1

Hence, the decoupling transfer function −G12
G11

cancels the cross-coupling

between y1 and u2. Similarly, the transfer function −G12
G11

cancels the cross-
coupling between y2 and u1. The apparent process now consists of the
diagonal elements of the process transfer matrix, and controllers can be
designed in the same way as for two SISO processes.

Inverted Decoupling for n$ n Processes

Inverted decoupling can be extended to higher order n $ n processes, as
it was done in [Garrido2011] for example. Denoting the process by G(s)
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10.2 Decoupling PID control

and the decoupling transfer matrix by D(s), the apparent process as seen
by the controllers is T(s) = D(s) · G(s). For inverted decoupling, T(s) =
diag (G11, G22, ..., Gnn) is a diagonal matrix containing the diagonal elements
of the process transfer matrix G(s). This diagonal transfer matrix for the
apparent process is achieved by choosing the decoupling matrix as shown
in Eq. (10.2).

D(s) = G(s)−1T(s) (10.2)

The input signals to the decoupling system D(s) are the controller outputs
c(s), and the outputs are the manipulated variables u(s), so that

u(s) = D(s) · c(s)

Using Eq. (10.2), the above equation becomes

u(s) = G−1(s)T(s) · c(s)

\ c(s) = T−1(s)G(s) · u(s)

\ c(s) =
(

I − I + T−1(s)G(s)
)

· u(s)

\ c(s) = u(s) −
(

I − T−1(s)G(s)
)

· u(s)

\ u(s) =
(

I − T−1(s)G(s)
)

· u(s) + c(s)

(10.3)

Since T(s) is a diagonal matrix, its inverse is T−1(s) = diag
(

G−1
11 , G−1

22 , ..., G−1
nn

)

,
where Gii(s), i = 1, ..., n are the 1 $ 1 diagonal elements of the process
transfer matrix G(s).

With this, the decoupling network for n$ n processes has the structure
shown in Eq. (10.4).











u1(s)
u2(s)

...
un(s)











= D(s)











u1(s)
u2(s)

...
un(s)











+











c1(s)
c2(s)

...
cn(s)











(10.4)

D(s) =























0 −G12
G11

−G13
G11

... −G1n

G11

−G21
G22

0 −G23
G22

... −G2n

G22

...
. . .

...
...

. . .
...

−Gn1
Gnn

−Gn2
Gnn

... −Gn,n−1

Gnn
0























·

As can be seen, extending the decoupling network to n$n systems of order
higher than n = 2 keeps the structure of the 2 $ 2 system in Eq. (10.1).
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It can be noted, that here one requirement is that Gii ,= 0. Furthermore,
the number of poles and zeros in the Gi j, i, j ∈ [1, n], have to be such
that the transfer functions Gi j

Gii
, i, j ∈ [1, n], are realizable. For cases where

realizability is not given for inverted decoupling as used here, an extension
to inverted decoupling to keep realizability is presented in [Garrido et al.,
2011].

An Example of Inverted Decoupling

To show the effect of inverted decoupling, it is applied to a simple example.
The equations of the coupled process is shown in Eq. (10.5).

G(s) =

[ 1
s+1

2
3s+5

1
s+1

1
s+1

]

(10.5)

The process is to be controlled by two PI controllers C1(s) and C2(s), both
of which have the same parameters, see Eq. (10.7).

C1(s) = 2+
2
s

(10.6)

C2(s) = 2+
2
s

(10.7)

A decoupling network is designed to decouple the process dynamics. The
decoupling network according to Eq. (10.1) is here

u1(s) = 2
(s+ 1)
(3s+ 5)

u2(s) + c1(s)

u2(s) = 1 · u1(s) + c2(s)

(10.8)

Note that for u2(s), the decoupling turned out to be static here, while for
u1(s) the decoupling is dynamic.

Figure 10.2 shows step responses of the closed-loop system with the
process from Eq. (10.5) and the PI controller from Eq. (10.7) without a
decoupling network in between them, and with the decoupling network
(10.8) between them. The case without decoupling is shown as a blue line,
and the case with decoupling as a red line. A unit step is applied to the
first reference input r1 at time t = 10, and to r2 at time t = 40.

As can be seen in Fig 10.2, without the decoupling network a step in one
of the inputs influences not only the respective output, but also the other
output. Using the decoupling network, the closed-loop system behaves as if
two single-loop processes were regulated by their respective controller. Both
static and dynamic interactions could be eliminated.

In the next two chapters, the inverted decoupling method is used to
cancel interactions present in buildings and their heating and ventilation
systems.
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Figure 10.2 Step responses of the closed-loop system with the process
in Eq. (10.5) and the PI controller from Eq. (10.7), without decoupling
(dashed) and with decoupling (solid). Using decoupling, the control signals
react quicker, and the step-responses resemble those of two SISO systems.
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11

Temperature Control of

Adjacent Rooms

The application of decoupled PI control on the temperature control of adja-
cent rooms is described in this chapter.

First, the simulation environment used for the simulations is intro-
duced shortly, and the models implemented in it are presented. Then, the
estimation of first-order models representing the temperature dynamics
is described. After that, the proposed control algorithm is explained and
simulation results are presented. At last, the results are discussed.

11.1 Adjacent Room Models in Modelica

For simulation of the temperature dynamics of four adjacent rooms, the
Modelica language [The Modelica Association, 2016] was used. As a simu-
lation environment Dymola (Dynamic Modeling Laboratory) [Dassault Sys-
tem, 2016] was used in this thesis.

This section starts with a short description of Modelica and the com-
ponents used for implementing the simulation model used in this thesis.
After that follows a description of the simulation model and the four-room
building implemented with the Modelica language.

Modelica

Modelica [The Modelica Association, 2016] is an equation-based, object ori-
ented language aimed at modeling the dynamic behavior of complex physical
systems. It supports different physical domains such as electrical, mechan-
ical, thermal, pneumatic, fluid, control and others. A model can include
parts from several of these domains, for example combining the modeling of
heat transfer dynamics with the fluid dynamics of the water-based heating
system in one model.

78



11.1 Adjacent Room Models in Modelica

With Modelica, the simulation model with components from all the dif-
ferent physical domains can be developed conveniently using a graphical
editor, or using textual description. To build up a simulation model, either
existing components can be used directly from a library, or these models
can be altered and new ones can be added.

The Buildings Library

The Buildings Library [Lawrence Berkeley National Laboratory, 2016a;
Wetter et al., 2011b] is a library for the Modelica language, which offers
component and system models for buildings and its energy and control
systems. It was developed at the Lawrence Berkley National Laboratory,
starting in 2007. Since the library is developed in the Modelica language,
existing components or system models can be modified or extended to create
new ones. In this way, heating and ventilation systems can be tested even in
unconventional setups. Furthermore, the developed system models can be
used to develop and test various control algorithms [Wetter et al., 2011b].

The Buildings Library consists of several packages. Using components
from these packages, HVAC systems, water-based heating systems and heat
transfer between rooms and rooms and the outside, among others, can be
implemented [Wetter et al., 2011b; Wetter et al., 2011a]. Some of these
packages are listed below:

Airflow The Airflow package contains models for simulation of air flow
between different rooms or zones in a building system simulation, as
well as between the room and the outside.

BoudaryCondition A weather data reader and models for solar radiation
and sky temperatures are available in the BoudaryCondition package.

Fluid Models and components for air- and water-based heating and venti-
lation systems are provided in the Fluid package. Depending on the
component, models are based on either first principles, steady-state
performance curves or, for transient behavior, differential equations.

HeatTransfer The package HeatTransfer contains components modeling
heat transfer through, for example, walls consisting of multiple layers
and through windows.

Rooms The Rooms package includes models for the heat transfer between
rooms as well as through the building envelope. After generating
several instances of a room model from this package, the different
room models can be connected to a multi-room or multi-zone building.
Furthermore, the room models can be linked to models of heating and
ventilation systems from the Fluid package.
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Figure 11.1 Icon for a room from the Room package in the Buildings
Library. [Lawrence Berkeley National Laboratory, 2016b].

In this thesis, the Rooms package was used to simulate several adjacent
rooms. This simulation model was used to develop and test decoupled PI
controllers.

The Room Model in the Buildings Library

A model of a room is available in the package Rooms [Wetter et al., 2011a].
The icon for the room in shown in Fig. 11.1. This model implements a room
assuming perfectly mixed air.

The room can have any number of walls, ceilings, floors or other construc-
tions and surfaces. These take part in heat exchange through conduction,
convection or infrared or solar radiation.

Within a room, different components from the Buildings Library are
used to compute the heat conduction through the constructions and surfaces.
There are components for constructions with windows and for those without,
and components for constructions which partition several zones. In order
to connect one room to another, there are constructions with only one side
taking part in the heat exchange of the room. The conduction of heat through
the components is implemented as one-dimensional heat conduction though
multi-layered materials.

The room also contains a component modeling the solar radiation ab-
sorbed by the glass of the windows and by shadings. This is used by the
heat transfer models to take part in the heat balance of the room. Radia-
tive and convective heat transfer to the sky and the outside environment
are modeled through boundary conditions. Construction parameters can be
specified for all components the room consists of. These parameters describe
the geometry of the constructions and the material properties.

Components from other packages of the Building Library can be con-
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Figure 11.2 Floor plan of a 2-by-2 setup of rooms, which are modeled using
the Modelica Buildings Library. Each room has a floor size of 4$ 4 [m], and
has one window.

nected to a room model. For example, an air conditioning system can be
connected by using components from the Fluid package. Using the Airflow
package, an open door between two rooms can be modeled.

