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Abstract 

This study proposes a technique for determining a tool–chip thermal conductance coefficient and heat flux in 
machining. The technique is based on solving an inverse heat transfer problem (IHTP). Because the IHTP is ill-
posed, a priori information is required for its effective solution. To derive this information, substantial qualitative 
and quantitative analysis of a mixed boundary value problem for the heat equation and an illustrative test case 
for IHTP are provided. It has been established that the averaged interfacial chip temperature is needed for an 
effective IHTP solution. Thermal imaging combined with a special experimental setup was used to determine chip 
temperature. It was also found that a function describing the heat flux time dependency belongs to a set of 
decreasing functions.  

Tool–chip thermal conductance coefficients were obtained for high-speed steel and cemented carbide tooling. 
On the microscale, this data was interpreted in terms of a conforming rough surface contact conductance model, 
where tool wear was found to govern variations in the thermal conductance coefficient. 

Keywords:  

Machining; Tool–chip thermal conductance coefficient; Heat flux; Inverse method. 

Nomenclature 

𝜌 – Density, (kg/m3)  
𝑐௣ – Specific heat, J/(kg K) 
𝑘 – Thermal conductivity, W/(m K)  
𝑡 – Time, s 
𝑢 – Temperature, oC 
𝑢଴ – Initial temperature, oC 
𝑞, 𝑞(𝑡) – Heat flux, W/mm2 
ℎ – Coefficient of heat exchange with the 
environment, W/(mm2 K) 
ℎ௧௖௖ – Tool–chip thermal contact conductance 
coefficient, W/(mm2 K)  
𝑢௖௛௜௣ – Average chip temperature, oC 
𝑢௘௫௧ – Temperature of the environment, oC 
𝑛 – Outward normal to boundary 
𝑆 – Tool surface 
 

𝑆ଵ – Tool–chip interface 
TC1, …, TC8 – Labels for thermocouples 
𝑚 – Number of thermocouples 
𝑢௜

௠௘௔௦(𝑡), 𝑢௜
௖௔௟௖(𝑡) – Measured and calculated 

temperature, respectively, at the position of 𝑖-th 
thermocouple installation, oC 
𝑇 – Modeling time, s 
𝐻஼ – Contact microhardness, MPa 
𝑃 – Contact pressure, MPa 
𝑛 – Contact spot density, items/m2  
𝑎 – Microcontact spot radius, m 
𝑘௘௙௙ – Effective thermal conductivity of the joint 
𝜓(𝜀) – Thermal constriction parameter 
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1. Introduction 

Although the temperature distribution in a cutting tool body is a by-product of the cutting process, it is important 
because it has a direct impact on the effectiveness and accuracy of the machining process [1]. Significant effort 
has thus been invested in obtaining reliable computational methods to determine the temperature distribution 
in a tool [2] as the fact that the temperature field is a three-dimensional distributed characteristic limits the use 
of direct experimental measurements.  

The basis of computational methods is the heat transfer equation, the essence of which is the differential 
formulation of the energy conservation law in the neighborhood of any internal point of the body. There are no 
fundamental difficulties in its solution once the boundary conditions are known. However, this presents an 
interesting problem: Do Dirichlet, Neumann, or mixed boundary conditions most closely describe the case to be 
modeled? How should the physical parameters be determined with acceptable accuracy? These questions 
become more complicated because the most important thermophysical part of the boundary — the tool–chip 
contact — is extremely small compared to the rest of the tool surface. 

This issue has led to the creation of hybrid models that take into account both the macroscale tool heat transfer 
and microscale machining mechanics in order to reconstruct the 3D tool temperature field [3]. In this context, 
the consistency of the macro- and micromodels is important to consider. First, the heat balance has to be 
determined on a macroscale in average, resulting from the condition of energy conservation. This heat balance 
determines the average characteristics for the micromodel. And then on a microscale, the heat has to be 
redistributed in time and space taking into account surface topography and interaction conditions. 

It is known that almost all the power consumed during metal cutting is converted into heat [4]. Therefore, the 
total amount of heat distributed between tool, chip, workpiece, and environment can be easily calculated as the 
product of the cutting force and the cutting speed. To determine the heat distribution, researchers have studied 
heat fluxes into the tool, chip and workpiece. A number of papers have been devoted to heat flux determination 
in different machining processes such as deep grinding [5],  high-speed drilling [7], dry machining of aeronautic 
aluminum alloy [9], MQL tapping and reaming [10] or devoted to prediction of heat flux distribution [6] and its 
effect on tool thermal deformation [8]. On the one hand,  heat flux is the boundary condition (initial data) for the 
heat transfer equation, and on the other hand, it is a parameter that is almost impossible to measure due to the 
small area of the tool–chip contact and the aggressiveness of the cutting process. Thus the inverse heat 
conduction problem has become one of the main instruments for calculating the heat flux [11]. The solution of 
this problem gives rise to various techniques, let’s say, modal approach [12], sequential algorithm [18], selection 
method [16], or curve fitting for heat flux time dependency [17], as well as to developing of temperature data 
collection methods such as thin film thermocouples measurement [15], infrared camera [19], or embedded 
temperature measuring tool holder system [20]. 

However, inverse problems are ill-posed [22] and therefore their solution methods are very sensitive to the 
accuracy of the initial data and can return solutions that do not correspond to the physics of the cutting process 
[13, 14]. Thus it is very important to have accurate a priori information about the phenomenon being investigated 
[23]. To illustrate the importance, it should be noted that the ill-posedness of inverse heat transfer problem 
requires a regularization mechanism in the solution method. Its role is to suppress the "wrong" or "parasitic" 
solutions of the inverse problem. This mechanism is formed on the basis of additional, a priori information on 
the solution. Existing, relatively universal methods for solving the inverse heat transfer problem use smoothness 
as a regularization, because parasitic solutions very often are highly oscillating functions. In numerical methods, 
such a regularization penalizes sharp changes in the sought function. In this case, if the function really had a 
segment with a sharp, for example, decreasing character (Fig. 15) then it would not be restored correctly. For 
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instance, reported in [13], the time dependency of the heat flux demonstrates relatively slow increasing and 
decreasing trends during tool engagement and disengagement. This fact is inconsistent with reality, because, for 
example, the flux becomes zero practically instantly when tool disengaged. In [13, Page 1645], the problems of 
the solution methods are honestly mentioned “These methods deform the shape of the estimated heat flux 
versus time diagram especially in the regions that the heat flux changes sharply (the start and the end of 
machining)”. Returning to the sense of the regularization as an additional information on the solution behavior, 
this information provides a mechanism for the formulation of a set of feasible solutions that correspond to the 
physics of the process.  

