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ABSTRACT 1 

The main goal of this paper is to derive a method for a daily gross primary production (GPP) product 2 

over Europe and Africa taking the full advantage of the SEVIRI/MSG satellite products from the 3 

European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) sensors 4 

delivered from the Satellite Application Facility for Land Surface Analysis (LSA SAF) system. Special 5 

attention is paid to model the daily GPP response from an optimized Monteith´s light use efficiency 6 

model under dry conditions by controlling water shortage limitations from the actual 7 

evapotranspiration and the potential evapotranspiration (PET). The PET was parameterized using the 8 

mean daily air temperature at 2 m (Ta) from ERA-Interim data. The GPP product (MSG GPP) was 9 

produced for 2012 and assessed by direct site-level comparison with GPP from eddy covariance data 10 

(EC GPP). MSG GPP presents relative bias errors lower than 40% for the most forest vegetation types 11 

with a high agreement (r>0.7) when compared with EC GPP. For drylands, MSG GPP reproduces the 12 

seasonal variations related to water limitation in a good agreement with site level GPP estimates 13 

(RMSE=2.11 g m-2 day-1; MBE=-0.63 g m-2 day-1), especially for the dry season. A consistency analysis 14 

against other GPP satellite products (MOD17A2 and FLUXCOM) reveals a high consistency among 15 

products (RMSD < 1.5 g m-2 day-1) over Europe, North and South Africa. The major GPP disagreement 16 

arises over moist biomes in central Africa (RMSD > 3.0 g m-2 day-1) and over dry biomes with MSG 17 

GPP estimates lower than FLUXCOM (MBD up to –3.0 g C m–2 day–1). This newly derived product has 18 

the potential for analysing spatial patterns and temporal dynamics of GPP at the MSG spatial 19 

resolutions on a daily basis allowing to better capture the GPP dynamics and magnitude. 20 

Keywords: GPP, MSG, daily, water stress, light-use efficiency, LSA SAF.   21 

1. Introduction 22 

Serious concerns associated with climate change are strongly present on the African and European 23 

continents leading, among others, to significant effects on plant distribution, growth and productivity 24 

(EEA, 2012; IPCC, 2014).  Thus, a better understanding of the productivity dynamics of ecosystems 25 

across these continents is needed.  26 

Terrestrial ecosystem models provide a powerful tool to integrate our understanding on ecosystem 27 

functioning and observations at multiple scales in response to multiple environmental factors (Zhao 28 

et al., 2005; Tian et al., 2010; Yebra et al., 2015). There is a renewed interest in developing carbon 29 

flux models that are entirely driven by remotely sensed (RS) observations to estimate gross primary 30 

production (GPP) (Running et al., 2004; Gilabert et al., 2015; Tramontana et al., 2016). Estimates of 31 

daily GPP (MOD17) (Heinsch et al., 2006; Zhao et al., 2011; Running et al., 2015) are produced 32 
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operationally for the global terrestrial surface using imagery from the MODerate resolution Imaging 1 

Spectroradiometer (MODIS) sensor (Running et al., 2004). Additionally, there clearly is a motivation 2 

to extend knowledge acquired from modeling efforts with the MODIS datasets to other sensor's 3 

data, such as the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) on board of the Meteosat 4 

Second Generation (MSG) platform.  5 

Most of the methodologies for the estimation of GPP from satellite data, such as the widely used 6 

MODIS GPP product (Zhao et al., 2011), rely on the well-known satellite-based Production Efficiency 7 

Models (PEMs). Most of the PEMs are based on Monteith's light use efficiency (LUE) concept 8 

(Monteith, 1972). This concept is still considered to be efficient and widely applicable for the 9 

prediction of GPP at different spatial and temporal scales (Waring and Running, 2007) and considers 10 

GPP equal to the product of the incoming photosynthetically active radiation (PAR), the fractional 11 

absorption of that flux (fAPAR) and the light use efficiency (ε). The latter can be operationally 12 

parameterized as a function of a maximum value (max), which is reduced by different factors related 13 

with types of stress that affect the functionality of the plant, such as water availability and thermal 14 

stress. These factors range from 0 (total inhibition) to 1 (no inhibition). max can be set as invariant 15 

across sites and biomes (Myneni et al., 1995) or be derived from biome-dependent values (Garbulsky 16 

et al., 2010). According to Schaefer et al. (2012), three areas of the PEMs still need improvements: 1) 17 

parameterization of max, 2) response function under low temperatures, and 3) GPP response under 18 

dry conditions (mainly driven by water stress factors).  19 

In particular, the MODIS standard product parameterizes  as the product of a biome-specific max 20 

and the thermal and the water stress factors, which depend on minimum air temperature and vapor 21 

pressure deficit, respectively (Zhao et al., 2011; Heinsch et al., 2006). Another parameterization of 22 

the water stress based on a water stress coefficient (Cws) has been applied successfully to derive daily 23 

GPP estimates in Mediterranean ecosystems (Maselli et al., 2009; Gilabert et al., 2015; Sánchez-Ruiz 24 

et al., 2017). Cws accounts for the limited photosynthetic activity in case of short-term water stress 25 

from a simplified local water budget based on the ratio of actual evapotranspiration (AET) and 26 

potential evapotranspiration (PET). Commonly, evapotranspiration (ET) is normalized by the 27 

reference evapotranspiration or by PET in order to characterize water stress (Sepulcre et al., 2014). 28 

PET is driven by available energy, while AET reflects an immediate response of vegetation 29 

productivity to water-storage (Fisher et al., 2011). Different approaches have been proposed to 30 

account for the water stress by means of the AET and PET (Sepulcre et al., 2014; Idso et al., 1981). 31 

The main goal of this paper is to provide a method for the estimation of daily GPP over Europe and 32 

Africa from the integration of an ensemble of SEVIRI/MSG products into an optimized LUE model that 33 
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accounts for water shortage limitations. SEVIRI/MSG satellite products from the European 1 

Organization for the Exploitation of Meteorological Satellites (EUMETSAT) sensors delivered from the 2 

Satellite Application Facility for Land Surface Analysis (LSA SAF) system are used (http://lsa-3 

saf.eumetsat.int) for 2012. This year is selected due to the unavailability of the necessary inputs for 4 

other years. The used set of LSA-SAF products derived from SEVIRI/MSG offers convenient spatial 5 

coverage (Europe, Africa and parts of South America) and resolution (Trigo et al., 2011). Moreover, 6 

these products are produced operationally in near-real time with generation rates varying from 30 7 

min in the case of ET to daily or 10-day in the case of several vegetation parameters, which makes 8 

them particularly suitable for the development of early warning procedures such as drought 9 

prediction. Since water availability and radiation are known as main potential climatic constraints to 10 

vegetation productivity in many areas of Europe and Africa (Nemani et al., 2003), special attention is 11 

paid to capture the GPP response under dry conditions by controlling the water shortage limitations. 12 

