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Abstract—We consider a real-time system of multiple tasks,
each task having a plant to control. The overall quadratic control
cost is to be optimized. We exploit the periodicity of the task
response time, which corresponds to a periodic delay pattern in
the feedback control loop. Perturbed periods are used as a tool to
find a finite hyperperiod. We present an analytical procedure to
design a periodic linear-quadratic-Gaussian (LQG) controller for
tasks with fixed execution times as well as a numerical solution
to the periodic–stochastic LQG problem for tasks with variable
execution times. The controllers are evaluated using simulations
in real-time scheduling and control co-design examples.

I. INTRODUCTION

A. Motivation

Scheduling–control co-design is a fundamental problem
that emerges from the combination of real-time computing and
feedback control. Most real-time systems are developed for the
aim of digital control. On the other hand, many control systems
are implemented on top of real-time operating systems. The
real-time systems parameters, such as task utilizations and
deadlines, affect the periods and latencies of the control
systems, and hence their control performance. The goal of
control–scheduling co-design is to optimize the combined
performance of all control tasks in the system, subject to a
schedulability constraint. This is done by assigning suitable
task parameters and designing feedback controllers that take
the scheduling parameters into account.

In this paper, we focus on the response-time variation
that arises from preemptive scheduling of a set of periodic
tasks. Assuming constant execution times for all tasks, the
response times will have a periodic regularity in cases where
a hyperperiod exists. (Recall that the hyperperiod is the least
common multiplier of the periods of all tasks.) If the response-
time pattern is known, it can be exploited in the control design.

In reality, task execution times are not constant but may
vary due to cache misses, unmodeled hardware interrupts, etc.
We can model the execution time of each job of a control task
as an independent random variable. The response time of each
job will no longer be constant but can be characterized by a
probability distribution. There is now a repetitive pattern of
the response time distribution over the hyperperiod, and this
can also be exploited in the control design.

The specific scenario considered in this paper is a unipro-
cessor with fixed-priority scheduling running a set of tasks

where each task implements a controller for some physical
plant. It is assumed that the plants and, hence, the controllers,
are independent of each other. The goal is to select the task
periods and design the controllers so that the global control
performance is maximized. The performance of each control
loop is measured by a quadratic cost function of the process
states and the control signal. The global performance is simply
the sum of the cost functions for the individual control loops,
which then should be minimized. This choice of performance
metrics leads naturally to LQG control since the design goal in
LQG design is the minimization of a quadratic cost function.

B. Related Work

Much research has focused on the control–scheduling co-
design problem. The seminal paper [1] presented an algorithm
that optimizes controller task periods based on a cost func-
tion and then schedules the resulting tasks with the limited
computing resources available. In [2], the importance of also
considering the control delay is pointed out, and an iterative
search algorithm is suggested to assign control task periods.
[3] provided a procedure that finds the task activation rates
that maximize a performance function within the deadline
constraints in systems scheduled using fixed priorities. [4]
presented an integrated approach for designing high-quality
embedded control systems, while guaranteeing their stability
in the worst case.

In [5] the authors of this paper solved the optimal period
assignment problem assuming controller costs that depend
linearly on the delay and where the delay is assumed to be
constant and is estimated using an approximate response-time
analysis. In the continuation paper, [6], the delay was instead
modeled by the statistical distribution of the task response
times, and then an optimization based approach was used find
the task periods for controllers designed using stochastic LQG
techniques. Periodic LQG control design in real-time systems
has been considered before [7], but for the case of variable
sampling intervals and not for varying delays.

For joint ECU and bus scheduling in mixed-criticality
systems, [8] formulated a integer linear programming problem
to optimize linear or quadratic control performance functions.
For controller rate selection in wireless networks, [9] formu-
lated a constrained non-linear optimization problem and use
simulated annealing to find a near-optimal solution. Ripoll
and Ballester-Ripoll [10] investigated the problem of selecting



the task periods within some given intervals, such that the
corresponding hyperperiod is minimized.

C. Contributions

The approach taken in current paper is to exploit the peri-
odic delay pattern that results if the task periods are perturbed
slightly, obtaining a finite hyperperiod. This is combined with
so called periodic LQG design techniques, where the periodic
delay pattern is taken explicitly into account in the control
design. The contributions of this paper are the following:

• We introduce a method to perturb task periods in order
to achieve a short and finite hyperperiod.

• We perform job response time analysis to discover the
delay distribution, useful for the control design.

• We propose an analytical method for periodic LQG
control design, suitable for tasks with constant execu-
tion times.

• We propose a numerical method for periodic–
stochastic LQG control design, suitable for tasks with
random execution times.

• We conduct evaluations on control–scheduling prob-
lems using the Jitterbug and TrueTime toolboxes [11].

D. Outline

The outline of the rest of this paper is as follows: The
real-time control system model is presented in Section II.
Section III gives a method to achieve a finite hyperperiod.
Assuming this method, a periodic LQG control design proce-
dure is given in Section IV. Section V evaluates the periodic
LQG control design on three different examples. Section VI
discusses statistical response-time analysis vs schedule sim-
ulations to find the response-time probability distributions.
In Section VII, a numerical method to design a periodic–
stochastic LQG controller is presented. Section VIII evaluates
the periodic–stochastic LQG control design on three different
examples. Finally, Section IX offers some concluding remarks.

II. REAL-TIME CONTROL SYSTEM MODEL

A. Control Task Model

We consider a real-time system composed of n control
tasks. The tasks execute on a single processor under fixed
priority preemptive scheduling. Each task is characterized by
the following parameters:

• The worst-case execution time Ci is the maximum
length of time the task could take to execute.

