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Introduction

The agriculture of today faces challenges of sustaining the world’s food production for a
growing number of people during a changing climate (Ruane et al. 2018). Biomarkers,
biological characteristics that can be measured to predict traits of interest in organisms of
interest, have emerged as a valuable tool for accelerating agricultural and medical research.
In recent years, molecular biomarkers have played an important role in molecular breed-
ing (Nadeem et al. 2018), where it is used to predict traits and guide breeding decisions.
Here, these biomarkers can help solve the sustainability challenges facing the agriculture by
accelerating our ability to shape our food.

DNA-based markers are currently the most established technology for molecular breeding
and have been used in various applications (Xie and Xu 1998). These markers are relatively
easy to measure but are hindered by the complexity of cellular biology, where the inform-
ation in the DNA needs to be translated through transcripts into proteins before having a
function in the organism. Both transcripts and proteins have shown the potential to im-
prove DNA marker-based predictions (Langridge and Fleury 2011; Holloway and Li 2010),
with proteins having the biggest potential predictive ability since they are closest to the
function. Still, proteomics, the large-scale study of proteins, is less established and needs
to overcome many challenges before being widely used in molecular breeding. Included in
these challenges is the fact that proteomics has a more complex workflow both in terms of
laboratory procedure and data analysis which leads to a higher degree of variation between
samples and experiments, making reproducibility between studies more challenging (Pie-
howski et al. 2013). Many of these challenges are being addressed, and recent publications
such as those presented in this work have shown the potential of proteomics for further im-
proving current breeding techniques (Ma, Rahmat and Lam 2013; Sandin, Chawade and
Levander 2015).

Bias caused by technical variation (unwanted noise introduced by variation in laboratory
procedures) in proteomics experiments often makes it difficult to find biological patterns of
interest. To solve this, two pieces of software were developed to reduce the impact of tech-
nical variation and are presented in this work. Here this is achieved by directly reducing



technical variation by using a technique called normalization and by providing visualiz-
ations that help the user identify the best performing analysis methods for their dataset
(Paper I-IT). These pieces of software and approaches were then applied in three proteomic
studies on three different agricultural organisms (Paper III-V) to identify proteins linked
to their respective traits of interest. A summary of these studies is shown in Figure 1.
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Figure 1: Overview of projects presented in this thesis. Papers |-l introduce software to improve existing analysis approaches in
omics. Papers llI-V present applied studies investigating the proteome response related to important agricultural traits.

For the software studies, in Paper I the software NormalyzerDE was developed. It helps
the user carry out an optimally performing normalization of their dataset, a procedure to
reduce certain types of unwanted variation. Furthermore, NormalyzerDE presents a new
normalization approach reducing variation caused during the ionization of peptides in the
mass spectrometer. Finally, it conveniently provides tools for executing and visualizing the
downstream statistical analysis. NormalyzerDE has gained a wide userbase, and simplifies
the selection of an optimal analysis approach by being accessible on a web server and as a
Bioconductor R package. Paper II introduces the newly developed software OmicLoupe,
an interactive and easy-to-use software for rapid visualization of omics data. It provides



visualizations for sample quality and statistical aspects, and introduces new approaches to
compare data from different experiments or types of omics, revealing shared trends po-
tentially missed using conventional methods. OmicLoupe can help the user understand
limitations and see opportunities in the data at hand, thus guiding better analysis decisions
and the identification of proteins or other features of interest.

For the agricultural studies presented in this work, in Paper III we used proteomics together
with transcriptomics based references to study the molecular response in oat when infected
by the fungal pathogen Fusarium graminearum. This pathogen causes the disease Fusarium
head blight (FHB) and upon infection emits a toxin called deoxynivalenol (DON) which
when ingested affects the health of both human and livestock (Alshannaq and Yu 2017;
Wu, Groopman and Pestka 2014). The response to the disease was investigated in two vari-
eties of oat with different resistance to FHB. Our study confirms the differential response
to infection between the oat varieties and identifies proteins affected upon infection. In
Paper IV we study bull fertility by analysing the proteomic profile in seminal bull plasma
from a set of individuals with different fertilities. Estimating bull fertility by traditional
means is slow and costly as it requires awaiting fertile age and performing enough insemin-
ations to get reliable estimates (Humblot, Decoux and Dhorne 1991). The seminal plasma
proteome has been shown to play a role in the fertility in bulls (Druart et al. 2019). Here
we identified proteins consistently correlated across three separate measurements and sea-
sons, contributing to the identification of markers of bull fertility, which could be used
to detect bulls with low fertility at an early stage, saving considerable resources. Finally,
in Paper V we study the proteome of potatoes grown at different latitudes in Sweden. In
northern Sweden, the days are longer and the growing season is shorter. Here we study
how growth location impacts the proteome of different varieties of potato. This identified
proteins with consistently different abundances across three years in one potato variety and
between groups of varieties with varying yields at the two sites.

In conclusion, this work introduces new software to improve the analysis of omics data-
sets, providing a foundation for better analysis decisions. The three agricultural proteomics
studies identify proteins linked to different phenotypes, contributing to potential biomark-
ers and accelerated breeding in the three organisms. In the present thesis, I have based on
these studies chosen to highlight the limitations and considerations one needs to consider
when carrying out proteomics biomarker discovery studies. Many of these apply generally
when working with omics-data. These considerations are, in my view, among the most
valuable insights gained through this work. By contributing improved methods to work
with omics data and by increasing the molecular knowledge about important agricultural
traits, this work aims to increase our ability to shape our food towards a more sustainable
agriculture.






Thesis aims

The aim of the work presented in this thesis is to improve the methodologies available for
interpretation of omics data to allow for the implementation of omics analysis methods
within the field of sustainable agriculture. To accomplish this aim, there are two objectives:

1. Identify limitations in existing omics data processing workflows and develop new
methods to overcome these limitations.

2. Apply existing and newly developed omics-methodologies to identify proteins linked
to traits of interest in three diverse agricultural organisms, and by doing this, con-
tribute towards new biomarkers.






Chapter 1: From experiment to
proteins

Proteomics biomarker discovery studies are long journeys consisting of many steps that in-
fluence the reliability of the final result. This type of study typically involves scientists with
different expertise, including experimentalists, mass spectrometrists, data analysts, and bio-
logists. These scientists need to work together and communicate about what opportunities
and issues have appeared during the project. Doing so efficiently requires an understanding
of both the upstream and downstream steps of the performed work. This chapter summar-
izes the initial experimental and computational steps, including the experimental design,
while highlighting potential limitations it may cause on the subsequent data analysis.

The journey of a proteomics biomarker study begins at the drawing board, where the struc-
ture of the experiment is outlined - the experimental design. Then the experiment starts -
the field trials are grown, or the tissue samples are collected. A sequence of experimental
steps is carried out, starting from protein extraction, followed by protein digestion into
peptides and finally measuring these peptides in the mass spectrometer. These measure-
ments produce large amounts of mass spectra - accurately measured mass over charge ratios
of peptides and peptide fragments. These spectra are computationally processed using spe-
cialized software, piecing them back together into a comprehensive view of what proteins
were originally present in each sample and in what amount. A schematic of this workflow
is illustrated in Figure 2. Each step of this workflow is addressed in this chapter.

Different types of variation will appear during this journey, causing uncertainties to the
final estimates of which protein were originally present and in which abundance. The
variation can be biological - caused before sampling by differences during the biological
experiment itself, or technical - caused by inaccuracies in the sample handling and in the
mass spectrometer. These variations can systematically influence groups of samples causing
what is called batch effects, or randomly influence individual samples differently, called
random effects. In this thesis, this collection of undesirable biases is jointly called un-
wanted variation. Ideally, these variations should be accounted for already at the design
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Figure 2: Schematic illustration of the steps from drawing board to measured protein abundances.

stage by planning the experiment such that if issues occur they can be corrected for dur-
ing the data analysis, and during the experiments by maximizing the reproducibility of the
laboratory procedure. Realistically, even with the best intentions unwanted variation will
appear during experiments and needs to be carefully monitored and understood so that the
computational biologist can consider it and draw reliable conclusions from the data despite
its presence.

Navigating technical limitations in experiments has been an important aspect through all of
the presented studies. The aim of Papers I-II is to make it easier to identify trends of interest
in omics expression data and to provide tools to help draw optimal findings. These were
subsequently used during the data analysis in Papers IT1I-V, where different types of analysis
decisions had to be made to draw reliable conclusions from the data, further discussed in
Chapter 3. This first chapter aims to act as a stepping stone to understanding the issues that
may appear during a proteomics study and the downstream challenges they can cause.

Designing an experiment

How an experiment is structured has far-reaching consequences to what conclusions can be
drawn from the study. These consequences are primarily seen during the data analysis and
biological interpretation towards the end of the project but require careful consideration
already at the start. A poor experimental design will limit the potential of an experiment
and can make it more difficult to adjust for laboratory work errors during the statistical
analysis, thus wasting precious resources, time and research opportunities.



One of the main challenges of statistics in omics data is its multidimensionality, where
potentially many thousands of variables (peptide abundances in the case of mass spectro-
metry) are measured simultaneously. Experimental design in omics has been extensively
discussed for high-throughput experiments such as for microarray studies - one of the first
established techniques for comprehensive profiling of gene expressions (Yang and Speed
2002; Churchill 2002; Dobbin, Shih and Simon 2003; Simon, Radmacher and Dobbin
2002). Much of this also applies to the current mass-spectrometry based measurements of
proteomics (Oberg and Vitek 2009; Hu et al. 2005a). The three key experimental design
questions discussed here are the number of replicates, randomization of samples, and block-
ing of samples.

Replicates are repetitions of the experimental workflow and are used to quantify sources
of variation present in the experiment and to increase the accuracy of its measurements
(Blainey, Krzywinski and Altman 2014). There are two types of replicates - biological and
technical (illustrated in Figure 3). Biological replicates run the full biological experiment
for additional cells, tissues or organisms. There is always a biological variation present
between individuals, and biological replicates are needed to see beyond this. Technical rep-
licates use the same biological material and runs of all or parts of the subsequent laboratory
steps, for instance, by running the same biological sample twice on a mass spectrometer. A
higher number of replicates gives a more reliable estimate of the variability, increasing the
power of subsequent statistical tests, but require more resources. A study using RNA-seq
in yeast showed that three biological replicates, a typical number in expression-based stud-
ies, only detected 20%-40% of the regulated genes compared to what was identified when
using a high number of replicates (Schurch et al. 2016). The expected depth of a study per
number of replicates can be calculated beforehand by considering the heterogeneity of the
sample, allowing one to make trade-offs between resources and depth during the design
stage. Finally, technical replicates are useful to quantify and to reduce the impact from the
technical variation of an experiment. Both biological and technical replicates are valuable
tools for understanding the variance in the experiment and increasing the sensitivity of the
subsequent statistical tests.

Randomization and blocking are strategies for organizing the processing of samples in or-
der to minimize the risk of technical variation, which disrupts the later statistical analyses
(Suresh 2011). Here, samples from different biological conditions of interest are balanced
across possibly disturbing factors, such as run day or reagent batch (illustrated in Figure 4).
This balancing allows the statistical test to consider the technical condition as a disturb-
ance by including the it as a so-called covariate. Including a condition as a covariate gives
the statistical test the ability to independently model variation from that condition, and
can thus separate it from the condition of interest. In the worst case, a technical effect is
completely overlapping with the studied effect, making them inseparable, a concept called
confounding (top row in Figure 4). In a randomized experiment, the order of the samples
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is shuffled to reduce the risk of confounding. Here, there is still a risk that conditions
purely by chance are distributed unevenly across the technical conditions, interfering with
the statistical analysis (middle row in Figure 4). Blocking extends randomization by evenly
distributing biological conditions across groups of samples known to later cause variation,
ensuring that the condition is evenly balanced (lower row in Figure 4) (Burger, Vaudel and

Barsnes 2020).
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Figure 4: Types of randomization, and how it can lead to overlap (confounding) between conditions of interest and
unwanted conditions.

The structure of the experiment defines its potential and its robustness to technical issues.
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A good design gives the resources put into the project their best shot of coming to good use
and allows accounting for expected and unexpected unwanted variation appearing during
the statistical analysis. Poor design may severely limit the value of an experiment or even
make it impossible to draw conclusions from it.

Sample handling for proteomics

The sample handling process starts with extracting proteins from the biological samples
and ends with inserting the processed sample into the mass spectrometer. The sample
handling steps have been found to be the most susceptible to technical variation in the
proteomic workflow (Pichowski et al. 2013). Some aspects that can cause systematic bias
are variation in chemical reagents, instrument calibrations, differences in liquid chroma-
tography columns, temperature changes or differences in human handling (Karpievitch,
Dabney and Smith 2012). This variation can partially be adjusted computationally using
algorithms such as normalizations and batch effect corrections, as carried out by software
such as NormalyzerDE (Paper I). Still, they can never be fully adjusted for, and the exact
impact on the subsequent analysis is often uncertain. Therefore, the experiments need to
be carried out with the utmost care, potentially using sample handling robots to automate
steps to reduce variation caused by human handling (Kriiger, Lehmann and Rhode 2013),
as well as having a good maintenance routine for the mass spectrometer. The main sample
handling steps in bottom-up label-free proteomics (the type of proteomic approach used
in the work presented in this thesis) are illustrated in Figure 5. Briefly, the proteins are
extracted from the tissues or cells while also cleaning away substances such as salts and
surfactants, unfolded by a process called denaturation, having their cysteines reduced to
break their sulphide bonds, digested to peptides using a protease that cleaves the proteins
adjacent to specific amino acids, and finally optionally cleaned again prior to injection into
the mass spectrometer (Kulak et al. 2014).

