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We present spectral and optical properties of the Hubbard model on a two-dimensional square lattice using
a generalization of dynamical mean-field theory to magnetic states in a finite dimension. The self-energy
includes the effect of spin fluctuations and screening of the Coulomb interaction due to particle-particle
scattering. At half-filling the quasiparticles reduce the width of the Mott-Hubbard ‘‘gap’’ and have dispersions
and spectral weights that agree remarkably well with quantum Monte Carlo and exact diagonalization calcu-
lations. Away from half-filling we consider incommensurate magnetic order with a varying local spin direction,
and derive the photoemission and optical spectra. The incommensurate magnetic order leads to a pseudogap
which opens at the Fermi energy and coexists with a large Mott-Hubbard gap. The quasiparticle states survive
in the doped systems, but their dispersion is modified by the doping, and a rigid-band picture does not apply.
Spectral weight in the optical conductivity is transferred to lower energies, and the Drude weight increases
linearly with increasing doping. We show that incommensurate magnetic order also leads to midgap states in
the optical spectra and to decreased scattering rates in the transport processes, in qualitative agreement with the
experimental observations in doped systems. The gradual disappearence of the spiral magnetic order and the
vanishing pseudogap with increasing temperature is found to be responsible for the linear resistivity. We
discuss the possible reasons why these results may only partially explain the features observed in the optical
spectra of high-temperature superconductors.@S0163-1829~99!04632-9#
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I. INTRODUCTION

In the past decade interest in the physical properties
correlated electronic systems has greatly increased. One
son for this is the strong local correlations on transitio
metal ions in cuprate superconductors and manganites,
the corresponding unusual properties of these compou
The parent undoped compounds are Mott-Hubbard
charge-transfer insulators, while doping leads to correla
metals in which the kinetic energy of charge carriers co
petes with magnetic order.1 One of the most spectacular co
sequences is the onset of high-temperature superconduc
in the cuprates. It is believed that a satisfactory descriptio
the normal phase properties is a prerequisite for the un
standing of the microscopic mechanism of pairing in hig
temperature superconductors. The electronic states in C2
planes of cuprate superconductors are usually describe
terms of the Emery model, which includes hybridization b
tween Cu(3dx22y2) and O(2px(y)) states.2 However, hole
doping leads to the formation of local Zhang-Rice single3

and the essential excitations in the cuprates within a wind
of a few eV around the chemical potential are well rep
duced using an effective two-dimensional~2D! Hubbard
model with extended hopping4 and a large local Coulomb
interactionU, as shown by various numerical studies of t
t-J and Hubbard models.5
PRB 600163-1829/99/60~8!/5224~20!/$15.00
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Recently it was shown4,6,7 that the effective Hubbard
model has to include hopping beyond nearest neighbors.
second-nearest-neighbor hopping changes the dispersio
the quasiparticle~QP! states, and is therefore crucial for un
derstanding angular-resolved photoemission~ARPES! data
of the antiferromagnetic~AF! insulator Sr2CuO2Cl2.6 Both
second- and third-neighbor hopping parameters follow fr
the down-folding procedure in electronic structu
calculations,7 and influence the shape of the Fermi surfa
They have a particular relation to the value of the superc
ducting transition temperature at optimal doping.8

The superconductivity occurs in the cuprates under d
ing d512n of a half-filled (n51) AF insulator, and is ac-
companied by a gradual modification of the magnetic ord
The nature of magnetic correlations in doped materials
therefore a central issue in the theory of the cuprate su
conductors. Undoped La2CuO4 is a commensurateAF insu-
lator, while doping by Sr into La22xSrxCuO4 results in short-
range AF order within incommensurate magnetic
structures.9,10 Such an incommensurate magnetic order w
indeed found analytically,11,12 in Hartree-Fock~HF!13,14 and
slave-boson approximations.14–17 However, in order to un-
derstand the transport properties, one has to go beyon
effective single-particle description and include the dyna
ics due to local electron correlations.
5224 ©1999 The American Physical Society
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A sufficiently accurate treatment of local electron cor
lations remains one of the challenging problems in mod
solid-state theory. Although important progress in t
present understanding of strongly correlated fermion syst
occurred recently due to numerical methods, such as q
tum Monte Carlo~QMC! and exact diagonalization~ED!, an
analytic treatment that maintains local correlations is nee
to investigate the consequences of strong correlations in
thermodynamic limit. An attractive possibility is the limit o
large spatial dimension (d5`), where the diagrams in th
perturbative expansion collapse to a single site, and the
mion dynamics is described by alocal self-energy.18 This
allows a mapping of lattice models onto quantum impur
models, which can then be solved self-consistently using
namical mean-field theory~DMFT!.19