Thus, a water stress coefficient (Cws) based on the ratio between AET and PET, with PET 13 

parameterized using Jensen & Haise (1965), is proposed. 14 

The use of the MSG GPP product can benefit from different aspects. 1) The high quality of the daily 15 

down-welling radiation flux (DIDSSF) product (bias and mean absolute error below 6%) confers the 16 

MSG GPP estimates of a high reliability. The DIDSSF product is used to compute both the PAR and the 17 

Cws, being the PAR the most influential variable in the GPP variance (e.g. over 60% of the variance 18 

was explained by the PAR in forests over Spain (Gilabert et al., 2015). 2) The daily basis of the MSG 19 

GPP product aids, among others, a better characterization of vegetation state and temporal 20 

processes (e.g. sudden changes from natural hazards or management practices).  3) Clouds effect on 21 

the fAPAR and DIDSSF is better sampled at daily temporal scale allowing a more accurate 22 

characterization as compared to the MODIS product (Heinsch et al., 2006; Gilabert et al., 2015) and 23 

also a better understanding of the cloud coverage on the carbon uptake by vegetation.  24 

The performance of the resulting GPP product (MSG GPP) is assessed by site-level comparisons using 25 

GPP estimates from eddy covariance (EC) towers. Moreover, the MSG GPP assessment includes 26 

consistency analyses against alternative GPP products available from independent remote sensing 27 

global data, such as MODIS GPP (MOD17A2) and global flux fields from the Max Planck Institute 28 

(MPI) (FLUXCOM) products. The paper first introduces the theoretical basis for the daily GPP retrieval 29 

together with the description of the required inputs. The next section describes the MSG GPP 30 

assessment and the data used for this purpose. It is followed by a presentation of the obtained 31 

results and a discussion section reporting on the differences, advantages and limitations of the MSG 32 

GPP retrievals. The main conclusions are presented in the final section. 33 

http://lsa-saf.eumetsat.int/
http://lsa-saf.eumetsat.int/
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2. Daily GPP retrieval 1 

The methodology used to derive daily GPP (g m-2 day-1) was based on Monteith's LUE approach:  2 

               (1) 3 

where 4 

            (2) 5 

Parameter  was parameterized as max downregulated by the water stress coefficient (Cws). Overall, 6 

optimized max values can range between 0.55–3.5 g MJ−1, as reported by several authors (Garbulsky 7 

et al., 2010; Sjöström et al., 2013; Tagesson et al., 2015). Three values were assigned to the main 8 

ecosystems types: 1.8 g MJ-1 for deciduous broadleaf forest (DBF), 1.5 g MJ-1 for evergreen needleleaf 9 

forest (ENF), and 1.2 g MJ-1 for remaining ecosystem types (Garbulsky et al., 2010).  GPP was not 10 

computed for desert areas due to the lack of values for some inputs (e.g. DMET) and the high error 11 

provided by the fAPAR product in these areas.  12 

Cws was parameterized using a variant of the formulation proposed by Maselli et al. (2009): 13 

            
   

   
  (3) 14 

Thus, Cws can vary between 0.6 (when water shortage reduces photosynthesis to 60 % of its potential 15 

value) and 1.0 (when there is no such reduction). This Cws is not as restrictive as the one proposed for 16 

Mediterranean ecosystems by Masselli et al. (2009, 2013), in order to reach a compromise between 17 

the ability to cope with water limitation during the dry season and the ability to grow at high rates 18 

under more favorable water conditions. PET (mm day-1) was parameterized using the Jensen-Haise 19 

(JS) empirical equation (Jensen & Haise, 1965):   20 

     
                

    
 . (4) 21 

Where Rg refers to the daily global irradiation (kJ m-2 day-1) and Ta is the daily averaged near-surface 22 

air temperature in C.  23 

The JS method (Eq. 4) requires only information on climate or meteorological drivers; an important 24 

aspect when applying the model on large region scales. The JS approach was originally derived for 25 

the semi-arid parts of the United States but is currently used across different climate zones and 26 

biomes at the North Dakota Agricultural Weather Network (NDAWN, http://ndawn.ndsu.nodak.edu/) 27 

http://ndawn.ndsu.nodak.edu/
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for estimating potential evapotranspiration. It was also successfully applied at regional level over 1 

Spain and Italy using MODIS and SPOT-VGT data along with meteorological data to derive an 2 

optimized GPP product that accounted for water stress (Maselli et al., 2009; Gilabert et al., 2015).  3 

A subsequent analysis of different water stress parameterizations at EC flux towers in Spain indicated 4 

the JS as one of the best methods, explaining 31% and 48% of  variance in open shrublands and 5 

savanna, respectively (Sánchez-Ruiz et al., 2017). The JS approach was also evaluated for two very 6 

different sites (one semi-arid savanna grassland and one boreal forest) in the present study, 7 

indicating reasonable PET and CWS estimates across various biomes (Fig S1 in supplementary 8 

material). 9 

The input variables required for the GPP retrieval by means of Eq. 1 are described as follows. 10 

2.1 PAR 11 

PAR is the photosynthetically active radiation in the 0.4–0.7 µm spectral range and was computed as 12 

the 46% of daily irradiation (Iqbal, 1983). Daily irradiation images for Europe and Africa provided 13 

from the daily down-welling radiation flux (DIDSSF) MSG product (LSA-201) at 3–5 km (depending on 14 

the latitude and the distance to nadir view) were used. The DIDSSF product essentially depends on 15 

the solar zenith angle, on cloud coverage and, to a lesser extent, on atmospheric absorption and 16 

surface albedo (LSA SAF, 2012; Geiger et al., 2008). It is computed by integrating the downward 17 

surface solar flux (DSSF) product every 30 minutes over a whole day. A validation of DSSF using in situ 18 

data from six European ground measurement stations throughout two years was performed by 19 

Geiger et al. (2008). Results show a difference between instantaneous satellite estimates and ground 20 

measurements of about 40 and 110 W m-2 for clear and cloudy sky conditions, respectively. A more 21 

thorough validation of the MSG DSSF product was carried out in Spain (Moreno et al., 2013). The 22 

resulting statistics from this validation show a bias of -0.12 MJ m-2 (rMBD of about 1%) and a mean 23 

absolute difference of 1.0 MJ m-2 (rMAD of 6%) in terms of daily global irradiation.  24 

2.2. fAPAR 25 

fAPAR is the fraction of PAR that is absorbed by leaves and provides a link between the canopy 26 

function, i.e. its energy absorption capacity, and its structure and condition. The MSG fAPAR product 27 

(MDFAPAR, LSA-407) delivered by the LSA SAF network was used as input. It has a 3.1 km spatial 28 

resolution (sub-satellite point) and daily frequency over the geostationary MSG grid (García-Haro et 29 

al., 2015). The MDFAPAR product is based on a linear relationship between the Renormalized 30 