Extract .
& Clean Denaturate Reduce Digest Clean

% AN

Figure 5: The main sample handling steps in bottom-up label free proteomics.

During the extraction steps, the proteins are retrieved from the cells or tissues of interest.
Variations in the original material and how the extraction is performed have been shown to
impact the protein yield and the structural integrity of the target proteins (Simpson 2003;

II



Piehowski et al. 2013). Different types of tissue require different considerations (Wang et
al. 2018; Dittrich et al. 2015), further complicating the procedure. In bottom-up proteom-
ics (the approach used in Papers III-V and outlined in Figure s), proteins are cleaved into
peptides at specific sites using a protease, commonly trypsin, before analysis in the mass
spectrometer. This process results in a mixture of peptides masses mostly fitting into the
detection range of the mass spectrometer. During digestion, cleavage points are sometimes
missed, leading to a mix of fully and partially digested peptides. Undigested peptides have
been shown to constitute around 20% of the resulting peptides (Burkhart et al. 2012; Pi-
cott, Aebersold and Domont 2007), thus causing considerable variation in the downstream
analysis if the degree of missed cleavages is not constant within the analysed set of samples.

The studies presented in Papers III-V use a label-free approach. The alternative is to use
labelled approaches where labels are inserted either chemically or metabolically into the
proteins (Ong et al. 2002; Thompson et al. 2003; Gygi et al. 1999), allowing for mixing
of multiple samples up to the maximum number allowed by the type of labelling used
(commonly 10 or 16 samples per set for chemical labels). These labels are then used by the
mass spectrometer to distinguish proteins coming from different samples. This approach
can reduce the number of mass spectrometry runs and consequently the variation caused
during the mass spectrometry processing, but risks causing batch effects when the number
of labels are exceeded and additional samples need to be run with a separate set of labels.
Furthermore, labelled proteins are often analysed across multiple mass spectrometry runs
after fractionation, where proteins with different characteristics are separated to allow a
deeper study of the proteome. Both labelled and label-free methods have strengths and
weaknesses. In this work, we use the label-free approach due to its laboratory simplicity, in
particular in light of running sets of samples exceeding the labelling sizes.

If the sample preparation is handled well, the chance of an accurate view of the underly-
ing biology in the experiment is maximized. The automation of sample preparation has
gradually started gaining more widespread use. Automation can reduce variability caused
by human handling of samples while making it possible to process samples in parallel, in-
creasing throughput (Fu et al. 2018; Kriiger, Lehmann and Rhode 2013). Furthermore,
thorough documentation of parameters such as reagents, temperatures, and personnel per-
forming the experiments is critical as it makes it possible to assess the limitations of the
data during the data analysis. The day where sample handling in proteomics is without
challenges still seems far away. Thus, potential sources of variation need to be carefully
managed, documented and considered during the data analysis steps.
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Measuring peptides using bottom-up mass spectrometry

A mass spectrometer is a complex machine used to measure the mass-to-charge (m/z) ra-
tio of molecules with high accuracy. In bottom-up proteomics, these measurements are
performed on cleaved proteins (called peptides), and the measured intensities are used to
calculate protein identities and abundances. Similarly to the process of sample handling,
technical variation can be introduced during the steps performed using the mass spectro-
meter due to performance changes in its components or drift in its calibration. These
changes should ideally be accounted for by careful handling of the experiments and main-
tenance of the equipment, but will, in practice, need to be evaluated and adjusted for during
the computational processing using techniques such as normalization and batch effect cor-
rection. To further add to the complexity, large scale experiments can involve dozens or
hundreds of samples being run sequentially over days. If any parameter in the instrument
changes during this time, it will lead to technical variation. An overview of the mass spec-
trometry workflow is illustrated in Figure 6. In this section, I will discuss common sources
of variation and their impact on the subsequent analyses.

iqui Electrospray Collision Induced ;
Liquid Chromatography lonization Quadrupole Dissociation Orbitrap
0 o s [T
L) WO > -
S, R ot
e

v \
||I |H| I |“||‘ ”

MS1 MS2

Figure 6: Schematic illustration of the main steps in the mass spectrometry workflow.

In the studies presented in this thesis, the mass spectrometry has been preceded by li-
quid chromatography (LC) separation. In this technique, peptides are sent under pressure
through a chromatographic column packed with a material, commonly C18, able to interact
with peptides based on their chemical characteristics. Thus, peptides are separated, travel-
ing with different speed towards the ion source. The time it takes for a peptide to pass by
the column and reach the instrument is called retention time (RT). This separation gives
the mass spectrometer more time to measure the incoming peptides, providing a deeper
view of the proteome. In a typical experiment with a 40-90 minutes gradient, individual
peptides will spread out to mostly less than minute-long distributions, meaning that many
peptides are continuously being measured by the mass spectrometer for this duration. The
chromatographic column is a common source of variation, making it difficult to directly
compare samples ran at different times or in other mass spectrometers. This phenomena
was seen in Paper V where the column was replaced midway through the sample processing,
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causing considerable variation to the dataset and prompting reruns of samples.

Next, the peptides are passed from the narrow tip of the column into an electrospray (Fenn
etal. 1989), where they are jonized by applying a high voltage and emitted as a rapidly evap-
orating mist of peptide droplets, sending charged peptides into the mass spectrometer. This
ion intensity may fluctuate over time, which means that peptides measured at certain reten-
tion times in specific samples will have higher or lower ion intensities which consequently
will influence the measured abundances. This abundancy variation is often unaccounted
for in downstream normalization procedures, but attempts to correct for this have been
made (Van Riper et al. 2014; Zhang, Kill and Zubarev 2016). Paper I introduces a new
generalized approach to normalize time-dependent intensity fluctuations, compatible with
a range of existing normalization techniques.

In the studies carried out here, the initial peptide selection in the mass spectrometer is
performed using a quadrupole mass analyser consisting of four metal rods that produces an
electric field, carefully controlling that only peptides’ with a specific mass-to-charge ratio
enter the mass spectrometer (Yost and Enke 1978). The selected peptides are fragmented in
a collision cell where high energy particles under high pressure collide with the peptides.
These fragmented ions are fed into another mass analyser measuring their mass over charge
ratios. In the work presented in Papers III-V, the final mass analyser did in most cases
consist of an orbitrap (Hu et al. 2005b), a mass analyser using an electric field to rapidly
spin the peptides around an electrode and using the frequency of their movement across
it to calculate their mass over charge ratios. These measurements of fragmented peptide
ions give what is later referred to as the MS2-spectrum, a highly accurate fingerprint of the
masses of the peptide fragments.

Two common modes of using the mass spectrometer are data-dependent acquisition (DDA)
(the approach used in Papers I1I-V) and data-independent acquisition (DIA). In DDA, the
peptides with the highest intensity entering the mass spectrometer are selected for further
analysis. On the other hand, in data-independent acquisition (DIA) (Purvine et al. 2003),
a newer technique rapidly gaining traction, the mass spectrometer performs fragmentation
for predefined ranges of mass-to-charge values, stepwise going through the full m/z range.
This selection produces an unbiased and comparably more complex spectrum as wider m/z
ranges are used and selected regardless of which incoming peptides are present. Using
DIA has been shown to reduce the challenges with missing values compared to the DDA
approach while requiring more complex algorithms for processing the spectra. Software
have lately been developed with this purpose, thus reducing the barrier of entry for analysing
this type of data (Gillet et al. 2012; Rost et al. 2014; Tsou et al. 2015; Teleman et al. 2015;
Searle et al. 2018). In this work, DDA was used due to its relative simplicity and its ability
to identify and quantify thousands of proteins. However, this approach causes a selection
bias as peptides with low abundance or low ionization ability may never get selected for
identification, leading to missing values in the subsequent data analysis.
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In conclusion, the mass spectrometer can give a comprehensive view of which proteins are
present in a sample, but it requires a complex workflow that needs to be carefully tuned
to ensure reliable results. Similarly to during the sample handling, variations during these
steps will impact the subsequent data analysis and should be carefully documented such that
they can be visualized, understood and accounted for statistically during the data analysis.

Computational processing of mass spectra to protein abundances

The computational processing of mass spectra starts with the data obtained from the mass
spectrometer. Here, the aim is to use the measured masses of peptides and their fragments to
build a comprehensive view of the proteins present in the original samples. In this step the
challenge changes from avoiding causing technical variation to making optimal choices of
software, algorithms, and parameter settings. Each will influence the results and potentially
impact the final interpretations.

The choice of software has been shown to have a considerable impact on the analysis results
(Bell et al. 2009; Chawade et al. 2015). In some studies, the skill and experience in using
the tools even more so (Navarro et al. 2016; Choi et al. 2017), demonstrating the import-
ance of understanding the mass spectrometry principles. Proteomics users have the choice
between using a single piece of software to carry out all the analysis steps or using a mod-
ular workflow with different software for each step. Popular examples of singular software
able to carry out the full proteomics workflow are MaxQuant (Tyanova, Temu and Cox
2016) and Progenesis (http://www.nonlinear.com/progenesis), which require comparably
less technical knowledge, while in many cases still performing well (Vilikangas, Suomi and
Elo 2017). On the other hand, modular approaches such as OpenMS (Rast et al. 2016),
Proteios (Hikkinen et al. 2009), DeMixQ (Zhang, Kill and Zubarev 2016) or custom work-
flows allow for selection of best-performing tools for each step and do, in many cases, allow
for automation of the analysis, making the analysis and later reanalyses easier for technical
users. Critical steps of the workflow are outlined in Figure 7.

The first computational step is to use the mass spectra to find abundances and identities of
the measured peptides. In label-free proteomics, the MSt spectra measuring peptides with
different charge states over time are typically used to calculate peptide abundances (Teleman
et al. 2016; Cox et al. 2014; Rést et al. 2016). As the ionization ability of the peptides varies
with their sequence, it is difficult to make other comparisons than between the same peptide
across samples. The differences in ionization properties also make it challenging to calculate
absolute abundances of proteins using mass spectrometry.

The parallel step is to identify peptide sequences based on their MS2 measurements. The
mass-to-charge ratios of the peptide fragments are used as fingerprints and are matched to
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simulated fragments from databases with known protein sequences (Eng, McCormack and
Yates I111994). The peptide identification performance depends on both the algorithm, the
search settings, and which database is used. If proteins are not included in the database,
their peptides cannot be detected using this strategy. If using a large database, the statist-
ical strategy commonly used to ensuring a low false positive rate (the identification of an
incorrect peptide sequence) will lead to a high number of false negatives (failing to identify
an existing peptide with enough confidence). Approaches to improve the false discovery
rate have been proposed, such as combining multiple search engine results (Shteynberg et
al. 2013) or using machine learning strategies to better separate real from false matches (Kill
et al. 2007). Recently, new techniques using MS2 peak intensities in addition to the m/z
values have emerged, with the potential of reducing limitations from using large databases
(Barton and Whittaker 2009). If successful, this would reduce the burden of false negatives
by increasing the accuracy of peptide spectrum matches, which would be particularly useful
when working with large databases such as when looking for additional modifications of
the peptides called post-translational modifications (PTMs), or in metaproteomics where
many organisms are studied simultaneously.

Next analysis challenge is to reduce the problem of missing values. A common issue caused
by the data-dependent acquisition strategy is values missing due to only measuring highly
abundant peptide ions selected for MS2-fragmentation. Still, if present, the ions are ob-
served on MSi-level and their identity can be shared across samples, partially remedying
the issue. There are numerous algorithms for this purpose, as reviewed (Smith, Ventura
and Prince 2013), which successfully reduce the number of missing values, but may suffer
from false matches, particularly when the number of samples is large. The types of miss-
ing values also need to be distinguished, as values systematically missing in one biological
condition may indicate biological effects rather than technical variation. Approaches to
consider missing values and their relationship to potential biological effects are discussed
further in Chapter 2 and Paper II, and are applied in Paper III.

'The final step going from spectrum to protein is to infer protein identities and abundances
from the peptides. Many approaches have been proposed for this purpose (Nesvizhskii and
Aebersold 2005; Huang et al. 2012). The protein inference is challenging as one peptide
frequently matches to many variants of the proteins, such as isoforms, close homologues
or, when modified, different post-translational modifications. Each variant may have dif-
ferent functions and abundances. These are jointly called proteoforms (Smith and Kelleher
2013). In bottom-up proteomics we often miss these proteoform-specific differences as the
measured peptides are present in multiple variants of the protein, giving us measurements
of groups of proteoforms.

In the studies presented here, a modular workflow was used, starting with the Proteios
software environment (Hikkinen et al. 2009) to carry out MS2 searches using two search
engines. For MS2 searches, X!Tandem (Craig and Beavis 2004) was used together with

16



MS1 Ms2

Raw MS data ”l ”l |
| L
+ MS1
Feature identification
+ MS2 Datrabrase
Peptide identification | | - \\44‘
; L1 =
Align identifications ||||‘ |I M1
I
il

v
Normalization I.'*'*“' - ’“mm
v

Protein rollup

v

Statistics & Visualization

Figure 7: Schematic illustration of the main steps in the computational workflow used for bottom-up proteomics with the
data-driven acquisition workflow.

either MS-GF+ (Kim and Pevzner 2014) or Mascot (Perkins et al. 1999). For feature detec-
tion, Dinosaur (Teleman et al. 2016) was used, an open-source extension of the MaxQuant
algorithm for label-free quantification (Cox and Mann 2008). Approaches for alignment
were explored during the projects (Scott 2019), with features in the present studies aligned
and combined using an algorithm built into Proteios (Sandin et al. 2013). NormalyzerDE
(Paper I) was used to identify a robustly performing normalization technique, here using
the cyclic Loess normalization, found to consistently perform well in the datasets analysed
in Papers III-V. No batch effect correction was performed at this stage, but later during the
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statistical calculations by setting the condition as a covariate. The RRollup algorithm from
DanteR (Polpitiya et al. 2008) was used for protein rollup using a Python (Meller 2017) or
an R implementation (github.com/ComputationalProteomics/ProteinRollup),
a strategy that selects a peptide with few missing values and uses it as a reference for scaling of
the remaining peptides to a similar intensity level before calculating averages in each sample.
No imputation was performed, keeping missing values as missing. Software choices were
kept constant throughout the subsequent analyses of follow-up data in the studies presen-
ted in Papers IV-V to avoid introducing additional variation between the datasets due to
different software choices.