DMFT was quite successful for the Hubbard model w
nearest-neighbor hoppingt at half-filling, where it predicts
the Mott transition to the insulating state (n51).20 This was
also found by Logan, Eastwood, and Tusch21 for the d5`
case using an analytic method. Attempts to use DMFT
arbitrary filling, however, made it clear that the local se
energy becomes particularly important in systems with m
netic long-range order~LRO!, which are easily destabilize
when the correlation effects are overestimated. The s
energy therefore plays a decisive role, and has to be
scribed beyond second-order perturbation theo
~SOPT!.22,23This has made the application of DMFT to ma
netically ordered systems notoriously difficult. Recently w
have shown that the screening of local Coulomb interac
by the particle-particle diagrams plays a crucial role in s
bilizing the incommensurate magnetic LRO in dop
systems.24

The advantage of using DMFT becomes clear by look
at the single-hole problem, which can be solved exactly
the d˜` limit.25 The method becomes exact because
quantum fluctuations are of higher order in the 1/d expansion
than the leading potential term which originates from t
Ising part of the superexchange interactionJ54t2/U. There-
fore, applying DMFT to thed52 case might still capture th
essential features that result from the coupling of a mov
hole to local spin fluctuations. We will show below that
fact such quantities as the spectral function, the QP ba
and the size of the QP spectral weight are well reprodu
within DMFT, which for a single hole includes only thos
processes which are present in thet-Jz model. Although this
approach becomes exact only in thed˜` limit,25 it gives a
sufficient accuracy of the one-particle spectral function e
in a finite dimensiond52.26 DMFT allows us to calculate
the optical conductivity in thed5` limit of Metzner and
Vollhardt18 from the knowledge of the local self-energ
without further approximations.27 The studies performed in
this limit for nonmagnetic systems already allowed a qu
tative reproduction of such experimental observations in
cuprates as the increase of the Drude peak with doping,
a temperature- and doping-dependent midinfrared peak.28,29

This paper is organized as follows. The self-consist
procedure to determine a local self-energy within DMFT
introduced in Sec. II. It consists of the HF potential and
dynamical part due to spin fluctuations which uses a C
lomb interaction renormalized by particle-particle scatteri
The formalism to calculate the one-particle and optical ex
-
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tation spectra in the spin spiral states is developed in Sec
Next we analyze the numerical results for the one-part
spectral properties in Sec. IV, where we show how th
change with doping and with increasing temperature. T
optical properties are presented in Sec. V; there we disc
effects in the optical conductivity, scattering rate, and eff
tive mass which arise due to extended hopping and by
creasing the value of Coulomb interactionU. Section VI pre-
sents a short summary and conclusions.

II. DYNAMICAL MEAN-FIELD THEORY
FOR SPIN SPIRAL ORDER

A. Dynamical mean-field equations

We consider the spectral and optical properties of
minimal model for strongly correlated electrons in hig
temperature superconductors, the Hubbard model with
tended hopping,4,7

H52(
i j s

t i j ais
† aj s1U(

i
ni↑ni↓ , ~2.1!

whereais
† is a creation operator of an electron with spins at

site i, andnis5ais
† ais . The hopping elementst i j 5t, t8 and

t9 stand for the nearest-neighbor, second-nearest-neigh
and third-nearest-neighbor hopping on a 2D square latt
and serve to model the electronic states of the charge-tran
type in the cuprates. For convenience we chooset as the
energy unit.

It is interesting to note that hopping beyond nearest nei
bors contributes to the energy and other properties not o
in a 2D model, but also in the limit ofd˜`. The energy
contributions due to more distant neighbors are finite due
the scaling of the hopping parameters on a hypercubic
tice. It is given byt i j ;d2i i 2 j i /2 ~see Refs. 18 and 30!, where
i i 2 j i is the distance betweeni and j defined by the ‘‘bond
metric,’’ and gives the scaling factors;1/Ad for first-
neighbor hopping and;1/d for second- and third-neares
neighbor hopping, as the latter sites are two bonds apar

As mentioned above, we adopt the limit of infinite dime
sions to determine the spectral properties of the Hubb
Hamiltonian on a square lattice in the thermodynamic lim
In order to simplify the numerical evaluation of the se
energy, we introduce an ansatz for the modified magn
order in the doped systems, and assume incommensura
structures with a large but finite periodicity. This approa
captures the essence of the competition between the w
ened short-range AF order, and the kinetic energy indu
by hole doping,14 and allows us to treat the systems in t
thermodynamic limit at low temperature. The spiral sta
are characterized by the amplitude of the local magnet
tion,

m05u^ni↑2ni↓&u, ~2.2!