• For the actual execution time of each job of the task,
we will consider two different cases:

1) The execution time is constant and equal to
Ci.

2) The execution time of each job is statistically
independent and drawn from a probability
distribution with maximum value Ci.

• The period Ti of the task is the time between the
release of two consecutive jobs of the task.

• The task priority is assumed to be implicitly assigned
by the task ordering, such that the ith task has higher
priority than the (i+ 1)th task.

There are further characteristics of the tasks, which depend on
the above mentioned parameters:

• The response time Rij of the jth job of task i is
the time that elapses from the job release time to its
finishing time.

• The task utilization Ui = Ci/Ti measures the worst-
case amount of computational resources required by
the controller. We denote the total utilization of all
control tasks by U =

∑n
i Ui.

We assume throughout the paper that the task phasing is
known, and that all tasks are released simultaneously at time
zero. However, the proposed approach would also work for
other phasings.

Each control task implements a feedback controller, for
which we define the following timing parameters:

• The sampling interval hij is the time difference be-
tween the sampling operation of job j and job j−1 of
task i. We assume that sampling always is performed
at the job release time; hence, hij = Ti, ∀j.

• The delay τi,j is the time interval between the sam-
pling operation and the output operation of job j
of task i. We assume that the output operation is
performed when the job finishes; hence, τi,j = Ri,j .
This is the main bridge between real-time theory and
control theory in this paper.

B. Plant Model and Co-Design Problem Formulation

Each control task i controls a linear time-invariant (LTI)
continuous time plant

ẋi(t) = Aixi(t) +Biui(t) + vi(t)

yi(tk) = Cixi(tk) + ei(tk)
(1)

where xi(t) is the state vector of the plant, ui(t) is the control
input, yi(t) is the system output, and Ai, Bi, Ci are constant
matrices. The disturbance vi(t) is continuous time white noise,
while the measurement noise ei(t) is discrete time white noise.

The co-design problem involves assigning task periods
[T1, . . . , Tn] yielding a total utilization U =

∑n

i=1 Ui ≤ 1
and designing n LQG controllers in order to minimize the
total cost

J =

n
∑

i=1

Ji

where

Ji =

∫ ∞

0

(

xT
i (t) uT

i (t)
)

Qci

(

xi(t)
ui(t)

)

dt (2)

and where Qci =
(

Q1ci Q12ci

QT
12ci Q2ci

)

is a symmetric positive

definite matrix. The cost J is defined to penalize state deviation
and control effort. The LQG controllers may have time-varying
parameters but are to be designed off-line.

III. TASK PERIOD PERTURBATION TO ACHIEVE A FINITE

HYPERPERIOD

Since the task periods are not necessarily integers, we
extend the definition of the hyperperiod of the set of tasks,
as follows.



TABLE I: Example of approximate hyperperiod Ĥ when T1 =√
2 ≈ 1.4142 and T2 = π ≈ 3.1416.

ǫ Ĥ [k1, k2] [T̂1, T̂2]

0 ∞ [∞,∞] [
√
2, π]

0.001 28.284 [20, 9] [1.4139, 3.1420]
0.1 9.8995 [7, 3] [1.3690, 3.1943]
1 maxi{Ti} = π [1, 1] [2.5658, 2.5658]

Definition 1: The hyperperiod of a set of tasks with peri-
ods [T1, . . . , Tn], is the smallest H > 0 such that

∀i, ∃ki ∈ N : kiTi = H. (3)

Since we assume that the initial task periods are any real
numbers, the hyperperiod H of (3) may not exist. In this case
we set it to H = ∞. We observe that the above definition
does not necessarily require the task periods to be integers.
For example, if T1 = 2

√
2 and T2 = 3

√
2, then according

to Definition 1 we have that the hyperperiod of [T1, T2] is
H = 6

√
2. However, Definition 1 requires the periods to be

commensurate: if T1 = 1 and T2 =
√
2, then there is no

hyperperiod H satisfying (3), and we set H = ∞.

When the hyperperiod H is large or infinity, it is not
practical or feasible to investigate the job response-time pattern
over the hyperperiod. We therefore propose a method to
perturb the periods to obtain a finite and short hyperperiod.

A. Finding an Approximate Hyperperiod

When the periods are the solution of an optimization
problem such as in control-scheduling co-design, it may indeed
happen that the task periods may be real values or, at least,
machine-representable “real” values. In these cases it may be
useful to find a suitable substitute for the hyperperiod. We
propose the following definition.

Definition 2: Given a tolerance ǫ ∈ (0, 1), let
[k1, . . . , kn] ∈ N

n be such that

1− mini{kiTi}
maxi{kiTi}

≤ ǫ. (4)

The approximate hyperperiod Ĥ of the task periods
[T1, . . . , Tn] is then

Ĥ = max
i

{kiTi}. (5)

As ǫ → 0, the approximate hyperperiod of Definition 2 tends
to the actual hyperperiod of Definition 1, if the limit exists.

In Table I we illustrate an example when T1 =
√
2 and

T2 = π. The third column reports the values [k1, k2] that makes
Eq. (4) true. It can be observed that, as the tolerance ǫ increases

the corresponding approximate hyperperiod Ĥ decreases.

B. Control Task Period Assignment

Let us assume that an optimization-based control-
scheduling co-design has been performed, e.g., using the
method in [5] or [6]. This leads to a set of real-valued task
periods, T = [T1, . . . , Tn], that give good control performance

but for which, typically, no finite hyperperiod exists. Also such
a solution is always fully utilizing the processor, that is:

n
∑

i=1

Ci

Ti

= 1. (6)

The goal we have is to find some other task periods T̂ =
[T̂i, . . . , T̂n] which are “close” to the original values and which
have a finite hyperperiod that is not too large.