The room model has several connectors in order to integrate it into a
larger model. These connectors are depicted as red squares in the symbol
in Fig. 11.1. With the help of the weather data connector (5 in Fig. 11.1),
weather data can be loaded from a file, or the conditions can be entered
manually.

The room temperature can be measured at connector port 1 in Fig. 11.1.
Through the same connector port, convective heat can be added to the room
model. To add radiative heat to the room model, connector port 2 in Fig.
11.1 can be used.

The connector ports 3 and 4 in Fig. 11.1 give the possibility to connect
the room model to a floor or a radiant slap, or to connect several room
models. These ports were used in this thesis to build up models of adjacent
rooms.

Modeling of Adjacent Rooms in Modelica

For the purpose of the thesis, a model of a two-by-two structure of four
rooms are implemented with the Modelica Buildings Library. This model
was then used to test the proposed decoupled PI controller.

Figure 11.2 shows the floor plan of the building implemented with the
Buildings Library. The model consists of four rooms arranged in a 2-by-2
square. Each room has a size of 4$ 4 m2, and the rooms have a hight of 3
m. The east and west facing walls of each room have a window.

In Modelica, this model is implemented using the room model from the
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Chapter 11. Temperature Control of Adjacent Rooms

Buildings library described in Sec. 11.1. Each of the four rooms is modeled
with such a room model. These room models can then be interconnected for
simulation of heat transfer. This coupling of the all the room’s heat transfer
is done using the port labeled number 3 in Fig. 11.1. To model the wall
between the rooms, a multi-layer wall component is connected between two
of these ports. The outside walls of the rooms are modeled as 120 mm brick
walls, and the walls between the rooms as 5 mm concrete walls.

To heat the rooms, heating power in [W] is added directly into the
rooms via the port number 1 in Fig. 11.1. Adding a positive heat flow Q

corresponds to heating, adding a negative amount of heat corresponds to
cooling, and Q = 0 corresponds to neither heating nor cooling. Here, only
heating is considered. Since the air in the room is assumed to be completely
mixed, the whole room is heated evenly when heating power is added. The
outside temperature is set to constant −20○C. There are no disturbances
from occupants or appliances.

11.2 Estimating Temperature Dynamics

In order to implement the decoupled PI controller, simple models of the ad-
jacent rooms in Section 11.1 are needed. For this purpose, first order models
are estimated using data from step-response test. This section describes the
estimation of these first-order models.

Estimation Data

To identify the model parameters, step responses were recorded from the
Modelica model. For this, as many experiments are recorded as there are
rooms in the models. For each experiment, the heat flow into one of the
rooms was set to 3000 W, while the heat flow into the remaining rooms was
zero. The temperatures in all rooms were recorded. This was repeated for
all rooms in the model.

The step-response data used to estimate the first-order models for the
2-by-2 room configuration is shown in Fig. 11.3. Four Experiments were
performed, each shown in its respective row in the figure. The columns in
the figure correspond to the measured temperatures in rooms 1, 2, 3 and 4,
respectively.

For each experiment, a step in heat flow was applied to one of the rooms,
while the heat flow in the other rooms remained unchanged. In Experiment
1, a step-change from zero to 3000 [W] was applied to the heat flow into the
first room at t = 500, while the heat flow to the other rooms was zero. For
experiments 2, 3 and 4, the step-change in heat flow was done for room 2,
3 and 4, respectively, while the heat flow in other rooms remained zero. In
each of the experiments, the temperatures of all four rooms were recorded.

82



11.2 Estimating Temperature Dynamics

500 520 540
0

20

40

[d
eg

 C
]

T1

 

 

500 550

0

5

10
T2

500 550

0

5

10
T3

500 550 600

0

2

4

T4

500 550

0

5

10

[d
eg

 C
]

500 520 540
0

20

40

500 550 600

0

2

4

500 550

0

5

10

500 550

0

5

10

[d
eg

 C
]

500 550 600

0

2

4

500 520 540
0

20

40

500 550

0

5

10

500 550 600

0

2

4

t [h]

[d
eg

 C
]

500 550

0

5

10

t [h]
500 550

0

5

10

t [h]
500 520 540

0

20

40

t [h]

Figure 11.3 Identification data for estimating first-order models for the
2-by-2 room configuration. The outside temperature was −20 ℃ and the
input step hight was 3000 [W]. The effect of the outside temperature was
subtracted from the measured data, resulting in the step response data
starting at zero ℃. The first row shows the four room temperatures, when
a step in heat flow was applied to room number 1. Rows 2, 3 and 4 show the
room temperatures when a step in heat flow was applied to rooms 2, 3 and
4, respectively.

Since the first-order models to be estimated should describe the effect of
a change in heat flow into the rooms on the room temperatures, and not the
effect of the outside temperature as a disturbance, the effect of the outside
temperature in the room temperatures was subtracted from the recorded
data. The initial room temperature in the recorded data was −20 ℃, since
the outside temperature is −20 ℃. After subtraction the step-response data
has an initial value of zero degree Celsius, as shown in Fig. 11.3.

As can be seen in the estimation data, the dynamic behavior of the sys-
tem does not resemble that of first-order systems. This is most pronounced
in the subplots on the main diagonal of Fig. 11.3. These are the room tem-
peratures of the rooms, to which the heating power was added. This is not
surprising, since the simulation model is non-linear. However, the data in
Fig. 11.3 suggest that there are two time constants involved in the heating
of the rooms. When heat is added to a room, the air in room as well as the
constructions, such as walls and floors, are heated up. It takes a longer time
for walls and floors to take up the heat than for the room air. Hence, the
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Chapter 11. Temperature Control of Adjacent Rooms

heating up of room air results in a shorter time constant than the heating
up of the walls and floors. Hence, a second-order model would probably
describe the step-response data better than a first-order model. However,
for simplicity of the identification process, first-order models are used here.

Here, the step-response data was generated by applying a step in the
heat flow Q from zero to 3000 [W]. Since the heat flow Q in the closed-loop
experiments in Section 11.4 is approximately between 500 [W] and 1500 [W],
and the simulation model is nonlinear, using estimation data with Q in the
same range would lead to a more accurate model for the dynamic behavior
around the operating point. However, the idea for identification here was
to have heat flow added to only one of the rooms, and have no heating or
cooling in the other rooms. As described above, the temperature dynamics
of the 2-by-2 rooms are approximated by first-order models, although the
step-response data suggests models of 2nd order. Hence accuracy of the
first-oder models might not be increased by estimation around a different
operating point for the heat flow input Q.

Estimation of First Order Models

With the heat flow into the rooms as inputs and the room temperature as
outputs, the four rooms shown in Fig. 11.2 become a MIMO system with
four inputs and four output.

The system of transfer functions describing the heat transfer between
the four rooms is shown in Eq. (11.1).

T1(s) = G11(s)Q1(s) + G12(s)Q2(s) + G13(s)Q3(s) + G14(s)Q4(s)

T2(s) = G21(s)Q1(s) + G22(s)Q2(s) + G23(s)Q3(s) + G24(s)Q4(s)

T3(s) = G31(s)Q1(s) + G32(s)Q2(s) + G33(s)Q3(s) + G34(s)Q4(s)

T4(s) = G41(s)Q1(s) + G42(s)Q2(s) + G43(s)Q3(s) + G44(s)Q4(s)

(11.1)

The inputs to this process are the heat flows Qi(s), i = 1, ..., 4 into the four
rooms, and the output are the room temperatures Ti(s), i = 1, ..., 4 in the
four rooms.

Comparing to the estimation data in Fig. 11.3, the transfer function
Gi j(s) is estimated using the step-response data in row j and column i

in Fig. 11.3. Utilizing this step-response data, the gains Ki j and the time
constants di j for first-order models of the following form were estimated:

Gi j(s) =
Ki j

1+ di js
(11.2)

The gains Kij were estimated using the steady-state form of equation
(11.1). The steady-state equation for the temperature in room number i is
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obtained by setting s = 0 in Eq. (11.1).

Ti(0) = Gi1(0)Q1(0) + Gi2(0)Q2(0) + Gi3(0)Q3(0) + Gi4(0)Q4(0) (11.3)

Since there are four rooms, it is i = 1, ..., 4.
During collection of estimation data, the heat flow into room j was

Q j ,= 0, and the heat flow into the remaining rooms was Qi = 0, i ∈ [1, 4]\k.
This was repeated for all 4 rooms. Thus, Eq. (11.3) becomes

Ti(0) = Gi j(0)Q j(0), i ∈ [1, 4]

Hence, the gain Ki j can be computed using the steady-state measurements
of the room temperature of room i and the heat flow into room j, as shown
in Eq. (11.4).

Ki j =
Ti(0)
Q j(0)

(11.4)

where i, j ∈ [1, 4].
The time constants dij were estimated using the time domain rep-

resentation of (11.2). Assuming a step at the input, i.e. Q j(s) =
M j

s
, the

temperature in room i for a step of size M j in the heat flow is

Ti(s) =
Ki j

1+ di js

M j

s

The time domain representation of this is

Ti(t) = Ki j M j

(

1− e
− t

di j

)

The determination of the time constant di j in the above equation was
inspired by a method in [Astrom and Hagglund, 2006]. The time when the
output signal Ti(t) reaches 63% and the value of the output signal at that
time were recorded. Denoting the time where Ti(t) reaches 63% by t63 and
the value of Ti(t) at that time by 0.63 ·Ti(∞), and substituting this into the
above time domain representation gives

0.63 · Ti(∞) = Ki j M j

(

1− e
−

t63
di j

)

Thus the time constant was calculated as shown in Eq. 11.5.

di j = −t63

[

ln

(

1−
0.63 · Ti(∞)

Ki j M j

)]−1

(11.5)
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The step size M j is known from the measurement data, as well as the value
0.63 ·Ti(∞) for 63% of the final value of the step response. The time t63 can
be read from the step-response data, and the gain Ki j has been calculated
previously.