which is independent of the site indexi. The direction of the
magnetic moment at each sitei is specified in theglobal
reference frameby two spherical angles,V i5(f i ,u i), and,
therefore, the original fermion operators,$ai↑

† ,ai↓
† %, are

transformed to fermions quantized with respect tothe local
quantization axisat each site,14
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cis
† 5(

l
ail

† @R~V i !#ls , ~2.3!

whereR(V i)5e2 i (f i /2)ŝze2 i (u i /2)ŝy is the rotation matrix,f i

and u i are polar and azimuthal angle, respectively, andŝy

andŝz are Pauli spin matrices. This transforms the Hubb
Hamiltonian~2.1! to the following form:

H52 (
i j ,ss8

t i j cis
† @R †~V i !R~V j !#ss8cj s81U(

i
ni↑ni↓ .

~2.4!

In the SS states we take the polar angle to be site inde
dent, u i5u, and the azimuthal angle is given by the wa
vector Q of the spiral;f i5Q•Ri . Using the periodicity of
theR †R matrix in Eq.~2.4!, after a Fourier transformation
one finds that the kinetic energy takes a simple 232 matrix
form,

T̂Q~k!5 1
2 «k2(Q/2)~ 1̂1cosu ŝz2sinu ŝx!

1 1
2 «k1(Q/2)~ 1̂2cosu ŝz1sinu ŝx!, ~2.5!

where «k522t(coskx1cosky)24t8coskxcosky22t9(cos 2kx
1cos 2ky) is the electron dispersion in a noninteracti
system in the global reference frame. Here we limit o
selves to plane spirals, and chooseu5p/2. Therefore, the
order parameter rotates in the (a,b) plane, ^Si&
5(m0/2)@cos(QRi),sin(QRi),0#. Double spirals were shown
to be unstable in the 2Dt-J model,15 and we have no reaso
to believe that they might be stabilized by further neighb
hopping.

In order to construct the leading local part of the se
energy, we use DMFT and consider the impurity mod
coupled to the lattice by the effective field~for more details,
see Ref. 19!. The Anderson model of a magnetic impuri
coupled to a conduction band with SS order consists o
‘‘nondegenerate impurity orbital’’ at siteo, with the fermion
operators$ f os

† , f os%, and the conduction electron bath as
‘‘effective SS conduction band’’ described by the operat
$cks

† ,cks8%

Himp5« f(
s

f os
† f os1 (

kss8
cks

† @ T̃Q~k!#ss8cks8

1 (
kss8

@ f os
† @VQ~k!#ss8cks81H.c.#1Uno↑

f no↓
f ,

~2.6!

where« f is an impurity energy level, andT̃Q(k) is an effec-
tive one-particle energy of the same functional form
T̂Q(k) ~2.5!. The hybridization 232 matrix in the local ref-
erence frame,

V̂Q~k!5
1

2
vk2(Q/2)Fcos

u

2
~ 1̂1ŝz!2sin

u

2
ŝ1G

1
1

2
vk1(Q/2)Fcos

u

2
~ 1̂2ŝz!1sin

u

2
ŝ2G , ~2.7!
d

n-

-

r

-
l

a

s

s

where ŝ65ŝx6 i ŝy , is given by the individual hybridiza-
tion elements in the global reference frame,vk
5( ie

ik•Rivoi . Hamiltonian~2.6! is quadratic incks , and the
bath of conduction electrons can be integrated out giving
to an effective action of the impurity electrons which is
the usual form19

Se f f52(
ss8

E
0

b

dtdt8cos
! ~t!GQss8

0
~t2t8!21cos8~t8!

1UE
0

b

dt no↑
f ~t!no↓

f ~t!, ~2.8!

where $cos ,cos8
! % are Grassmann variables for thef elec-

trons. TheWeiss effective fieldGQss8
0 (t2t8) is a 232 ma-

trix in spin space,

ĜQ
0 ~ ivn!215 ivn2« f2(

k
V̂Q~k!@ ivn2T̃Q~k!#21V̂Q

† ~k!.

~2.9!

For a plane spin spiral withu5p/2, the Weiss effective field
becomes a diagonal matrix in spin space:

GQss8
0

~ ivn!;dss8 . ~2.10!