We propose the following method for period assignment:

1) Set a value of ǫ of desired proximity between T and
T̂. A typical value could be between 10−3 and 10−2.

2) Compute the set of integers [k1, . . . , kn] such that (4)
holds;

3) Calculate the modified periods as

T̂i =

∑n
j=1 kjCj

ki
(7)

This choice implies that even the tasks with the
modified periods T̂i are fully utilizing the processor.

4) Redesign the controllers taking the obtained period-
icity explicitly into account using a periodic LQG
control design scheme. The results of this will be
that for each controller the controller parameters will
depend on the current job in the hyperperiod.

For the simple example of Table I, if C1 =
√
2/3 and

C2 = 2π/3, which implies that
∑

i
Ci

Ti
= 1, then the task

periods T̂i modified according to (7) are reported in the fourth
column.

By tuning ǫ we can control the length of the hyperperiod
and then the length of the pattern of job response times. Also,
ǫ is used to control the magnitude of the perturbation of the
original periods. From (4), it follows that

∀i, (1− ǫ)
maxj{kjTj}

Ti

≤ ki ≤
maxj{kjTj}

Ti

,

which enables to find lower and upper bounds to the perturbed
T̂i of (7), as follows

∀i, (1 − ǫ)Ti

n
∑

j=1

Uj ≤ T̂i ≤
1

1− ǫ
Ti

n
∑

j=1

Uj .

If the original periods [T1, . . . , Tn] are fully utilizing the
processor, which is always the case if they are the solution of
an optimal real-time control co-design problem [5], [6], then
the bounds to T̂i become

∀i, (1− ǫ)Ti ≤ T̂i ≤
1

1− ǫ
Ti. (8)

Eq. (8) provides an insightful interpretation of ǫ. It states
that by perturbing the periods according to (7), with ki defined
by (4), then the amount of perturbation can be controlled by
ǫ.

In the real-time control co-design problem, selecting ǫ is
a trade-off between the tolerable variation of the task periods
from the solution of the continuous optimization problem and
the length of the hyperperiod. A long hyperperiod requires
more memory to store the controller parameters and a larger
(off-line) computational effort to design the controllers.



IV. PERIODIC LQG CONTROL DESIGN FOR

DETERMINISTIC JOB RESPONSE TIMES

In a hyperperiod, fixed actual execution times implies that
the delays are known, but variable. This section establishes
the LQG control design for the resulting periodic system. The
modified hyperperiod proposed in the previous section makes
it possible to realize this design procedure. Note that existing
LQG design methods for time-delay systems do not apply
because the delays are either assumed to be constant or in the
form of a probability distribution. Here we allow the delays to
vary according to a deterministic pattern over a hyperperiod.

A. Sampling the Periodic Time Delay System

For task i,
H = lihi

where H is the hyperperiod, hi is the period, and li is the
number of jobs in one hyperperiod. The controlled plant is
given by Equation (1). The delays arrive in the deterministic
pattern τi,1, τi,2, ..., τi,li . The delays can be less than, equal to,
or greater than period. We know however that τi,j < τi,j+1 +
hi, j ∈ {1, 2, . . . , li − 1}, because in a single-CPU system,
the finishing times of jobs cannot be disordered. The control
signal is assumed to be zero-order hold, i.e. piecewise constant
between update instants (see Figure 1).

Delayed

signal

Fig. 1: Delayed control signals in one hyperperiod.

Because the dynamics repeats in every hyperperiod, we
only need to investigate the state space model over one hyper-
period. Actually, if there exists a smaller contiguous repeating
sub-sequence than the full sequence in the hyperperiod, the
controller can be recalculated for the shorter length. The size
of matrices in state space model is smaller and the cost
reformulation is simpler. However, the controller is the same
as the full hyperperiod design. For convenience, the subscripts
indicating task i are omitted in the rest of this section.

The integration of Equation (1) over one hyperperiod is
shown in Appendix A. Following this, an extended state-space
model can be introduced,

(

x((k + 1)lh)
u′(klh)

)

=

(

Φ Γ1

0 0

)(

x(klh)
u′((k − 1)lh)

)

+

(

Γ0

I

)

u′(klh)

Here, l control signals over the hyperperiod are included in the
extended state. This reformulation changes the system from
continuous time infinite form to discrete time finite form.

B. Sampling the Loss Function

We have so far sampled the plant model, but we also need
to sample the cost function. The cost of the ith task is

Ji =

∞
∑

k=0

Ji(k) =

∞
∑

k=0

Ji(klihi)

J(klh) =

∫ (k+1)lh

klh

xT (t)Q1cx(t) + 2xT (t)Q12cu(t)

+ uT (t)Q2cu(t)dt

:=xT (klh)Q1x(klh) + 2xT (klh)Q12u
′(klh)

+ u′T (klh)Q2u
′(klh) + Jv(lh)

The discrete time cost matrices Q1, Q2 and Q12 are calculated
as shown in Appendix B. Given the extended state space
model, the standard linear quadratic control design method can
be applied as shown in Appendix C.