Difference Vegetation Index (RDVI), computed from clear-sky top of the canopy reflectances in the 31 
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red (RR) and near infrared (RNIR) bands for an optimal angular geometry in the solar principal plane 1 

(Roujean and Bréon, 1995). It was reported that the MSG fAPAR deviated from the other fAPAR products 2 

in the order of 0.1 (García-Haro et al., 2015).  3 

In this study, the fAPAR time series were filtered and reconstructed using an optimized LOcally 4 

WEighted regression and Smoothing Scatterplots (LOWESS) method (Moreno et al., 2014; Gilabert et 5 

al., 2015), which captures the upper envelope of the time-series, interpolates the missing data and 6 

removes most of the noise of the original unfiltered signal. The LOESS approach is recommended in 7 

most remote sensing applications, such as gap-filling, cloud-replacement, and observing temporal 8 

dynamics in situ where rapid seasonal changes are produced (Moreno et al., 2014). 9 

2.3 Cws 10 

The daily Cws was computed using the daily AET LSA SAF product (DMET, LSA-302) and the daily PET 11 

derived from the JS parameterization (Eq. 4). Equation 4 uses two inputs of the LSA SAF system: the 12 

DIDSSF operational product and the daily mean Ta at SEVIRI/MSG disk (LSA SAF, 2016a). The Ta MSG 13 

product is derived from the interpolation of ERA-Interim data produced by the European Centre for 14 

Medium-Range Weather Forecasts (ECMWF, http://apps.ecmwf.int/datasets/), originally at 0.75 × 15 

0.75. The data are then interpolated to SEVIRI pixel scale by a bi-linearly interpolation method. The 16 

temperature fields are further adjusted to correct for the differences between ERA-Interim surface 17 

orography and pixel height, assuming a constant lapse rate of 0.67ºC/100m. The interpolation 18 

procedure is designed to minimize the impact of model resolution. 19 

DMET matches observed variations with a high compromise (i.e. product requirement criterion 20 

satisfied to a rate higher than 70% in most of the validation sites) for well-watered sites and an 21 

expected seasonal variation for temperate forests. It is also highly correlated with spatial variability 22 

in ECMWF daily-accumulated ET (correlation values from 0.85 to 0.95) (LSA SAF, 2010).  However, the 23 

DMET product is underestimated globally in comparison with the ECMWF one, especially in Africa 24 

and South America (LSA SAF, 2010).  25 

3. Data for MSG GPP assessment 26 

The daily MSG GPP performance and assessment include: 1) qualitative evaluations of MSG GPP 27 

estimates in relation to characteristic spatial and seasonal patterns, 2) direct comparison of daily 28 

carbon flux estimates with in situ EC tower GPP estimations based on daily carbon flux 29 

measurements, and 3) consistency checking against other synergistic global carbon products. The 30 

data used for the proposed assessment are described below. 31 

http://apps.ecmwf.int/datasets/
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3.1 GPP estimates from Eddy Covariance flux towers  1 

Daily GPP data from 18 EC flux towers were downloaded from the global Fluxes Database Cluster 2 

data set (FLUXNET). The FLUXNET2015 (http://fluxnet.fluxdata.org/) dataset consists of standardized 3 

and high quality data products collected from multiple regional EC flux networks (Valentini et al., 4 

2014). The FLUXNET2015 GPP products were obtained applying standard flux-partitioning algorithms 5 

after the net ecosystem exchange time series were gap filled (Lasslop et al., 2010) and went through 6 

a rigorous QA/QC procedure (Pastorello et al., 2014). The model efficiency method reference GPP 7 

product (GPP_DT_VUT_REF) (Kumar et al., 2016) calculated using daily data (Lasslop et al., 2010) was 8 

compared with the MSG GPP estimates.  9 

However, such direct comparison requires that the surface characteristics (vegetation composition) 10 

of the pixel used for RS products and of the EC measurements footprint are similar. To solve this 11 

issue, the homogeneity of a 5 km × 5 km area surrounding the measurement tower was analyzed. For 12 

this purpose, the 1 km Global Land Cover 2000 (GLC2000) (Bartholomé and Belward, 2005) was used.  13 

The selection of adequate sites for comparing MSG GPP and EC estimates without bias due to surface 14 

spatial heterogeneity was based on the following steps, i) computation of the land cover percentages 15 

inside the 5 km × 5 km area (i.e. MSG pixel size over Europe) based on the GLC2000, ii) pre-selection 16 

of EC sites as those with two or less land cover classes within the 5 km × 5 km area and one land 17 

cover percentage greater than 80%, and iii) final selection of EC sites by visual inspection using 18 

Google EarthTM (Table 1). Figure 1 shows the GLC2000 geo-located to a standard SEVIRI grid. The 19 

selected EC sites are also included (red crosses).  A generalized classification was obtained by 20 

aggregating several similar land cover classes from the 23-class GLC2000. The study area was thus 21 

described through a generalized thematic legend of 6 major land covers: evergreen broadleaf forest 22 

(7%), deciduous broadleaf forest (13%), evergreen needleleaf forest (2%), mixed forest (5%), 23 

shrublands (11%), grasslands (15%), croplands (15%) and bare soil (32%). This generalization reduces 24 

the number of classes while preserving the essence of the geographical patterns of the study area 25 

(Martínez et al., 2013).  26 

[INSERT TABLE 1] 27 

[INSERT FIGURE 1] 28 

 29 

3.2 MODIS GPP product (MOD17A2)  30 

http://fluxnet.fluxdata.org/
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The MODIS GPP 8-day product (MOD17A2 version-55) at 1 km was retrieved from the online Reverb, 1 

courtesy of the NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC), 2 

USGS/Earth Resources Observation and Science (EROS) Center, (https://reverb.echo.nasa.gov). 3 

Version-55 is post-processed from the MODIS GPP version-5 dataset, in which contaminated MODIS 4 

FPAR/LAI inputs to the MOD15 algorithm have been cleaned (Zhao and Running, 2010). The MODIS 5 

products were reprojected to Geographic (WGS84) coordinate projection and geo-located to a 6 

standard SEVIRI grid in order to reproduce the characteristics of the MSG product. The reprojection 7 

step was performed by averaging all fine resolution pixel values of the MODIS product that overlap 8 

with a given SEVIRI pixel. Pixels identified as water, snow or unreliable values were excluded during 9 

the averaging process (García-Haro et al., 2008). 10 

3.3 FLUXCOM product 11 

The FLUXCOM product provides monthly spatio-temporal fields at 0.5 × 0.5 spatial resolution for 12 

the period 1980-2013 from a combination of machine learning (ML) algorithms trained on site-level 13 

EC GPP estimates (www.fluxcom.org). The FLUXCOM data are available from the Data Portal of the 14 