The choices made during the computational processing of mass spectra into protein abund-
ances significantly impact the resulting values and may influence the downstream interpret-
ations of the data. A sufficient understanding of underlying principles has been shown im-
portant to obtain optimal results, both when using modular software and a single software
solution. Still, many challenges in the computational processing of proteomics remain to
be met and more are coming up in light of new methods developments. To meet these chal-
lenges, both new algorithms and robust and user-friendly software need to be developed.

Concluding thoughts

As discussed in this chapter, many sources of variation influence the proteomic data at each
step, from the laboratory parts to choice of software and analysis methods. Some of these
can be controlled by carefully designing and carrying out experiments, and using robust
software to perform the analysis. Still, due to the complexity of the experiments, technical
variation is still often inevitable. In the next chapter we will see how this can be accounted
for using algorithms to reduce the unwanted variation in the data, and how informed data
analysis choices based on visualizations help us bringing out the best of the data, even when
limited by technical variation.
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Chapter 2: From proteins to biological
insight

Data analysis in biomarker discovery aims to identify persistent biological patterns that can
be used to understand biology better and predict useful traits. This identification is chal-
lenging due to the complexity of the data. One challenge is the many sources of unwanted
variation that may obscure the biological signal or even introduce signal which might be
interpreted as biological. Beyond this, the inherently random nature of the data and the
flexibility of the computational analysis pose other challenges, making it difficult to know
what tools and statistical approaches are most appropriate for each task. Venet ez al. ex-
plored how well random gene-expression signatures correlated to breast cancer outcomes
and found that the published signatures, in most cases, did not perform significantly bet-
ter than random signatures (Venet, Dumont and Detours 2011). The issue with the often
limited reproducibility for published biomarker signatures have been discussed at multiple
occasions (Chibon 2013; Bustin 2014; McShane 2017; Scherer 2017) and indicate that many
published signatures are likely to be unreliable, spurious patterns seen only in one dataset.
If so, this is consequential for how the data analysis should be approached, indicating that
great care needs to be taken when interpreting this type of data. This chapter discusses
how to use normalizations, batch effect correction and statistical approaches to increase the
robustness of the analysis, and the use of data visualizations to guide the approach and the
conclusions of the analysis. The overall analysis workflow as discussed here is illustrated in
Figure 8. These steps and related challenges are discussed in this chapter. Paper I is closely
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Figure 8: The data analysis workflow.
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related to the normalization and statistical analysis steps, while Paper II almost exclusively
focuses on the use of data visualization for better decisions on how to analyse the data.
These pieces of software were subsequently used in Papers III-V to guide and carry out
analysis decisions that are further discussed in Chapter 3.

Managing unwanted variation

Even in an experiment with no technical disturbances, systematic biological differences
need to be distinguished from individual variation. In reality, there will generally be an
unwanted variation present in the data. This variation can be caused by differing conditions
in the experiment before sampling (for instance, if an older batch of seeds is used for some
plants) and by technical differences from the sample handling itself (different reagents are
used for protein extraction), as illustrated in Figure 9.

Wanted Unwanted
variation variation
Technical
Systematic Individual Pre- Sample
y L L . p Batch effect
variation variation sampling specific
Effect of interest Natural individual Infected material Pipetting errors Different reagents
variation Varying growth Electrospray MS run day

conditions variation Storage time

Figure 9: Breakdown of different types of variation. “Wanted variation” is what is present if only the variation intrinsic to the
organism is measured with no additional variation caused by the experiment and the sample handling. “Unwanted
variation” is any disturbance caused either during the experiment prior to the sampling or in the subsequent sample
processing steps.

One example of pre-sampling variation was shown in a recent study where Hela cell lines
from different laboratories were compared, showing different gene expression profiles (Liu
etal. 2019). This difference is likely due to gradual mutation over time, making them more
diverse. This diversity means that when comparing results from studies based on the Hela
cells in different labs, this additional source of variation will be present and needs to be
considered while interpreting the data. The technical difference is often further divided
into sample-specific effects (such as pipetting errors or electrospray variation) and batch
effects (such as run-days on the mass spectrometer and reagent batches). The difference
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between random effects and batch effects is illustrated in Figure 10, showing how batch
effects systematically either shift samples by a fixed effect or along a gradient. In contrast,
the random effect is not linked to a specific set of samples.
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Figure 10: lllustration of random effects and batch effects. Random effects influence samples in a non-predictable way, while
batch effects impact samples systematically, either as a group or along a gradient.

Strategies to correct for sample-specific technical variation are called normalizations. These
strategies are the main focus of Paper I. Batch effects, the second type of technical vari-
ation, have been a central point throughout the omic studies presented in Papers III-V.
Batch effects can sometimes be corrected for by using batch effect correction strategies.
Both normalizations and batch correction methods need to be applied with care, as they
will introduce new structures in the data and may risk removing biological variation while
attempting to compensate for the technical variation. If the reduction of technical vari-
ation is greater than the disturbances introduced by the normalization, the normalization
procedure can help give a clearer view of the variation of interest. Visualizations are also
important for providing guidance on how to analyse the data to get the most reliable result.
In this chapter, the two main types of technical variations and strategies to handle them
during the data analysis are discussed.

Normalization

Normalizations aim to adjust for sample-specific technical differences to reduce technical
variation in order to make the samples more comparable and get a clearer view of the
biology. If applied correctly, this can increase the ability to draw conclusions from the data.
Still, if applied in a way that breaks the assumptions of the normalization technique, this
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1. Calculate the median for each sample
2. Calculate the average of these medians
3. Use this to calculate a scaling factor for each sample

4. Scale all the values within each sample with this factor

Figure 11: The procedure of median normalization.

can cause incorrect and misleading results by introducing false signals into the data. Thus
normalization is an important step in omics analysis but needs to be applied with care. It
can be performed at many stages of the processing of the proteomics samples. Here I focus
on normalization techniques carried out as a post-processing of the peptide abundance
matrix (Rourke et al. 2019).

To explain how normalization works, I will start by demonstrating a commonly used nor-
malization technique called median normalization, available in Paper I and outlined in
Figure 11. Here the assumption is that technical differences will equally shift all values
within each sample, for instance, if pipetting a higher concentration in one sample lead-
ing to overall higher measured protein abundances in that sample. Median normalization
also assumes that the median protein abundances are similar in the original cells or tissues.
Thus, the normalization procedure evenly scales peptide abundances within the samples so
that the median peptide intensity of all samples is the same. This procedure applied to four
simulated proteins in four samples is illustrated in Figure 12, where sample s2 is systemat-
ically shifted towards higher abundances and protein P4 is differentially expressed in the
underlying simulation. We can see that P4 will not be identified as differentially expressed
without normalization, but after normalization, it will. For the median normalization to
work well, its assumptions need to be met. For instance, if three of the proteins were differ-
entially expressed, this would break the normalization assumption that most proteins are
kept constant, as illustrated in Figure 13, causing the protein originally present in similar
abundances across samples to appear downregulated. Another assumption of median nor-
malization is that the technical disturbances at low intensities are shifted as much as those
of high intensity. This is sometimes not the case, breaking the assumptions of the median
normalization, while other more flexible normalizations allow for this.

Many normalization approaches have been proposed for use in label-free proteomics, each
with different assumptions and limitations. Often techniques developed for microarray
are directly applied to proteomics. Examples of this include: quantile normalization (Bol-
stad et al. 2003), which adjusts all samples to have the same overall distribution of values,
with recent variations allowing different distributions within different provided groups of
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Figure 12: lllustration of median normalization. One protein (blue) is present in different abundance between the two condi-
tions. One sample (s2) is systematically shifted compared to the rest, shifting all four proteins. After normalization
the trend for P4 becomes visible. The average median is marked with a horizontal dotted line.

samples (Hicks et al. 2018); Cyclic Loess (Ballman et al. 2004), which attempts to com-
pensate for shifts in intensity at different overall intensity levels; VSN normalization (Huber
et al. 2002), which tries to compensate for any relationship between the variance and the
mean. A differentapproach, EigenMS, looks for eigenvectors in the data and transforms the
datasets based on these to remove unwanted variation (Karpievitch et al. 2009; Karpievitch
etal. 2014). NormFinder identifies sets of stable features across samples, which subsequently
are used to rescale the data (Andersen et al. 2004). Further, group-wise normalizations
can be made, conserving variation between biological replicates groups such as provided
in some normalization software (Chawade, Alexandersson and Levander 2014; Hicks et
al. 2018). Here the results need to be handled carefully to not introduce artificial signals in
subsequent statistics, which is likely if comparisons are performed between the groups after
the normalization step.

With this range of normalizations available, selecting the best performing method can be a
challenging task. Several studies have shown that which normalization method is used
can have a considerable impact on the outcome (Webb-Robertson et al. 2011; Walach,
Filzmoser and Hron 2018; Cook, Ma and Gamagedara 2020; Kultima et al. 2009; Callister
et al. 2006; Vilikangas, Suomi and Elo 2018; Yang et al. 2019). Among the normalization
techniques, some methods including Cyclic Loess and VSN have shown a consistently high
performance across multiple studies including Paper I (Vilikangas, Suomi and Elo 2018;
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Figure 13: lllustration of median normalization when the majority of proteins are regulated. Here, the normalization artificially
pushes the proteins present in different abundances (blue) to the same level, making the only protein present in the
same abundance (grey) appear shifted downwards in the second condition. The average median is marked with a
horizontal dotted line.

Walach, Filzmoser and Hron 2018). Still, these normalizations will not be well suited for
all datasets, and careful evaluation of whether they perform well in the dataset at hand is

needed.

Existing software for assessing the performance of normalization methods includes Nor-
malyzer (Chawade, Alexandersson and Levander 2014) and NOREVA (Li et al. 2017; Yang
et al. 2020), both providing normalizations and visual evaluation of performance measures.
Ideally the software would automatically detect the best performing method. One example
of software providing automatic method detection is quantro (Hicks and Irizarry 2015), but
which provides a comparably less comprehensive assessment of the method performance.
Paper I makes further improvements to Normalyzer and introduces the software Norma-
lyzerDE, which extends the available normalization techniques with a retention time-based
approach. The software is made accessible as a Bioconductor R package and as a web ap-
plication where the user is given access to important input parameters. Furthermore, the
software extends the analysis with an integrated statistical analysis step, which provides the
ability to calculate statistical values and to generate statistical visualizations. Paper I thus
provides a straight-forward and comprehensive tool for informed normalization selection
and for performing the subsequent statistical analysis.

Currently, most established techniques, often developed for microarray data, do not use the
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inherent structure of the proteomics when performing normalization. Some exceptions ex-
ist, but they have yet to obtain widespread use (Wang et al. 2006; Karpievitch et al. 2009;
Van Riper et al. 2014). One type of bias unique to the mass spectrometer is intensity fluc-
tuations caused during the peptide ionization in the electrospray (discussed in Chapter 1),
which has been shown to vary in intensity on the scale of minutes (Lyutvinskiy et al. 2013).
Methods to attempt countering this bias have been proposed, including the normalization
method PIN (Van Riper et al. 2014) and a method integrated into DeMixQ (Zhang, Kill
and Zubarev 2016). Paper I introduces a new generalized approach (illustrated in Figure 14
where it is applied to a dataset with artificial time-dependent biases present in one sample),
applicable to use in conjunction with any normalization technique relying directly on the
measured values and applied to mass spectrometry-based data with a time-based bias. The
algorithm slices up the data across retention time (or any given analyte-specific numeric
value) and applies the selected normalization technique on this subset before piecing the
subsets together again. The subsets can be overlapping, allowing data points to be part of
multiple normalization windows to reduce variability. In Paper I, it outperformed other
normalization techniques, particularly in combination with Cyclic Loess normalization.
Further validations could verify its performance and identify for which types of datasets its
use would be particularly beneficial.

In conclusion, normalization is a critical step in the proteomics data analysis workflow.
Paper I helps making an informed selection of a well-performing normalization technique.
Furthermore, most established normalization methods do not use the unique structures
of the proteomics data. Paper I proposes a new generalized approach to apply existing
normalization methods to subsets of the data along with a moving retention time window,
aiming to reduce the impact from retention-time dependent biases such as the electrospray
intensity variation.