Therefore, to estimate the first-order models, first the static gains Ki j

are calculated using the steady-state values of the rooms temperatures Ti(0)
and the heat flows into the rooms Q j(0). Then, using the height of the step
in Q j, M j, the time where the rooms temperature reaches 63% of its final
steady-state value, and the value of the output signal at that time, the time
constant for the model is calculated with Eq. (11.5).

Estimation Results

The parameters of the first order models estimated as described in Section
11.2 are shown in table 11.1 for four adjacent rooms. It can be seen in the
estimated time constants, that the heat dynamics of the adjacent rooms in
both cases are quite slow processes. As mentioned previously, there are two
time constants describing the temperature dynamics. A fast time constant
corresponds the heating of the room air when heat flow is added to a room.
A slow time constant represents the heating of building elements, such as
walls and floors, which also contributes to the heating of the room air. Here,
the slower time constant was estimated.

Table 11.1 Parameters for the first order model estimated for four adjacent
rooms. Q = 3000 and Tout = −20○C.

K [10−3 ○C/W] d [h]

G11 10.4 2.2
G12 2.6 10.5
G13 2.6 10.5
G14 1.3 17.2
G21 2.6 10.5
G22 10.4 2.2
G23 1.3 17.2
G24 2.6 10.5

K [10−3 ○C/W] d [h]

G31 2.6 10.5
G32 1.3 17.2
G33 10.4 2.2
G34 2.6 10.5
G41 1.3 17.2
G42 2.6 10.5
G43 2.6 10.5
G44 10.4 2.2

It can be seen in table 11.1, that for the Gi j with i = j, the estimated time
constant is smaller than for the Gi j with i ,= j. This means that the room,
to which the heat flow is added, is heated up faster than the neighboring
rooms. The gains estimated are larger for Gi j with i = j than for Gi j with
i ,= j. Thus, the heat flow has the largest effect on the room it is added
to. The effect on neighboring rooms is less. This can also be seen in the
estimation data in Fig. 11.3.
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11.2 Estimating Temperature Dynamics

To evaluate the estimated first order models, the input data are applied
to the estimated first-order models. The output data resulting from this
are compared to the recorded output data. For the four adjacent rooms, the
identification results are shown in Fig. 11.4.
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Figure 11.4 Identification results of first order models for four rooms.
Output of identified model (red dashed line) and measured temperature
(blue solid line). The outside temperature was -20℃. For the models on the
main diagonal of this figure, the fit was ca. 30%, and for the other models
ca. 85% to 95%.

The correctness of the estimated models was evaluated by calculating the
goodness of fit between the output data generated with the estimated models
and the recorded room temperature data. This resulted in an approximate
fit of 30% for the Gi j where i = j, and an approximate fit of 85% to 95% for
the remaining Gi j. In Fig. 11.4 it can be seen as well, that the first-order
models fit better for the Gi j where i ,= j than for those where i = j. This is
due to the two time constants in the heat transfer dynamics, as discussed
previously. Here, the first-order models were estimated to capture the slower
dynamics (compare to Section 11.2 and Fig. 11.3). This results in correct
steady-state values, but especially for the transfer functions Gi j with i = j

the transient dynamics are inaccurate. For the transfer functions Gi j with
i ,= j, there is a smaller inaccuracy. To increase the room temperature of an
adjacent room, the wall temperatures have to increase, which is connected
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to the slower of the two time constants. Hence, for adjacent rooms, the
faster time constant is less pronounced and a first-order model describes
the temperature dynamics of the adjacent rooms better than the dynamics
of the room, which the heat flow is added to.

11.3 Decoupled PI Control

The temperature dynamics of the adjacent rooms are coupled due to the
interconnecting walls. This can be seen in the estimation data in Fig. 11.3
for the four adjacent rooms. An increased heat flow into one of the rooms also
increases the temperature in adjacent rooms. The extent of the influence is
of course depending on the building materials of the walls. In badly isolated
houses the influence can be significant.

Many times, the room temperature would be regulated locally for each
room. Then, a change of reference temperature in one of the rooms is
expected to have an influence on the temperature in adjacent rooms.

The purpose of a decoupling network is to decrease this effect. When
the reference value for one of the system outputs is changed, the controller
will adjust the corresponding input to drive the output to its new desired
value. If the system is coupled, that change in input signal will also have
an effect on the other output signals, which is not desired. With the help
of the decoupling network, the effect of the change in input signal on these
other output signals can be estimated. With this estimate, the decoupling
network can help the PI controllers regulating the other output signals to
counteract, so that the level of the other output signals does not change.

This section first describes how decoupling is done in case of the adjacent
rooms and how it is implemented with the Modelica Buildings Library
models. Furthermore, simulation results comparing the PI controlled room
temperature with and without decoupling network are presented.

Inverted Decoupling for Adjacent Rooms

To decouple the temperature dynamics of the adjacent room, inverted de-
coupling as described in Section 10.2 is used.

Here, the heat flows into the rooms are the input signals for the system
of four adjacent rooms, and the room temperatures are the output signals.
The transfer functions describing the dynamics of this system are given in
Eq. (11.1).

The decoupling network, as in Eq. (10.4), for the case of the four adja-
cent rooms is shown in Eq. (11.6). The heat flow signals calculated by the
PI controllers are denoted by Q̄i, i = 1, ..., 4. The heat flow signals after
manipulation by the decoupling network, which are the input signals to the
rooms, are denoted by Qi, i = 1, ..., 4. Comparing this to Section 10.2, the
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11.3 Decoupled PI Control

Q̄i here correspond to the ci in Section 10.2, and the Qi correspond to the
ui in Section 10.2.

Q1(s) = Q̄1(s) − Q2(s)
G12(s)

G11(s)
− Q3(s)

G13(s)

G11(s)
− Q4(s)

G14(s)

G11(s)

Q2(s) = Q̄2(s) − Q1(s)
G21(s)

G22(s)
− Q3(s)

G23(s)

G22(s)
− Q4(s)

G24(s)

G22(s)

Q3(s) = Q̄3(s) − Q1(s)
G31(s)

G33(s)
− Q2(s)

G32(s)

G33(s)
− Q4(s)

G34(s)

G33(s)

Q4(s) = Q̄4(s) − Q1(s)
G41(s)

G44(s)
− Q2(s)

G42(s)

G44(s)
− Q3(s)

G43(s)

G33(s)

(11.6)

To cope with constraints on the allowed heat flow Qi, i = 1, ..., 4, an anti-
windup strategy was used for the PI controllers used with the decoupling
network. Because of the structure of inverted decoupling, an anti-windup
method as employed for single PID controllers could be applied directly
[Gagnon et al., 1998].

Implementation The decoupling method presented in this section was
implemented with the Modelica language into the model of four rooms
presented in Section 11.1. This implementation was done using transfer
functions.

For each of the rooms, a PI controller was designed to regulate the room
temperature of one room. The control signal was the heat flow into the
respective room. The PI controllers were tuned using the Ziegler-Nichols
method to locally regulate the room temperature. The decoupling network
in Eq. (11.6) was then added between the PI controllers and the system to
be controlled, i.e., the four adjacent rooms (compare also to Section 10.2).

Simulation Setup To test the decoupling network, the reference for the
room temperature was changed for one of the rooms, and the room temper-
atures in all the rooms were recorded. This was done both with and without
the use of the decoupling network.

At the beginning of the simulation, all room temperatures were set to
25 ℃. After a steady-state has been reached, the reference temperature for
room 1 was changed to 16 ℃. The outside temperature was set to a constant
value of −20 ℃.
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11.4 Simulation Results

The results simulating the four adjacent rooms are shown in Fig. 11.5. The
blue solid line shows the simulation results without using a decoupling
network, i.e., just local PI controller for each room. The red dashed line
shows the simulation results with a decoupling network.

In Fig. 11.5, the temperatures in rooms 1, 2, 3 and 4 are shown in the
upper left panel, the upper right panel, the third panel on the left and
the third panel on the right, respectively. The heat flow into the rooms, as
determined by the PI controllers, are shown in the second panel on the left
side, the second panel on the right side, the lower left panel and the lower
right panel, respectively. The time is shown in hours as well.
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Figure 11.5 In Modelica: PI control without decoupling (blue solid line)
and with inverted decoupling (red dashed line). With the decoupled PI, the
effect of the coupled temperature dynamics is decreased. The control signals
Qi, i = 1, ..., 4, react sooner when decoupling is used.

It can be seen that without the decoupling network, the temperature of
the adjacent rooms deviates from its desired value with 0.5 to 1 ℃. It takes
some hours until the PI controller in the respective room has compensated
for the disturbance and driven the temperature back to its desired value.
Using the decoupling network, the deviation in the room temperature is
smaller. The room temperature deviation was 0.7 ℃ without a decoupling
network, and 0.3 ℃ with a decoupling network.