V. PERIODIC LQG CONTROL EVALUATION

In this section we first apply the periodic LQG design
procedure to a simple example and then to two real time
scheduling and control co-design problems. In the simple
example, the design approach will guarantee the correctness
of periodic LQG design, without having to consider the exact
multi-tasking behavior in the real-time system. The exact costs
can be calculated using Jitterbug toolbox. The second example
will illustrate how the perturbed period method works. The
third evaluation example will provide a systematic approach
for periodic LQG design in the real time multi tasks environ-
ment. The latter examples involve joint scheduling and control
simulations and are evaluated using the TrueTime toolbox.

A. A Simple Example

Assume that a plant under control is given by

G(s) =
1

s2 − 1

The cost function is given by Equation (2), in which the
continuous time cost matrix is

Qc =

(

0.01 0
0 1

)

and ρ = 0.01. The continuous time state noise covariance
matrix is R1c = BBT , and the discrete time measurement
noise covariance matrix is R2 = 0.01tr{R1c}.

The sampling period is h = 0.3, and the hyperperiod H =
4h. The delays in one hyperperiod are assumed to be τ1 =
0.24, τ2 = 0.18, τ3 = 0.12, τ4 = 0.24.

LQG controllers are then designed by the following three
methods:

• Constant delay: Using Jitterbug, a time-invariant LQG
controller is designed assuming a constant delay equal
to the average delay.

• Stochastic LQG: Using Jitterbug, a time-invariant
LQG controller is designed, viewing the delay as a



random variable with known probability mass distri-
bution. Riccati equation.

• Periodic LQG: Design a sequence of l LQG con-
trollers using the periodic LQG control design pro-
cedure proposed in Section IV.

The costs evaluated in Jitterbug are given in Table II.
The cost using periodic LQG is better than the other two.
This is because it takes all the information about system
dynamics, especially about delays, into account in control
design procedure. The larger the delay variability, the larger
the improvement over previous design techniques will be.

TABLE II: Costs in the simple example

Cost

Constant delay design 3.0124

Stochastic LQG design 2.9528

Periodic LQG design 2.2194

B. Three-Plant Example

Assume a set of three tasks controlling three plants

P1(s) =
1

s2 + 0.549s− 0.1979

P2(s) =
1

s2 − 0.9947s+ 0.2366

P3(s) =
1

s2 + 0.711s+ 0.0252

We start by assigning initial periods with the approach
proposed in [5]. The initial periods are shown in Table III,
where all periods have been rounded to four decimal places.
The hyperperiod is infinite. Then we modify the periods by
selecting the tolerance as ǫ = 0.1 or ǫ = 0.05. Now the
hyperperiods are finite. As shown in Section III, the lower
the ǫ value, the longer the hyperperiod. The utilization is kept
at U = 0.98 in order to avoid excessive control delays.

TABLE III: Perturbed periods and costs

T1 T2 T3 H Jini [5] JLQG

Initial 0.2795 0.3509 0.2792 ∞ - -

ǫ = 0.1 0.2740 0.3653 0.2740 1.0959 5.5697 5.2188

ǫ = 0.05 0.2837 0.3404 0.2837 1.7021 5.5697 5.2061

We then perturb the periods to obtain a finite hyperperiod,
calculate the actual job response times and redesign the con-
trollers according to the periodic LQG method. The results are
shown in Table III. The initial method from [5] uses a constant
delay LQG design based on the approximate average response
time. The periodic LQG method gives better results than the
initial method, and even better performance when the tolerance
ǫ is small. The latter implies a longer hyperperiod but enables
a closer-to-optimal resource distribution.

C. Evaluation on Randomly Generated Plants

In this co-design example, we generate plants randomly
from the following three different plant families:

• Family I: All plants have two stable poles and each
plant is drawn from P1(s) and P2(s) with equal
probability where

P1(s) =
1

(s+ a1)(s+ a2)

P2(s) =
1

s2 + 2ζωs+ ω2

with a1, a2 ∈ U(0, 1), ω ∈ U(0, 1), ζ ∈ U(0, 1).

• Family II: All plants have two stable or unstable poles,
with each plant drawn with equal probability from

P3(s) =
1

(s+ a1)(s+ a2)

P4(s) =
1

s2 + 2ζωs+ ω2

with a1, a2 ∈ U(−1, 1), ω ∈ U(0, 1), ζ ∈ U(−1, 1).

• Family III: All plants have three stable or unstable
poles, with each plant drawn with equal probability
from

P5(s) =
1

(s+ a1)(s+ a2)(s+ a3)

P6(s) =
1

(s2 + 2ζωs+ ω2)(s+ a3)

with a1, a2, a3 ∈ U(−1, 1), ω ∈ U(0, 1), ζ ∈
U(−1, 1).

We assume Qc, ρ = 0.01, R1c = BBT , and R2 to be the
same as those in Section V-A.

The evaluation examines systems with n = 3 control tasks.
The nominal task utilizations Unom

i are generated randomly
using an n-dimensional uniform distribution with total uti-
lization 1. The worst-case execution time was drawn from
Ci ∈ U(0.04, 0.4)/n. The task priorities were assigned using
rate-monotonic ordering based on the periods returned by [1].

The initial task periods are assigned by the method in [5]
with utilization 0.99, and the initial controllers are designed
based on a constant delay equal to the average response-time.
To avoid numerical errors, the utilization is set to 0.99.

Then perturbed periods are calculated to get a finite hyper-
period, and the delays in a period are derived from a schedule
simulation. Finally, a periodic LQG controller is designed for
each plant.

The two control design methods are evaluated by Monte
Carlo simulations, where the plants, the controllers, and the
scheduler are simulated in parallel using TrueTime. From each
family of plants, 10 random plants are generated. After the
controller design, the plants and controllers are simulated for
1000 s, and the total cost, J , was recorded. All the costs are
given in Table IV.