Max Planck Institute for Biogeochemistry (www.bgc-jena.mpg.de/geodb/projects). The GPP fields are 15 

generated by 3 machine learning (ML) methods, namely, random forest (RF), artificial neural 16 

networks (ANN), and multivariate adaptive regression splines (MARS). The three methods are forced 17 

with meteorological data and mean seasonal cycles of several MODIS based variables (RS+METEO 18 

setup) on EC sites belonging to the FLUXNET La Thuile synthesis data set and CarboAfrica network 19 

(Valentini et al., 2014; Tramontana et al., 2016; Jung et al. 2017). 20 

In this work, the GPP derived from the ANN (Papale and Valentini, 2003), which utilizes the 21 

relationship among the micrometeorological variables, was used. The application of ANN techniques 22 

to carbon flux dynamics study for European forest ecosystem has been demonstrated by several 23 

authors (e.g. Van Wijk and Bouten, 1999; Papale and Valentini, 2003). The FLUXCOM data were 24 

reprojected to Geographic (WGS84) coordinate projection at 1 km and the geo-located to a standard 25 

SEVIRI grid by the same procedure as for the MODIS data.  26 

4. Results 27 

4.1 Spatial and temporal MSG GPP patterns  28 

Figure 2 presents an overview of MSG GPP estimates showing one daily field every-two-months and 29 

covering a full year (2012). In general, maximum GPP values are observed in May-July in Europe and 30 

September-March in Africa (Figure 2). The northern latitudes experience low GPP during winter and 31 
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early spring due to prevalent cold temperatures and moderate radiation whereas GPP levels are high 1 

over the Equatorial belt throughout the whole year owing to relatively warm temperature, moist and 2 

radiation availability. GPP of semi-arid regions (e.g. South Spain, Sahel region, East Africa, South 3 

Africa) closely follows seasonality of rainy and dry seasons (Gilabert et al., 2015; Tagesson et al., 4 

2016a; Räsänen et al., 2017). On the contrary, forest areas over Central Africa show the highest GPP 5 

estimates with values up to 8 g m-2 day-1. This is one of the wettest parts of the continent with three 6 

common peak rainfall periods: March-April-May (MAM), July-August-September (JAS) and October-7 

November-December (OND). There is a marked north–south split in Europe, with very wet conditions 8 

in Scandinavia and very dry conditions in much of central and south-east Europe. A reduction of GPP 9 

gaps due to cloud cover up to 72% is obtained when the daily fAPAR time series are filtered and 10 

reconstructed, located mainly in central Africa (10S-10N) and high latitudes (>60N). 11 

[INSERT FIGURE 2] 12 

4.2 Direct comparison with in situ EC tower GPP estimates   13 

Figure 3 shows the daily MSG GPP and the in situ EC GPP estimates from the FLUXNET EC towers (EC 14 

GPP). The MODIS and FLUXCOM GPP are also included for reference. The MSG GPP reproduces the 15 

seasonal variability in the EC GPP well, with low productivity values during winter and highest values 16 

during spring and summer. The MSG GPP time series show good performance to capture the GPP 17 

dynamics (r between 0.49 and 0.92) during the growing season, but less accurate in replicating GPP 18 

magnitude (rRMSE between 30% and 90%), which is mainly determined by max (Fig. 2). At very high 19 

latitudes (e.g. North Europe), MSG GPP usually presents more gaps due to fAPAR missing values during 20 

winter. No MSG fAPAR values are calculated over areas covered by snow, by clouds during long 21 

periods, or with large uncertainties in the BRDF data (LSA SAF, 2016b). 22 

[INSERT FIGURE 3] 23 

The RS GPP products generally present a similar pattern (more detailed comparison is presented in 24 

section 5). For ENF, one of the most productive vegetation types considered in the present study 25 

(e.g. EC sites in Finland, Italy and Germany), a mean biased error (MBE) lower than 40% is observed 26 

in most of the towers (Table 2) with a high agreement between MSG GPP and EC GPP values (r>0.7). 27 

As might be expected, over ENF sites, MSG shows very low GPP in winter and peak GPP in summer. In 28 

these cases, the AET and PET show similar values (Figure 4), confirming that such sites do not suffer 29 

water stress and main driving factors are radiation and temperature. A reduction of GPP gaps up to 30 

56% is obtained for these sites when the daily fAPAR values are filtered (e.g. De-Sfn). The differences 31 

are assessed by means of the root mean square error (RMSE). The highest ENF EC towers 32 
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disagreement is observed for FI-Let (RMSE=3.9 g m-2 day-1), and IT-Lav (RMSE =3.4 g m-2 day-1). A 1 

lower overall error and bias (RMSE=2.76 g m-2 day-1 and MBE=1.34 g m-2 day-1) are obtained when 2 

considering all ENF sites (Figure 5), observing a better agreement at EC GPP values lower than 7.0 g 3 

m-2 day-1 (distribution close to the 1:1 line). 4 

For broadleaf flux towers, moderate (r=0.69 for FR-Pue) to very good agreement (r=0.92 for DE-Lnf) 5 

is observed between MSG GPP and EC GPP.  The MSG GPP estimates agree with MODIS and 6 

FLUXCOM values, but the high EC GPP levels are not reached (e.g. DN-Lnf and Dk-Sor) giving an 7 

overall negative bias and RMSE= 3.62 g m-2 day-1 when all DBF towers are considered. For BE-Vie, DK-8 

Sor, De-Lnf and DE-Hai discrepancies between the GLC2000 and the information provided by the 9 

tower (Table 1) are observed. These discrepancies are also present for the grassland (De-Gri, IT-MBo 10 

and SN-Dhr) and the savanna (ES-LMa, ZA-Kru) EC towers.  11 

For grasslands towers IT-MBo and De-Gri, high correlations are observed (e.g. r up to 0.9 for IT-MBo). 12 

Although the main land cover type at both towers footprint is grassland, 72% of the land cover inside 13 

the 5 × 5 km area was determined as forest. The MSG GPP product is able to reproduce the seasonal 14 

behavior of this mixed forest (i.e. forest and grasslands) with large assimilation fluxes during the 15 

growing season (April-October) and to capture the GPP sharply decreased after the grass is mown in 16 

summer (i.e. DOY=180 for IT-MBo and De-Gri and DOY=210 for DE-Gri). 17 

For the grassland (SN-Dhr) and savanna (ES-LMa) towers respectively in Senegal and Spain, the very 18 

high PET values when compared to AET (Figure 4) indicate a high water demand during all year. Thus, 19 

accounting for water stress effect by means of the ratio AET/PET is a key feature of MSG GPP product 20 

at these sites. In the case of SN-Dhr, a low agreement of MSG GPP with the EC GPP estimates (and 21 

also MODIS and FLUXCOM) during the growing season is observed. The vegetation phenology 22 

maximum is generally not reached during solar solstice for semi-arid ecosystems since its seasonal 23 

variability is rather controlled by water availability (Tagesson et al., 2016a). In this case, the GPP is 24 

essentially driven by fAPAR as also suggested when the seasonal patterns of GPP and fAPAR (Figure 4) 25 

are compared. For grasslands and savanna, a higher agreement (RMSE=2.11 g m-2 day-1; MBE=-0.63 g 26 

m-2 day-1) is observed between the MSG GPP and EC GPP estimates with a 60% of the EC GPP 27 

variance explained by the MSG GPP (Figure 5d). 28 

[INSERT TABLE 2] 29 

[INSERT FIGURE 4] 30 

[INSERT FIGURE 5] 31 
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4.3 Consistency checking with synergistic global satellite carbon products   1 