Note that this result only depends on the functional form
Eqs. ~2.5!–~2.7!, and not on the parameters, except tha
holds for a plane spiral. This implies that the local spin flu
tuations are decoupled from the local charge fluctuatio
and simplifies the present self-consistent calculation for
states within the DMFT approach, as all local quantities
cluding the self-energyS, are diagonal.

In the spirit of the DMFT approach, we approximate t
Green function using alocal self-energy18,19

ĜQ
21~k,ivn!5 ivn1m2T̂Q~k!2ŜQ

HF2ŜQ
SF~ ivn!,

~2.11!

wherem52« f is the chemical potential. The lattice~finite!

dimensionality enters via the one-particle energiesT̂Q(k),
and gives rise to thek dependence of the spectral functio
The lattice one-particle Green function~2.11! is described by
a 232 matrix ĜQ(k,ivn) in spin space, wherevn are fer-
mionic Matsubara frequencies. The corresponding local
tice Green function,ĜQ( ivn)5N21(kĜQ(k,ivn)}dss8 , is
diagonal in spin space due to the parity of the kinetic ene
T̂Q(k).

The self-energy consists of the HF partSQs
HF5U^n0s̄&,

with s̄52s, and the spin-fluctuation~SF! part SQs
SF ( ivn),

which is determined by the many-body effects. Using t
cavity method19 for a hypercubic lattice atd5`, we verified
that the dynamical Weiss fieldGQ,s

0 ( ivn) can be computed
from the Dyson equation of the Anderson impurity mod
~2.6! with broken spin symmetry,

ĜQ
0 ~ ivn!215ĜQ~ ivn!211ŜQ

SF~ ivn!. ~2.12!

Equations~2.11! and~2.12! are fundamental in the DMFT,19

and can be solved self-consistently, provided an expres
for the self-energy is known.
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B. Thermodynamic potential at finite temperature

The calculations at finite temperatureT require the knowl-
edge of the free energy,F(T,Ne), being a thermodynamic
potential for a system ofNe5Nn electrons. It has to be mini
mized to find a stable SS state which determines the sys
properties. The free energy may be found from the gra
canonical potential,V(T,m), using the standard approach f
quantum many-body systems,F(T,Ne)5V(T,m)1mNe .31

For a translationally invariant lattice model withlocal self-
energyone finds the functional form of the grand canonic
potential,

V~T,m!5V0~T,m!1FSF@ĜQ#2b21

3(
kn

ln det@12ĜQ
0 ~k,ivn!ŜQ

SF~ ivn!#

2b21N(
n

Tr@ŜQ
SF~ ivn!ĜQ~ ivn!#, ~2.13!

with b51/kBT, and ŜQ
SF( ivn) is the self-energy discusse

below. Functional~2.13! is stationary, i.e.,dV50 ensures
that the minimum of the grand canonical potential has b
found, and determines the self-energy from the Lutting
Ward functional,

Sss
SF@ĜQ#5

1

N

dFSF@ĜQ#

dĜQ,ss

. ~2.14!

Our perturbative expansion is constructed around
symmetry-broken HF state, hence the grand canonical po
tial of the ‘‘noninteracting’’ reference system includes a co
rection term to avoid double counting, and reads

V0~T,m!5b21(
kn

ln det@ĜQ
0 ~k,ivn!#2UN^no↑&^no↓&.

~2.15!

The spectrum which definesV0(T,m) is given by the
Green’s function in the HF approximation,

ĜQ
0 ~k,ivn!215 ivn1m2T̂Q~k!2ŜQ

HF. ~2.16!

The Luttinger-Ward functionalFSF@GQ# in Eq. ~2.13! is
defined via the diagrammatic expansion ofSQ

SF in terms of
the full Green’s functionGQ . The self-energy of the infinite
dimensional Hubbard model is a local dynamical quant
and involves only the local component of the Green’s fu
tion ~2.11!. This implies thatFSF@G#5NF imp

SF @G#,32 mean-
ing that the functionalFSF@G# can be approximated by som
infinite subset of the one-particle irreducible closed Feynm
diagrams of the Anderson impurity model~2.6!. We take for
FSF@G# we take the sum of all particle-hole diagrams,33 and
the effective particle-hole interactionŪ,34,35

FSF5N~f21f'1f i!, ~2.17!

f252
1

2
b21Ū2(

m
x↑↑

(0)~ ivm!x↓↓
(0)~ ivm!, ~2.18!
m
d

l

n
r-

e
n-

-

,
-

n

f'5b21(
m

ln@12Ūx↑↓
(0)~ ivm!#1b21Ū(

m
x↑↓

(0)~ ivm!