The cost with periodic LQG controller has lower value than
cost with gain scheduling method. It is reasonable, because
periodic LQG controller takes more information about system
dynamics into account.



TABLE IV: Evaluation of costs for co-design for random
plants

Family I Family II Family III

Initial design [5] 3.23 4.56 15.41

Periodic LQG 3.18 4.41 12.66

D. Limitations of Periodic LQG Control

As shown in the previous evaluations, periodic LQG con-
trol gives good performance as long as the task execution times
are constant. However, when the execution times vary, then
a periodically repeating delay pattern no longer exists, and
the performance obtained using the periodic LQG controller
decreases.

The extent of this performance decrease depends on the
shape of the delay distribution function, which in turn depends
on the execution time distribution functions of the task under
investigation and all higher-priority tasks. Consider the follow-
ing examples. Assume that a certain task of low priority has
six jobs in a hyperperiod. In Fig. 2a the job response times,
i.e., delays, are plotted for a large number of hyperperiods.
The x-axis shows the current job index in the hyperperiod
and the y-axis shows the corresponding delay. The red line
shows the average response time. Fig. 2b shows the response
time distribution of the first job in the hyperperiod. With this
narrow, unimodal shape of the distribution it is likely that a
periodic LQG controller designed for the average delay in each
job would still work reasonable well. However, in another
example, using slightly different task parameters, the results
may be as presented in Fig. 2c and Fig. 2d. Here the response-
time distribution is bimodal and the average delay is not a
good approximation of the true delay and it is less likely that
a periodic LQG control will perform well.

In the following sections we will investigate how a
periodic–stochastic LQG control design can be used to cope
with this problem. In this type of LQG controller the delay
is modeled by a probability distribution for each job in the
hyperperiod. Hence, rather than having delays that repeat
periodically, we will have delay distributions that repeat peri-
odically. In order to use this technique, the delay distribution
for each job must be known at design time. This is studied
next.

VI. CALCULATION OF THE JOB RESPONSE TIME

DISTRIBUTIONS

There are two approaches to obtaining the job response
time cumulative distribution functions. The first and most
accurate way is to calculate them analytically using some
statistical response time analysis tool. The alternative is to
simulate the task schedule using real-time schedule simulator
for sufficiently long time and measure the individual delays.
Similar to measurement-based WCET analysis the latter ap-
proach always runs the risk of not encountering response times
that have low probability. Here, both will be investigated. The
response time analysis framework considered is [12].

A. A Framework for Probabilistic Response-Time Analysis

We now describe the framework used to accurately
compute the response time distributions of tasks scheduled
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Fig. 2: Two examples showing different job response time
distributions

on uniprocessor platforms based on non-idling, preemptive
scheduling policies [12]. With respect to scheduling policies,
the framework is general and covers both static and dynamic
scheduling algorithms like fixed priority scheduling and earli-
est deadline first scheduling.

Besides the scheduling policy, the framework takes as in-
puts the relevant tasks parameters, which include i) periods and
ii) variable execution times. The main assumption on which
the framework is built is that the tasks’ jobs are independent
from each other. Thus, independent random variables can
be used to model the variable execution times of all jobs.
As such, jobs belonging to the same task will be modeled
with independent identically distributed random variables. The
framework also assumes that i) the execution times of the tasks
are described by probability density functions (PDFs) and that
ii) the maximum CPU utilization does not exceed 100%. Given
all these assumptions the framework accurately computes the
response time distributions of the tasks by conducting a job-
level analysis over all the jobs in the hyperperiod.

Internally, the framework tightly approximates all the
PDFs with polynomial functions. This is because polynomial
functions can be integrated analytically in polynomial time
given their degrees. Also, for the uniform PDFs used in this
paper, the polynomial approximations are exact. For each job
in the hyperperiod, the framework identifies a set of non-
idling scenarios where each such scenario covers a continuous
interval of possible response times that the job under analysis
might have. In this way, the response time distribution of the
job under analysis can be evaluated by integrating the joint
execution time function of those jobs that it interacts with (i.e.
jobs with higher priority) over the points in the current interval.
We illustrate the idea with the help of an example below.



TABLE V: Task parameters in the probabilistic response-time
analysis example

Task
Index T D Cmin Cmax

1 5 5 1 2
2 6 6 1 2
3 9 9 1 2

B. Response-Time Analysis Example

We provide an example describing the functionality of the
tool used to compute the response time distributions of the
tasks scheduled on uniprocessor platforms based on non-idling,
preemptive scheduling policies. Let us assume a task set with
three tasks. The tasks’ parameters are presented in Table V and
it is assumed that the jobs are scheduled with fixed priorities
implied by task ordering and that the random execution times
are uniformly distributed. Given the parameters, a total of 43
jobs are released in any hyperperiod. In the following we show

the response time distribution of the 10th job, corresponding
to the second job of the third task.

The cumulative response time distribution of the 10th job
(see Figure 3) has been evaluated in two ways. First, we have
conducted simulations based on the TrueTime simulator and,
later, we have used the analytical tool. The red line depicts
the response time distribution obtained from task simulations
while the blue line denotes the analytical distribution. It can be
seen that the two graphs match each other very well apart from
one exception. The simulations have shown that the response

time distribution of the 10th job spreads over the interval
[2..3]∪[4..6]. On the other hand, the analytical tool reports that
the same distribution has the domain [2..3]∪[4..6]∪[7..9]. Such
discrepancies are likely to occur as, in our case, the probability

for the response time of the 10th to lie in the interval [7..9] is
very small (less then 0.01).