The MSG GPP provides similar or lower errors than MODIS and FLUXCOM at seven of the twelve 2 

forest towers when compared with in situ EC GPP (Table 1; CZ-BK1, FI-Sod, IT-Lav, De-Hai, IT-Col, Be-3 

Vie and FR-Pue), as well as at ES-LMa and SN-Dhr sites (Table 3). In general, an underestimation is 4 

observed for the three RS products, being larger at the most productive DBF and ENF sites, such as 5 

DK-Sor, DE-Hai, DE-Lnf and FI-Let.  6 

An overestimation is observed at two broadleaf forest towers (IT-Col and FR-Pue) and at DE-SfN 7 

during the growing season. At DE-SfN, the three RS products show higher values than EC GPP 8 

whereas FLUXCOM provides lower values at IT-Col and FR-Pue. At FR-Pue, the MODIS and FLUXCOM 9 

products show, respectively, the highest and lowest GPP estimates, whereas MSG GPP provides 10 

intermediate GPP values, more in agreement with the EC flux tower (i.e. MBE = 0.7 g m–2 day–1, 11 

RMSE = 1.8 g m–2 day–1 at 8-day temporal resolution). A higher constant MODIS fAPAR value (~0.7 at 12 

https://modis.ornl.gov/fixedsite/) than MSG fAPAR during all year along with the maximum value of 13 

radiation at the growing season could explain the higher GPP levels obtained for MODIS GPP. The 14 

highest discrepancy between the three RS products and EC GPP are observed for DK-Sor, DE-Hai, and 15 

FI-Let sites.  16 

In general, a good agreement is observed between the MSG GPP and EC GPP estimates when the 17 

MSG GPP is re-sampled to 8-day and monthly temporal resolution (Figure 6a and 6b). The computed 18 

statistics are in agreement with those derived for the MODIS product. A MBE lower than 1.5 g m-2 19 

day-1 is obtained for all the canopies. Although the higher RMSE is still observed for the DBF land 20 

cover, it is still lower than MODIS outcomes. At monthly temporal resolution, the MSG GPP errors 21 

decrease when considering all the EC towers except those corresponding to ENF and DBF (MBE< 1.08 22 

1.0 g m-2 day-1), being lower than those observed for the FLUXCOM product.  23 

[INSERT TABLE 3] 24 

[INSERT FIGURE 6] 25 

The differences between MSG with MODIS and FLUXCOM are spatially assessed by means of the 26 

annual root mean square difference (RMSD) and mean bias difference (MBD) (Figure 7). For Europe, 27 

the differences between the three RS products are very low. The differences are slightly lower when 28 

the MSG and MODIS are compared, particularly over South Europe and North and South Africa. The 29 

major GPP disagreement arises over moist biomes (e.g. tropical forests in central Africa) with RMSD 30 

values up to 3.0 g m-2 day-1 and over dry biomes (e.g. semi-arid, savanna and transitional woodlands) 31 

https://modis.ornl.gov/fixedsite/
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with MSG GPP estimates lower than FLUXCOM (e.g. MBD values up to –3.0 g C m–2 day–1). 1 

Particularly, MODIS and FLUXCOM provide larger differences for the humid savanna ecosystems of 2 

west and central Africa (MBD values up to 2.0 g m–2 day–1).  3 

[INSERT FIGURE 7]  4 

The annual spatial patterns for MSG, MODIS, and FLUXCOM GPP (Figure 8) are compared. The three 5 

estimates agree reasonably well, although differences are significant in some areas. Specifically, 6 

there is a good agreement in Europe and North and South Africa, but MSG GPP is lower than 7 

FLUXCOM and MODIS over Central Africa. The largest differences occur in Equatorial areas covered 8 

by tropical forest where MODIS and FLUXCOM estimates are around 3500 g m–2 yr–1, while annual 9 

MSG GPP is below 3000 g m–2 yr–1.  10 

[INSERT FIGURE 8] 11 

5. Discussion 12 

The retrieval of MSG GPP estimates from an optimized Monteith’s model is presented. The MSG GPP 13 

product reproduces the EC GPP and its seasonal variability over most ecosystems. MBE values lower 14 

than 40% in most of the towers are found for the most efficient forest vegetation types. These MSG 15 

GPP values lie within the total uncertainty range for EC GPP proposed by Schaefer et al. (2012) as 16 

well as those obtained with coarse spatial resolution derived products (e.g. the Soil Moisture Active 17 

Passive global GPP product at 9 km (Kimball et al., 2016)). For the MODIS GPP product, average 18 

errors of 50% for non-forested ecosystems and larger underestimation (61%) for croplands were 19 

reported by Yang et al. (2007). The current MOD17A2 product is highly effective for MF (mixed 20 

forests) and DBF, moderately effective for ENF, and ineffective for EBF (Tang et al., 2015). Several 21 

factors have been discussed among possible causes for such differences that could also explain MSG 22 

GPP disagreements. These include diffusion radiation (Jenkins et al., 2007), fAPAR estimates (Zhao et 23 

al., 2011), the maximum light use efficiency (Yang et al., 2007), or differences in spatiotemporal 24 

coverage (Heinsch et al., 2006; Yang et al., 2007).  25 

Particularly, the MSG GPP product shows a high ability to cope with water stress during the dry 26 

season at sites in Senegal and Spain (SN-Dhr and ES-LMa). Both sites are a typical low tree and shrub 27 

savanna environment with a low tree cover (Tagesson et al., 2015; Sánchez-Ruiz et al., 2017). 28 

However, larger discrepancies with EC GPP are found during the growing season, especially at SN-29 

Dhr. Tagesson et al. (2017) explained the strong underestimation of the MODIS GPP product for the 30 

Sahel arguing that the max is set too low (~0.85 g MJ-1) in relation to in situ based estimates (1.58–31 
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3.50 g MJ-1). Additionally, the EC GPP in SN-Dhr is high in relation to other semi-arid ecosystems; 1 

these high values have been explained, among others, by relatively dense ground vegetation and 2 

high soil nutrient availability (Tagesson et al., 2016a; Tagesson et al., 2016b). These parameters are 3 

not included in the satellite-based models possibly explaining these discrepancies. However, the low 4 