The remaining deviation of the room temperature of adjacent rooms,
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despite a decoupling network, is due to the fact that the first-order models
used in the decoupling transfer functions do not describe the temperature
dynamics very accurate. First-order models were chosen due to simplicity
of the identification process. However, as can be seen in Fig. 11.4, there are
some significant deviations between the output data generated using the
estimated model and the recorded output data, especially for Gi j where i = j.
This is because the temperature dynamics are governed by two different
time constants, as described in Section 11.2. Using second-order models
instead of first-order models, would describe the temperature dynamics
more accurately and could lead to a better decoupling.

Using a decoupling network, the heat flow into the rooms is increased
earlier compared to the case when no decoupling network is used. The
decoupling network consists of feed-forward transfer functions representing
the temperature dynamics of the adjacent rooms. With this, the influence
of the disturbance from the temperature change occurring in a neighboring
room is counteracted earlier than when just a PI controller would be able
to see it.
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Decoupling Control in a

Ventilation System

The application of inverted decoupling to a ventilation system is described
in this chapter.

The coupling here is from the mass flow rate of the air in the ventilation
system to the room temperature. If there is a disturbance in the CO2

concentration, for example from people entering the room, the mass flow
rate needs to be increased in order to keep the CO2 concentration at an
acceptable value. Especially during winter months in northern Europe, this
can lead to a drop in room temperature, which is not desired.

The goal is to decrease this deviation of the room temperature by using
inverted decoupling in addition to a PI controller. The room temperature
is to be regulated using the temperature of the ventilation air. Since the
room temperature gets influenced by the mass flow rate of the air in the
ventilation system, but the CO2 concentration does not get influenced by the
temperature of the ventilation air, the coupling is one-directional. Hence,
only one of the two decoupling transfer functions usually present in inverted
decoupling for 2-by-2 systems is used. With this, the decoupling becomes
a feed-forward transfer function from the mass flow rate of the air in the
ventilation system to the temperature of the air in the ventilation system.

This chapter starts with a description of the room and its ventilation
system, which are used for experiments. Then, a dynamical model for the
temperature and CO2 dynamics is presented. This model was used for sim-
ulation studies, which were carried out prior to experiments. After that, the
estimation of first-order models needed for the decoupling transfer function
is described. Then, the decoupling transfer function, as well as the dis-
cretization of the decoupling transfer function and the used PI controller
are explained. Next follows a description of the simulation studies done in
Matlab. Then, the experiments performed in a real room are described.
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12.1 The KTH Test-bed

12.1 The KTH Test-bed

Experiments are performed using a test-bed located at the Royal Institute of
Technology in Stockholm, Sweden. The test-bed is installed in the basement
of a multi-stories university buildings.

One of the rooms and its ventilation system are used to perform the
experiments. This room has a size of 81 m2. The walls are constructed of
a heavyweight concrete structure. The south-east facing wall is an outside
wall, with ca. 2.5 m2 of window area. During the university’s semester time,
the room is used for student laboratories.

There are sensors measuring temperature, CO2 and humidity at dif-
ferent locations in the room. Temperature sensors are found at each wall
of the room, and in the center of the room under the ceiling. Here, the
temperature sensor in the center of the room is used.

A work-station computer located in the room is connected to the test-bed.
This computer has Matlab installed, where control algorithms to be tested in
experiments can be implemented. The implementation using Matlab is done
using an object-oriented approach. There are already classes implementing
the connection to the test-bed, i.e., the measurement of data from the
sensors installed in the rooms and the application of control signals to
actuators. Other classes implemented are, for example, classes to handle
time measurements and one for a general controller. The class for a general
controller is used as a base-class for all control algorithms. For example,
this class handles the input and output signals for a controller and provides
the possibility for bounds on input and output signals. A control algorithm
to be tested is then implemented in the context of this already existing
implementation, using the general controller class as a base-class.

The ventilation system

The ventilation system for the room is a variable air volume (VAV) venti-
lation system, where the air flow rate depends on the CO2 concentration
in the room. A scheme depicting the ventilation system is shown in Fig-
ure 12.1. Fresh air from the outside is first processed by a heat exchanger
using exhaust air from the room. Then, the air flows through a heating
and a cooling system. Having a temperature of approximately 20○C, the
air then passes a duct to be distributed into the room. A part of this air,
ca. 70%, is delivered into the room directly. The remaining ca. 30% can be
cooled by means of chilled water. The flow of this chilled water is regulated
with a chilled water valve, determining how much the air gets cooled down.
Note that, since the air in the ventilation system as delivered to the room
is around 20○C, the ventilation system can be used for both cooling and
heating.

The actuators available in the ventilation system are two air dampers,
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Chilled Water Valve

Air Dampers

A:225

Tsupply

TAC

Tair

Heat
Exchanger

Figure 12.1 A scheme of the ventilation system installed in the room of the
KTH test-bed. The chilled water valve and the air dampers are the actuators,
which can be used. Here, the supply air temperature Tsupply and the mass
flow rate of the air in the ventilation system were used as control signals.

and a chilled water valve. The air dampers regulate the rate of the airflow
into and out of the room, and the chilled water valve regulates the flow of
cold water used to cool down a part of the air entering the room.

The air dampers are always set to an equal opening percentage, so that
the pressure in the room is not changed. The mass flow rate ṁv into the
room is given by the valve opening percentage of the dampers through the
static map shows in Eq. (12.1).

ṁv = Vo · p1 − p2 (12.1)

The constants are p1 = 0.002, p2 = 0.1 and Vo is the valve opening percent-
age.

Because of the architecture of the ventilation system, the chilled water
can cool down only 30% of the air entering the room. The temperature of the
part of the air cooled down by the chilled water is denoted by TAC and the
temperature of the air in the ventilation system by Tair. The temperature
of the total air entering the room, Tsupply, is hence calculated by Eq. (12.2).

Tsupply = 0.3 · TAC + 0.7 · Tair. (12.2)

There are limitations on the temperatures TAC, Tair and Tsupply. By
opening the chilled water valve to 100%, TAC can be lowered to 16○C. By
closing the chilled water valve completely, TAC can be increased to 21○C.
Hence, the limits are TAC ∈ [16 21]○C. Following from Eq. (12.2), and Tair =
22.5, the limits for the supply air temperature are Tsupply ∈ [20.5 22.05]○C.
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From measurements of TAC and Tsupply, and the help of Eq. (12.2) it could
be seen that Tair during the experiments done was around 22.5○C. From
Eq. (12.1) it follows that for air dampers open between 0% and 100%, the
air flow rate of the air entering the room from the ventilation system varies
in the range of ṁV ∈ [0.1002 0.34].

The low-level controller

Of the air entering the room from the ventilation system, ca 30% can be
cooled down, as mentioned above. The cooling down is done using cold water.
The flow rate of this cold water determines how much the ventilation air
is cooled down. This flow rate of cold water is regulated using the chilled
water valve. A low-level PI controller determines the opening percentage
of this valve needed to reach a certain AC temperature TAC. This PID
controller was already present in the test-bed system, and was not modified
for this thesis. The block diagram in Fig. 12.2 shows how the low-level
PID controller regulates the AC temperature TAC based on the desired AC
temperature TAC,ref using the valve opening percentage Vo,AC.

❞ ✲ ✲
✻

✲ ✲PID
AC

dynamics

TACTAC,ref Vo,AC

Figure 12.2 A block diagram of the low-level PID installed in the ventila-
tion system to control the AC temperature, using the opening position of the
chilled water valve Vo,AC as a control signal.

The decoupled PI controller proposed in this thesis was designed to
use the supply air temperature Tsupply as a control signal. Hence, the de-
sired AC temperature TAC,ref needs to be deduced from a desired supply air
temperature, provided by the decoupled PI controller. Also, both the CO2

concentration and the room temperature are influenced by the air flow rate
ṁv in the ventilation system. Hence, the system to be controlled by the
decoupled PI controller is shown in Figure 12.3.

It has the desired supply air temperature and the air flow rate in the
ventilation system as input signals, and the rooms temperature and the CO2

concentration as outputs. The desired supply air temperature is recalculated
into the desired AC temperature using Eq. (12.2). The low-level PI controller
then adjusts the valve position of the chilled water valve such that the
desired AC temperature, and thus the desired supply air temperature, is
reached. The air flow rate is recalculated into the respective valve opening
positions for the air dampers using the static map in Eq. (12.1).
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❝ ✲✲

✲
✲

❄

✲

✲ ✲

✲

TAC
Eq. (12.2) PID

Room

static map

Vo,AC

Voṁv

Troom

CO2

TAC,refTsupply,ref

Figure 12.3 A block diagram of the system to be controlled. This system
includes the temperature and CO2 dynamics of the room, the low-level PID
controller for the AC temperature, a static map transforming the mass flow
rate ṁv of the ventilation air into the opening percentage of the air damper
valves Vo and Eq. (12.2) to recalculate a reference supply air temperature
Tsupply,ref into a reference AC temperature TAC,ref

In the following sections, including simulation studies and experiments,
it is assumed that the low-level PID controller regulates the AC temperature
perfectly.

12.2 Modeling the KTH Test-Bed

Before experiments are performed on the test-bed, the proposed decoupled
PI controller was tested in Matlab and Simulink. The dynamical model used
for simulation can be found in [Scotton, 2012; Parisio et al., 2013; Parisio
et al., 2014a], where the authors developed the model based on simplified
general building physics modeling of the test-bed room. A brief description
of this model is given in this section.