1
1

2
b21Ū2(

m
x↑↓

(0)~ ivm!x↓↑
(0)~ ivm!, ~2.19!

f i5
1

2
b21(

m
ln@12Ū2x↑↑

(0)~ ivm!x↓↓
(0)~ ivm!#

1
1

2
b21Ū2(

m
x↑↑

(0)~ ivm!x↓↓
(0)~ ivm!, ~2.20!

where

xss8
(0)

~ ivm!52b21(
n
GQ,s

0 ~ ivn!GQ,s8
0

~ ivn1 ivm!

~2.21!

is the noninteracting particle-hole susceptibility. Se
consistency would require thatFSF5FSF@GQ#; here instead
we apply the non-self-consistent procedure introduced
Bulut, Scalapino, and White,36 and approximateFSF@GQ#
˜FSF@GQ

0 #. It has been shown that this procedure may
regarded to be a reasonable approximation as the therm
namic potential~2.13! is stationary and one expects not
move too far away from its minimum.

C. Self-energy with local spin fluctuation

It is known to be notoriously difficult to obtain an analyt
expression for the self-energy, and so far an ansatz within
iterative perturbation scheme~IPS! based on SOPT ha
mostly been used.22 The ansatz introduces an approxima
form of self-energy which starts from the SOPT and allo
one to reproduce the exact results in certain limits. Althou
this approach reproduces the correct large-U limit,22 it over-
estimates the correlation effects in the nonmagnetic sta
and thus becomes uncontrollable in the intermediate-U re-
gime. Therefore, it cannot be applied to investigate the ph
stability and dynamics in the magnetic states of the Hubb
model. We have verified that the AF LRO disappears in
2D Hubbard model (t85t950) at half-filling for U.5t for
t85t950, if the formula introduced by Kajueter an
Kotliar22 is used~see Sec. IV A!.

The SF part of the self-energy,SQs
SF ( ivn) follows from

the Kadanoff-Baym potential~2.13! containing a class of
diagrams up to infinite order:

SQs
SF ~ ivn!5

Ū2

b (
m

xs̄sQ~ ivm!GQs̄
0

~ ivn2 ivm!

1
Ū2

b (
m

xs̄s̄,Q~ ivm!GQs
0 ~ ivn2 ivm!.

~2.22!

Here we approximatedS@G# by S@G 0# and avoid self-
consistency. The transverse part in Eq.~2.22! resembles the
self-energy derived by the coupling of the moving hole
transverse spin fluctuations, as derived using the spin-w
theory.37 However, the longitudinal part is not included i
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the latter approach, and we find that it cannot be neglecte
the relevant regime of parameters for high temperature
perconductors.

The self-energy in a magnetic system is calculated us
the Weiss effective field~2.12! in the symmetry-broken mag
netic state. The transverse,

xs̄s~ ivm!5Ū
@xs̄s

(0)
~ ivm!#2

12Ūxs̄s
(0)

~ ivm!
, ~2.23!

and longitudinal,

xss~ ivm!5
xss

(0)~ ivm!

12Ū2x↑↑
(0)~ ivm!x↓↓

(0)~ ivm!
, ~2.24!

susceptibilities in Eq.~2.22! are found in the random-phas
approximation with renormalized interactionŪ. Here the
noninteracting susceptibilitiesxss

(0)( ivm) are calculated from
the dynamical Weiss field Green function~2.12!.

We would like to emphasize that the renormalized int
action Ū is not a fitting parameter,36 but results from static
screening by particle-particle diagrams, which leads to34,35

Ū5U/@11Uxpp~0!#, ~2.25!

where the particle-particle vertex is again determined by
Weiss field,

xpp~0!5b21(
m
GQ↑

0 ~ ivm!GQ↓
0 ~2 ivm!. ~2.26!

This screening effect gives the magnetic structure fact34

and the self-energy36 calculated from Eq.~2.22! in good
agreement with the QMC results, and depends on the un
lying magnetic order. It is largest in the paramagnetic sta
and vanishes in the Ne´el state atn51 for U˜`, and is thus
very important when the magnetic phase diagrams
considered.35 The proposed self-energy~2.22! expresses the
spin-fluctuation exchange interaction38 with an effective po-
tential due to particle-particle scattering.34

Equations~2.11!, ~2.12!, and~2.22! represent solutions fo
the one-particle Green function within DMFT. They ha
been solved self-consistently, and an energetically stable
ral configuration was found. This procedure is further jus
fied by the sum rule39

1

2b (
ns

Ss~ ivn!Gs~ ivn!eivn01
5U^n0↑n0↓&, ~2.27!

which is well fulfilled in the present approach wit
U^n0↑n0↓&.Ū^n0↑&^n0↓&.