RMSE obtained in SN-Dhr and ES-LMa still indicate the strong applicability of the AET/PET ratio as a 5 

limiting factor in the Monteith model for drylands.  6 

Furthermore, main uncertainties may be associated to scale mismatches between the EC footprint 7 

and the RS data. This could explain the highest disagreement observed for some of ENF (e.g. FI-Let, 8 

DE-SfN and IT-Lav) between the EC GPP and the GPP derived from the RS products. At DE-SfN, the 9 

canopy belongs to a natural peatland forest dominated by slow growing bog-pines and ground layer 10 

vegetation dominated by peat mosses (Hommeltenberg et al., 2014). As pine dominates the 11 

vegetation in the footprint area of the EC tower, the early rise of GPP (EC GPP and MSG GPP) in the 12 

year is likely due to the early start of photosynthesis of pine. During the course of the year, the 13 

overestimation of GPP in summer by the MSG GPP approach may also be a result of the pine 14 

dominated GPP which is lower compared to the classical peatbog vegetation. Although the 15 

overestimation is observed for the RS products, the early rise of EC GPP is only captured by the MSG 16 

GPP product. At IT-Lav, the forest is dominated by coniferous trees, but the EC site 17 

representativeness showed 32% cover by mixed forest and 8% by DBF, which explains the GPP lower 18 

values for MSG GPP and the temporal delay that the RS GPP products show at the beginning of the 19 

growing season. The FI-Let tower is a very homogeneous site compound by a mixture of scots pine 20 

and pubescent birch in the dominant canopy layer (Korkiakoski et al., 2017). In this site, the favorable 21 

water conditions (AET and PET ratio close to one) along with expected fAPAR and PAR values lead to 22 

think in other limiting factors that may affect the GPP predictions. (1) The SEVIRI/MSG observation 23 

geometry causes large uncertainties, mainly in wintertime, as a combination of multiple effects, such 24 

as low illumination angles, higher anisotropy, higher cloud occurrence, larger shadows or traces of 25 

snow cover. (2) GPP of forest ecosystems at high latitudes (>60N) is greatly limited by low air 26 

temperature, a short growing season, and radiation availability (Anav et al., 2015).  27 

The mismatch between the EC footprint and the MSG pixel size can also explain the diminution of 28 

GPP on DBF towers at the end of the summer (DE-Hai, DE-Lnf, DK-Sor). However, the MSG GPP 29 

discrepancies found for DBF at Denmark and Germany (e.g. DK-Sor, DE-Hai and DE-Lnf) could be 30 

reduced if the max would be better adjusted. At DK-Sor and DE-Hai, a crop max= 1.2 g MJ–1 was set 31 

instead of a deciduous broadleaf forest max=1.8 g MJ–1, substantially lowering MSG GPP. A reduction 32 

of rMBE respectively to 31% and 6% could be achieved if max would be adjusted accordingly. Quaife 33 
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et al. (2008) estimated that the error in GPP introduced from satellite derived land cover is up to 1 

16%. An overall accuracy of 68.6% was reported for GLC2000 at a global scale (Mayaux et al., 2006). 2 

Thus, the wrong assignment of GLC2000 classes has a negative impact on MSG GPP values where a 3 

more accurate land cover map would thereby improve the performance of the MSG GPP product.  4 

Another important factor that limits photosynthesis is cloud cover. Although the reduction of carbon 5 

uptake by photosynthesis due to cloud cover is primarily assumed by the diminution of the radiation 6 

input, the GPP estimates could be limited by the reliability of biophysical parameters such as fAPAR 7 

and leaf area index due to the lack of an operational and efficient cloud filtering. The filter and 8 

reconstruction of the MSG fAPAR time series allowed reducing the overall error of the GPP estimates. 9 

When the three RS products are intercompared, the observations used for the comparison may differ 10 

due to the availability and nominal temporal sampling interval, which could be hampered by missing 11 

data mainly due to cloud occurrence. In case of MSG GPP, the daily basis will allow performing gap 12 

filling and filtering techniques for an accurate depiction of vegetation dynamics and correct the 13 

diminution of GPP due to spectral cloud contamination, as it takes place on tropical forests. 14 

At regional level, the MSG GPP estimates are similar to MODIS and FLUXCOM ones over the 15 

temperate zones whereas the largest discrepancies are observed over the tropical zone. In the 16 

tropics, large differences are also detected between MODIS and FLUXCOM. A poor relatively 17 

FLUXCOM GPP prediction was expected in the tropics due to an undersampled training data 18 

(Tramontana et al., 2016). Differences could also be attributed to GPP low quality due to 19 

contamination from cloudiness (i.e. affecting MSG and MODIS fAPAR products) and poor constraints on 20 

meteorological reanalysis datasets affecting MODIS GPP product (Zhao and Running, 2006). 21 

Moreover, the underestimation of MSG GPP values for the tropical region may be explained by, i) 22 

systematic low MSG fAPAR values reported over needleleaf and broadleaf forests (Martinez et al., 23 

2013) and ii) uncertainties introduced by an overestimation of PET derived from the JS approach over 24 

broadleaf forest (Vörösmarty et al., 1998). This pattern is consistent with the finding by Zhao et al. 25 

(2006), which showed that the tropical region has the largest uncertainties in MODIS GPP.   26 

The selection of only one year was justified by a trade-off between the availability of necessary input 27 

data for the other years from LSA-SAF and the major representativeness of EC GPP data for validation 28 

purposes. To evaluate the reliability and performance of the method for daily MSG GPP retrievals it 29 

was required to capture and monitor the GPP magnitude and seasonal variability for at least one 30 

year. However, a longer GPP time-series consisting of inter-annual variability would improve the 31 

model evaluation and this is possible as the data availability from LSA-SAF increases. Additionally, as 32 

new MSG products appear in the LSA SAF system, these can be incorporated in the Cws 33 
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parameterization to improve the model accuracy, such as the daily reference evapotranspiration 1 

(DMETREF, LSA-303). 2 

6. Summary and conclusions 3 

This study aimed to provide a method for daily GPP estimates over Europe and Africa based on an 4 

ensemble of SEVIRI/MSG available products. The proposed framework takes advantage of the LSA 5 

SAF system facilities, and uses operational SEVIRI/MSG products to measure the absorbed 6 

photosynthetic active radiation (APAR) by vegetation (i.e. the product by PAR and fAPAR) and the 7 

environmental variables that affect the use of this absorbed flux in primary production (Trigo et al., 8 

2011). This newly derived product has the potential for analyzing spatial patterns and temporal 9 

dynamics of GPP at the MSG spatial resolutions on a daily basis. The real challenge was to capture 10 