On the basis of the recommendations of [24] and [1], an experimental setup was proposed to ensure high 
accuracy of the initial data on the temperatures in the tool body. The experiments showed that the time 
dependency of heat flux into tool is described by a decreasing function [21], thus creating a description of a priori 
behavior. However, the exact shape of the decreasing trend, which is currently approximated by a power 
function, remains unknown. Similarly, questions remain about how the conditions of the machining process 
govern the functional behavior of the heat flux and how this behavior reflects the thermal phenomena in the 
cutting zone.  

In [21] the Neumann condition (heat flux dependent on time) was used as the boundary condition for the heat 
equation. The function describing the time dependency of the heat flux was considered as unknown and was 
chosen from a set of decreasing functions. The argument for choosing a function that decreases over time was 
that the maximum intensity of the flux occurs at first contact, when the practically cool tool meets the chip 
temperature at the interface, and flux is proportional to the temperature difference. As the tool heats up, the 
heat flux drops rapidly at first, and then decreases at a slower rate. On the other hand, the limiting case of this 
reasoning is the explicit assignment of the temperature (chip) at the tool boundary, which, under constant cutting 
conditions, remains unchanged during machining. In terms of boundary conditions, this is the Dirichlet boundary 
condition [25]. So the question is, which approach should be preferred: the assignment of the temperature 
(Dirichlet condition), or the heat flux across the tool boundary (Neumann condition). 

A compromise in this case is the mixed boundary condition of the form: 

−𝑘
డ௨

డ௡
= ℎ௧௖௖(𝑢 − 𝑢௖௛௜௣),         (1) 

where ℎ௧௖௖ is the tool–chip thermal contact conductance coefficient. 

This equation summarizes both the Dirichlet and Neumann conditions, because when ℎ௧௖௖ tends to infinity, the 
temperature equals the chip temperature (the Dirichlet condition). On the other hand, with smaller values of 
ℎ௧௖௖, all possible intermediate heat flux values are stipulated down to zero (the Neumann condition). Another 
advantage of using the mixed boundary condition is that the coefficient ℎ௧௖௖ characterizes the thermal 
conductance of the tool–chip contact interface [26, 29]. The importance of this coefficient for adequate thermal 
modeling of the cutting process can be seen by the number of publications on this subject which consider 
coefficient  ℎ௧௖௖ in view of friction [27, 30] or thermal contact resistance [28]. 

This paper uses the same temperature data set as the previous research that relied on the Neumann boundary 
condition [21]. However, in this paper the analysis uses the mixed boundary condition (Eq. 1), and the time 
dependence of the heat flux is not regulated a priori but depends on the coefficient ℎ and can be numerically 
determined as a result of the simulation. Finding this coefficient will answer the question about the exact form 
of the heat flux time dependency and link it to the cutting process parameter (thermal resistance at the tool–
chip interface). It will also evaluate the accuracy of the approximation of the exact form of the heat flux with the 
help of the power function from [21]. 
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2. Boundary condition analysis 

2.1 Boundary value problem 

As stated in the introduction, when formulating a boundary value problem the most important aspect is the 
adequate formulation of boundary conditions. This is because the role of the heat equation is only to represent 
the energy conservation law in the neighborhood of interior points within a tool body. Given that a tool itself is 
an assembly of multiple components, it is also important to establish the correct description of thermal contacts 
between them. 

Because heat transfer inverse problems are very sensitive to the accuracy of the measurement data [11], the 
authors earlier proposed [17, 21] an experimental setup to obtain temperatures in a cutting tool so that the 
uncertainties are minimized. The uncertainties that remain are analyzed from the point of view of their influence 
on the result. This allows accurate data on temperatures within a tool body to be obtained [21]. In those papers, 
the inverse heat conduction problem was used with the temperature distribution described by the Neumann 
boundary value problem:  

𝑑𝑖𝑣(𝑘(𝑢)𝑔𝑟𝑎𝑑 𝑢) =  𝜌𝑐௣(𝑢)
డ௨

డ௧
         (2) 

𝑘(𝑢)
డ௨

డ௡
ቚ

ௌభ

= 𝑞(𝑡)          (3) 

−𝑘(𝑢)
డ௨

డ௡
ቚ

ௌ\ௌభ

= ℎ(𝑢 − 𝑢௘௫௧)         (4) 

𝑢|௧ୀ଴ = 𝑢଴.           (5) 

This formulation assigns the temperature distribution in a body to an unknown heat flux 𝑞(𝑡) flowing into a tool 
through a tool–chip interface (Fig. 1). Additional complexity might be introduced if the heat flux has a spatial 
resolution, (𝑞(𝑥, 𝑡)). However, the experimental setup was designed [21] to minimize the impact of spatial 
resolution while maximizing time resolution. Thus, the flux spatial distribution is considered uniform.  

The boundary condition (Eq. 3) also does not reflect the cause of the heat flux. It is known [4] that nearly all the 
power consumed in a machining process is converted to heat and results in a chip temperature 𝑢௖௛௜௣. If spatial 
distribution is neglected, the heat flux is assumed to be proportional to the temperature difference between the 
contacting pair, the tool and the chip (Fig. 1). 

Mathematically, this corresponds to the mixed boundary condition of Eq. 1.  

 

Fig. 1. Schematic of tool–workpiece interaction including tool-chip interface and embedded thermocouples. 
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This choice of boundary condition makes it possible to include the chip temperature 𝑢௖௛௜௣ and heat conductance 
coefficient ℎ௧௖௖ in the solution of the problem (Eqs. 2, 4, and 5), thus characterizing the thermal conditions of the 
tool–chip interface.  

2.2 Qualitative analysis of the boundary value problem solution 

Equation (Eq. 2) is nonlinear because material thermophysical properties are temperature dependent. Analyzing 
the functional behavior of nonlinear problem solutions requires the use of complex methods of functional 
analysis and a detailed description of the nature of the nonlinearity [31]. In our case, the dependence of material 
properties on the temperature within the range of interest is relatively weak and is described by smooth bounded 
functions [21]. Therefore, for qualitative analysis, the problem (Eq. 1, 2, 4, 5) can be linearized. Thus the 
thermophysical properties are considered to be independent of temperature and equal to the average values 
within the temperature range. Detailed analysis of nonlinearity is not considered in this section and is restricted 
to the linear case of the problem (Eq. 1, 2, 4, 5). 