35 We also show below~Sec.
IV A ! that the local self-energy~2.22! leads to an overal
satisfactory agreement with QMC and ED data.

III. EXCITATION SPECTRA

A. Photoemission at finite temperature

A complete theory of photoemission~PES! would require
an analysis not only of the one-particle Green’s function
also of the three-particle Green’s functions. We would like
point out that quantitative calculations of the three-parti
in
u-

g

-

e

er-
s

re

pi-
-

t

e

Green’s function for strongly correlated systems has not
proven feasible. However, some aspects of the problem
be discussed in terms of the one-electron spectrum, prov
that ‘‘final-state’’ or ‘‘particle-hole’’ interactions can be ne
glected. Under this assumption the problem simplifies, a
the PES spectrum may be determined using the one-par
Green function alone. Such an approach which negle
final-state and particle-hole interactions has been app
with success to interpret6 the dispersion found in the ARPE
data of the copper oxides.40,41

Here we shall derive the relation of the PES spectra to
one-electron spectral function within the ‘‘sudden’’ approx
mation, where final-state interactions are neglected.42 To be
specific, let us consider a transition from a stateun& with
energyEn into a state of the formAkn

† um&, in which we treat
the photoelectron in stateukn& as dynamically decoupled, bu
retain the full many-body interactions of the electrons in t
bulk described by the Hubbard model Hamiltonian. The P
intensity for the magnetic system with an incommensur
magnetic order is nontrivial within the DMFT approach,
one cannot use a Bogoliubov transformation to establish
relation between the measured electrons and their local s
in the SS state. The outgoing photoelectron is observed in
global reference system, whereas the quantum states of t
bulk un& have to be considered within thelocal reference
systemfor the spin degrees of freedom. For clarity we wri
in the following the operators for the scattered states in ca
tal letters, and the operators for the electronic states of
solid described by the present model Hamiltonian in low
case letters.

At finite temperatureT we consider the probability den
sity of the absorption of a photon with frequencyv in a
grand canonical ensemble, and obtain

W~k,v!5Z21(
mn

e2bKnuI mn
n u2d~«k1Km2Kn2v!,

~3.1!

with Kn[En2mNn and the partition functionZ5(ne2bKn.
The amplitude of the transition,

I mn
n 5^muAkn(

pp8
ss8

Aps
† @DQ~p,p8!#ss8cp82(Q/2),s8un&,

~3.2!

is determined by the optical matrix element

D̂Q~p,p8!5
1

2
Dp,p8Fcos

u

2
~ 1̂2ŝz!1sin

u

2
ŝ2G

1
1

2
Dp,p82QFcos

u

2
~ 1̂1ŝz!2sin

u

2
ŝ1G ,

~3.3!

and can be calculated using the Bloch wave functions in
global reference system,

Dp,p85
1
2 (

s
^Cpsue•kucp8s&, ~3.4!

where e is the polarization vector. The operatork52 i“
conserves total momentum in the scattering plane, so
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Dp,p8}dpi ,p81K , whereK is a 2D lattice vector, andpi is the
photoelectron momentum component in the 2D plane.

For solids the outgoing wave solution is the ‘‘time
inverted low-energy electron diffraction~LEED! state.’’43

The LEED state consists of an incoming plane wave,
flected plane waves, and a combination of Bloch waves
side the solid which fulfill the matching boundary condition
In lowest order we have one~damped! Bloch wave traveling
away from the surface. In the time-inverted~complex conju-
gated! state the Bloch wave travels toward the surface, a
goes over in a plane wave outside. The LEED scatte
waves become incoming waves on time inversion, and g
no contribution to the photocurrent. The photoelectron
usually detected at energies which are much higher than
typical energy regime described by the Hubbard model,
therefore the Bloch waves occupy high-energy quant
states which are initially unoccupied,

Aksun&.0. ~3.5!

Hence for the plane SS state (u5p/2) we obtain

W~k,v!52
1

p (
ss8

uDk,ku2nF~ek2v!

3Im Gss8~k2Q/2,«k2v!, ~3.6!

wherenF(v) is the Fermi function, and the following iden
tity, valid only for plane spirals (u5p/2), has been used
(ls51,21 for s5↑,↓);

(
ss8

Gss8~k2Q/2,v!5(
ss8

lsls8Gss8~k1Q/2,v!.

~3.7!