GPP dynamics and magnitude during the growing season. We would like to highlight the MSG GPP 11 

performance in relation to three aspects:  12 

1) The ability to capture the intra-annual variability of carbon cycle. The new MSG GPP product has a 13 

daily temporal resolution, which is a major advantage in relation to previous satellite based GPP 14 

products in the study of intra-annual dynamics of GPP. 15 

2) The capability to identify possible reduction of productivity due to water shortage which is very 16 

important in dry-lands. The MSG GPP estimates introduce the advantage of considering the Cws water 17 

stress factor by means of a global AET product generated also with MSG data as well as a 18 

parameterized potential ET by means of air temperature. 19 

3) The potential to provide a new GPP product with at least equally high confidence as compared to 20 

other satellite derived GPP products. An evaluation against independent in situ data indicated that 21 

the uncertainties of the daily MSG GPP estimates are similar to those shown by other satellite 22 

products, such as MODIS and FLUXCOM.  23 

This study broadens the applicability of SEVIRI/MSG products for deriving reliable carbon uptake 24 

estimates over Europe and Africa. The coarser spatial resolution of SEVIRI is compensated by the 25 

availability of combining different MSG products at daily temporal coverage that can contribute to 26 

increased knowledge regarding changes in GPP (e.g. daily, seasonally or yearly) as well as higher 27 

precision in GPP accumulated values.  28 
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TABLES 
 

Table 1. Description of EC sites located in Europe and Africa along with the main land cover 

percentage over a 5 km × 5 km GLC2000 window. The GLC2000 land cover of each site belongs to: 

CRO (croplands), DBF (deciduous broadleaf forest), EBF (evergreen broadleaf forest), ENF (evergreen 

needleleaf forest), MXF (mixed forest), SHR (shrublands), GRS (grasslands), or CRO (crops). PFT refers 

to the most representative plant functional type of the EC tower.  SAV refer to savanna PFT. 

Label Name Country 
Latitude 

() 

Longitude 

() 

Altitude 
(m) 

PFT 
GLC2000 

 

Main 
cover 

percen
tage 
(%) 

CZ-BK1 Bily Kriz 
Czech 
Republic 

49,50 18,54 875 ENF ENF 100 

DE-SfN Schechenfilz ord Germany 47,81 11,33 590 ENF ENF 80 

FI-Let Lettosuo Finland 60,64 23,96 119 ENF ENF 88 

FI-Hyy Hyytiala Finland 61,85 24,29 181 ENF ENF 80 

FI-Sod Sodankyla Finland 67,36 26,64 180 ENF ENF 92 

IT-Lav Lavarone Italy 45,96 11,28 1353 ENF ENF 44 

DE-Hai Hainich Germany 51,08 10,45 430 DBF CRO 72 

DE-Lnf Leinefelde Germany 51,33 10,37 451 DBF ENF 80 

IT-Col Collelongo Italy 41,85 13,59 1560 DBF DBF 96 

DK-Sor Soroe Denmark 55,49 11,65 40 DBF CRO 96 

BE-Vie Vielsalm Belgium 50,31 5,99 493 DBF+ENF ENF 92 

FR-Pue Puechabon France 43,74 3,59 270 EBF EBF 92 

DE-Gri Grillenburg Germany 50,95 13,51 385 GRS ENF 92 

IT-MBo Monte Bondone Italy 46,01 11,05 1550 GRS DBF 72 

SN-Dhr Dahra Senegal 15,40 15,43 40 GRS CRO 100 

Es-LMa Las Majadas Spain 39,94 5,77 258 SAV MXF 44 

ZA-Kru Skukuza 
South 
Africa 

15,44 23,25 359 SAV SHR 64 

DE-Geb Gebesee Germany 51,10 10,91 161 CRO CRO 100 
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Table 2. Statistics of the MSG GPP direct comparison between MSG GPP and GPP EC. The mean bias 

error (MBE), mean absolute error (MAE) and root mean square error (RMSE) are given in g m–2 day–1, 

and their relative values (rMBE, rMAE and rRMSE) in %. The correlation coefficient (r) is also shown. 

SITE FLUXNET ID MBE (rMBE) MAE (rMAE) RMSE (rRMSE) r 

CZ-BK1 –1.3 (–29) 1.7 (36) 2.3 (50) 0.91 

DE-SfN –0.1 (–2) 1.1 (33) 1.4 (42) 0.85 

FI-Let –3.2 (–38) 3.3 (39) 3.9 (47) 0.71 

FI-Hyy –2.3 (–32) 2.5 (35) 3.1 (42) 0.72 

FI-Sod 0.2 (4) 1.0 (17) 1.3 (25) 0.74 

IT-Lav –2.4 (–39) 2.5 (39) 3.4 (54) 0.88 

DE-Hai –1.6 (–35) 2.3 (52) 3.3 (75) 0.87 

DE-Lnf –2.2 (–45) 3.2 (65) 4.6 (94) 0.77 

IT-Col 1.5 (36) 1.9 (46) 2.4 (57) 0.92 

DK-Sor –2.9 (–51) 3.2 (56) 4.7 (83) 0.88 

BE-Vie –2.1 (–35) 2.3 (38) 3.0 (50) 0.81 

FR-Pue 0.7 (23) 1.4 (43) 1.9 (60) 0.69 

DE-Gri –0.6 (–13) 1.7 (40) 2.4 (56) 0.84 

IT-MBo –0.6 (–13) 1.6 (38) 2.3 (56) 0.90 

SN-Dhr –1.0 (–41) 1.3 (51) 2.3 (92) 0.89 

ES-LMa –0.1 (–4) 1.0 (49) 1.2 (58) 0.49 

ZA-Kru –1.1 (–28) 1.5 (37) 2.1 (52) 0.78 

DE-Geb –0.1 (–3) 1.3 (55) 1.8 (80) 0.73 
Note: Correlations were statistically significant at 95% confidence level.  
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Table 3. Statistics resulting from the comparison of the three RS GPP products with the in situ EC GPP 

estimates. The MBE, MAE and RMSE are in g m–2 day–1. The daily MSG GPP was resampled to the 

temporal resolution of MODIS (8 days) and FLUXCOM (1 month). The correlation coefficients (r) are 

presented. 