Batch effects

Batch effects are caused by systematic differences in experimental conditions influencing
groups of samples. They have repeatedly been shown to have a substantial impact on omics
studies, often overshadowing biological effects (Hu et al. 2005a; Gilad and Mizrahi-man
2015; Leek et al. 2010; Ransohoff 2005) and negatively influencing the ability to use the
data in machine learning applications (Hilary and Jeffrey 2012; Leek and Storey 2007; Goh,
Wang and Wong 2017). Ideally, batch effects should be considered both before and after
the experiments are carried out. They can be considered during the experimental design
with strategies such as randomization, blocking (discussed in Chapter 1), or control samples
- samples with known contents later used as a reference (Cuklina, Pedrioli and Aebersold
2020). During the data analysis, the batch effects can be studied by visualization and some-
times adjusted for (Mertens 2017) using different correction strategies. The effectiveness of
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Figure 14: lllustration of retention time-based normalization approach, showing observed peptide intensities over retention
time. A time-dependent bias was added to one of the samples (blue), emulating the electrospray bias. Median
normalization (middle row) cannot fully compensate for this bias as it adjusts the intensity values globally. RT-median
normalization (lower row) applies median normalization for time window-segmented data (dotted lines), and can
better account for this type of bias.

these correction strategies have been debated and depends on the design of the experiment
(Nygaard, Redland and Hovig 2016). Still, batch effects are often unavoidable despite good
experimental design and experimental procedures, such as when the samples are acquired
over multiple days with potential instrument drift, or when processed in multiple laborat-
ories (Irizarry et al. 2005). In mass spectrometry-based workflows, this is further inflated
by the current trend of a growing number of samples used in studies (Cuklina, Pedrioli
and Aebersold 2020). Here, I discuss strategies to understand and correct for batch effects
during the data-processing stage.

The limit for how well a batch effect can be managed during the data analysis steps is defined
by the design of the experiment (discussed in Chapter 1 and illustrated in Figure 4). If a
batch effect is evenly distributed across the biological groups of interest, it can be corrected
for such that the sensitivity of subsequent statistical steps is improved (Gregori et al. 2012).
Still, the additional technical variation cannot be entirely removed and will lead to lower
sensitivity than experiments without batch effects. There is also a risk for overcorrecting a
batch effect, introducing additional bias in the data. The risk for a biased correction has
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been shown to be particularly high if batch effect correction is performed with imbalanced
data (when the sample conditions of interest are not evenly distributed across the batches),
where it can induce false positives in the subsequent statistical analysis (Nygaard, Redland
and Hovig 2016). If the batch effect is confounded, meaning that biological conditions
overlap with the technical, it becomes challenging to distinguish the types of variation.
For confounded experiments, results should be regarded with suspicion, although some
approaches to batch effect correction have been shown to improve outcomes also in these
cases (Luo et al. 2010) in the context of validation studies.

There exist various approaches to batch effect correction. Batch effects can either be cor-
rected as part of the statistical calculations by including a known batch effect as a covariate
(discussed in Chapter 1), meaning that the statistical test can attempt to model and ig-
nore variance from that condition. This approach is available for statistical comparisons
in Limma and is provided in Paper I. Another popular method is SVA (surrogate variable
analysis) (Leek and Storey 2007), which attempts to directly identify batch effects within
the data and model them as so-called “surrogate variables”. These surrogate variables are
then incorporated as covariates in the statistical test. In these cases, no data transforma-
tions are made - the batch effect is modelled within the statistical approach. Other methods
transform the data similarly to normalization procedures such as the empirical Bayes ap-
proach Combat (Johnson, Li and Rabinovic 2007; Zhang et al. 2018), which can adjust
for differences in the mean or mean and variance between batches, and has been shown
to perform well in several studies (Chen et al. 2011). Finally, RUV (Remove Unwanted
Variation) is another approach using features (peptides in the case of mass spectrometry)
believed not to be differing between samples as control and rescales the data based on these
(Gagnon-Bartsch and Speed 2012).

The identification of batch effects is commonly made using visualization tools such as prin-
cipal component analysis (PCA) plots or dendrograms. Furthermore, to identify effects re-
lated to the run order in the mass spectrometer, samples can be visualized along with their
order using, for instance, boxplots or bar plots to illustrate the number of missing values or
total intensity, as shown in Figure 15 where two intensity shifts are present, indicating that
batch effects may be present. Further, an illustration of the number of MS1 and MS2 fea-
tures identified in each sequential sample can reveal both outliers and drifts in performance
over time. For understanding batch effects, Batchl can identify sets of samples along run or-
der likely belonging to a batch (Papiez et al. 2019) while BatchQC (Manimaran et al. 2016)
allows direct exploration of batch effect corrections and can run both ComBat and SVA
within the application. Other visualizations useful for batch explorations are provided by
Papers I-I1, such as interactive density plots that can reveal different sample distributions
in separate batches, and illustrations of how individual features are distributed differently
with and without batch effect correction.

In the analysis performed in Paper III-V, different types of batch effects were present and
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Figure 15: lllustrations of known batch effects using OmicLoupe.

required careful consideration. Here, either the batch condition was included as a covariate
in the statistical test or the statistical contrasts were organized such that they did not cross
a known batch effect. These approaches are further discussed in Chapter 3.

Using peptide characteristics to improve understanding of batch effects in mass
spectrometry

By using structures uniquely present in the mass spectrometry-based data, potentially ex-
isting methods often designed for microarray platforms could be further improved. One
example of this is including run order effects into the batch effect correction algorithms
(Wang, Kuo and Tseng 2013; Kuligowski et al. 2014). During the work with batch effects
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in this thesis, I hypothesized that how a type of batch effect impacts individual peptides
varies with the physicochemical characteristics of the peptides. Here, some peptides may
be more stable under the influence of batch effects and thus more reliable and more suit-
able as biomarkers. Similar attempts to understand how individual features are influenced
by batch effects have been explored for probe sequences in microarrays. In these two ap-
proaches, relationships between probe sequences and batch effects were found within indi-
vidual datasets, but they did not easily generalize between datasets (Hilary and Jeffrey 2012;
Scherer 2009). Compared to microarray probe sequences, characteristics of peptides are
more diverse, and thus the trends might be more distinct. This topic is explored in a poster
(Willforss and Levander 2019) and with the help of a project student (Chi 2020). In this
section, key ideas from this work are discussed.

A dataset with known batch effects was obtained by collecting sets of HeLa samples routinely
used for quality control on the local mass spectrometer (of the model QExactive HF-X).
Highly stable and susceptible peptides were selected to either use statistical differences (p-
values and log2 fold changes - the difference between the peptide means of the compared
groups) between batches or by their respective loadings for principal components found
representative of the batch difference. In this second approach, a batch effect is first iden-
tified using principal component analysis, and the major component along which it is ori-
ented is selected. Each protein contributes to this component to a different degree - this
is the loading used to determine how closely linked the feature was to the batch effect.
These methods provided groups of peptides classified as “sensitive” and “stable” that were
subsequently investigated (illustrated in Figure 16). In both feature selection strategies,
missing values were an issue, particularly when using principal component analysis, which
only uses features with no missing values. The peptide characteristics were used as inputs
to machine learning algorithms to see which were more important in separating the groups
in different algorithms and to see whether the findings would generalize to other datasets.
Differences in peptide characteristics and ROC-plots are shown in Figure 16) illustrating
how the classifiers can separate the stable and susceptible features using cross-validation
varying with batch, both without and with prior batch correction using ComBat (Johnson,
Li and Rabinovic 2007). These algorithms showed an ability to separate peptides related
to the size of the batch effect but did not easily generalize to other sets of samples with
different batch effects. Still, it indicates that additional feature specific information could
be used to improve existing methods, though considerations would need to be taken to the

type of samples and type of batch effect.

In the future, batch effect corrections will likely play a critical role in many areas, includ-
ing multi-omics, where multiple types of data are integrated, and biomarker studies, where
often the validation dataset will consist of a different set of samples. Existing batch effect
correction algorithms could be improved by incorporating mass spectrometry specific char-
acteristics and peptide characteristics as explored in this work. Still, as discussed by Goh ez
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a random forest machine learning model (adapted from Willforss and Levander 2019).

al. (Goh, Wang and Wong 2017), the most critical part might be to increase the robustness
of the experiments themselves to reduce the risk of batch effects occurring in the first place.
In conclusion, batch effects is a persistent problem that needs to be approached from both
the experimental design, robust execution of the experiments, and careful consideration
during the data analysis. If handled well, their negative impact can be minimized, giving
a better view of the biological variation of interest and increasing the chances of reliable

findings.
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Statistics in omics

To find gene products that differ between conditions of interest using statistical approaches
is a common end-step for the data analysis. Even when not considering the sources of tech-
nical variation, this is a challenging task for several reasons, such as the many features (the
studied molecule - proteins, transcripts, metabolites) tested, the random nature of the stat-
istical testing itself, and the flexibility in selecting methods for pre-processing and statistical
testing. To make reliable analysis decisions, the analyst needs to be clear on whether the
analysis is explorative. The analyst also needs to determine whether false positives (you are
tested sick, but you are healthy) or false negatives (you are tested healthy, but you are sick)
are more severe. This section will discuss some key considerations when using statistical
tools to find features of interest in omics datasets.

Statistical analysis often relies on the p-value, a measure of how frequently an outcome
would occur by chance. This is subsequently often used as evidence of differences between
groups of measurements. For instance, a p-value of 0.05 indicates that an as clear or clearer
difference between measurements than what is observed would occur in 5% of measure-
ments if there is no difference between the compared groups from which the measure-
ments are taken (Altman and Krzywinski 2016). This becomes problematic in omics ana-
lyses where hundreds or thousands of statistical tests can be performed, leading to large
numbers of false findings (features incorrectly thought to be different) if not corrected for.
To illustrate the result of this, I simulated a dataset with 1000 features with no systematic
difference ("negatives”) and so features with systematic differences ("positives”) in three
replicates in two groups. I subsequently used a t-test to calculate p-values between the
two groups and did false discovery rate (FDR) adjustments using the Benjamini-Hochberg
procedure (Benjamini and Hochberg 1995), which is widely used in omics-analysis, and
the stricter Bonferroni procedure (Bonferroni 1936). Each of these corrects the data such
that the number of false positives is limited to a fraction of the number of identified posit-
ives (true and false positives), meaning that if 5o features are found with FDR below o.0s,
only 5% of these would on average be expected to be false findings. This stands in contrast
to using regular p-values where the number of false findings is dependent on the size of
the dataset, rather than the number of positives. The resulting distributions of statistical
outcomes is illustrated using p-value histograms in Figure 17. In the top panel, a p-value
below 0.05 was used as filtering criteria. Here, most of the regulated features were iden-
tified (94%), but almost half of the features found to be significant were false positives
(random differences). On the other hand, after performing multiple hypothesis correc-
tions (Benjamini-Hochberg or Bonferroni), the fraction of detected regulated features fell
to 10% and 6%, while the precision rose to 83% and 100%. The exact outcome here de-
pends on several parameters, such as the number of actually regulated features, replicates
and effect size. If you want to further see how different parameters would impact the
data, it can be interactively explored at https://www. jakobwillforss.com/post/
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interactive-exploration-of-pvalues-and-fdr. This exploration demonstrates
that how to adjust for multiple hypotheses depends strongly on whether false negatives or
false positives are more problematic. In some cases, it has been argued that multiple hypo-
thesis testing causes more harm than benefit due to the drastic reduction in power, which
also contributes to a lack of reproducibility (Wang, Sue and Goh 2017). On the other hand,
if not doing this correction, there is no control of whether identified features are purely sig-
nificant by chance. Thus, whether this correction should be performed comes down to
how concerning false positives are compared to false negatives. Still, the main decider of
statistical power is the experimental design (as discussed in Chapter 1) and the number of
replicates. If a deeper view of the measured omics is desired, designing the experiment for
higher power can increase sensitivity without an increased number of false positives.
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Figure 17: Impact of using p-values or adjusted p-values for feature selection. A thousand features were sampled with no
systematic differences of the underlying distributions and 50 features sampled from distributions with a known
difference. (BH: Benjamini-Hochberg, Bonf: Bonferroni)

A second related issue that often appears in omics-experiments is mixing explorative ana-
lyses and reporting of p-values (colloquially called ”p-hacking”). Trying out different pre-
processing and statistical approaches can effectively skew the obtained p-values by acting
as a type of multiple hypothesis testing where many approaches are performed while only
reporting the most interesting findings across all of them. This type of explorative statistics
risks leading to results that are more compelling, but less robust and less likely to still be
there in separate datasets. Still, again, whether this is problematic depends on if the goal
is explorative to find potential trends to later be tested or if it is to report the features with
a degree of certainty (Reinhart 2015). In Paper I a design decision was consciously made
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to separate the selection of normalization procedure from the statistical testing so that the
choice of method is based on performance measures for the data, not on the statistical find-
ings. In conclusion, exploratively analysing omics data can be useful in finding interesting
trends. Still, in doing so, the person analysing the data needs to carefully consider the
purpose of the analysis and how the results are reported.