The linearized heat conduction problem has the form: 

∆𝑢 =  
ఘ௖೛

௞

డ௨

డ௧
,           (6) 

𝑘
డ௨

డ௡
+ ℎ(𝑥)𝑢ቚ

ௌ
= ℎ(𝑥) 𝜑(𝑥),          (7) 

𝑢|௧ୀ଴ = 𝑢଴,           (8) 

where 

𝜑(𝑥) =  ൜
𝑢௘௫௧, 𝑖𝑓  𝑥 ∈ 𝑆\𝑆ଵ

𝑢௖௛௜௣, 𝑖𝑓 𝑥 ∈ 𝑆ଵ
, 

 ℎ(𝑥) =  ൜
ℎ, 𝑖𝑓  𝑥 ∈ 𝑆\𝑆ଵ

ℎ௧௖௖ , 𝑖𝑓 𝑥 ∈ 𝑆ଵ
. 

The solution of the problem (Eq. 6–8) is defined unambiguously according to the existence and uniqueness 
theorem [25]. However, this solution is a function that depends parametrically on the chip temperature 𝑢௖௛௜௣ 
and coefficient ℎ௧௖௖. 

The Fourier method is used to obtain a formal solution of the problem (Eq. 6–8). First the solution of the problem 
(Eq. 6–8) is presented as the sum 

𝑢 = 𝑣 + 𝜔,            (9) 

where 𝑣 is the solution of the problem with homogenous boundary conditions 

∆𝑣 =  
ఘ௖೛

௞

డ௩

డ௧
,           (10) 

𝑘
డ௩

డ௡
+ ℎ𝑣ቚ

ௌ
= 0,          (11) 

𝑣|௧ୀ଴ = 𝑢଴ − 𝜔           (12) 

and 𝜔 is the solution of steady-state heat equation with non-homogenous boundary conditions 

∆𝜔 =  0, 𝑘 డఠ

డ௡
+ ℎ(𝑥)𝜔ቚ

ௌ
= ℎ(𝑥) 𝜑(𝑥).       (13) 
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The formal solution of the problem (Eq. 10–12) can be written in the form [25]  

𝑣(𝑥, 𝑡) = ∑ 𝑎௞ exp(−𝜆௞𝑡) 𝑊௞(𝑥),ஶ
௞ୀଵ         (14) 

where  

𝑎௞ =
ఘ௖೛

௞
∫ (𝑢଴ − 𝜔)𝑊௞(𝑥)𝑑𝑥

ீ
,  

𝐺 is the tool body, 𝑊௞(𝑥), 𝜆௞ , 𝑘 = 1, 2, …  are eigenfunctions and eigenvalues of the problem (Eq. 10–12), 
respectively.  

Let us consider the flux 𝑞(𝑥, 𝑡) through the surface 𝑆ଵ as a function of 𝑡 in the problem (Eq. 6–8) 

𝑞(𝑥, 𝑡)|ௌభ
≜ −𝑘

డ௨

డ௡
ቚ

ௌభ

= ℎ௧௖௖൫𝑢 − 𝑢௖௛௜௣൯.       (15) 

Now, taking into account (Eq. 9) and (Eq. 14), the following formula can be obtained:  

𝑞(𝑥, 𝑡)|ௌభ
≜ ℎ௧௖௖൫∑ 𝑎௞ exp(−𝜆௞𝑡) 𝑊௞(𝑥)ஶ

௞ୀଵ + 𝜔 − 𝑢௖௛௜௣൯.      (16) 

Formula (Eq. 16) represents the heat flux as an eigenfunction expansion which parametrically depends on 
concrete parameters (chip temperature 𝑢௖௛௜௣ and coefficient ℎ௧௖௖). However, using this formula would require 
the eigenvalues and functions in Eq. 15 to be found analytically for realistic tool geometries and assemblies as 
well, which is computationally prohibitive. On the other hand, it is known [4] that 𝑢௖௛௜௣ reaches its steady state 
temperature within the first second of tool engagement while the tool body remains practically cool. It 
corresponds to maximum intensity of the heat flux because it is proportional to the difference of temperatures 
[32]. Then the difference becomes smaller and continue to decrease as the tool is heated up. This implies that 
when solving a heat conduction inverse problem, the solution should be chosen from decreasing functions of 𝑡. 
A simple unidimensional case (section 3.1), which can be treated analytically, reveals the pattern for decreasing 
heat flux as well as the functional behavior of an inverse problem solution.  

3. Analysis of heat transfer problem  

As demonstrated above, there is physical justification for a decreasing heat flux function that depends on 𝑢௖௛௜௣ 
and ℎ௧௖௖ (Eq. 15, 16). Therefore, 𝑢௖௛௜௣ and ℎ௧௖௖ are the variables required to solve the heat conduction inverse 
problem. Since the efficiency of solving the inverse heat conduction problem depends on a priori information 
about the behavior of the solution, it is useful to study in detail the dependence of its solution on  𝑢௖௛௜௣ and ℎ௧௖௖. 
To do this, a simplified boundary problem is considered as an illustrative test case, for which it is possible to 
obtain an analytical solution relatively easily. 

3.1. One-dimensional illustrative test case 

In this section, the bar-shaped test body shown in Fig. 2 is used to illustrate the Fourier method for obtaining 
heat flux as an analytical function depending on ℎ and external temperature 𝑢௘௫௧ .   
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Fig. 2. Geometry of the test body for the heat conduction problem. 

The bar is isolated on lateral surfaces, the mixed boundary condition is specified on the left face (𝑥 =  0) and the 
Neumann’s condition on the right face (𝑥 = 𝐿) (Fig. 2). The temperature distribution in this body can be described 
using the one-dimensional boundary value problem for the heat equation: 

డ௨

డ௧
=

௞

௖೛ఘ

డమ௨

డ௫మ,           (17) 

𝑘
డ௨

డ௫
ቚ

௫ୀ଴
= ℎ(𝑢 − 𝑢௘௫௧),         (18) 

డ௨

డ௫
ቚ

௫ୀ௅
= 0,           (19) 

𝑢|௧ୀ଴ = 𝑢଴.           (20) 

To apply the Fourier method, Eq. 18 is re-formulated as follows 

 −𝑘
డ௨

డ௫
+ ℎ𝑢ቚ

௫ୀ଴
= ℎ𝑢௘௫௧  

and a new function 𝑣 = 𝑢 − 𝑢௘௫௧ is introduced to obtain homogeneous boundary conditions.   