For the model it is assumed that the thermal zone is well mixed, that
there is no air infiltration and that thermal effects of vapor production are
neglected.

The energy balance for the temperature of the room is as shown in Eq.
(12.3).

macpa

dTroom

dt
= Qvent +

∑

j

Qwall, j +
∑

j

Qwin, j + Qoccu + Qrad (12.3)

where the heat flow from the ventilation system is Qvent, the heat flow
between wall j and the room node is Qwall, j, the heat flow between window
j and the room node is Qwin, j, the heat flow produced by internal gains like
occupants, equipment or lightning is Qoccu and the heat flow produced by
the radiators in the room is Qrad.
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With this, the temperature dynamics at a node in the center of the room
are described by Eq. (12.4).

dTroom

dt
=

ṁv

ma

(Tsupply − Troom) +
∑

j

hi A
j
wall

macpa

(

T
j

wall,i − Troom

)

+
∑

j

1

R
j
winmacpa

(Tout − Troom) +
c

macpa

Npeople

+
1

macpa

∑

j

G j A
j
win I j +

Aradhrad

macpa

(Tmean,rad − Troom)

(12.4)

The room temperature Troom depends on the ambient temperature Tout, on
the temperatures of the insides of the walls T

j
wall,i, the radiation I j through

the windows, the air flow ṁv and the air temperature Tsupply of the air from
the ventilation system, on the mean radiator temperature Tmean,rad and the
number of people Npeople in the room.

All walls are modeled as a network of two capacitors and three resistors.
The temperature at the inside of wall j is calculated as an energy balance
between the outdoor and the indoor surface of that wall, see Eq. (12.5).

dT
j

wall,o

dt
=

2ho A
j
wall

C j

(

Tout − T
j

all,o

)

+
2

R
j
wallC

j

(

T
j

all,i − T
j

all,o

)

dT
j

wall,i

dt
=

2hi A
j
wall

C j

(

Troom − T
j

all,i

)

+
2

R
j
wallC

j

(

T
j

all,o − T
j

all,i

)

(12.5)

Here, R
j
wall is the thermal resistance of the j-th wall and C j the thermal

capacitance of the j-th wall.
The model describing the CO2 concentration in the room is modeled as

depicted in Eq. (12.6).

V
dCCO2

dt
= (ṁvCCO2,i + �CO2 Npeople) − ṁvCCO2 (12.6)

The CO2 concentration in the room is denoted by CCO2, the CO2 concentra-
tion of the air entering the room from the ventilation system by CCO2,i and
the number of people by Npeople.

Equations (12.4), (12.5) and (12.6) constitute the simulation model. Note
that this model is bi-linear, since the input signals ṁv and Tsupply are
multiplied.

The model equations were implemented into Matlab by means of S-
functions, and used in Simulink as a simulation model.
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Figure 12.4 A sketch of an example step response of a process. The sketch
illustrates how the parameters K , L, T of the FOTD model in Eq. (12.7) are
estimated. Source: [Astrom and Hagglund, 2006]

12.3 Estimation of Simple Models

First-order models describing the dynamics of the system shown in Figure
12.3 were estimated from step response data measured either using the
simulation model or on the test-bed. These models were then used to form
the decoupling transfer functions.

To estimate the first-order models, a method to estimate FOTD (first-
order-time-delay) models from [Astrom and Hagglund, 2006] was used. From
the data of a step-response, the static gain K , the apparent time delay L

and the average residence time Tar were determined. The apparent time
delay is the time where the steepest tangent on the step-response crosses
the steady-state value, which the systems output had before the step. The
average residence time is the time where the step response reaches 63% of
its final value, it is also Tar = T + L (see also Figure 12.4). The resulting
FOTD model is as shown in Equation (12.7).

G(s) =
K

1+ sT
e−sL (12.7)

Here, the FOTD model was approximated as a first order model without
a time delay.

12.4 Decoupling for the Ventilation System

A decoupling transfer function was used here to decrease the coupling
between the mass flow rate of air from the ventilation system and the
room temperature. An increase in the mass flow rate of the ventilation
air, for example because the CO2 concentration needs to be decreased, has
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❡ ❡
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✻

✲
low-level

+
Room

PID

PI

ṁv

Tsupply,ref

Troom

CO2

Troom,ref

D(s)

Figure 12.5 A block diagram showing the set-up for the decoupled PI con-
troller. The block named "Room + low-level PID" is the system shown in Fig.
12.3. The PI controller controls the room temperature Troom by determining
a reference supply air temperature for the low-level PID controller Tsupply,ref.
The decoupling transfer function is D(s).

an influence on the room temperature. In the winter season, when the
outside air temperature is significantly cooler than the room temperature,
an increase in the mass flow rate will decrease the room temperature, which
is not desired. However, a change in supply air temperature does not have
an influence on the CO2 concentration. This can also be seen in Equations
(12.4), (12.5) and (12.6).

Hence, one-directional decoupling was used here. One-directional de-
coupling means that only one of the two decoupling transfer functions in a
2-by-2 system was used. The decoupling network D(s) used for the ventila-
tion system is shown in Figure 12.5. The decoupling transfer function takes
the mass flow rate ṁv as an input and its output is added to the supply air
temperature Tsupply,ref determined by the PI controller.

Note that there was no controller for the CO2 concentration. Since the
experiments on the test-bed were performed during student holiday time,
there was very little disturbance on the CO2 concentration. A large enough
CO2 concentration disturbance would have been needed to get a change in
mass flow rate ṁv large enough to see the effect of the decoupling transfer
function. Hence, the mass flow rate was changed manually instead of being
the output of a CO2 concentration controller.

With G11 being the transfer function from the supply air temperature
Tsupply to the room temperature Troom, and G12 being the transfer function
from the mass flow rate ṁv to the room temperature Tsupply, the decoupling
transfer function is as shown in Eq (12.8). For details on the decoupling
transfer function see Section 10.2.

D(s) =
G11(s)

G12(s)
(12.8)

The first-order models estimated as described in Section 12.3 were used for
G11(s) and G12(s).
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12.5 Discrete PI Controller and Decoupling Network

For implementation into the KTH test-bed system, a discrete controller was
used. The decoupling network was discretized using backwards differences.

With a first-order model for the transfer functions G11(s) and G12(s),
the decoupling transfer function D(s) as shown in Eq. (12.8) has a form as
shown in Eq. (12.9).

D(s) =
b1s+ b0

a1s+ a0
(12.9)

Denoting the input signal of the decoupling network by u2, and the output
signal by cD, the time domain representation of the decoupling transfer
function in Eq. (12.9) is

a1 ċD(t) + cD(t) = b1u̇2(t) + b0u2(t)

To discretize the above equation, backwards differences were used for the
derivatives.

ċD(t) (
cd(k) − cD(k− 1)

h

u̇2(t) (
u2(k) − u2(k− 1)

h

Discretization with sampling time h, using the finite differences above,
results in the discrete decoupling transfer function shown in Eq. 12.10.

cD(k) =
b1 + b0h

a1 + a0h
u2(k) −

b1

a1 + a0h
u2(k− 1) +

a1

a1 + a0h
cD(k− 1)

(12.10)

The output cD of the decoupling transfer function gets subtracted from the
supply air temperature Tsupply determined by the temperature PI controller.
The input u2 to the decoupling transfer function is here the mass flow rate
ṁv.

The discrete time temperature PI controller [Åström and Wittenmark,
1997] implemented is shown in Eq. 12.11. The variable to be controlled was
the room temperature Troom(k) and the output of the controller is the supply
air temperature Tsupply,ref(k). The sampling time is denoted by h.

e(k) = Troom,ref(k) − Troom(k)

Tsupply,ref(k) = Kpe(k) + Kie I(k) + Troom,ref (k)

e I(k+ 1) = e I(k) + e(k) · h

(12.11)

The reason, that the reference temperature to the room Troom,ref(k) was
added to the PI controller was to drive the room temperature to its reference
value faster.
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12.6 Simulations in Matlab

The decoupling PI controller described in Section 12.4 was tested in a simu-
lation study using the model described in Section 12.2. The simulations were
done in Matlab/Simulink, where the simulation model was implemented as
an S-function and the decoupled PI controller as a Matlab function in the
discrete version from Section 12.5.

In this section, first the estimation of first-order models from step-
response data is described. Then the setup and the results of the simulations
are given.

Model Estimation

First-order models describing the dynamics from the supply air temperature
Tsupply to the room temperature Troom and from the air flow rate ṁv were
estimated using step-response tests as described in Section 12.3. These
models were used to form the decoupling network transfer function.

The data recorded at the simulation model and used to estimate the
first-order models is shown in Fig. 12.6 and Fig. 12.7.
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Figure 12.6 Step-response data measured at the Matlab simulation model
to estimate G11.

The data in Fig. 12.6 were used to estimate the dynamics from the
supply air temperature to the room temperature, which was captured by
the first order transfer function G11(s). For this, the air flow rate was kept
constant at ṁv = 0.2 [kg/s]. A step from 20.42 ℃ to 22 ℃ was applied to
the supply air temperature Tsupply. The room temperature was recorded.

The data in Fig. 12.7 were used to estimate the dynamics from the
air flow rate to the room temperature, captured by the first order transfer
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function G12(s). This time, the supply air temperature was kept constant
at Tsupply = 20.42 ℃. A step from 0.12 to 0.33 [kg/s] was applied to the air
flow rate ṁv. The room temperature was recorded.
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Figure 12.7 Step-response data measured at the Matlab simulation model
to estimate G12.