In this section, it has been shown that the response time
distribution calculated using TrueTime schedule simulation is
similar to the analytical solution. With this as motivation we
will use TrueTime simulation to derive the response time
PDFs in the following sections. The reason for not using
the analytical calculation framework is that for certain task
parameter values the memory requirements are too large.
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Fig. 3: Cumulative response time distribution of the 10th job
in the probabilistic response-time analysis example.

VII. PERIODIC–STOCHASTIC LQG CONTROL DESIGN

FOR RANDOM JOB RESPONSE TIMES

This section presents a numerical method for LQG control
design when the execution time for each task is varying
randomly. It is assumed that a hyperperiod exists and that the
response time PDF has been derived for each job of the task.
As usual, the LQG design can be split into two parts: state
feedback design and state estimator design.

A. State Feedback Design

In the state feedback design, it is assumed that the full
state vector x is known at each sampling instant. The goal is
to design a time-varying control law

u(k) = −L(k)x(k)

where the state feedback gain L varies over the hyperperiod.
Given knowledge of the PDFs of the delays τk, we formulate
a periodic–stochastic Riccati equation as

S(k) =Eτk+1
{ΦTS(k + 1)Φ +Q1 − (ΦTS(k + 1)Γ +Q12)

(ΓTS(k + 1)Γ +Q2)
−1(ΓTS(k + 1)Φ +QT

12)}

where matrices Φ, Γ and Q are all functions of τk+1. They can
be calculated using the method in Section IV-B. The Riccati
equation can be solved iteratively by calculating S(l), S(l−1),
. . . , S(1), and then repeating again from S(l) and so on, until
the sequence of matrices S(k), k = 1 . . . l, converges. The
state feedback gain is then obtained as

L(k) = Eτk+1
(ΓTS(k + 1)Γ +Q2)

−1(ΓTS(k + 1)Φ +QT
12)

B. State Estimator Design

Since the system we are considering in (1) is linear and
time-varying, and vi, ei are Gaussian noises, a time-varying
Kalman filter is the optimal estimator. Since the sampling
period is fixed, the Kalman filter gain K can actually be
obtained by solving a regular Riccati equation, yielding the
standard update equation

x̂(k | k) = x̂(k | k − 1) +K(y(k)− Cx̂(k | k − 1))

where x̂ is the estimated state vector. The state prediction
equation will however be time-varying and is obtained by
taking the expected value over the delay for each job:

x̂(k + 1 | k) = EτkΦx̂(k | k) + EτkΓu(k)

Combining the state estimator with the state feedback, we
finally obtain the periodic LQG control law

u(k) = −L(k)x̂(k | k)

VIII. PERIODIC–STOCHASTIC LQG CONTROL

EVALUATION

In this section we first apply the periodic–stochastic LQG
design to a simple example and calculate the exact costs using
Jitterbug. We then look at two co-design examples where
performance was evaluated using simulations in TrueTime.



A. A Simple Example

The plant is an inverted pendulum, which is the same as
in Section V-A. We also have the same cost matrix Qc, and
noise covariance matrices R1c and R2. The sampling period
is h = 0.3, and the hyperperiod is H = 3h. The response
times of every job in one hyperperiod are given in the form
of probability mass functions as

τ1 =

(

0.12 0.4
0.15 0.2
0.18 0.4

)

τ2 =

(

0.15 0.5
0.18 0.5

)

τ3 = (0.12 1)

Here, the left column is the length of response time, and the
right column is the corresponding probability.

LQG controllers are designed by the following three meth-
ods:

• Periodic–stochastic LQG: Design a set of controllers
using the the method proposed in Section VII.

• Periodic LQG: Using the average response time as the
delay in each period, design a set of LQG controllers
using the method from Section IV.

• Stochastic LQG: Design a time-invariant controller
based on the overall delay distribution.

The costs, evaluated in Jitterbug, are shown in Table VI.
The periodic–stochastic LQG has the lower cost than the other
three methods, because it takes all the information about re-
sponse times into account in the control design procedure. The
other two methods work with different kinds of approximations
of the response times and are hence suboptimal.

TABLE VI: Costs in the simple example

Cost

Periodic–stochastic LQG design 0.92
Periodic LQG design 1.01

Stochastic LQG design 0.99

B. Three-Plant Example

Assume a set of three tasks controlling three plants

P1(s) =
1

s2 − 0.068s− 0.007

P2(s) =
1

s2 + 1.048s− 0.640

P3(s) =
1

s2 − 0.442s+ 0.397

to be controlled in three tasks in a real-time system. P1 has
the highest priority, while P3 has the lowest priority.

We start by assigning the initial periods with the approach
proposed in [5]. We then use perturbed periods to obtain a
finite hyperperiod. The utilization is set to 0.95, in order to
avoid excessive control delays. We assume that the actual
execution times are random variables, where the execution time
of each job is drawn from U(0.9C,C). The job response time
PDFs are then derived from TrueTime simulations. We evaluate
the same three methods as outlined in the previous subsection.
VIII-A. The costs are from the evaluation in TrueTime and
are shown in Table VII. Again it is seen that the periodic–
stochastic LQG outperforms the other two methods.

TABLE VII: Costs in the three-plant example

Cost

Periodic–stochastic LQG design 5.42
Periodic LQG design 6.84

Stochastic LQG design 16.57

C. Evaluation on Randomly Generated Plants

We here consider control and scheduling co-design for
sets of randomly generated plants. The same kind of plants
as in Section V-C are used, and again the evaluation ex-
amines systems of n = 3 control tasks. The nominal task
utilization Uinom are is generated from an n-dimensional
uniform distribution with total utilization 0.95. The worst-
case execution time is generated from Ci ∈ U(0.04, 0.4)/n.
The task priorities are assigned based on the periods returned
by [1].