There are many approaches to identifying gene products that differ between conditions
in omics. These include frequentist statistical methods (such as the t-test and ANOVA),
Bayesian methods, and machine learning approaches (Tang et al. 2020). They can focus
on detecting single features (such as single proteins or transcripts differing between groups)
or combinations of features (such as gene ontology enrichments where groups of related
genes are linked to biological differences). Here I focus on the detection of single features
differing between groups. In frequentist statistical methods, the variation within groups
of interests is compared to the variation between the groups, determining if any observed
difference is unlikely to happen by chance. Here, calculations are done feature-by-feature,
with each feature studied independently from the rest of the data. On the contrary, em-
pirical Bayes methods such as Limma (Ritchie et al. 2015) or DEqMS (Zhu et al. 2020)
make a preliminary estimate (so-called prior) of the feature variation using the full dataset
and adjust it based on what is observed in each specific feature. When more data is present
in one feature, more emphasis is put on this observed information rather than the prior
information (gathered from the whole dataset). Limma has shown strong performance in
several studies (Kammers et al. 2015; Ooijen et al. 2017) including Paper I, and is incorpor-
ated as the standard statistical approach in Paper I. It is used for statistical calculations in
Papers ITI-V. ROTS (Reproducibility Optimized Test Statistic) (Elo et al. 2008) is another
statistical method that successfully uses the multidimensional structure of the omics data.
It uses a t-test for which the parameters are optimized using a resampling strategy called
bootstrapping, adapting the t-test settings to produce a maximally robust ordering of fea-
tures in the dataset at hand. This strategy has shown a superior or similar performance to
empirical Bayes methods for proteomics in several recent studies (Pursiheimo et al. 20153
Suomi et al. 2017; Zhu et al. 2020). In conclusion, statistical methods utilizing the multidi-
mensional structure of the omics data have been shown on several occasions to outperform
classical methods such as the regular t-test. For these methods, future research will likely
demonstrate their relative performance with greater certainty.

During the statistical testing, the p-value only indicates the presence of any difference, not
whether the size of the difference is meaningful. Using the effect size of the comparisons
(here called fold changes) can provide additional information, such as which features differ
in a biologically meaningful way. They can also be used to reveal patterns of similarity
when similar tests are performed in multiple datasets, such as in multi-omics or follow-
up validation studies. For instance, if features that pass a loose p-value threshold in two
separate datasets have a similar fold-trend overall, it is an indication that they are similar,
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despite not being significant. Paper II introduces new visualizations using fold-changes
to compare similarities between comparisons, which in turn were used to understand how
similar repeated studies of the same biological system were in Papers IV-V.

A common issue in proteomics is the presence of missing values. Values can be missing
for different reasons, such as the peptide ions being present in too low abundance to be
observed in certain samples, or peptides being missed randomly in a sample. Each of these
cases requires different optimal strategies (Lazar et al. 2016). A common strategy to handle
missing values is imputation, where artificial values are inserted based on criteria estimating
likely values, in many cases originally developed for microarrays and repurposed for proteo-
mics (Lazar et al. 2016; Troyanskaya et al. 2001). An alternative strategy is to keep the values
as missing through the analysis. Keeping values as missing limits the performance of the
statistical tests and may lead to artificially high averages of measured values (Karpievitch,
Dabney and Smith 2012). In contrast, the imputed values are generally used as true values
in the subsequent statistics, which may introduce biases. The optimal imputation strategy
has been found to vary between datasets and even for different features within datasets
(Webb-Robertson et al. 2015; Goeminne et al. 2015). Strategies considering missing values
specifically in proteomics have been presented (Webb-Robertson et al. 2010; Schwidmmle
et al. 2020). One recent approach uses Bayesian models to model the uncertainties of the
imputed values and incorporate this in the subsequent statistical test (The and Kill 2019),
allowing them to be considered as less reliable measurements. Missing values can be inter-
esting by themselves, such as when a protein is missing in samples belonging to a certain
biological condition. Here, the missing values might be due to a protein simply not being
expressed at a level below the detection limit in one of the biological conditions. Paper
IT introduces a straight-forward approach to considering missing values by visualization,
using an UpSet plot (Conway, Lex and Gehlenborg 2017). This provides an overview of
in which conditions features are present or missing, and allows further inspection of these
subsets.

When selecting features using statistical methods, it is essential to know the purpose of
the analysis and how it impacts the reporting of statistical measures such as p-values. If
not done carefully, this feature selection risks finding patterns that look compelling but
are unlikely to generalize to other datasets. Multiple hypothesis correction tools are widely
used and important to keep down the number of false positives but lead to such reduction
in power that they might not always be beneficial. Statistical approaches considering the
multidimensional nature of the omics data (such as Limma, implemented as the default
statistical method in Paper I) can improve the sensitivity compared to standard methods
such as the t-test. Approaches to handling missing values can provide ways to glean useful
information from where they are missing, such as the UpSet-based visualization provided
in Paper II and as done in the analysis in Paper III. Finally, similarly to when handling
technical variation, the boundary of what can be achieved statistically in an experiment is
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decided by the experimental design - the number of replicates and how they are organized,
which needs to be carefully considered before starting the experiments.

Data visualization and analysis decisions

Data visualizations allow the human eye to look for patterns in the data to unlock insight
not evident when inspecting it directly in a table. It can guide decisions about how to
computationally process samples and how to perform subsequent analysis, and are often
critical in spotting potential artifacts or unexpected findings. Both Paper I and Paper II
rely on visualizations to guide analysis decisions, and visualizations have been crucial when
navigating the datasets presented in Papers III-V. This section aims to highlight categories
of visualizations as present in Paper II and some of their novel approaches to visualize
multiple statistical comparisons to help understand similarities across datasets and statistical
comparisons.

Sample-wide visualizations reveal trends on a dataset-wide level using each sample as a data
point. These visualizations can guide analysis decisions such as removing outliers, changing
upstream processing settings, and giving insight into how to best tackle technical variation
using normalization and batch effect correction procedures, and choosing how to perform
the subsequent statistical comparisons. Using sample-wide visualizations such as bar plots,
box plots, or density plots (shown in Figure 18) quickly illustrates overall patterns such as the
total intensity in each sample, the number of missing values, and shapes of distributions.
These can often be used to rapidly spot abnormal samples with, for instance, many missing
values or a different overall distribution ((a)-(b) in Figure 18). Other visualizations such
as principal component analysis (Jolliffe 2002) ((c) in Figure 18) and dendrograms ((d) in
Figure 18) project the multidimensional data into fewer dimensions. This projection allows
the identification of patterns showing how samples are similar or different and studying
whether technical or biological factors seem to carry the most impact on the overall view
of the samples. For these visualizations, having access to information about the sample
conditions, such as experimental conditions, is essential for the identification of related
trends.

Next, individual statistical comparisons can be illustrated using statistical measures such as
p-values, fold changes, or average expression. This type of visualization is often informative
by indicating the strength of the underlying signal in the data and can reveal different tech-
nical artifacts. Common examples of statistical visualizations include the p-value histogram
((a) in Figure 19), the MA-plot ((b) in Figure 19), and the volcano plot ((c)-(d) in Figure
19). P-values are expected to be distributed evenly between zero and one when no effect
is present, but with a spike appearing close to zero when a signal is present (as seen in (a)
in Figure 19). The p-value histogram gives a sense of the comparison’s strength (the spike’s
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Figure 18: Sample-level illustrations of a dataset influenced by two known batch effects, illustrated by the colouring. Figures
generated by OmicLoupe.

size) and whether there are underlying distortions (a non-even background distribution).
The volcano and the MA-plots illustrate the fold changes in combination with either the
average intensity or p-value. These visualizations can reveal trends such as an overall skew in
expression direction, outliers, or other anomalies (Breheny, Stromberg and Lambert 2018;
Li 2012). Paper II allows a direct comparison of features between two statistical compar-
isons, revealing the distribution of both jointly differentially expressed features and how
those only found passing the threshold in one comparison are changing ((c)-(d) in Figure
19). In Figure 19, we see how a set of peptides is added at a different concentration, which is
subsequently processed using two different software approaches. Most of the spiked-in fea-
tures are identified by both methods (blue), while the red and yellow illustrates how those
only found significant in one case are distributed. Using OmicLoupe, the user can directly
interact with these figures to inspect annotations of each feature, and with one click zoom
in to study the underlying data similarly to as shown in Figure 20.

Overlap plots are useful for spotting common or diverging trends among several either stat-
istical comparisons or features missing in certain conditions. Popular tools to do overlap
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Figure 19: lllustration of statistical comparisons with known spiked-in proteins and either adjusted or unadjusted for a known
batch effect by specifying it as a covariate to the statistical test. Figures generated by OmicLoupe.

plots are the Venn diagram (for few comparisons) and the UpSet plot (Conway, Lex and
Gehlenborg 2017) for a higher number of comparisons. OmicLoupe, the software presented
in Paper II, interactively provides these visualizations and extends them by comparing fold
directions for abundance changes. These visualizations can quickly reveal where the trends
are similar (having similar fold change direction for features that pass multiple significance
thresholds) or different (having many features passing significance thresholds in multiple
comparisons with the reverse regulation direction). OmicLoupe further allows direct in-
spection of features underlying the overlaps. These overlap visualizations have proved to
be a useful tool for understanding similarities between statistical comparisons during data
exploration in Papers ITII-V. One example of overlap visualization using an upset-plot and
illustrating where the fold-direction is same or different is illustrated in Figure 20.

The data for single features underlies all previously mentioned visualizations. Inspecting
single features can reveal unexpected patterns otherwise hidden. This distribution can be
illustrated using boxplots or violin plots (a type of density plot) but is for a smaller number
of data points, preferably illustrated by showing the data directly. In Paper II, the single
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generated by OmicLoupe.

feature visualizations are made easily accessible from both statistical and overlap plots to
allow effortless inspection of underlying data points and can be coloured on any sample
condition. One example is seen in Figure 20, showing a feature found significant only with
batch effect correction. As shown in (a), one data point belongs to a different batch and
is a strong outlier compared to the others in the same conditions, seen in b). The impact
of the batch effect is reduced after batch correction and the feature appears as significantly

different.

Several of these plots are provided in part by commonly used visualization software in pro-

38



teomics such as Perseus (Tyanova and Cox 2018), DanteR (Polpitiya et al. 2008) and com-
mercial platforms such as QluCore and the Proteome Discoverer. Recently, a wave of tools
based in the R package Shiny (also employed in Paper II) has emerged. These tools often
fill different niches not covered by the dominant visualization software (Shah et al. 2019;
Chang et al. 2018; Nagaraj et al. 2015; Rigbolt, Vanselow and Blagoev 2011). To be useful,
visualization software needs to be user-friendly and provide a needed collection of visual-
izations. OmicLoupe provides a set of visualizations which was frequently used during the
studies in Papers III-V, and was developed subsequent to a student project doing initial
explorations of how to best use single-feature visualizations for rapid understanding of the
data (Lindh 2020), and the interactive interface developed to the data presented in Pa-
per ITII. Now, OmicLoupe focuses specifically on comparing multiple datasets or statistical
comparisons and traversing from these to the single-feature level, providing functionality
not present in the other mentioned software.

In conclusion, visualization fills an essential role in proteomics analysis, is central in both
Paper I and Paper II, and has been of key importance during the analyses performed in
Papers III-V. If used well, accessible visualization tools increase the understanding of the
data at hand, leading to better decisions on how to perform the analysis and thus more
robust biological findings.

Building robust software for omics analysis

When performing biological data analysis, it is not uncommon to reach a situation where
existing tools do not fully meet the needs at hand. This situation might require writing
new code to solve the task, which sometimes is later provided as a software to a broader
audience. To maximize the chances of this software being used requires paying attention
to good software development practices, user-friendliness and realizing the constraints of
developing software in an academic context.

Much of scientific research builds on non-commercial academic software. This ecosystem
has advantages such as the prevalence of open-source software, allowing other developers to
inspect and build on top of existing code. This code reuse is facilitated by package repositor-
ies such as CRAN and Bioconductor (Gentleman et al. 2004) for R and pip and BioConda
(Dale et al. 2018) for Python, and for public code-storage locations such as the popular
website GitHub (https://www.github.com). Without this kind of repositories, neither Pa-
per I nor Paper II would be possible, as both extensively use existing R packages. The
software presented in Paper I is now part of Bioconductor, and both software are openly
available as R packages on GitHub, contributing back to the ecosystem. Further, as the
bioinformatics field rapidly expands to include new types of data and algorithms, the rapid
publishing of new software allows researchers to adopt cutting edge algorithms to analyse
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their data. Still, academic software development has substantial challenges which tend to be
different from those seen in traditional software engineering. The structure of software de-
velopment in academia differs from commercial software development. Academic software
is often maintained by a lone Ph.D. student or post-doc (Altschul et al. 2013), primarily
motivated by reaching the point of publication (Mangul et al. 2019). Maintenance bey-
ond this point may give citations and recognition where successful examples include the
open-source OpenMS and the non-open-source MaxQuant/Perseus in proteomics, as well
as open-source R packages such as DESeq2 and Limma in transcriptomics. The downside
of maintenance and further development is that it requires prioritizing time away from
other projects, which could be spent working towards additional publications. Proposed
incitements for maintenance of existing software include using GitHub (a common web
page to store open-source code) metrics to measure the prestige of the software (Dozmorov
2018) or implementing rigorous standards the software need to pass for publication (Man-
gul et al. 2019). It seems to me like neither of these address the core issue with publications
being the main driver. Further, the Ph.D. students and post-docs inevitably transition to
a different position, leaving after them a codebase often rarely seen by anyone else. This
codebase is often built without formal training in software development, which stands in
contrast to the code review, shared ownership and continuous maintenance of many com-
mercial software. Another proposal is to hire trained software engineers (Lawlor and Walsh
2015) in academia, which would require competitive and sustained funding to attract good
software engineers to take on the task.