Now, the solution to the problem (Eqs. 17–20) is obtained by substituting the auxiliary function in Eq. 17:   

డ௩

డ௧
=

௞

௖೛ఘ

డమ௩

డ௫మ,           (21) 

−𝑘
డ௩

డ௫
+ ℎ𝑣ቚ

௫ୀ଴
= 0,          (22) 

డ௩

డ௫
ቚ

௫ୀ௅
= 0,           (23) 

𝑣|௧ୀ଴ = 𝑢଴ − 𝑢௘௫௧.          (24) 

Now the solution of the problem (Eqs.21–24) can be presented in the form of a series  

𝑣(𝑥, 𝑡) = ∑ 𝐶௜ exp ൬−
௞

௖೛ఘ
𝜆௜𝑡൰ 𝑋௜(𝑥)ஶ

௜ୀଵ ,        (25) 

where 𝑋௜(𝑥) =
௛

௞
sin൫ඥ𝜆௜𝑥൯ + ඥ𝜆௜ cos൫ඥ𝜆௜𝑥൯ and 𝜆௜ , 𝑖 = 1,2, …  are eigenfunctions and eigenvalues.   

The eigenvalues 𝜆௜, 𝑖 = 1,2, … are determined from the following nonlinear equation 
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ඥ𝜆௜ =
௛

௞
𝑐𝑜𝑡𝑎𝑛൫ඥ𝜆௜𝐿൯.         

The coefficients 𝐶௜  are determined from the expansion by eigenfunctions 𝑋௜(𝑥) of the initial condition (Eq. 24).  

𝑢଴ − 𝑢௘௫௧ = ∑ 𝐶௜
ஶ
௜ୀଵ ቀ

௛

௞
sin൫ඥ𝜆௜𝑥൯ + ඥ𝜆௜ cos൫ඥ𝜆௜𝑥൯ቁ,      (26) 

where 

𝐶௜ =
∫ (௨బି௨೐ೣ೟)ቀ

೓

ೖ
ୱ୧୬൫ඥఒ೔௫൯ାඥఒ೔ ୡ୭ୱ൫ඥఒ೔௫൯ቁ ௗ௫

ಽ

బ

∫ ቀ
೓

ೖ
ୱ୧୬൫ඥఒ೔௫൯ାඥఒ೔ ୡ୭ୱ൫ඥఒ೔௫൯ቁ

మ
ௗ௫

ಽ

బ

.       (27) 

Finally, the solution to Eqs. 21–24 is given by Eq. 25, where 𝐶௜, 𝑖 = 1,2, … have the form given in Eq. 27, and the 
solution to Eqs. 17–20 is accomplished easily by back substitution 

𝑢 = 𝑢௘௫௧ + ∑ 𝐶௜ exp ൬−
௞

௖೛ఘ
𝜆௜𝑡൰ ቀ

௛

௞
sin൫ඥ𝜆௜𝑥൯ + ඥ𝜆௜ cos൫ඥ𝜆௜𝑥൯ቁஶ

௜ୀଵ . 

This one-dimensional heat conduction test problem makes it possible to present the heat flux through the left 
face (𝑥 = 0) of the test body shown in Fig. 2 in an analytical form  

𝐹𝑙𝑢𝑥(𝑡) = −𝑘
డ௨

డ௫
ቚ

௫ୀ଴
= −𝑘 ∑ 𝐶௜ exp ൬−

௞

௖೛ఘ
𝜆௜𝑡൰ ቀ

௛

௞
ඥ𝜆௜  cos൫ඥ𝜆௜𝑥൯ − 𝜆௜ sin൫ඥ𝜆௜𝑥൯ቁஶ

௜ୀଵ ฬ
௫ୀ଴

=  

= −𝑘 ∑ 𝐶௜ exp ൬−
௞

௖೛ఘ
𝜆௜𝑡൰ ቀ

௛

௞
ඥ𝜆௜ቁ

ஶ
௜ୀଵ = − ∑ 𝐶௜൫ℎඥ𝜆௜൯ exp ൬−

௞

௖೛ఘ
𝜆௜𝑡൰ஶ

௜ୀଵ .    (28) 

As a numerical example to show the heat flux time dependency, consider the case of heating a steel bar under 
the following conditions and properties: 𝑘 = 44.5 W/(m K),  = 7850 kg/m3, 𝑐௣ = 475 J/(kg K), 𝐿 = 0.15 m, 𝑢଴ = 20 
oC, 𝑢௘௫௧ = 500 oC, and 𝑇 = 300 s. Fig. 3 shows the results for different values of ℎ [W/m2K].  

 

Fig. 3. Heat flux time dependency for different values of ℎ. 

The one-dimensional test case presented in this section serves three purposes: 

1. Numerical illustration of analytical heat flux determination using the expansion by eigenfunctions of the 
boundary value problem (Eq. 28).  

2. Visual inspection (Fig. 3) of heat flux behavior over time and its dependency on ℎ.  
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3. Ability to identify features of an inverse heat transfer problem using the test case free of uncertainties related 
to measurements and numerical solution methods.  

3.2. Features of the inverse heat conduction problem solution 

From sections 2.1 and 2.2, it follows that as soon the boundary value problem is defined, the required parameters 
become the temperature of the chip 𝑢௖௛௜௣ and the heat transfer coefficient ℎ௧௖௖ between the hot chip and the 
tool body that is being heated. The test example (Eqs. 17–20) makes it possible to investigate the influence of 
their equivalents  𝑢௘௫௧ and ℎ on the solution of the test inverse problem. Consider the following test inverse heat 
conduction problem.  

1. Consider the problem (Eqs. 17–20, Fig. 2) as having the same numerical parameters, except for ℎ =  2 ∙

10ସ 𝑊/(𝑚ଶ𝐾), 𝑇 = 100 𝑠𝑒𝑐, and 𝑢௘௫௧ = 430 ℃ (Fig. 4a). 

2. Introduce control points (Fig. 4a) and calculate temperatures at these points (Fig. 4b). These data are treated 
as “measurement” data or “thermocouple” readings with absolute accuracy. 

 

 
a)  b) 

Fig. 4. a) The positions of control points for temperature calculations; b) The temperature data at the given 
points. 

3. Specify the objective function [21] which evaluates the deviation from the “measurement” data, when 𝑢௘௫௧ 
and ℎ are changing (Eq. 29). 