Then the initial task periods are assigned by the method
in [5]. The periods are then perturbed get a finite hyperperiod.
The utilization is throughout kept at 0.95 to avoid excessive
control delays. The controllers are again designed by the three
methods outlined in Section VIII-A.

The different control design methods are evaluated by
Monte Carlo simulation, where the plants, the controllers, and
the scheduler are simulated in parallel using TrueTime. From
each family of plants, 10 random plants are generated. After
control design, the plants and controllers are simulated for
1000 s, and total cost, J , is recorded. All the costs are given in
Table IV. The actual job execution times are random variables
drawn from U(0.9C,C).

TABLE VIII: Evaluation of the costs for random plants

Family I Family II Family III

Periodic–stochastic LQG design 3.71 5.36 13.07

Periodic LQG design 4.01 9.00(5) 13.49(3)

Stochastic LQG design 5.48(1) 7.91(5) 22.74(2)

The numbers in the parenthesis indicate how many times
the cost is infinity due to an unstable control loop. The mean
value of cost does not include the infinity costs. We can see
that the cost with periodic–stochastic LQG controller has lower
value than costs with the other two methods, even when the
unstable cases have been discounted. The periodic–stochastic
LQG is the only method to obtain 100% stable systems for
families II and III.

IX. CONCLUSIONS AND FUTURE WORK

We have proposed new periodic and periodic–stochastic
LQG control designs for minimizing the overall cost in real-
time control systems. The approaches rely on knowledge of
the response-time pattern of each task. In the case of periodic–
stochastic LQG, also knowledge of the PDF of the response
time of each job is required. To target large systems, there
is a need for more efficient tools for statistical response-
time analysis. Also, non-control tasks with possibly unknown
phasings should ideally also be included in the analysis.

Several other issues remain open. One is to extend the ideas
to the situation where the worst-case response time is larger
than sampling period. Another issue is the consideration of



multiprocessor case is also interesting. Finally, to further prove
the usefulness of the proposed method, it would be interesting
to perform evaluations with hardware and communication
overheads.

APPENDIX A
SAMPLING THE PERIODIC TIME DELAY SYSTEM

For convenience, all the subscripts indicating the ith task
are omitted. Integration of Equation (1) over one hyperperiod
is given as

x((k + 1)lh)

=eAlhx(klh) +

∫ klh+τ1

klh

eA((k+1)lh−s)dsBu((kl − 1)h)

+

l−1
∑

j=1

∫ (kl+j)h+τj+1

(kl+j−1)h+τj

eA((k+1)lh−s)dsBu((kl + j − 1)h)

+

∫ (k+1)lh

((k+1)l−1)h+τl

eA((k+1)lh−s)dsBu(((k + 1)l − 1)h)

=Φx(klh) + Γ0









u(klh)
u((kl + 1)h)

...
u(((k + 1)l + 1)h)









+ Γ1









u((k − 1)lh)
u(((k − 1)l + 1)h)

...
u((kl − 1)h)









=Φx(klh) + Γ0u
′(klh) + Γ1u

′((k − 1)lh)
(9)

where

Φ = eAlh

Γ0 =















∫ (kl+1)h+τ2

klh+τ1
eA((k+1)lh−s)dsB

∫ (kl+1)h+τ3

klh+τ2
eA((k+1)lh−s)dsB

...
∫ ((k+1)l−1)h+τl
((k+1)l−2)h+τl−1

eA((k+1)lh−s)dsB















T

Γ1 =
(

0 0 · · · 0
∫ klh+τ1

klh
eA((k+1)lh−s)dsB

)

Here, the vector u′(klh) contains all the control signals from
time klh to time (k + 1)lh, and the length of it is l.

APPENDIX B
SAMPLING THE LOSS FUNCTION

In order to calculate Q1, Q12 and Q2, the cost matrices
of the loss function are sampled using zero-order hold. For
Equation (1), when vi, ei are zero, and form time b to time a
control ui(t) is constant, the discrete time cost matrices are

Q0
1(a, b) =

∫ a

b

ΦT (s, b)Q1cΦ(s, b)ds

Q0
12(a, b) =

∫ a

b

ΦT (s, b)(Q1cΓ(s, b) +Q12c)ds

Q0
2(a, b) =

∫ a

b

ΓT (s, b)Q1cΓ(s, b) + 2ΓT (s, b)Q12c +Q2cds

Due to the periodicity, the cost matrices calculation is only
performed from time 0 to time lh, which is one hyperperiod.
Then

Q1 = Q0
1(lh, 0)

We further have

Q2 =













Q
(1,1)
2 Q

(1,2)
2 · · · Q

(1,l)
2

Q
(1,2)T
2 Q

(2,2)
2 · · · Q

(2,l)
2

...
...

. . .
...