Beyond the challenge of building and sustaining software is to build software usable by
the audience. For instance, documentation is critical for software usability (Karimzadeh
and Hoffman 2018; Marx 2020) and should preferably be written during software devel-
opment. User-friendliness is also critical but can be difficult to achieve, requiring users
that provide feedback on the software, the developer time to make the adjustments, and
additional developer skills beyond the scientific and programmatically. Another long-term
investment in software is the use of systematic testing, ensuring the correct output from a
given software over time as additional changes are introduced (Zeeya 2010). This can be
implemented as unit-tests running data for which the expected outcome is known through
individual functions within the code. Another approach which may require less effort to
implement are system-wide tests, where a dataset giving a known output is run through the
software on every substantial update to verify that it still is identical to before the changes.
The downside with system-wide tests is that they may miss parts of the program, and when
errors occur, it may be more difficult to find the source. Both types of tests proved highly
useful during the development of Paper I to catch unintended side effects by code updates.
Finally, moderate knowledge in software development tools such as version control and
Docker- or Singularity-containers (Kurtzer, Sochat and Bauer 2017) can help significantly
in the management and deployment of the software. These tools can help ensure the re-
producibility of analyses using the software. On the optimistic side, recent technological
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developments such as Shiny in R and Dash in Python provide accessible ways to develop
software with an interactive user interface. These tools make it possible to build simple
and usable interfaces for algorithms otherwise hidden in command-line software, only ac-
cessible by technical users. This has led to a recent influx of this type of software. Still,
these graphical pieces of software are more complex to maintain, increasing the challenge
in implementation and maintenance.

Academic software fills a vital role in life sciences and has provided many widely used soft-
ware driving research forward. Still, they are plagued by low implementation quality and
often limited maintenance. This phenomenon is likely driven by the current lack of in-
citements to improve existing software quality and longevity, and in some cases due to
limited training of those building the software. I hope the field eventually manages to ad-
dress these widely recognized issues (Zeeya 2010; Goble 2014; Jiménez et al. 2017; Griining
etal. 2019). Meanwhile, technological improvements continue to provide more developer-
friendly tools, new learning resources are developed making it easier to pick up the needed
technical skills, and ecosystems such as Bioconductor and BioConda continue to promote
the usability of software in life sciences.
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Chapter 3: Discovery of proteomic
biomarkers for sustainable agriculture

Proteins as biomarkers for molecular breeding

The breeding of plants and animals plays an essential role in securing the global food sup-
ply. This importance is emphasized by the current widespread changes to the climate.
Breeding allows for continuous adaptation of crops and livestock for traits as disease resist-
ance, the ability to grow in previously inaccessible regions, and increased yield (Salekdeh
and Komatsu 2007). Traditional breeding uses directly observable characteristics seen at
a phenotypical level to decide which individuals can breed the next generation. Conven-
tional breeding has been successful in the past but is limited as it requires the individual to
be fully grown before studied and as phenotypical traits are often influenced by a combina-
tion of genes. Here, molecular breeding can provide tools to speed up the breeding both by
early measurements and by identifying which genes underlies complex traits (Jiang 2013a).
One common approach to molecular breeding is to use variations in the genomic sequence
and relate their positions to the genes associated with the trait of interest (Jiang 2013b;
Meuwissen 2007; Desta and Ortiz 2014). Regions in the genome known to be linked to
certain characteristics are called Quantitative Trait Loci (QTL). Using these markers allows
tracing individual genes across generations and can be studied before the organism is fully
grown, speeding up breeding (Jiang 2013a). This technique has helped advance agriculture
(Langridge and Fleury 2011) as a complement to traditional breeding (Das, Paudel and Ro-
hila 2015). Still, many challenges remain to be addressed (Collard and Mackill 2008; Jiang
20133; Nakaya and Isobe 2012), and it has this far mainly been used to target known single
or few genes linked to a trait (Collard and Mackill 2008; Wang and Chee 2010).

Expression data such as those obtained in transcriptomics and proteomics can be used to
simultaneously profile the expression levels of thousands of genes, which has proved useful
as an addition to genomic markers. Differential expression analysis is a common strategy to
analyse this type of data (Velculescu et al. 1995). Here, the aim is to identify gene products
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differing in abundance between conditions of interest. The proteins or transcripts identi-
fied as different can then be used for purposes such as to better understand the underlying
biological mechanisms or for the development of biomarkers. In proteomics, this has been
used extensively to profile valuable traits in plants related to factors such as growth, ripening
and handling of different types of stresses (Tan, Lim and Lau 2017), and is used in Paper
IIT and Paper V to identify proteins differing between conditions of interest. Analysis of
the abundance of gene products can also be used to identify regions in the genome linked
to the expressed quantities of that gene product. These regions are called expression quant-
itative trait loci (e€QTL) and are often categorized as either being close to the location of the
expressed genes (called cis €QTLs) or in distal parts of the genome (called z7ans eQTLs).
These eQTLs provide additional information beyond the QTLs and can help link SNVs
to molecular mechanisms (Gilad, Rifkin and Pritchard 2008). Both transcriptomic and
proteomic expression data can be used to identify eQTLs. By studying the proteins dir-
ectly, we are closer to the phenotype (Das, Paudel and Rohila 2015; Sabel, Liu and Lubman
2011), which gives a better view of what biology is behind the phenotype as the correla-
tion between the transcriptome and proteome often is low (Nie et al. 2007; Maier, Giiell
and Serrano 2009), and due to that proteins are further modified with PTMs. Thus the
transcriptome will not capture the full variation present in the proteome, and proteomics
may be used to identify molecular relationships not easily identified using only genom-
ics and transcriptomics (Das, Paudel and Rohila 2015; Langridge and Fleury 2011; Diz,
Martinez-Ferndndez and Roldn-Alvarez 2012; Su et al. 2019). Attempts to incorporate the
proteome expression in marker discovery have previously helped identify complex QTLs
linked to valuable traits (Damerval et al. 1994; De Vienne et al. 1999; Gunnaiah et al. 2012;
Eldakak et al. 2013; Consoli et al. 2002; Amiour et al. 2003; Rodziewicz et al. 2019) and
revealed mechanistic understanding underlying these traits. This trend will likely continue
as the increasing presence of reference genomes and technique developments in proteomics
is making it easier to carry out this type of studies.

A difficulty when working with plants is the complexity of their genomes, with plants such
as oat being hexaploid having six copies of each gene. This makes the finding of robust
QTLs more challenging (Wu and Hu 2012). The use of direct measurements of proteins as
markers could circumvent this and has long been discussed for use in biomarker discovery in
clinical settings (Rifai, Gillette and Carr 2006; Whiteaker et al. 2011). More recently, proof-
of-concept approaches for using direct protein measurements to predict agricultural traits
have been demonstrated and used for predicting resistance to the oomycete Phytophthora
infestans in potato (Chawade et al. 2016), and for predicting resistance to Ascochyta blight in
pea (Castillejo et al. 2020). These studies were carried out using the proteomic technique
Single Reaction Monitoring (SRM) in the first case, and shotgun-DDA combined with
DIA in the second. SRM, also known as Multiple Reaction Monitoring (MRM) (Wolf-
Yadlin et al. 2007), measure specific previously known peptides in the mass spectrometer
and have proven useful due to a relative simplicity and high accuracy. Still, protein expres-
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sion levels are generally measured in relative levels, comparing the difference in abundance
between groups of samples. Attempts to quantify absolute abundances of protein levels
(AQUA) are on their way and may, over time, remedy this issue (Gerber et al. 2003), fur-
ther increasing the potential of using protein abundances in molecular breeding.

Molecular breeding is a changing field, with proteomics showing an increasing promise.
Proteomics provides an explorative technology that can identify proteins linked to traits
of interest, which could subsequently be used to improve on existing gene linkage maps
or directly studied as markers. It has demonstrated its utility in several studies, and as the
techniques continue to be developed, it will likely be further used, improving our ability
to shape our food.

Investigating Fusarium head blight infection in oat

Oat (Avena sativa) is a widely important crop with high nutrient contents (Gorash et
al. 2017) and many demonstrated health benefits (Martinez-Villaluenga and Pefias 2017)
such as reduction of blood cholesterol (EFSA 2010) and high levels of beta-glucans, which
have shown benefits both for industry and human health (Ibrahim and Selezneva 2017;
Gorash et al. 2017; Biel, Bobko and Maciorowski 2009; Daou and Zhang 2012). Fusarium
Head Blight (FHB) is a fungal disease both harming the health of humans and livestock
by emitting a toxin called deoxynivalenol (DON) (Escrivd, Font and Manyes 2015; Alshan-
naq and Yu 2017) and causing widespread economic costs (Martinelli et al. 2014; Tekauz et
al. 2004). Resistance breeding has been argued to be one of the most promising strategies
to tackle diseases in plants (Brown 2015), reducing the disease pressure and the need to
spray fungicides. It has been successfully employed for other diseases such as crown rust in
oat (Lin et al. 2014), and it has been proposed as a strategy to control Fusarium (Bjernstad
and Skinnes 2008). QTLs related to DON resistance have been identified (He et al. 2013),
indicating the presence of genes related to the resistance. On a proteomic level, there have
only been few studies in oat to date (Chang et al. 2011; Bai et al. 2016; Chen et al. 2016;
Rajnincovd, Gdlovd and Chriapek 2019; Bai et al. 2017; Zhao et al. 2019), likely in part due
to the previous lack of published reference genome. At the point of publishing, the study
presented in Paper IIT had the deepest proteomic coverage to date in oat. Recently the first
reference genomes in oat was published for a diploid oat variety (Maughan et al. 2019) and
the first full sequencing of a hexaploid oat variety was made available online by a commer-
cial company (PepsiCo 2020). These advances will reduce the barrier to perform proteomic
studies in oat in the future.

The aim of Paper III was to characterize the molecular response of oats to Fusarium head
blight. We confirmed the differences in disease response between the commercial oat variety
Belinda and the partially resistant variety Argamak, and carried out a proteogenomic study
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of its response during infection.

Analysis decisions

The starting material for the analysis is transcriptomics data from the two oat varieties
Belinda (a commercial variety not resistant to Fusarium species) and Argamak (a Russian
non-commercial variety shown to have partial resistance to Fusarium species), and proteo-
mics measurements of infected and non-infected varieties at different time points. This
setup is illustrated in Figure 21.
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Figure 21: Experimental setup for oat study (part of figure adapted from Paper Ill).

Due to the lack of a reference genome sequence, the sequenced transcriptome was as-
sembled into a reference through a process called de novo assembly, where the transcrip-
tome is sequenced and built into a reference representing the actively transcribed parts of
the genome. This provides the opportunity to distinguish variety-specific sequence vari-
ations. Still, it gives comparably more complex reference, with many transcripts related to
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single genes, and sometimes causes redundant transcripts from the assembly process. Due
to the complexity of the dataset, a customized R Shiny interface was developed to allow
further inspection of the generated data. This interface was published together with the
dataset and involves several visualizations and analyses, such as gene ontology enrichment
and screening for sequence variations in the assembled sequences from the two varieties.
Some of these visualizations were later incorporated in OmicLoupe (presented in Paper II).

NormalyzerDE was used to perform the initial screening of the dataset and identified cyclic
Loess normalization as well-performing. During the exploration of the dataset, two separate
batch effects were identified, illustrated in Figure 22. The first, the most dramatic one,
accounted for the majority of the variation in the PCA analysis ((c) in Figure 22) and was
likely caused by variations in the sampling handling protocol. The impact of this batch
effect was deemed too large to feasibly correct for using batch correction strategies. When
inspecting the patterns within the groups of the samples, the samples belonging to one
group were deemed less reliable based on the number of missing values. It was decided
to focus on the higher-quality set of samples. Furthermore, a smaller batch effect was
identified related to the run order in the mass spectrometer, where a drop in the number
of identified MS2 spectra was seen. This second batch effect was much weaker, but was
confounded with the infection state which prevented the use of batch effect corrections as
the technical variation was inseparable from the biological. During the data analysis it was
found that full sets of samples for doing comparisons between Argamak and Belinda at four
days after infection were intact within these sets of samples, and thus not influenced by any
known batch effects (shown in Figure 22 (d)). Further, the number of missing values was
compared between the two groups of samples with no systematic differences found. Based
on this, it was decided to do an explorative comparison to identify peptides only present
during infection in each variety.

One sample was lost and not present in the final obtained data reducing one of the statist-
ical comparisons to three versus two samples. For the statistical comparison, Limma was
used, which is less susceptible to differences in variation caused by few replicates (further
described in Chapter 2), but the lack of replicates will still limit the sensitivity of the experi-
ment. Target candidates were further assessed using the Shiny interface to identify putative
mutation sites, which could potentially be involved in the differences of these proteins, as
illustrated in Figure 23, showing a sequence variation underlying one of the proteins found
differentially expressed between the varieties during infection.

In the end, sets of proteins found as differentially expressed between Argamak and Belinda
during infection and non-infection were identified. Further, the qualitative analysis iden-
tified proteins uniquely present during infection in both Argamak and Belinda. These res-
ults were used for further enrichment analyses and explored for protein-specific underlying
mutations, as shown in Figure 23.
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Figure 22: lllustrations of samples and batch effects in the oat dataset (illustrated using OmicLoupe).

Key findings

In conclusion, several analysis decisions had to be made throughout the analysis of this
dataset in order to reliably tackle the presence of batch effects. Visualizations were crucial
to identify these, which otherwise might have gone unnoticed. At a physiological level, the
partial resistance in Argamak was confirmed by measurement of DON content, indicating
a slower disease progression when compared to Belinda. Electron microscopy images in-
dicated a difference in wax production between the two varieties. For the proteogenomic
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Figure 23: Interactive exploration of variety sequences. Two adjacent amino acids were found different between the two varieties
for a protein homologous to lipoxygenase, one of the proteins differentially expressed between the two infected
varieties. (Adapted from Paper Ill, using the R Shiny interface developed for the dataset).

analysis, several proteins linked to the differing disease response were identified by statist-
ical comparisons between the two oat varieties and by qualitative analysis of peptides in
different infection states. These are explorative findings that could be further investigated
in future studies. Finally, this provides the deepest proteomics dataset to date in oat, a valu-
able molecular resource for further research both within oat in general and during response
to Fusarium infection specifically. These findings could help the breeding of oat varieties
with a higher resistance towards Fusarium head blight, thus contributing towards a more
sustainable agriculture. For further reading, see Paper III.