Since the first-order models G11 and G12 are supposed to describe the
change in room temperature that happens after a change in the respective
input signals air flow rate or supply air temperature, the data were prepared
for estimation by setting the time, when the step in the respective input
signal happened, to time zero. Furthermore, the offsets at the new zero
time for input and output data were removed.

It can be seen in Figures 12.6 and 12.7, that there are two different
time constants governing the dynamics. After approximately 150 hours a
steady-state is reached in the step-response. This corresponds to the long
time constant, which covers the temperature dynamics of building envelope
elements like walls, the floor or the ceiling. The fast time constant, in the
size of 25 minutes, is visible in the figures by an initial fast rise of the
step-response. This corresponds to the temperature dynamics of the air in
the room.

Using the method described in Section 12.3, G11 and G12 were estimated
to be

G11 =
0.11

0.04134s+ 1
(12.12)

G12 =
−0.7533

0.03903s+ 1
(12.13)

Using the decoupling transfer function in Eq. (12.8) and the estimated
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Figure 12.8 Comparison of the model output from the estimated G11 to
the measured simulation data.
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Figure 12.9 Comparison the model output from the estimated G12 to the
measured simulation data

models above lead to the following transfer function for decoupling:

D =
0.0166s+ 0.4211

0.004131s+ 0.1072
(12.14)

The step input signals shown in Fig. 12.6 and Fig. 12.7 were applied
on G11 and G12, and the resulting outputs were compared to the recorded
output data. This comparison is shown in Fig. 12.8 and Fig. 12.9 for G11 and
G12, respectively. In both cases, a goodness of fit of 93% could be reached,
using the normalized root mean square error as a measure.

Note that here, the first-order models were estimate to fit the faster
dynamics in the step-response data, capturing the temperature dynamics
of the rooms air.
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Simulation Setup

For simulation purposes, an outside temperature of 21.9 ℃ was assumed,
since the experiments on the test-bed were carried out during the summer
season. Also the temperature in the adjacent rooms was assumed to be at
21.9 ℃. The reference for the room temperature was set to 21.9 ℃. The
outside CO2 concentration was assumed to be 400 ppm. The number of
occupants was set to Npeople = 1. The simulation time was 4 hours.

The limitations on the supply air temperature and the air flow rate
present in the KTH test-bed were taken into account in the simulation.
Hence, it was Tsupply ∈ [20.5, 22.05]○C and ṁv ∈ [0.1, 0.34] [kg/s]. The
parameters for the PI controller were set to Kp = 15.32; and Ki = 302.4;.
These were determined using the Ziegler Nichols tuning method in Matlab.

Initially, the air flow rate ṁv was set to 0.12 [kg/s]. The PI controller
then regulates the room temperature to its reference value using the supply
air temperature Tsupply. After 2 hours, the air flow rate is increased to 0.33
[kg/s]. The PI controller can now re-adjust the supply air temperature, so
that the room temperature follows its reference.

The idea with the decoupling network is, that the room temperature
will deviate less from its reference after the step change in the air flow rate
using the decoupling network compared to without it.

Simulation Results

The results of the simulation are shown in Fig. 12.10. The first panel shows
the room temperature, the second panel shows the supply air temperature
of the ventilation system and the third panel the air flow rate of the air
in the ventilation system. The red solid lines are the simulation results
with the decoupling network, and the blue dash-dotted lines are the results
without using the decoupling network.

Without the decoupling network, the room temperature decreases ap-
proximately 0.06○C, before the PI controller changes the supply air temper-
ature and brings the room temperature back to its reference value. Using
the decoupling network with the PI controller, it can be seen that the room
temperature returns to its reference value sooner, and that the deviation
from the reference value is less. The deviation from the room temperature
is now reduced to 0.01○C. Looking at the control signal Tsupply, it can be
seen that with the decoupling network the control signal reacts slightly
faster than without using the decoupling network. Even though without
the decoupling network, the deviation from the reference value of the room
temperature is small, a significant decrease in deviation from the reference
value can be observed when using a decoupling transfer function with the
PI controller.
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Figure 12.10 Simulation of the KTH test-bed with and without a decou-
pling network. Blue: no decoupling network; red: with a decoupling network.
After a step in the mass flow rate ṁv, the room temperature Troom devi-
ates less from its reference temperature with using a decoupling network
compared to when not using a decoupling network. Using the decoupling
network, the control signal Tsupply reacts earlier than without a decoupling
network.

12.7 Experiment using the KTH test-bed

This section describes how the decoupled PI controller was tested on the
test-bed at KTH described 12.1. As in the case with the simulation model,
first-order models describing the dynamics of the system to be decoupled
were estimated at first. Then these models were used to form the transfer
function for the decoupling network. This decoupling network and a PI con-
troller were then implemented into the object-oriented Matlab environment,
which was installed for testing new control algorithms for the test-bed. Us-
ing this, the proposed decoupled PI controller was tested and compared to
the case without a decoupling network.

The Estimated Models

The first-order models used for the decoupling transfer function were esti-
mated from step-response data. The estimation was done as described in
Section 12.3. The data was collected during the summer season in June
2015.
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Figure 12.11 Data collected to estimate a first-order model from Tsupply,ref

to Troom. The first panel shows the measured room temperature. The second
panel shows the reference supply air temperature Tsupply,ref (solid line), the
actual measured supply air temperature Tsupply (dashed line), and the mea-
sured AC temperature TAC (dash-dotted line). Tsupply,ref is a step from 22 ℃

to 20.5 ℃. The first data point was not measured.

For estimation of the model G11 from the supply air temperature to the
room temperature, the data shown in Fig. 12.11 was used. A step from 22 ℃
to 20.5 ℃ was applied to the reference of the internal PI controller, i.e. to
Tsupply,ref. The air flow rate was kept constant. Note that the first data point
where Tsupply,ref = 22○C was not measured, and can thus not be shown in
this figure. Fig. 12.11 shows the room temperature in the first panel and the
mass flow rate in the third panel. The second panel shows Tsupply,ref, which
is given as a reference to the internal PI controller, and also the actual,
measured supply air temperature and the AC temperature TAC. During the
time the measurements were taken, the outside temperature was in the
range of 19.6 ℃ and 20.1 ℃.

The data used to estimate the model G12 from the air flow rate ṁv to the
room temperature is shown in Fig. 12.12. The room temperature is shown
in the first panel, and the mass flow rate in the third. The second panel
shows the reference supply air temperature to the internal PI controller, the
measured supply air temperature and the AC temperature. Here, the supply
air temperature was held constant, while the air flow rate was increased
from 0.12 to 0.33 [kg/s]. The outside temperature was in the range of 18 ℃
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Figure 12.12 Data collected to estimate a first-order model from ṁv to
Troom. The first panel shows the measured room temperature. The second
panel shows the reference supply air temperature Tsupply,ref (solid line), the
actual measured supply air temperature Tsupply (dashed line), and the mea-
sured AC temperature TAC (dash-dotted line). The air flow rate ṁv is a step
from 0.12 to 0.33 [kg/s]

to 20.5 ℃.
As was done for the tests with the simulation model, the data are

prepared for estimation by setting the time, when the step in the respective
input signal happens, to time zero and removing the offsets at the new zero
for input and output data.

By using the method described in Section 12.3, first-order plus time
delay (FOTD) models were estimated for G11 and G12 to fit the data shown
in Fig. 12.11 and 12.12. This was done, since the data seemed to indicate
that a time delay was present.

The FOTD models estimated for G11 and G12 from the data are shown
in Eq. (12.15) and Eq. (12.16), respectively. Note that the unit for the time
constants is hours in all following equations.

G11(s) =
0.6067

1+ s · 0.11
e−s·0.03 (12.15)

G12 =
−2.57

0.12 · s+ 1
· e−0.04·s (12.16)

Approximating the FOTD models by a first order model without time
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Figure 12.13 Comparison of the estimated FOTD model and the first order
model without time delay for G11 to the measured room temperature Troom.
The supply air temperature Tsupply is decreased by 1.5○C.

delay gives the models in Eq. 12.17 and Eq. (12.18) for G11 and G12, respec-
tively.

Ḡ11(s) =
0.61

1+ s · 0.15
(12.17)

Ḡ12 =
−2.57

0.13 · s+ 1
(12.18)

To test the estimated models, the input data from the estimation data
sets in Fig. 12.11 and Fig. 12.12 were applied to G11 and G12, respectively.
The output data produced by these transfer functions was then compared by
the measured output data. Figure 12.13 shows the output data generated
by the estimated FOTD and first-order with no time delay models compared
to the measured output data for G11, and Fig. 12.14 shows the same for G12.

As seen in figures 12.13 and 12.14, the first-order models without a
time delay resulted in a fit comparable to that of the FOTD models. Hence,
the first order models without time delay were chosen to be used for the
decoupling network.

The reason that the models with the time-delay do not lead to the better
fit than the models without is due to the placement of the used temperature
sensor in comparison to the air outlet of the ventilation system. The sensor
used for temperature measurements is placed in the center of the room
under the ceiling, in close proximity to the air outlet of the ventilation
system. Hence, the influence of any change in supply air temperature or air
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Figure 12.14 Comparison of the estimated FOTD model and the first order
model without time delay for G12 to the measured room temperature Troom.
The supply air temperature Tsupply is decreased by 1.5○C.

flow rate on the measured room temperature has a negligible small time
delay.