𝑓(𝑢௘௫௧, ℎ) =
ଵ

√்
ට∫ ൫∑ 𝑢௜

௖௔௟௖(𝑡)ଷ
௜ୀଵ − 𝑢௜

௠௘௔௦(𝑡)൯
ଶ

𝑑𝑡
்

଴
→ 𝑚𝑖𝑛      (29) 

This is the optimization problem whose solution (ℎ =  2 ∙ 10ସ 𝑊/(𝑚ଶ𝐾) and 𝑢௘௫௧ = 430 ℃) is known.  

To inspect the objective function behavior, consider its response surface shown in Fig. 5a and contour lines (Fig. 
5b).  
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a) b) 

Fig. 5. a) The narrow curved valley of the objective function; b) Contours of the objective function (Eq. 29). 

Fig. 5 shows that the objective function is a narrow curved valley that contains the minimum. Of course, in an 
ideal case, it is easy to find the minimum of such a unimodal function using an optimization algorithm that takes 
into account the narrow valley, and thus solve the inverse heat conduction problem. Moreover, as soon as one 
realizes that the solution depends only on the parameters 𝑢௘௫௧, ℎ and not on the functions, the inverse problem 
becomes well-posed [33].  

One can note that Fig. 5b illustrates the fact that, starting from a certain threshold ℎ௧ (Fig. 5b), the value of the 
objective function becomes practically independent of ℎ and depends only on 𝑢௘௫௧ (as the contours of the 
objective are almost parallel to the axis ℎ). Such a value ℎ௧ corresponds to the actual transformation of the mixed 
boundary condition into the Dirichlet boundary condition, as mentioned in the introduction.  

Using this threshold, the narrow valley can be roughly divided into two sections, A and B, above and below 
threshold (Fig. 5b). In practical cases, due to the limited accuracy of measured temperatures, the optimization 
algorithm might converge to almost any point in the region of the narrow valley bottom. This leads to two types 
of errors when solving the inverse heat conduction problem.  

In the first case, when the algorithm converges to a point in section B, the overestimated real temperature value 
𝑢௘௫௧ is “compensated” for by the underestimated value of ℎ and vice versa. For a mathematical algorithm solving 
the optimization problem, these two variables 𝑢௘௫௧ and ℎ are completely independent. If the algorithm can 
improve the objective function by making such a compensation it will of course do so. This is especially true for 
measured temperature data that always has unavoidable noise. 

In the second case (section A), an underestimated 𝑢௘௫௧ temperature value can lead to completely inadequate 
large values of ℎ. This is because the mixed boundary condition becomes equivalent to the Dirichlet condition, 
and the temperature field in the tool is controlled only by the temperature 𝑢௘௫௧. 

The existence of these two cases (sections A and B) means that for a correct solution of the inverse problem ℎ 
and 𝑢௘௫௧ cannot be treated as two independent variables. It is absolutely necessary to resolve one of them, or at 
least estimate its value. It is experimentally easier to do so for temperature 𝑢௘௫௧, because 𝑢௘௫௧ in the case of 
machining corresponds to an average chip temperature.  
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Another important observation that should be made from the analysis of Fig. 5 is that, due to the pronounced 
curvature of the narrow valley and its asymmetric shape, overestimation of the chip temperature results in a 
smaller error when determining ℎ than underestimation of 𝑢௘௫௧. For example, for the illustrative test case (Fig. 
4), if the temperature 𝑢௘௫௧ is intentionally fixed at the value of 440 oC (overestimation by 10 oC) the objective 
function returns ℎ = 2.5 ∙ 10ସ 𝑊/(𝑚ଶ𝐾)  (error of 0.5·104 W/m2K). Yet, for the temperature fixed at 420 oC 
(underestimation by 10 oC) the value of ℎ = 1 ∙ 10ସ 𝑊/(𝑚ଶ𝐾)  is returned (error of 1·104 W/m2K). 

3.3 The technique for numerically determining the time dependency of the heat flux into the tool 

Section 2.2 showed that the time dependency of the heat flux in a tool cannot be obtained as a function of ℎ and 
𝑢௖௛௜௣ in an explicit analytical form, due to unresolvable geometric complexities for which there are no analytical 
eigenfunctions 𝑊௞(𝑥), 𝑘 = 1,2, … (Eq. 14). Practically, however, the total number of Joules consumed by the tool 
[21] can be obtained numerically using commercial software such as COMSOL Multiphysics. 

Fig. 6 illustrates this technique and its accuracy for the numerical example of the test case (Eqs. 17–20) when ℎ 
= 1000 (W/m2K).  

  

a)  b) 
Fig. 6. a) Heat flux obtained analytically (Eq. 28); b) Heat flux obtained in COMSOL Multiphysics for identical test 

case.  

Thus, when solving a realistic inverse problem, it is not necessary to select a predefined curve form for the heat 
flux time dependency as was done in [21] using only 𝑢௖௛௜௣ and ℎ. As soon as the boundary problem is solved 
numerically, the time dependency of the heat flux can be back calculated from the numerical solution, also in a 
numerical form. But here it should be noted that the numerical solution can yields artefacts absent in the actual 
solution. For example, in Fig. 6b there is a sharp increasing component in the beginning of the curve which is 
absent in the analytical solution (Fig. 6a). Therefore the results of numerical modelling need to be examined from 
the point of view of mathematical physics. 

3.4 Summary of analysis 

1. The time dependency of the heat flux is a decreasing (non-increasing) function parametrically dependent on 
𝑢௖௛௜௣ and ℎ௧௖௖.  

2. The inverse heat transfer problem cannot be effectively solved when 𝑢௖௛௜௣ and ℎ௧௖௖ are considered as two 
independent variables.  
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3. In a realistic case, the solution of the boundary value problem (Eqs. 1, 2, 4, 5) is obtained numerically as soon 
as 𝑢௖௛௜௣ and ℎ௧௖௖ have been found. Then the time dependency of the heat flux can be calculated from this 
numerical solution. 

Consequently, the following strategy can be proposed for solving the inverse problem. 

1. Determine the chip temperature 𝑢௖௛௜௣ using a specially designed experimental setup based on IR 
thermography measurements or another technique capable of returning interfacial chip temperature. 

2. Provide a FE model for the mixed boundary value problem for the heat transfer equation (Eqs. 1, 2, 4, 5) 
which has ℎ௧௖௖ as an unknown parameter (a variable in an inverse heat transfer problem).  