Finding robust markers for bull fertility in seminal plasma

Bull fertility is a critical trait in breeding, with unsuccessful insemination attempts being
costly for breeding facilities, and simultaneously slowing down the breeding of desired traits
(Butler et al. 2020). Many factors are known to influence fertilization rate in cattle related
to the viability of the sperm (Butler et al. 2020), the fertility of the bulls themselves, and
to the freezability of sperm (Rickard et al. 2015; Leahy et al. 2020). The protein compos-
ition of seminal plasma, the surrounding liquid with which sperm is ejaculated has been
shown to influence the sperms ability to fertilize (Robertson 2007; Rickard et al. 2014).
Furthermore, many other factors such as the season of the year are known to influence the
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fertility (Stott 1961). Estimating the fertility of bulls by directly measuring the success rate
of inseminations is slow and expensive, with bulls having to reach a mature age and be used
in enough inseminations before obtaining a reliable estimate of their fertility (Utt 2016). It
would thus be valuable to have measures to detect lowly performing bulls at an early stage
(Braundmeier and Miller 2001). Fertility as a trait is complex and involves many factors.
Genomic studies have identified SNVs (single nucleotide variation, differences in the gen-
ome sequence) thought to be related to it (Abdollahi-Arpanahi, Morota and Pefiagaricano
2017), but could likely further benefit from the additional information present in the pro-
teomics. In recent years, the first studies comprehensively profiling the bull seminal plasma
proteome have been presented. The proteome of spermatozoa and of the seminal plasma
(Druart and Graaf 2018) have been investigated, and different aspects of the role of mem-
brane proteins during the fertilization have been studied (Leahy et al. 2020). Further studies
have investigated what proteins are transferred from the seminal plasma to the spermato-
zoa (Pini et al. 2016) and the role of freezability on the ability of sperm to fertilize (Gomes
et al. 2020).

In this study, we extend on the knowledge about the seminal plasma proteome by following
a set of bulls with varying fertility over three separate seasons to identify proteins robustly
correlated with fertility. The identified set of proteins is built into a predictive signature
and assessed in an independent cohort (as illustrated in Figure 24). Here, the aim is to find
a molecular basis for identifying bulls with a low fertility rate at an early stage which would
save large resources for the breeding facilities.

Analysis decisions

The data used in this analysis consists of three sets of proteomic measurements across three
seasons from 20 bull individuals with varying fertility were collected as double ejaculates,
followed by a set of proteomic samples from a separate set of 17 bulls. The target was to
identify proteins robustly correlated with fertility, particularly considering variation from
both season and resamplings. Further, the first set of samples were carried out in duplicates
to assess the technical variation, and four samples were rerun together with the second batch
to investigate the extent of which the mass spectrometry influenced the outcome.

NormalyzerDE was used for initial outlier detection and for assessing the normalization
techniques, deciding on cyclic Loess for the first dataset, and staying with it in the sub-
sequent datasets to not introduce additional differences between the samples. Upon in-
spection using sample-level visualizations, two types of outliers were identified. All samples
taken from one specific bull appeared consistently different from the others across all three
seasonal measurements. This was confirmed with the breeding station, who knew from
before that this bull was different, and thus confirmed it as a biological outlier. Beyond
that, one sample was found exceptionally different in both sample-level plots and density
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Figure 24: Experimental setup for bull study (adapted from Paper IV).

curves, as illustrated in green in Figure 25, having a high number of missing values and
a distorted density profile. This sample was omitted from further analysis. OmicLoupe
was applied to assess similarities between fertility-related differences in the different sets of
bulls, showing a high similarity when comparing how proteins correlated with fertility in
the three seasonal samplings, and a low similarity when comparing this correlation with
how the proteins correlated in the independent set of bulls, further discussed below.

Originally, the bulls were divided into groups based on their estimated fertilities classi-
fied as "HIGH’ and "LOW’. This resulted in the identification of proteins with different
abundances in the groups, but upon further consideration it was decided to change it to
correlation between bull fertility and the outcome as this better captures the continuous
nature of the fertility and avoids the need of using an arbitrary classification cut-off. As
each set of samples constitutes both a biological batch (due to seasonal variation and other
biological effects) and a technical batch (due to being sampled at different timepoints), it
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Figure 25: Outlier detection using OmicLoupe.

was decided to primarily perform statistical tests within these batches, and then compare
the resulting lists. Variations over season was briefly explored using a repeated sample AN-
OVA, but as the season is confounded with sampling effects this data was difficult to draw
conclusions from and was not further investigated. When assessing the statistical measure-
ment, it was considered how to best handle the duplicate ejaculates from each bull within
each time point. It was decided to merge these prior to statistical calculations, as they could
not be considered independent samples (Reinhart 2015) coming from the same individual.
Finally, two groups of proteins correlated with fertility were identified - one with Pearson
correlations with consistently low p-values (p < 0.1) across all seasons (9 protein groups), and
secondarily for proteins with low p-values across two seasons (34 protein groups). Based on
these, we explored different machine learning models to predict fertility, selecting a linear
regression model based on three proteins due to its simplicity and relatively strong perform-
ance (illustrated in Figure 26). The best performing model was selected based on adjusted
7* which penalizes the addition of additional predictive variables, balancing the predictive

ability with the complexity of the model.

An independent cohort was collected which allowed testing of the developed predictive
algorithms and comparison to previously observed correlations. Disappointingly, how the
proteins correlated with fertility in this independent set of bulls showed an overall low
similarity with the correlations found in the original sets of samples, including for the
predictive model. This could in part be explained due to the narrow fertility range in the
obtained independent set of bulls reducing its reliability (42-51 with one lower sample)
compared to the seasonal samplings (35-60), and would require further investigations in
future proteomics datasets. The exception was for one protein of particular interest (a
lipase) which had shown a strong and clear correlation across all seasons. For this protein,
all four shared underlying peptides showed a similar trend.
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Figure 26: Predictions based on a signature built from three proteins, applied for seasons individually and for the median values
across all three seasons (adapted from Paper IV).

Key findings

This study (Paper IV) led to wide profiling of the proteome in the seminal plasma of bulls
over multiple seasons. Sets of proteins highly correlated to fertility were identified, some
previously identified in the literature with similar trends and some novel findings. An
independent dataset was generated, providing a chance to cross-check the findings, and al-
though not successfully verifying the predictive signature, it showed similar trends for one
of the most promising candidates. Still, further validations would be needed to establish
which of these proteins are linked to the fertilization rate. Overall, this study acts as a
foundation for further fertility research in bull, in particular in seminal plasma, and con-
tributes towards reducing losses due to poor fertility in breeding. If successfully applied in
practice, this could increase the efficiency of the breeding, allowing the same breeding to
be performed using a smaller set of bulls, thus reducing its environmental impact (Scholtz
et al. 2013) and the costs for the breeding facilities.

Identifying proteins linked to Nordic growth conditions

Potato is one of the most consumed crops in the world, providing a large part of both the
energy intake and nutrient intake worldwide (Zaheer and Akhtar 2016; Camire, Kubow
and Donnelly 2009). The changing climate causes new challenges for food security both
through differences in climate and alternations of disease patterns (Lobell et al. 2008;
Thornton et al. 2011; Dempewolf et al. 2014; Hijmans 2003). Global warming is expected
to negatively impact the potato production, but this could be partially offset by adopting
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strategies for where and when the crops are grown (Hijmans 2003). One potential strategy
to adapt to the warmer climate is to shift the growing areas north (Haverkort and Verhagen
2008). To efficiently utilize these farmlands, the farmers need to adapt to the relatively
higher number of sun hours and a shorter growing season. Using varieties better adapted
for these conditions could play an important role in enabling this (Hellin et al. 2012; Varsh-
ney et al. 2011). Despite being a globally important crop, the current proteomic knowledge
of potato as studied in the field is limited, and further omic-studies will play an important
role in establishing a multi-omic view of potato in the field (Alexandersson et al. 2014).
Here, the impact of growing different potato varieties at different latitudes in Sweden was
studied with the aim of better understanding what influences the yield in relation to the
differences in growth conditions while providing a deep proteomic profiling of potato as
grown in the field.

Analysis decisions

This dataset consisted of proteome measurements taken from potato leaf samples collec-
ted in field trials during the years 2016, 2018 and 2019. For the first field trial, samples
from 17 different varieties were collected, primarily in Borgeby (representing Southern
Sweden), with some varieties including Desiree also sampled in Umea (representing North-
ern Sweden). Out of these, 13 varieties were used in the final analysis. Further, in 2016,
additional RNA-seq and metabolomics were collected for a smaller set of varieties giving a
complementary view to the proteomics. For the subsequent years, Desiree was sampled at
both locations. The experimental setup is illustrated in Figure 27.

NormalyzerDE was used for the initial screening of outliers and the identification of well-
performing normalization methods. Cyclic Loess was again found to perform well and
kept for the subsequent years analyses to not introduce additional variation by using dif-
ferent normalization methods. During the mass spectrometry analysis for the year 2016,
the chromatographic column in the mass spectrometer was changed during acquisition of
the sample set. This was later found to lead to an observable batch effect using a PCA plot
(illustrated in Figure 28). The run order of the samples were randomized to balance the vari-
eties, but not for the location, which led to imbalance across the batch in these comparisons.
This was compensated for by rerunning a set of samples and incorporating the effect from
the column change as a covariate in subsequent statistical tests. Similarly to in the bull
study, a cross year batch-effect is present consisting of both the experimental variation and
differences caused by the different samplings, which makes it difficult to directly compare
samples taken during the different years. Instead, contrasts between Umed and Borgeby
were performed within each year, and the resulting lists of proteins compared, focusing
on protein groups found differentially expressed across all years in Desiree. Furthermore,
a comparison was made within Borgeby samples 2016 between groups of potatoes which
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Figure 27: Experimental setup for the potato study (adapted from Paper V).
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Figure 28: Principal component plot illustrating the impact of run order on the data generated from 2016 samples, with samples
belonging to groups 1-2 performed before the column swap and samples belonging to groups 3-4 performed after
the column swap.

showed a comparably higher and lower yield respectively in Umea compared to Borgeby
during that year, giving differentially expressed protein groups potentially linked to the
relative geographic performance.



Oudlier samples were identified using principal component analysis and density plots and
did in some cases lead to these samples being reprocessed on the mass spectrometer. Using
OmicLoupe to explore further trends identified that samples taken during one month in
2018 had a strongly different expression profile. This could potentially be related to the ex-
treme weather conditions during this summer. It was decided to focus on the samples from
the second month during this year which showed a higher overall similarity in expression
patterns, as illustrated in Figure 29, showing the distributions of p-values when comparing
year 2016 and 2019. In both cases, a clear trend is present (a spike around zero) and an even
distribution of p-values show no apparent anomalies. Notably, in blue are features that are
significant (here: p < 0.05) in both cases and differentially expressed in the same direction,
while in green are those found differentially expressed in the opposite direction indicating
a similarity in the trend even though many features are only significant in one comparison.
Beyond the proteomics data, also transcriptomics and metabolomics data were available for
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Figure 29: Comparison of expression patterns, 2016/2019 comparing Desiree between Umea (Um) and Borgeby (Bo) using
OmicLoupe. The left histogram shows the distribution of p-values for Desiree when comparing Umeé to Borgeby
2016, while the right histogram shows the corresponding comparison during the year 2019. The colours indicate
in which datasets the proteins pass the significance threshold. Green (contra) show proteins which are differentially
expressed in both with reverse fold-direction between the two datasets.

the 2016 samples, providing a comprehensive multi-omics view. Here, patterns found on
the proteomic level showed overall similar patterns on the transcriptomics level, as identi-
fied using OmicLoupe.

Key findings

This study provides a unique multi-year view of the molecular profiles of field-grown potato
varieties at different latitudes in Sweden. Here, we identified consistently differentially ex-
pressed proteins with similar differences in abundance across three years, with similar trends
also seen at the transcriptomic level. We further identified proteins differing between vari-
eties with measured comparably higher and lower yields in northern compared to southern
Sweden. Further verification could reveal whether these changes are specifically related to
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the differences in hours of light. After validation, these observations could be used to help
select potato varieties that optimally can handle differing climates and thus better utilize
these field areas and thus increase our ability to adapt to a changing climate. The dataset in
itself represents one of the first proteomic profilings of potato grown in the field which may
prove valuable in the light of future integrative omics-studies, and can help to understand
the molecular variation that may appear in the field. Overall, this study provides a basis for
further research into strategies for selecting potato varieties better adapted for the growing
conditions in northern Sweden. For further reading, see Paper V.
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Chapter 4: Concluding words

In this work I have explored the process of carrying out proteomics studies using label-
free proteomics for biomarker discovery. Throughout the work, I have focused on how
to navigate unwanted variation in the data and how make appropriate choices of software
and methods. Many of these insights are generally applicable in omics beyond proteomics.
This focus has led to the development of two pieces of software for improved computa-
tional analysis and analysis decisions in omics. Furthermore, these pieces of software have
been applied across three separate studies, each studying agriculturally important traits in
different organisms. An important aspect through both the software development and the
applied studies has been to optimally handle technical limitations to maximize the poten-
tial of the datasets as explorative sources of biological understanding and biomarkers. These
challenges can be encountered in all types of omics-data. It is my hope that the presented
software and the conclusions drawn throughout this thesis will be of utility for other re-
searchers who find themselves in a similar situation where careful analysis decisions need
to be made to make the most out of the data at hand.