Using the first-order models resulted in the decoupling transfer function
as shown in Eq. (12.19).

D(s) =
−0.39 · s− 2.57
0.08 · s+ 0.61

(12.19)

Experiment Setup and Results

The experiments to test the decoupled PI controller on the test-bed were
carried out in July 2015, during summer season. During that time, the
outside temperature was in the range of 17.4 and 19.6 ℃.

Using the estimated first-order models, the parameters of the PI con-
troller for G11 were tuned using the Ziegler-Nichols tuning rules in Matlab.
The resulting parameters used in the tests were K P = 2.12 and Ki = 0.004.
The reference temperature for the room was set to 21.9 ℃.

To test the effect of the decoupling network, the air flow rate was in-
creased manually from 0.12 to 0.33 [k�/m3]. The resulting room temper-
ature was then recorded and observed. For evaluation purposes, the AC
temperature TAC and the CO2 concentration were recorded as well.

Figure 12.15 shows the control signals ṁv and Tsupply and the measured
room temperature Troom and CO2 concentration. The room temerature is
shown in the upper left panel. The lower left panel shows the supply air
temperature as determined by the PI controller, which regulates the room
temperature. The air flow rate ṁv is shown in the lower right panel. The
upper right panel shows the CO2 concentration. This is not used in the
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Figure 12.15 Comparing the decoupled PI controller with the case without
a decoupling network. The data was recorded in July 2015 on the KTH test-
bed. The upper left panel shows the measured room temperature. The lower
left panel shows the supply air temperature determined by the controller.
The upper right panel shows the measured CO2 level. The lower right panel
shows the mass flow rate of ventilation air. In the case where the decoupling
transfer function was used, the room temperature returned to its reference
temperature faster as when no decoupling was used.

experiments, but shown here for the sake of completeness. In all panels,
the green line shows the case with decoupling, and the blue line shows the
case without decoupling.

For both cases, with and without decoupling, the room temperature was
initially at approximately 21.9○C. When the air flow rate was increased
manually, the room temperature dropped about 0.2○C, and the supply air
temperature was increased by the PI controller to drive the room tempera-
ture back to its reference value of 21.9○C. It seems from these results, that
with the decoupling network, the room temperature returns to its reference
value quicker than without a decoupling network. These results would how-
ever have to be tested by more experiments. The supply air temperature is
at its maximum saturation level during the second half of the experiments.
Also, the drop in room temperature is less than one degree Celsius. With an
improved experiment setup, leading to a larger drop in room temperature,
and avoiding saturation, better results could be achieved.
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Discussion

Inverted decoupling was applied to two different examples in building au-
tomation to reduce interactions between some of these variables. The first
example was four rooms arranged in a square with coupled temperature
dynamics. The purpose was to reduce the effects of these couplings through
inverted decoupling. The second example was the regulation of the room
temperature using an air conditioning system, when the air flow rate in
the air conditioning system was changed. This is a one-directional coupling,
where the change of air flow rate influences the room temperature. This
influence was to be decreased using inverted decoupling.

In both of the examples, inverted decoupling could decrease the effects
of interactions in simulation studies using non-linear simulation models,
even though only first-order models were used for the decoupling transfer
functions. These models were estimated using step-response data, either
recorded from the simulation models or measured at the KTH test-bed.

[Shen et al., 2010] and [Garrido et al., 2011] also applied a decoupling
method to an example from building estimation, finding that decoupling
could reduce or even cancel out present interactions. In these papers, the
rooms temperature of four rooms was regulated using variable air volume
dampers in an air conditioning system, which lead to cross-couplings. [Gar-
rido et al., 2011] used inverted decoupling as well, having a system of
first-order plus time delay models for simulations. [Shen et al., 2010] tested
a decoupling method based on equivalent transfer function methods on a
lab-size process, but the used decoupling method is not using PID controller.

However, decoupling control is not very commonly found in buildings
automation. Instead, it is mainly used in process control and chemical
engineering. Inverted decoupling is often used for distillation processes
[Seborg et al., 2010]. Searching with the search engine Scopus [Elsevier,
2016] for "inverted decoupling" gave 24 search results in English language.
Most of these article were in journals within chemical engineering, and
none of them in building automation.
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In this thesis, inverted decoupling was used to reduce interactions for the
two examples described above. Even though interactions could be decreased,
they were not canceled out completely. The reason for this is that the process
to be controlled, and the used simulation models, were not linear. In the
case fo the adjacent rooms, the simulation model was a complex model based
on multiple physical domains, taken from the Modelica Buildings Library.
For the ventilation system at KTH, the simulation model was bi-linear, and
experiments were performed on a real test-bed. The models used for the
transfer functions of the decoupling network on the other hand were chosen
to be first order models.

When using models of different orders for all the transfer functions in
the decoupling network, one has to take realizability into consideration,
so that none of the transfer functions in the decoupling network has more
zeros than poles or an unrealistic time delay. In [Garrido et al., 2011], an
extended version of inverted decoupling was presented. With this approach,
there is more flexibility for the transfer functions used for the decoupling
network. On the other hand, the configuration of the decoupling transfer
function needs to be changed and adjusted to the model describing the
process dynamics. Using the same number of poles and zeros for all transfer
functions estimated for the system’s dynamics, the problem of realizability
can be circumvented. Here, the choice of first-order models is motivated by
the idea of having as simple models as possible, and to have a simple way
of identifying model parameters. In this thesis, the first-order models were
estimated using step-response tests. However, it is possible to estimate firs-
order models using auto-tuning methods, originally developed to tune PID
controllers [Berner et al., 2014]. However, realizability can be achieved with
higher order models as well.

In fact, the step-response data measured for both the adjacent rooms
and the simulations of the KTH test-bed indicated that there are two time
constants governing the dynamics of the systems. In Fig. 11.4 for example,
it can be seen that the step-response in made up of one part corresponding
to a faster time constant, and another part corresponding of a slower time
constant of several hours. For the KTH ventilation system simulations
it is similar, compare to figures 12.6 and 12.7. In both cases, the slow
time constant corresponds to the temperature dynamics of the building
envelope, consisting of walls, ceiling and floor. The faster time constant
corresponds to the heating of the air inside the room. The first-order models
only take into account one of these time constants. In the case of the
four adjacent rooms, the models were estimated to model the dynamics of
the slower time constant. This was because the temperature dynamics of
the building envelope was important for the coupling of the temperature
dynamics between the rooms. For the KTH ventilation system, the first-
order models were estimated to use the faster time constant, since the
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heating of the room air was considered.
Using models of higher order, which more accurately describe the process

dynamics might improve the decoupling. In the case here, estimating second
order models taking into account both the slow and the fast time constant
present in the step-response would improve the goodness of fit of the model
compared to the measured output data, and hence lead to better decoupling.
When all parts of the multi-variable system are estimated through second-
order transfer functions, realizability is still given.

In [Seborg et al., 2010] it is stated, that decoupling methods are not very
useful, since there are no models accurate enough to describe a process.
However, the simulation results in this thesis show that it is possible to
decrease interactions in a non-linear process by using first-order models for
the decoupling transfer functions. Using second-order models instead, the
decoupling could even be improved further.

For both the adjacent rooms and the KTH ventilation system, the cou-
pling of the temperature dynamics did not lead to a very large change in
temperature dynamics. For the adjacent rooms for example, the change in
room temperature following a change in heat flow into a neighboring room
was 0.7○C. Nevertheless, using the decoupling transfer functions could de-
crease the effects of the coupling in the simulation studies.

For the experiments done on the KTH test-bed, the results showed that
the room temperature returned to its reference value slightly faster using
the decoupling network, than when decoupling is not used. The size of
the deviation from the reference temperature is however the same for both
cases. One reason might be that the deviation of the room temperature is
only 0.2○C. One reason for this is that the experiments were done during
the summer season, when the outside temperature was between 16○C and
20○C. Moreover, the temperature of the air in the ventilation system is in
the range of approximately 20○C to 22○C, which gives little flexibility to have
larger deviation of the room temperature by just increasing the flow rate of
the air. Also, the temperature sensor used is in close proximity to the air
outlet of the ventilation system, so that a change in supply air temperature
has an almost immediate effect on the measured room temperature. Another
issue, as can be seen in Fig. 12.15, was that the supply air temperature
determined by the controller and the decoupling network was saturated
for almost half the experiment time. This is the same period when the
room temperature deviates between the cases with and without decoupling.
Furthermore, it was assumed for the experiments done that the low-level
PI controller regulating the AC temperature TAC is regulating perfectly,
i.e., that TAC,ref = TAC. As seen in for example in Fig. 12.11, the reference
given to the low-level controller is not reached. For the estimation data
in Fig 12.11, there is a remaining error of approximately 0.8○C, which is
more than the deviation of the room temperature from its reference. Despite
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that, the simulation study for the KTH test-bed showed a reduction in the
interactions using inverted decoupling. An improvement of the experiment
setup can be valuable to show the effect of decoupling even in a real setting.

As mentioned above, decoupling methods are not very common in build-
ing automation research. The most popular method in the research com-
munity to coordinate different variables is MPC. MPC has the advantage
of, e.g., taking into account weather predictions, occupant schedules and
other disturbances. However, MPC needs a complex model of higher than
first order to describe building dynamics, which needs to be identified for
every specific building. Furthermore, the necessary change in the set-up of
a building with an existing controller, maybe additional sensors, add to the
cost of installing such a system on an existing building.