3. Solve the resulting inverse heat transfer problem using the temperature measurements at the control 
points (e.g. thermocouple readings taken from [21]).  

4. Retrieve the heat flux time dependency numerically from the numerical solution of the problem (Eqs. 1, 2, 
4, 5). 

 

4. Inverse heat conduction problem solution 

4.1 Chip temperature measurement 

The chip temperature was measured during orthogonal cutting of the disk using the thermography technique 
[34]. The setup was designed to reproduce the cutting conditions of study [21] for the tests denoted as HSS2 and 
CC1 (Table 1). The manufactured inserts with zero rake angle and a flank angle of 7o were mounted in a specially 
adapted commercial toolholder CFIL3225P05. The insert materials were identical to those used in [21]. Fig. 7 
illustrates the experimental setup.  

Table 1. Test conditions.  

Experiment 
acronym 

Cutting conditions Materials 
Cutting speed, 

m/min 
Feed, 

mm/rev 
Workpiece Insert 

HSS2 300 0.15 Aluminum 5754 High-speed steel 
CC1 100 0.05 Steel EN S235JR Cemented Carbide 

 

A thermal imaging camera from the FLIR X6000sc Series was used for the thermography measurements. The 
camera featured a high-speed 640 × 512 digital InSb detector with broadband (1.5–5.5µm) spectral sensitivity. It 
provided images up to 350 Hz in full frame, and it was calibrated up to 3000 oC with measurement accuracy of ± 
1 oC. Short-duration tests (~6 s) were carried out, but the cutting time chosen was sufficient to reach a steady 
state interfacial chip temperature 𝑢௖௛௜௣ , because the average interfacial chip temperature is stabilized less than 
one second (Fig.9).  
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Fig. 7. Photograph of the experimental setup. 

The interfacial chip temperature from the thermal imaging data was determined as follows. First, the interfacial 
chip temperature (Fig. 8) was measured for each frame along the line 𝐿 with the length equal to the value of the 
contact length [21]. Second, the temperature was averaged over the experiment time (Fig. 9). To estimate the 
uncertainty in determining the average interfacial chip temperature, the standard deviation of the data was 
calculated (the dotted red line in Fig. 9). The emissivity values used in the experiments were 0.2 for steel [26] and 
0.3 for oxidized aluminum [39]. 

 

a) b) 
Fig. 8. Typical thermal image for a frame: a) HSS2, b) CC1. 
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a) b) 
Fig. 9. The average interfacial chip temperature (blue line) along line 𝐿 during the experiment for each frame, 

and the chip temperature averaged over time (red line): a) HSS2, b) CC1. 

4.2 Inverse problem 

In section 3, the average interfacial temperature of the chip 𝑢௖௛௜௣ in contact with the tool was determined. From 
the point of view of the objective function [21] 

𝑓(ℎ௧௖௖) =
ଵ

√்
ට∫ ൫∑ 𝑢௜

௖௔௟௖(𝑡)௠
௜ୀଵ − 𝑢௜

௠௘௔௦(𝑡)൯
ଶ

𝑑𝑡
்

଴
       (30) 

which estimates the difference between measured and calculated temperatures, there is only one variable left, 
the coefficient ℎ௧௖௖. The importance of studying this coefficient was noted in the introduction. It is known that 
the ℎ௧௖௖ value might not be uniform across the tool–chip interface and may have a particular spatial distribution 
[28]. It is also very likely that it is time dependent. The proposed setup for temperature measurement in the tool 
body [21] does not allow estimation of the spatial distribution of ℎ௧௖௖. Therefore, the spatial distribution is 
assumed to be uniform, that is, an average heat exchange coefficient between the chip and the tool is returned 
by the inverse problem. However, its time resolution can be addressed with the existing experimental setup and 
measured data [21]. The thermocouple readings for ℎ௧௖௖ determination were also taken from [21]. 

ℎ௧௖௖ is assumed to be time dependent. This assumption creates additional computational difficulties because the 
inverse heat conduction problem becomes functional [33] and, as a result, ill-posed. Numerical methods for 
determining the unknown function ℎ௧௖௖(𝑡) from the arsenal of existing algorithms [22] can lead to oscillations of 
the sought function as well as several other artifacts [21]. To avoid this, a two-stage method for solving the 
inverse heat conduction problem [21] can be used.  

In the first stage, the problem is solved assuming that the coefficient ℎ௧௖௖ is time independent and constant. This 
solution will make it possible to evaluate the significance of the time dependency of the coefficient ℎ௧௖௖ and 
propose a suitable parameterized function based on this a priori information. The parameters of this function 
will be the variables of the inverse problem at the second stage. 

4.2.1. Stage 1 

The results of stage 1 for the HSS2 case (Table 1) are summarized in Table 2. Because there is an uncertainty in 
the average chip temperature (Fig. 9a), the calculations are performed for the upper and lower bounds of the 
chip temperature to estimate the uncertainty in ℎ௧௖௖ determination.  
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Table 2. ℎ௧௖௖ coefficient returned for the HSS2 case.  

Chip temperature, oC Coefficient 𝒉𝒕𝒄𝒄, 
W/(m2 K) 

Objective function, oC 

406 (mean) 91077 1.5823 
419.5 (upper bound, mean + std. dev.) 74286 1.5430 
392.5 (lower bound, mean - std. dev.) 113965 1.5618 

 

Very similar values of the objective function indicate the high agreement between the calculated and measured 
temperatures (Fig. 10a) in all the considered cases. This agreement reflects the fact that the proposed method 
for solving the inverse heat conduction problem compensates for the uncertainty in the chip temperature 
determination by an uncertainty in ℎ௧௖௖, which is much larger in relative terms (Fig. 5). Also, the uncertainty in 
the definition of ℎ௧௖௖ has a pronounced asymmetry (Fig. 10b), even though the uncertainty of the chip 
temperature is symmetrical (Fig. 9.a). This is due to the behavior of the narrow valley of the objective function 
(Fig. 5) described in section 3. 

a) b) 
Fig. 10. Results for HSS2. a) Calculated temperatures (blue lines) and measured temperatures (red lines) for the 
case when the average chip temperature is 406 oC; b) Tool–chip heat exchange coefficient ℎ௧௖௖  (solid line) and 

its uncertainty (dotted lines). 

The results of stage 1 for the CC1 case (Table 1) are shown in the Table 3 and Fig. 11. 

 

 

Table 3. ℎ௧௖௖ coefficient returned for the CC1 case.  