In Paper I, we introduced the software NormalyzerDE, a now well-used software available
as a web application and as a Bioconductor R package. NormalyzerDE provides a per-
formance screening of normalization techniques, introduces a normalization approach to
consider the retention time-dependent biases such as those caused by electrospray ioniz-
ation variations in mass spectrometry, and provides a tool for performing and visualizing
the downstream statistical analysis. The output from NormalyzerDE is directly compat-
ible with OmicLoupe, the software presented in Paper II. NormalyzerDE was used for the
initial outlier detection and for informing the normalization selection strategy in Papers
ITI-V, and to smoothen the downstream statistical analysis. In Paper II, an interactive
visualization software called OmicLoupe was introduced, aiming to make diagnostic visu-
alizations maximally available, and it was extensively used across the three applied studies.
OmicLoupe was used to better understand the unwanted and wanted variations present in
the studies, and in particular to understand to which extent biological trends were shared
across multiple time points. Novel visualization techniques were developed for this pur-
pose, some of which are demonstrated in Chapter 3. The software development has greatly
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benefited from the fact that the software have been actively used both by me and others
while being developed. This has provided continuous feedback which has helped to focus
the development on the aspects which are most important for the user.

I have been fortunate to work with engaged and knowledgeable collaborators from whom
I have learned a great deal throughout the projects. These studies are not single-person
endeavours, and cross-discipline communication has been critical in carrying out these
studies. The collaborations have given me valuable insight into the full proteomic work-
flow applied in agricultural studies, in two cases (Paper III-IV) leading me to participate
all the way into the biological interpretations. Paper III explored sources of differences in
resistance to the fungal pathogen Fusarium graminearum using a proteogenomic approach,
confirmed the differing resistance between the varieties, and identified candidate proteins
potentially involved in the disease response. Furthermore, using a custom-developed and
now publicly accessible interface, mutations underlying some of these proteins were identi-
fied. This work contributes towards the breeding of commercial oat varieties with a stronger
resistance to Fusarium species. In Paper IV we studied how proteins in the bull seminal
plasma related to bull fertility varies across three seasons and samplings. Proteins with stable
correlations were identified and used to build a predictive signature of bull fertility, which
could be further validated in future studies. If validated, this would provide markers to
detect bulls with low fertility with the potential to reduce the losses of materials while re-
taining the speed of developing new traits of interest. In Paper V, potato field trials were
carried out over three summers. In this study we identified a set of proteins which were
found consistently differing between northern and southern Sweden across three seasons.
Here, we also identified a set of proteins differing between groups of varieties with differing
yield at the two locations. The result from this study could be used to better understand
climate adaptability in plants, and could ideally lead to the selection of crops better able
to utilize the growth conditions in northern Sweden. Overall, these studies show some of
the difficulties and opportunities in using proteomics for the further development of mo-
lecular breeding. With more studies coming out and the techniques steadily developing, I
believe that proteomics will play an increasingly important role in the identification of bio-
markers and to provide a deeper understanding of molecular biology underlying important
traits. These will be employed for a wide range of applications, including the refinement
of molecular breeding techniques, giving us the tools to shape our food more efliciently to
increase the sustainability of our agriculture.

Outlook

Complex omics-studies are continuously being published at a high rate. Furthermore, new
approaches such as single-cell technologies are becoming established, further increasing
the challenges of the data processing. Here, I will take the opportunity to outline some
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thoughts on future developments within the area of data processing in omics.

A key to improved statistical methods is considering what structures are present in the data
athand. Asdiscussed, statistical procedures considering the multidimensionality of the data
(Ritchie et al. 20155 Zhu et al. 2020; Pursiheimo et al. 2015) can outperform those that singly
consider features, such as the commonly used t-test. Many of the existing methods used in
proteomics are originally developed for microarrays. These methods could potentially be
improved by considering technical variation linked to sample preparation effects such as run
order or the performance of the mass spectrometer. Other examples would be to consider
the prevalence and patterns of missing values and the unique behaviour of peptides with
different physicochemical properties. Some of these characteristics have been successfully
used in approaches to analyse proteomics data (Kill et al. 2007; Zhu et al. 2020; Gessulat
et al. 2019), and can likely be further used to improve existing data analysis methods. A
valuable resource for this purpose is the growing amount of high-quality public data (Perez-
Riverol et al. 2018). Here, the practical utility has often been limited by the lack of sample-
level information. Recent steps have been taken to address this (Perez-Riverol 2020), which
if successful would greatly improve their utility.

A recurring challenge in handling technical variation is the difficulty of assessing whether
the applied adjustments are made correctly, as adjustments always risk reducing the biolo-
gical variation or introduce new erroneous signal. Software such as NormalyzerDE (Paper
I) and NOREVA (Yang et al. 2020) are helpful through using visualizations to inspect the
overall trends under different normalization methods, but can be challenging to interpret
and provide measures on a sample-wide level. Again, using the unique structures in mass
spectrometry data and the growing amount of data available could help identify specific
peptides more prone to be influenced by certain types of bias, as explored in this work
(discussed in Chapter 2). A more comprehensive profiling could give tools to provide con-
fidence in whether the correction procedures are doing the right thing on both a sample-
and gene product-level, thus leading to more robust findings, potentially increasing repro-

ducibility.

Visualizations play a crucial role in understanding omics datasets. Here, in OmicLoupe,
I have explored the idea of extending widely used visualizations by incorporating cross-
dataset information. This idea could be extended by considering further aspects of the
data, new visualizations, and other ways to integrate information across datasets. The ideal
goal would be to help users consistently and more efficiently come to optimal conclusions
on how to approach their data and provide tools to spot patterns that otherwise would have
gone unnoticed. This could lead to new and more accurate results and a reduced cost and
effort of the data interpretation, but requires that these visualizations are presented such
that they are accessible and understandable.

The mass spectrometry technology and data analysis approaches are continuously develop-
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ing, leading to new opportunities and challenges. Single-cell proteomics is maturing (Marx
2019), and with it comes a host of new problems to address. The data will be noisy and
will require careful handling of unwanted variation. Tools will likely initially be repurposed
from single-cell transcriptomics, opening for the possibility to enhance these if the unique
aspects of the single-cell proteomics can be considered. In turn, these tools would together
with the single-cell technologies have the potential to unlock an even more fine-grained
understanding of biological systems.

In conclusion, many opportunities lie ahead in proteomics, both in the development of new
software and the application of these to increase the robustness and utility of proteomics
analyses, in agriculture and elsewhere.

Final words

In particular, this work has highlighted the need for understanding each of the involved
steps in the complete omics workflow - from experimental design to carrying out exper-
iments to data interpretations and, finally, to drawing biological conclusions. A coher-
ent understanding of all these steps gives the best foundation for the data analysis. Well-
designed software further gives the ability to navigate among limitations and opportunities
in the data, revealing patterns otherwise not visible, and helps make reliable analysis de-
cisions. Part of the issue could be related to the quote from Feynman: ”The first principle
is that you must not fool yourself - and you are the easiest one to fool.” When inspecting
the many patterns emerging from the bioinformatic analyses, even with the best intentions,
it is easy to get lost in the analysis and to go for what is more compelling rather than what
is robust, leading to findings that will fail to reproduce in other datasets. A solid under-
standing of the data and the employed statistical tools is critical to stick with what is likely
to be accurate.

Molecular biomarker studies are difficult but a challenge worth taking on as they can beau-
tifully contribute to solving among the biggest challenges facing us, from areas such as
personalized medicine to shaping our food for a more sustainable agriculture. I believe
strong cross-discipline collaborations, foundational understanding of the full biomarker
workflow and sharp, accessible and well-documented software are important pieces in the
puzzle to get us there.
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Populirvetenskaplig sammanfattning

Allt levande ir byggt frin de byggstenar vi kallar celler. Dessa celler bestar i sin tur av olika
typer av molekyler vilka vi kan mita for att forutsiga deras egenskaper. Dessa molekyler kal-
las f6r biomarkérer, och kan anvindas for att accelerera forskning inom béde jordbruk och
medicin. Dagens jordbruk méter stora utmaningar i atc bide producera tillrickligt mycket
mat till virldens befolkning, och for att samtidigt anpassa sig till ett klimat i férindring.
Biomarkorer har hir en viktig roll i att skynda pa avel av vixter och djur genom att snabbare
hjilpa oss att forstd vilka individer som har de egenskaper man vill ha, och kan pa sa sitt
hjilpa jordbruket att méta dess utmaningar.

I det hir arbetet miter vi protein - den molekyl som utfor stérre delen av arbetet i cellerna.
Protein har manga olika funktioner, till exempel att bygga strukturer, omvandla solljus till
socker i vixter och forsvara celler mot angrepp av frimmande organismer.

Arbetet bestar av tvd huvudspar. I den ena delen studerar vi biomarkérer i tre olika jord-
bruksprojeke. I det forsta jordbruksprojektet studerar vi hur tvé olika havresorter reagerar
pa angrepp frin svamp, dir den ena havresorten har ett mer effektivt forsvar och den andra
har ett simre forsvar, men ger en bittre skord. Genom att studera skillnaderna bidrar vi till
att utveckla havresorter som bade kan forsvara sig bittre mot svampangrepp och ge en bra
skord. I det andra projektet studerar vi hos tjurar hur protein i sidesvitskan paverkar deras
fertilitet. Det dr kint att protein i sidesvitskan paverkar spermans forméga att befrukta,
men kunskapen om hur det fungerar ir fortfarande begrinsad. Hir identifierar vi protein
som ir relaterade till befruktningsférmagan, vilket kan bidra till att béttre kunna forutse
tjurar med lag fertilitet vilken kan bespara stora resurser och underlitta aveln av andra vik-
tiga egenskaper. Slutligen studerar vi hur olika potatissorter reagerar nir de vixer i norra
och sddra Sverige, dir vissa sorter bittre kan utnyttja de annorlunda forhéllandena i norra
Sverige med lingre dagar och kortare somrar. Detta bidrar till att forstd hur vi bittre kan
anvinda jordbruksarealerna i norra Sverige.

For att mita mingden av olika protein i celler anvinder man maskiner som kallas mas-
spektrometrar, vilka kan mita molekylers vikt med stor noggrannhet. For att mita protein
sd delar man dem f&rst i sma bitar - peptider - som man skickar in i masspektrometern. Pep-
tiderna skickas via en vitska genom vad som kallas en elektronspray - ett tunt munstycke
som skickar ut en dimma av sma droppar som sedan tillférs laddningar av en stark elekerisk
spanning. Vitskan hos dessa sma droppar dunstar snabbt bort, och kvar blir elektriskt lad-
dade peptider. Laddade molekyler accelereras av elekeriska filc och hur snabbt de accelereras
beror pé deras vikt och hur stark laddning de har. Detta anviinds inne i masspektrometern
for att mita molekylernas vikt med stor noggrannhet. Peptiderna bryts sedan ned i smé
bitar genom att krockas med en gas under hogt tryck. Slutligen mits dven dessa peptid-
bitar. Dirmed har vi noggranna mitningar av vikten hos de ursprungliga peptiderna, och
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mitningar av deras fragment. Dessa fragment kan ses som peptidernas fingeravtryck —négot
som unike identifierar dem.

Mitningarna skickas sedan till en dator dir en lang resa borjar for att pussla ihop en bild
av hur mycket av olika proteiner som ursprungligen fanns i cellerna man mitte. Hir rik-
nar man forst ut hur mycket som fanns av de olika peptiderna, och anvinder sedan deras
fragment (deras fingeravtryck”) for att jimfora mot en stor samling kiinda peptider och dir-
med avgora deras identiteter. Sista steget 4r att anvinda olika datorprogram for att pussla
ihop peptiderna till en bild av hur mycket av olika protein som fanns i det ursprungliga
materialet. Dessa mitningar kan vi anvinda for att hitta biomarkérer.

Datorprogrammen man anvinder for att analysera protein ir ofta svéra att anvinda och
uppdateras stindigt med nya analysmetoder. Den andra delen av arbetet bestér av att ut-
veckla tvd datorprogram som gér det enklare att hitta ritt metoder for att analysera protein-
data. Det forsta programmet anvinds for att illustrera protein-datan med olika typer av vi-
sualiseringar, vilket bland annat underlittar jaimf6relser nir man upprepar ett experiment
for att forsikra sig om att det man sett i ett forsta forsok fortfarande finns dir. Varje steg
i mitningarna frin experiment till mitning i masspektrometern tillfor en viss osikerhet i
resultatet, och det finns en risk att detta ger en felaktig bild av den ursprungliga ming-
den protein. Det andra datorprogrammet hjilper anvindaren att vilja den metod som bist
minskar miangden osikerhet i protein-datan. Dessa datorprogram har bada anvints i ovan
nimnda biomarkérstudier for att minska osikerheten i analysen och for att ge en bittre
forstdelse av datan.

Sammanfattningsvis ger detta arbete tillgang till nya datorprogram som kan anvindas for
bade studie av protein och andra molekyler - i jordbruk, eller andra biologiska omraden
som till exempel medicin. Dessa verktyg har sedan tillimpats i tre olika jordbruksstudier
for att si bra som mojligt anvinda protein-datan, och for att hitta biomarkérer som kan
anvindas for att snabba pa utvecklingen av ett mer héllbart jordbruk.
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Bl 4% %L (Popular science summary in Chinese)
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