Within the ‘‘sudden’’ approximation the measured PE
spectra near the Fermi energy can therefore be related to
one-electron spectral function@Eq. ~3.6!# of the system with
local spin-quantization axes, defined by

Im Gss8~k,v!52
p

ZnF~v! (
mn

^nucks8
† um&

3^mucksun&e2bKnd~v2Kn1Km!

~3.8!

Therefore, the total one-particle excitation spectra is
scribed by the spectral function

A~k,v!52
1

p (
ss8

Im GQ,ss8S k2
Q

2
,v1 i e D , ~3.9!

whereGQ,ss8(k2Q/2,v1 i e) is given by Eq.~2.11!, and a
numerical broadeninge.0. The electron occupation numbe
^nk& normalized per one spin, equal to the one-electron
moval sum, can be obtained without analytic continuation
the Matsubara Green’s function~2.11! by performing a direct
summation over the Matsubara frequencies,

^nk&5
1

2b (
n,ss8

eivn01
GQ,ss8S k2

Q

2
,ivnD . ~3.10!
-
-

.
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Finally, we also calculate the total densities of states in
AF and SS states using the derived spectral functions~3.9!,

N~v!5
1

N (
k

A~k,v!. ~3.11!

B. Optical conductivity

We derived the complex optical conductivitysxx(v) for
the spiral magnetic order following the formalism introduc
by Shastry and Sutherland,44 and by Scalapino, White, an
Zhang.45 Their derivation has to be generalized to the case
extended hopping. Moreover, as the symmetry is locally b
ken in a magnetic system with local quantization axes,
calculation of the optical conductivity is not straightforwar
The Hubbard Hamiltonian~2.4! within the local reference
system for the spin quantization axis and first-, second-,
third-nearest-neighbor hopping elements,t i l 5t, t8, and t9,
respectively, has an electron kinetic energy

K52 (
i l ,ss8

8 t i l $cis
† @R †~V i !R~V l !#ss8cls8

1cls8
†

@R †~V l !R~V i !#s8scis%, ~3.12!

where( i l8 indicates a restricted sum, withRl5Ri1i i 2 l ixx
1i i 2 l iyy around a given lattice sitei, and x5(1,0), y
5(0,1) are unit lattice vectors. We introduce a direct
‘‘bond metric’’ i i 2 l ix(y) , which is a distance between tw
sites, i and l, on the lattice, and counts the number o
x(y)-oriented bonds that connect sitei with site l, respec-
tively, e.g.,i i 2 l ix52 andi i 2 l iy50 if the electron hops to
a third-nearest-neighbor with amplitudet9 along an
x-oriented link. HereR(V i) is the unitary matrix which
transforms the original fermions$ai↑

† ,ai↓
† % into the fermions

quantized with respect to local quantization axes at each
$ci↑

† ,ci↓
† %, introduced in Eq.~2.3!. In what follows we are

interested in the current response to a vector potential a
the x direction of the 2D square latticeAx( l ,t). In the pres-
ence of a vector potential, the hopping term is modified
the Peierls phase factor,45 either exp$1ieAx(l,t)ii2lix% or
exp$2ieAx(l,t)ii2lix%, for t i l or t l i , respectively. Expanding
these phase factors in the usual manner up to second o
;A2, one finds

KA5K2(
i l

8 Fe jx
P~ i 2 l !Ax~ l !1

e2

2
kx~ i 2 l !Ax~ l !2G .

~3.13!

Here j x
P( i 2 l ) is the x component of the paramagnetic cu

rent density,

j x
P~ i 2 l !5 i (

ss8
i i 2 l ixt il $cis

† @R †~V i !R~V l !#ss8cls8

2cls8
†

@R †~V l !R~V i !#s8scis%, ~3.14!

and kx( i 2 l ) is the kinetic-energy contribution due to th
x2oriented links, weighted by the metric factor connecti
site i with site l,
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kx~ i 2 l !52(
ss8

i i 2 l ix
2t i l $cis

† @R* ~V i !R~V l !#ss8cls8

1cls8
†

@R* ~V l !R~V i !#s8scis%. ~3.15!