In this thesis, the idea was to use a decoupling scheme in order to
upgrade an already existing control structure with PID controller and rule-
based supervisory control. An advantage of inverted decoupling, as com-
pared to ideal or simplified decoupling is that the same controller as for the
SISO process, including anti-windup, can be used [Gagnon et al., 1998].

To summarize, inverted decoupling was used for two different applica-
tions in building automation. Using first-order models to describe the pro-
cess dynamics of non-linear simulation models, inverted decoupling could
reduce interactions between the control variables.

The simplicity of the implementation and design of inverted decoupling
makes it attractive to combine with already existing PI controllers on build-
ings components and other low-level controllers, making it easier for a
supervisory controller to coordinate all the different parts of a building
automation system.
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Conclusion and Future

Work

Inverted decoupling was applied to two different examples in the area of
temperature control in buildings in the second part of the thesis.

The first example was a nonlinear model of four adjacent rooms with
coupled temperature dynamics. The simulation model was implemented
using the Modelica Buildings Library, which gives a complex model based
on multiple physical domains. In this example, the goal was to eliminate the
couplings in temperature dynamics between the rooms using the inverted
decoupling method. Since the simulation model was approximated by simple
first order models, perfect elimination was not possible. However, despite
the very simple first-order approximation, the effect of the couplings could
be reduced using inverted decoupling.

The second example concerned the control of room temperature using the
air flow rate and the air temperature in a ventilation system. The coupling in
this example was from the change in air-flow rate to the room temperature.
The room temperature was to be regulated using the temperature of the air
in the ventilation system. However, a change in the flow-rate of this air had
an influence on the room temperature as well. As in the previous example,
the coupling could not be taken away completely. However, in a simulation
study the coupling from the air flow rate to the room temperature could be
reduced using inverted decoupling.

Future Work

Considering the results in this part of the thesis, the possibility to use
inverted decoupling in building automation seems promising. There are
several directions in which the research can be continued. Some of these
directions are as follows:
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Models of Second Order: Fast and Slow Dynamics As discussed in
Section 11.2 for example, the step-response test data showed that there are
two different time constants involved in the dynamics. This seems reason-
able, since the air in a room gets heated up much quicker than the building
envelope, when heat is added to it. To cover both the slow and the fast
dynamics, models of the following structure could be estimated instead of
first-order models:

G =
K1

1+ sT1
+

K2

1+ sT2
(14.1)

The fast dynamics are represented by the time constant T1, and the slow
dynamics are represented by the time constant T2. This model has one
zero and two poles. The estimation of the model parameters could be done
with the step-response data used in this thesis, by considering it as two
super-imposed step responses.

As an example, a second order transfer function as in Eq. (14.1) was
estimated for G11 in Chapter 11, i.e., for the dynamics from the heat flow
into room 1 to the temperature in room 1 for the four adjacent rooms.
The second order model in Eq. (14.1) is a sum of two first-order models.
The estimation method for first-order models described in Chapter 11 was
therefore used. Figure 14.1 shows the recorded output data (blue solid line),
the output data generated by the first order model estimated in Chapter 11
(greed dashed) and the output data generated by the second-order model
according to Eq. (14.1) (red dash-dotted). It can be seen that the second-
order models has a much better fit compared to the first-order model.
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Figure 14.1 Comparison of a first-order and second-order model estimated
for G11 in Chapter 11. It can be seen, that the second-order model has a
better fit with the measured data than the first-order model.

Because of the improved model fit, it is expected that the decoupling
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would be improved using second-order models instead of first-order models
to describe the temperature dynamics.

Using Eq. (14.1) for all transfer functions Gi j, i, j = 1, ..., 4, in Eq.
(10.4), the decoupling network’s transfer functions are made up of third
order transfer functions having three poles and three zeros. The decoupling
network is thus realizable. Looking at Fig. 11.4, it appears that the use of
second order models is most crucial for Gii, i = 1, ..., 4. When using second
order models as in Eq. (14.1) above for the Gii, i = 1, ..., 4, in the decoupling
network in Eq. (10.4), and first order models for all other transfer functions
Gi j, i, j = 1, ..., 4, i ,= j,, the decoupling network is made up from second
order transfer functions with two zeros and two poles, which is realizable
as well. With this, better decoupling effect is expected.

Alternative Experiment Setups for the Ventilation System An update
of the experiment setup for the ventilation system in the KTH test-bed could
improve the results concerning the effect of the inverted decoupling method.

As seen in the experiment results in Fig. 12.15, the control signal
Tsupply,ref reached its upper saturation level after approximately half the
simulation time. An adjustment of initial values of all used signals, so that
the control signal stays within its boundaries, will make the results clearer.

The deviation of the room temperature from its reference value is only
ca. 0.2○C. An increase in this deviation when no decoupling is used can
make the effect of the decoupling network more visible. One way to achieve
that could be to use a sensor at a different location in the room. In the
room used for experiments in KTH test-bed, there are sensors at all walls
in addition to the temperature sensor in the center of the room. In this way,
a temperature sensor further away from the air outlet of the ventilation
system, leading to slower dynamics, could help increase the deviation of the
room temperature.

Furthermore, using the temperature of the ventilation air for heating
limits the possibilities for heating, since it is in the range o approximately
20○C to 22○C. Performing experiments during winter season, instead of
summer season, enables the use of radiators for heating.

Improving the Modelica Simulation Model The simulations for the
adjacent rooms are done using the Modelica Buildings Library version 1.6.
The room model available in this version of the library was a completely
mixed room. A room model that also includes the air flow in the room is
available in newer version of the Buildings Library.

Furthermore, the integration of a heating system, for example radiators,
in the simulation model would be interesting to make the simulations even
more realistic.
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Decoupling of Several Rooms in a Row In this thesis, four adjacent
rooms were used to test the inverted decoupling method. This leads to a 4-
by-4 decoupling matrix shown in Eq. (10.4). For larger buildings with more
rooms, the decoupling system will get more complex, with communications
needed between all the rooms. However, when the temperature is changed
in one of the rooms, the effect of this on the temperature in rooms further
away will be neglectable.

Considering a row of more than two rooms as an example, a change
of room temperature in the first room of the row will have an insignificant
effect on, e.g., the 5th room of the row. Probably, a significant effect would be
measured only on the neighboring second room. In this case, the decoupling
matrix D(s) in Eq. (10.4) would be a banded matrix, with the entries on the
secondary diagonal being the only non-zero ones. It would be interesting
investigating how well the decoupling works with this setting. This would
have the advantage of easier implementation for larger buildings.

Model Predictive Control Model predictive control is viewed to be the
most suitable control method for the control climate and energy in build-
ings. It would be interesting to implement Model Predictive Control into
the Modelica model of the four adjacent rooms, in order to compare it to
decoupled PI controllers proposed in this thesis.
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A

Convexity of the Cost

Function

One of the advantages of the cost function (5.1) over, e.g., the asymmetric
cost presented in [Kovatchev et al., 2000] is that it is convex.The convexity
of L(y(k)) in Eq. (5.1) with respect to y(k) can be shown as follows. First,
it is shown that L1 = max{(d − y(k))3, 0} is convex in y(k). It is L1 =
max{(d − y(k))3, 0} = (max{(d − y(k)), 0})3. Since max{(d − y(k)), 0} is
the point wise maximum of two affine functions, it is convex. The function
x3 is convex and non-decreasing as long as x ≥ 0. The composition of
these two convex functions to L1 = (max{(d − y(k)), 0})3, gives a convex
function [Boyd and Vandenberghe, 2004]. Note that max{(d − y(k)), 0} is
always positive. The second part of L(y(k)), which is L2 = a · y(k) + b, is
an affine function and thus convex. The weighted sum of L1 and L2 gives
L(y(k)) = L2 + cL1, and is convex since L1 and L2 are convex and c ≥ 0
[Boyd and Vandenberghe, 2004].
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B

Simulation Results Part I

The following pages contain additional results for the first part of this thesis.
In Chapter 6, simulation results for one virtual patient were presented. The
figures here show the simulation results for the all three virtual patients.
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Figure B.1 Simulation results for Virtual Patient 1 with Bolus Calculator.
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Figure B.2 Simulation results for Virtual Patient 2 with Bolus Calculator.

126



Appendix B. Simulation Results Part I

y
B

G
(t
)

0

100

200

300

06 : 00 12 : 00 18 : 00

time [h]

u
i(

t)
u
�
(t
)

m
ea

l
[g

]

0

0

0

5

1

10

50

100

06 : 00

06 : 00

06 : 00

12 : 00

12 : 00

12 : 00

18 : 00

18 : 00

18 : 00

Figure B.3 Simulation results for Virtual Patient 3 with Bolus Calculator.
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Figure B.4 Simulation results for Virtual Patient 1 with the optimization-
based controller, tuned for good control.
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Figure B.5 Simulation results for Virtual Patient 1 with the optimization-
based controller, tuned for less insulin and glucose dose advices
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Figure B.6 Simulation results for Virtual Patient 2 with the optimization-
based controller, tuned for good control.
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Figure B.7 Simulation results for Virtual Patient 2 with the optimization-
based controller, tuned for less insulin and glucose dose advice.
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Figure B.8 Simulation results for Virtual Patient 3 with the optimization-
based controller, tuned for good control.
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Figure B.9 Simulation results for Virtual Patient 3 with the optimization-
based controller,tuned for less insulin and glucose dose advice.
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