Q
(1,l)T
2 Q

(2,l)T
2 · · · Q

(l,l)
2













where

Q
(1,1)
2

=Q0
2(h+ τ2, τ1) +

l−2
∑

i=1

ΓT (h+ τ2, τ1)Φ
T (ih+ τi+1, h+ τ2)

Q0
1((i + 1)h+ τi+2, ih+ τi+1)Φ(ih+ τi+1, h+ τ2)

Γ(h+ τ2, τ1) + ΓT (h+ τ2, τ1)Φ
T ((l − 1)h+ τl, h+ τ2)

Q0
1(lh, (l − 1)h+ τl)Φ((l − 1)h+ τl, h+ τ2)Γ(h+ τ2, τ1)

Q
(1,2)
2 = ΓT (h+ τ2, τ1)(

l−1
∑

i=1

ΓT (ih+ τi+1, h+ τ2)

Q0
1((i + 1)h+ τi+2, ih+ τi+1)Γ(ih+ τi+1, h+ τ2)+

ΓT ((l − 1)h+ τl, h+ τ2)Q
0
1(lh, (l − 1)h+ τl)

Γ((l − 1)h+ τl, h+ τ2))

Q
(1,l)
2 =ΓT (h+ τ2, τ1)Φ

T ((l − 1)h+ τl, h+ τ2)

Q0
12(lh, (l− 1)h+ τl)

Q
(2,2)
2 = Q0

2(2h+ τ3, h+ τ2) + ΓT (2h+ τ3, h+ τ2)

(

l−2
∑

i=2

ΦT (ih+ τi+1, 2h+ τ3)Q
0
1((i+ 1)h+ τi+2, ih+ τi+1)

Φ(ih+ τi+1, 2h+ τ3) + ΦT ((l − 1)h+ τl, 2h+ τ3)

Q0
1(lh, (l− 1)h+ τl)Φ((l − 1)h+ τl, 2h+ τ3))

Γ(2h+ τ3, h+ τ2)

Q
(2,l)
2 =ΓT (2h+ τ3, h+ τ2)Φ

T ((l − 1)h+ τl, 2h+ τ3)

Q0
12(lh, (l − 1)h+ τl)

Q
(l,l)
2 = Q0

2(lh, (l − 1)h+ τl)

And

Q12 =









Q1
12

Q2
12
...

Ql
12









where

Q1
12 = (Φ(τ1, 0) Γ(τ1, 0))

T
(Q0

12(h+ τ2, τ1)+

(

l−1
∑

i=2

ΦT ((i− 1)h+ τi, τ1)Q
0
1(ih+ τi+1, (i − 1)h+ τi)

Φ((i− 1)h+ τi, h+ τ2) + ΦT ((l − 1)h+ τl, τ1)

Q0
1(lh, (l − 1)h+ τl)Φ((l − 1)h+ τl, h+ τ2))

Γ(h+ τ2, τ1))



Q2
12

=(Φ(τ1, 0) Γ(τ1, 0))
T
ΦT (h+ τ2, τ1)(Q

0
12(2h+ τ3, h+ τ2)

+ (
l−1
∑

i=3

ΦT ((i − 1)h+ τi, h+ τ2)

Q0
1(ih+ τi+1, (i− 1)h+ τi)Φ((i − 1)h+ τi, 2h+ τ3)+

ΦT ((l − 1)h+ τl, h+ τ2)Q
0
1(lh, (l − 1)h+ τl)

Φ((l − 1)h+ τl, 2h+ τ3))Γ(2h+ τ3, h+ τ2))

Ql
12 =(Φ(τ1, 0) Γ(τ1, 0))

T
ΦT ((l − 1)h+ τl, τ1)

Q0
12(lh, (l− 1)h+ τl)

The matrix Q1 is positive semidefinite, and Q2 is positive
definite, which will be relaxed in the next subsection. The
cross term Q12 is general not zero even if Q12c = 0.

APPENDIX C
LINEAR QUADRATIC CONTROL DESIGN

Using the extended state space matrices Φ, Γ from Sec-
tion IV-A and cost matrix Q from Section IV-B, we solve the
standard discrete time algebraic Riccati equation

Q1 +ΦT
e PΦe−

(ΦT
e PΓe +Q12)(Γ

T
e PΓe +Q2)

−1(ΓT
e PΦe +QT

12)− P = 0

where

Φe =

(

Φ Γ1

0 0

)

, Γe =

(

Γ0

I

)

The linear quadratic state feedback vector is given by

L = (Q2 + ΓT
e PΓe)

−1(2QT
12 + ΓT

e PΦe)

Q2 + ΓT
e PΓe needs to be positive definite. It means that the

requirement in Section IV-B about Q2 is relaxed. The control
signals over the hyperperiod are obtained as

u′(klh) =









u(klh)
u((kl+ 1)h)

...
u((k + 1)lh)









= −Lx(klh) = −









L1

L2

...
Ll









x(klh)

The state feedback vector is based on the extended state
x(klh), which means the sampling happens every hyperperiod.
But in fact, it should happen every period. So the state
feedback vector must be reformulated according to









u(klh)
u((kl+ 1)h)

...
u((k + 1)lh)









= −









L′
1x(klh)

L′
2x((kl + 1)h)

...
L′
lx((k + 1)lh)









For any i ∈ {1, 2, · · · , l}, the extended state at time (kl+ i)h
is

x((kl + i)h) = (Φe,i−1 − Γe,i−1L
′
i−1)x((kl + i− 1)h)

=

i−1
∏

j=1

(Φe,i−j − Γe,i−jL
′
i−j)x(klh)

where Φe,i and Γe,i are the ith extended state space matrices
in a hyperperiod. So

Lix(klh) = L′
ix((kl + i− 1)h)

= L′
i

i−1
∏

j=2

(Φe,i−j − Γe,i−jL
′
i−j)x(klh)

The reformulated state feedback vectors are finally calculated
recursively by

L′
i =











L1 i = 1

Li

i−2
∏

j=1

(Φe,j − Γe,jL
′
j)

−1 i > 1
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