Chip temperature, oC Coefficient 𝒉𝒕𝒄𝒄, 
W/(m2 K) 

Objective function, oC 

684 (mean) 556957 18.539 
714 (upper bound, mean + std. dev.) 423886 19.207 
654 (lower bound, mean - std. dev.) 636705 21.337 
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a)  b) 
Fig. 11. Results for HSS2. a) Calculated temperatures (blue lines) and measured temperatures (red lines) for the 
case when the average chip temperature is 684 oC; b) Tool–chip heat exchange coefficient ℎ௧௖௖  (solid line) and 

its uncertainty (dotted lines). 

The very similar values of the objective function for HSS2 and the small differences between calculated and 
measure temperatures in the first stage show that the calculated ℎ௧௖௖ can be used. This is not the case for CC1. 
The graph for CC1 (Fig. 11a) clearly indicates that the uniform ℎ௧௖௖ cannot ensure good agreement between the 
calculated and measured temperatures. Therefore, it must be considered as a function of time because it is 
assumed to be spatial uniform across the contact interface. A piecewise line with ten discrete points (Fig. 12) is 
used as a prototype to model the ℎ௧௖௖ time dependency. The values of this function at the points 0, 𝑥ଵ, . . . , 𝑥ଽ 
are the variables of the objective function in the inverse heat condition problem in stage 2. This parameterization 
of the function allows us to convert an ill-posed functional problem into a correct parametric function [33]. 

 

Fig. 12. The parameterized piecewise line for ℎ௧௖௖ time dependency modeling. 

4.2.2. Results of stage 2 

Although the constant ℎ௧௖௖ provides reasonable agreement between the measured and calculated temperatures 
for HSS2, nevertheless for comparison it is useful to calculate ℎ௧௖௖ in the form of the function shown in Fig. 12. 

Fig. 13 and Fig. 14 illustrate the results of stage 2 for HSS2 and CC1 respectively.  



18 
 

a) b) 
Fig. 13. Stage 2 for HSS2. a) Calculated temperatures (blue lines) and measured temperatures (red lines) for the 

case when the average chip temperature is 406 oC. Objective function 𝑓(ℎ௧௖௖) =  1.338 ℃; b) Time 
dependency for ℎ௧௖௖ obtained for stage 2. 

 

a) b) 
Fig. 14. Stage 2 for CC1. a) Calculated temperatures (blue lines) and measured temperatures (red lines) for the 

case when the average chip temperature is 684 oC. Objective function 𝑓(ℎ௧௖௖) =  5.178 ℃; b) Time 
dependency for ℎ௧௖௖ obtained for stage 2. 

In both cases better agreement between measured and calculated temperatures (Figs. 13a, 14a) and trends in 
the behavior of ℎ௧௖௖ over time (Figs. 13b, 14b) were obtained. In the case of HSS2, ℎ௧௖௖ oscillates slightly in stage 
2 compared to stage 1 (Fig. 10b vs. 13b). For CC1 there is a pronounced decreasing trend over time of ℎ௧௖௖ (Fig. 
14b). Traditionally [35–37] a variation in the ℎ௧௖௖ coefficient is attributed to a variation in contact pressure or 
surface topography of the contacting bodies, as these are the two most influential parameters. This will be 
further investigated in section 6. 
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5. Time dependency of the heat flux flowing into the tool body 

The inverse problem in section 4 allowed us to determine the coefficient ℎ௧௖௖(𝑡) if the average interfacial chip 
temperature is known. This allowed a numerical solution of the boundary value problem (Eqs. 1, 2, 4, 5). In an 
implicit form this solution also contains the heat flux from the cutting zone to the tool body. Using the approach 
used in section 3.3 for the illustrative test case, the same type of data can be extracted for the given machining 
cases and compared with the heat flux from [21]. 

To do this, the average heat flux over the region of the tool–chip interface (Fig. 1) as a function of time is 
calculated in the COMSOL model. This is equivalent to the time-dependent power consumed by the tool. One 
should take into account that the contact area is also a function of time as described in [21]. The ratio of these 
two functions determines the function 𝑞(𝑡), which describes the heat flux flowing into the tool body for HSS2 
(Fig. 15a, blue line) and CC1 (Fig. 15b, blue line). 

a) b) 
Fig. 15. Comparison of the time dependency of heat flux obtained in the present study (blue) and in [21] 

(dotted red) for: a) HSS2, b) CC1. 

6. The possible form of linkage between micro- and macromodels 

Using the experimental setups (section 4.2, [21]), the two-stage technique for solving the inverse heat conduction 
problem, and macroscopic thermal modeling in COMSOL [21] allowed us to obtain the time-dependent ℎ௧௖௖ 
coefficient for the assumed spatial uniformity across the contact interface. The ℎ௧௖௖ value obtained from 
macroscopic thermal modeling can also be obtained from a microscopic model for contacting bodies [35], thus 
becoming a transition point for understanding thermal contact from macro- to microscopic perspectives.  

Yovanovich’s conforming rough surface contact conductance model [35], based on the assumption of a normal 
distribution of the microcontact spots, has previously been used to model tool–chip contact interaction in 
machining [38]. The legitimacy of using this model for both sticking and sliding zones assumes that the 
distribution of the microcontact spots remains normal, although the actual microcontact areas in the sliding zone 
are changing. In this model ℎ௧௖௖ is a function of surface topography and contact pressure: 

ℎ௧௖௖ =
ଶ ௡ ௔ ௞೐೑೑

ట(ఌ)
.          (31) 

The components of this formula are calculated as follows:  
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𝑛 ∙ 𝑎 =
ଵ

ସ√ଶగ
൬

௠೐೑೑

ఙ೐೑೑
൰ 𝑒𝑥𝑝 ቀ

ିఒమ

ଶ
ቁ,         (32) 

𝜓(𝜀) = (1 − 𝜀)ଵ.ହ, 0 < 𝜀 < 0.3,         (33) 

𝜀 = ට
௉

ு಴
,           (34) 

where 𝜆 =
௒

ఙ
  is the relative mean plane separation, 𝑌 is the distance between the mean planes of the contacting 

surfaces, 𝑘௘௙௙ , 𝑚௘௙௙, 𝜎௘௙௙ are the effective thermal conductivity, slope and RMS surface roughness of the 
contacting bodies, respectively.  