 
 MBE RMSE r  MBE RMSE r 

CZ-BK1 
MSG8days –1.5 2.2 0.97 MSGmonthly –1.3 1.9 0.99 

MODIS –1.5 2.0 0.95 FLUXCOM –1.8 2.3 0.89 

DE-SfN 
MSG8days –0.1 1.0 0.91 MSGmonthly –0.2 1.0 0.88 

MODIS –0.01 1.8 0.85 FLUXCOM 0.3 2.2 0.83 

FI-Let 
MSG8days –3.1 3.6 0.81 MSGmonthly –2.6 3.1 0.85 

MODIS –2.7 3.1 0.88 FLUXCOM –2.9 3.2 0.92 

FI-Hyy 
MSG8days –2.3 2.8 0.74 MSGmonthly –1.8 2.4 0.78 

MODIS –1.9 2.3 0.87 FLUXCOM –1.9 2.2 0.88 

FI-Sod 
MSG8days –0.12 0.7 0.88 MSGmonthly 0.1 0.3 0.98 

MODIS –0.4 0.9 0.85 FLUXCOM –2.0 2.1 0.88 

IT-Lav 
MSG8days –2.3 3.2 0.90 MSGmonthly –2.8 3.4 0.92 

MODIS –2.7 3.5 0.87 FLUXCOM –4.2 4.4 0.89 

DE-Hai 
MSG8days –1.6 3.2 0.91 MSGmonthly –1.4 2.9 0.91 

MODIS –1.5 3.0 0.91 FLUXCOM –1.1 2.9 0.78 

DE-Lnf 
MSG8days –2.2 4.6 0.81 MSGmonthly –1.9 4.2 0.76 

MODIS –2.3 4.2 0.88 FLUXCOM –1.6 3.3 0.83 

IT-Col 
MSG8days 1.4 2.0 0.95 MSGmonthly 1.7 2.1 0.95 

MODIS –0.4 2.5 0.92 FLUXCOM –1.4 3.1 0.83 

DK-Sor 
MSG8days –2.8 4.6 0.90 MSGmonthly –2.7 4.3 0.91 

MODIS –2.9 4.4 0.93 FLUXCOM –2.8 4.2 0.92 

BE-Vie 
MSG8days –2.1 2.7 0.88 MSGmonthly –1.9 2.6 0.87 

MODIS –2.1 2.6 0.92 FLUXCOM –1.2 2.0 0.88 

FR-Pue 
MSG8days 0.7 1.8 0.64 MSGmonthly  0.7 1.5 0.78 

MODIS 2.0 3.2 0.67 FLUXCOM –0.7 1.1 0.82 

DE-Gri 
MSG8days –0.7 2.3 0.88 MSGmonthly –0.5 1.7 0.94 

GPP MODIS –1.4 2.5 0.90 FLUXCOM –1.8 2.4 0.92 

IT-MBo 
MSG8days –0.4 1.9 0.93 MSGmonthly –0.6 2.1 0.96 

MODIS –0.6 1.2 0.96 FLUXCOM –1.0 2.0 0.91 

SN-Dhr 
MSG8days –1.0 2.2 0.90 MSGmonthly –1.1 2.1 0.94 

MODIS –1.3 2.6 0.90 FLUXCOM –1.2 1.9 0.93 

ES-LMa 
MSG8days –0.2 1.0 0.60 MSGmonthly 0.02 0.8 0.63 

MODIS –0.6 1.6 0.90 FLUXCOM –0.6 1.1 0.57 

ZA-Kru 
MSG8days –1.1 1.7 0.90 MSGmonthly –1.1 1.5 0.96 

MODIS –0.7 1.6 0.80 FLUXCOM –0.8 1.2 0.94 

DE-Geb 
MSG8days –0.2 1.6 0.80 MSGmonthly 0.1 1.3 0.80 

MODIS –0.2 1.4 0.84 FLUXCOM 0.7 1.9 0.81 
Note: Correlations were statistically significant at 95% confidence level.  
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FIGURES 

 

Figure 1. The Global Land Cover 2000 (GLC2000) is shown. The GLC2000 has been geo-located and 

resampled to a standard SEVIRI grid. The selected EC sites are also included (red circles).  A 

generalized thematic legend of 6 major land covers has been proposed in order to reduce the 

number of classes while preserving the essence of the geographical patterns of the study area. 
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Figure 2. Daily MSG GPP (g m-2 day-1) images for a particular day every two months in 2012. The day 
chosen was as close to the middle of the month as possible.  
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Figure 3. Temporal profiles of daily MSG GPP, 8-day MODIS GPP and monthly FLUXCOM GPP 

together with EC GPP data at de different FLUXNET EC towers.  
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Figure 4. Temporal variation of AET and PET (left) as well as fAPAR and PAR (right) for two sites with 

water shortage limitations, SN-Dhr (Senegal) and ES-LMa (Spain), and a non-water limited typical 

forest ecosystem site in Finland, FI-Hyy, for 2012. 

(a)       (b) 

 
(c)       (d) 

 
Figure 5. Evaluation of the MSG GPP against in situ EC GPP for the all the sites (a) and for the sites 

according to ENF (b), DBF (c) and rest of land covers (d). The black lines show the one-to-one ratios, 

whereas the blue lines are the fitted ordinary least square regression.  
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(a)        (b) 

 
(c)       (d) 

 
Figure 6. MSG GPP re-sampled at 8-day (a) and monthly (b) temporal resolutions against EC GPP 

values. MSG along with GPP MODIS (c) and GPP FLUXCOM (d) vs. EC GPP are also presented. The 

RMSE, MAE, MBE, r and linear regression are computed for the ENF (red), DBF (magenta), REST (blue) 

and ALL (black) sites. The black thin lines show the one-to-one ratios. The thick black lines show the 

fitted ordinary least square regression when all sites are considering. The red, magenta and blue lines 

show the fitted ordinary least square regression for the ENF, DBF and REST flux towers. 
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Figure 7. RMSD and MBD (in g m–2 day–1) between MSG-MODIS (top), MSG-FLUXCOM (centre) and 

MODIS-FLUXCOM (bottom).   
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Figure 8. Annual GPP estimates for MSG, MODIS and FLUXCOM. 
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*
This material has been prepared to show the Jensen and Haise (1965) method applicability over different sites with different PAR 

and T values.  

Two sites, a semi-arid savanna grassland in Africa (SN-Dhr) and a boreal Forest in Finland (FI-Hyy) have 
hereafter been selected to assess the applicability of the Jensen & Haise model due to Rg and T 
variability (see Figure below). Both sites are also included in the example of Figure 4 (see manuscript) 
where the differences in the temporal variation of AET and PET (left) as well as fAPAR and PAR (right) due 
to water shortage limitations in Senegal and non-water limited typical forest ecosystem in Finland are 
assessed. Here, the Dahra site shows a constant and high solar irradiation due to its latitudinal location 

leading to an almost constant temperature along the year with values reaching the 30. In this case, the 
PET derived from Jensen and Haise shows high values with a low variability along the year.  The PET is 
very high because it is hot and dry, but since there is very little water the AET is very low or zero for 
most of the year. In this case, a minimum value of 0.6 is obtained for the Cws which indicates that 
photosynthesis is reduced to 60% of its potential due to water shortage reduction. For FI-Hyy, no water 
limitation is observed and the PET and AET are almost the same along the year. The PET estimates from 
Jensen and Haise reaches very low values and almost zero when there is very low solar irradiation 
(winter and autumn seasons) and the air temperature is almost zero or below zero. In this case, the 
solar irradiation and air temperature are not high enough to convert the water content into vapor and 
transfer it to the atmosphere.  The Cws is set to 1 (no water stress when the air temperature is below -
3.2) since the vegetation canopy is supposed not to be affected by water stress. 

SN-Dhr (SENEGAL) FI-Hyy (FINLAND) 

  

  

  

Figure 1. Example for SN-Dhr and FI-Hyy sites. 
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