The effective parameters 𝑘௘௙௙ , 𝑚௘௙௙ , 𝜎௘௙௙ are given by: 

𝑘௘௙௙ =
ଶ௞భ௞మ

௞భା௞మ
, 𝑚௘௙௙ = ඥ𝑚ଵ

ଶ + 𝑚ଶ
ଶ, 𝜎௘೑೑

= ඥ𝜎ଵ
ଶ + 𝜎ଶ

ଶ,      (35) 

where 𝑘ଵ, 𝑚ଵ, 𝜎ଵ and 𝑘ଶ, 𝑚ଶ, 𝜎ଶ are corresponding parameters of the contacting bodies.  

In this formulation the product 𝑛 ∙ 𝑎 relates to topography, while 𝜀 is solely dependent on the ratio “pressure-
microhardness” (Eq. 34). Thus Eq. 31 for ℎ௧௖௖ has two unknown input components, neither of which can be 
explicitly extracted from it. To resolve this, the model (Eq. 31) needs to be complemented with additional 
experimental data to remove ambiguity. Measuring the cutting forces and the time-dependent data of the 
contact area [21] provides information on the time-dependent average contact pressure (Fig. 16).  

a) b) 
Fig. 16. The average contact pressure for: a) HSS1, b) CC1. 

Fig. 16a and Fig. 16b for HSS2 and CC1 indicate that practically constant contact pressure is maintained during 
the entire machining operation, compared to the behavior of ℎ௧௖௖ (Fig. 13b and Fig. 14b). Thus the “pressure-
microhardness” ratio is practically constant as well. However, the value of the contact microhardness 𝐻஼  assigned 
to the deformation of the contacting asperities is unknown. Therefore, to estimate the ratio in Eq. 34, the 
following formula can be used [35]: 

௉

ு಴
=

ଵ

ଶ
𝑒𝑟𝑓𝑐 ቀ

ఒ

√ଶ
ቁ.          (36) 
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The surface topography component has an additional complexity as it includes the initial surface topography of 
the two bodies not yet in contact, and geometric parameters 𝑌 of topography interaction under the actual 
machining conditions. 

The original (not in contact) topography was measured on the cutting tools before and after machining, as well 
as on back side of the chips collected at the beginning and end of the cut. Table 4 indicates the topography of 
tool surfaces, characterized in terms of RMS surface roughness and slope, measured at 200 cross-sections for 
each data set (Fig. 17). For HSS2 the values remain practically unchanged, while for the CC1 case a substantial 
increase in roughness is observed for the tool after machining. Chip roughness parameters at the beginning and 
end of cutting were practically identical. 

Table 4. Tool and chip roughness parameters. 

Experiment 
acronym 

Tool before test Tool after test Chip 
RMS, um Slope RMS, um Slope RMS, um Slope 

HSS2 0.097 0.016 0.106 0.016 0.126 0.018 
CC1 0.0946 0.014 0.3 0.015 0.186 0.02 

 

a) b) 

c) 

Fig. 17. The 3D surface profiles for experiment CC1: 
a) New tool, b) Worn tool, c) Chip.  
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Then, having a linear approximation of effective RMS roughness and slope over the experiment time, 𝑌 can be 
calculated from the model (Eqs.31–34) for HSS2 (Fig. 18a) and CC1 (Fig. 18b). 

a) b) 
Fig. 18. Distance 𝑌 between the mean planes of the contacting surfaces for a) HSS2, b) CC1. 

These data indicate that geometric parameter Y of the interaction between tool and chip topographies under the 
actual machining conditions remains stable throughout the HSS2 experiment. Y increases for the CC1 test, which 
is related to workpiece adhesion and tool wear [21]. Thus macroscopic modeling of ℎ௧௖௖ allowed estimating the 
in-process interaction parameter 𝑌, which cannot be measured otherwise. There is additional value from the 
modeling, as ℎ௧௖௖ is actually the inverse of the thermal resistance of the chip-tool contact, which is frequently 
used in FE modeling of machining operations.  

7. Conclusions 

This study presents qualitative and quantitative research on the role of the tool–chip thermal conductance 
coefficient ℎ௧௖௖ for modeling the heat flux transferred into the tool body when machining.  

1. A qualitative analysis of the mixed boundary condition for the heat equation showed that the heat flux into 
the tool body is a decreasing function over time if the average chip temperature and the tool–chip thermal 
conductance coefficient ℎ௧௖௖ do not vary with time. This consideration also demonstrates that the heat flux 
depends parametrically on the average interfacial chip temperature 𝑢௖௛௜௣ and the tool–chip thermal 
conductance coefficient ℎ௧௖௖. Thus these two parameters are considered to be the variables of the inverse 
heat conduction problem. 

2. A qualitative analysis of an illustrative test case shows that solving the inverse problem requires determining 
the average interfacial chip temperature. If 𝑢௖௛௜௣ and ℎ௧௖௖ are considered as two independent variables, an 
optimization algorithm creates a compensation effect between them, and the inverse heat transfer problem 
cannot be solved effectively. An experimental setup was designed, and experiments were performed to 
determine average chip temperature for two pairs of tool–workpiece materials. This allowed one variable to 
be excluded from the inverse problem solution, leaving only the tool–chip thermal conductance coefficient 
as a variable.  

3. A two-stage method was used to solve the inverse problem. For both tests, the tool–chip thermal 
conductance coefficients are obtained as time-dependent functions. As soon as the coefficients are known, 
a technique for numerical identification of the heat flux into the tool is demonstrated. Also, it is shown 
(section 5) that the heat flux time dependency can be approximated by a decreasing power function.  
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4. An estimate of the in-process tool–chip contact characteristics on the microscale is obtained using the tool–
chip thermal conductance coefficient and the conforming rough surface contact conductance model. It was 
shown that time dependency of ℎ௧௖௖ is governed by a change in tool surface topography as the tool wears. 

Because the inverse heat condition problem is ill-posed, the reconstruction of the temperature distribution in a 
tool body using inverse techniques is rooted in the absence of reliable a priori information about the solution 
behavior. This paper established that, in the class of problems under consideration, the time dependency of the 
heat flux must be chosen only from the set of decreasing (non-increasing) functions. A suitable approximation 
can be a power function depending on coefficient ℎ௧௖௖, for which a reliable solver has been developed. 
Subsequently, ℎ௧௖௖ is used as a parameter for transition from macro- to microscale modeling evolution of the 
tool–chip contact over time. If spatial information is available for the heat flux, this approach can be expanded 
to estimate thermal contact and tool–chip contact parameters in space, that is, across the tool–chip interface. 
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