After performing a Fourier transformation one finds t
average contribution of kinetic energy~3.15! per one site,

^kx&5
1

N (
k,ss8

^cks
† @ t̂ x,Q~k!#ss8cks8&, ~3.16!

with the coupling between the transformed elements at
mentak2Q/2 andk1Q/2 due to the magnetic order,

t̂ x,Q~k!5
1

2
«xS k2

Q

2 D ~ 1̂1ŝz cosu2ŝx sinu!

1
1

2
«xS k1

Q

2 D ~ 1̂2ŝz cosu1ŝx sinu!,

~3.17!

and«x(k)522t coskx24t8coskxcosky28t9cos 2kx .
As usual, the optical conductivity in long-waveleng

limit q˜0, sxx(v)5sxx8 (v)1 isxx9 (v), is determined by
the current response to a vector potential along thex
direction,45 and one finds using the Kubo linear-respon
theory

sxx~v!52e2 ^2kx&2Lxx~q50,v1 i01!

i ~v1 i01!
, ~3.18!

where Lxx(q,ivm) is the current-current correlation func
tion,

Lxx~q,ivm!5
1

NE0

b

dteivmt^ j x~q,t! j x~2q,0!&.

~3.19!

The latter correlation function is given exactly by th
particle-hole bubble diagram,27,29 where, forq˜0,

j x5 (
k,ss8

cks
† @ ĵ x,Q~k!#ss8cks8 , ~3.20!

and for the present SS state,

ĵ x,Q~k!5
1

2
j xS k2

Q

2 D ~ 1̂1ŝz cosu2ŝx sinu!

1
1

2
j xS k1

Q

2 D ~ 1̂2ŝz cosu1ŝx sinu!,

~3.21!

with j x(k)52t sinkx14t8sinkxcosky14t9sin 2kx . The advan-
tage of using DMFT with the local self-energy is that t
vertex corrections to the current-current correlation funct
~3.19! disappear, and the optical conductivity can be cal
lated without further approximations.27

We have verified for large variety of doping levels a
temperatures that the optical sum rule
o-

e

n
-

2E
0

`

dv sxx8 ~v!5e2p^2kx& ~3.22!

is always fulfilled within the numerical accuracy, in contra
to the approaches which cannot be derived in a diagramm
way. Equation~3.22! is also used to define the plasm
frequencyvp ,

vp
258E

0

`

dvsxx8 ~v!. ~3.23!

For the discussion of the complex conductivity function, it
convenient to introduce the following parametrization by t
scattering rate, t(v)21, and the effective mass
m* (v)/me (me is the electron mass!:46

sxx~v!5
vp

2

4p

1

t21~v!2 iv
m* ~v!

me

. ~3.24!

From the real part of the optical conductivity@Eq. ~3.18!#,
we find, in the limitv˜0, the static conductivity

sxx8 ~v50!5e2pD1e2 lim
v˜0

1

v
Im Lxx~q50,v!,

~3.25!

with the Drude weightD which may be obtained from the
zero-temperature extrapolation of the current-current corr
tion function in the upper complex plane,45

D5 lim
T˜0

@^2kx&2ReLxx~q50,2p iT !#. ~3.26!

The optical conductivity allows us to determine the in-pla
static resistivity

rxx~T!5sxx8 ~v50,T!21, ~3.27!

where the static conductivitysxx8 (v50,T)21 is obtained as
in Eq. ~3.25!. We present the results obtained for the optic
conductivity and static resistivity in Sec. V, and show th
the magnetic order in the doped compounds has dire
measurable consequences for these quantities.

IV. ONE-PARTICLE SPECTRA

A. Quasiparticles at half-filling

The ground state of the Hubbard model with neare
neighbor hopping (t85t950) on a square lattice is an AF
insulator. The insulating behavior and the gap deve
gradually at half-filling with increasingU starting fromU
50 due to the perfect nesting instability, leading to a Sla
gap. This gap changes into a Mott-Hubbard gap under
creasingU, and the system approaches the limit of a Heis
berg antiferromagnet.47 This regime of largeU was found to
be difficult for a quantitative description within DMFT
approaches,19 as an accurate determination of the ener
gains due to AF long-range order is there of crucial imp
tance. Therefore, the attempts to describe the AF order b
on the SOPT within the IPS failed and the magnetic or
disappeared at largerU.22 In contrast, the QMC calculation
in thed˜` limit gave a stable AF state for largeU.4t.20,48
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Here we treat the range of largeU.W (W58t) as a test
case for our analytic method. The calculations were p
formed at a low temperatureT50.05t which allows one to
describe the magnetic excitations (T!J54t2/U). They gave
an AF ground state atn51, which reproduces correctly th
localization of electrons in the limit ofU˜`. The magneti-
zation m0 ~2.2! is only slightly reduced by the dynamica
effects with respect to its HF value, and approaches the
limit at U˜`. The ground state is the Ne´el AF state, as
found in the d˜` limit.49 Thus, we reduced the self
consistently obtained values of the mean-field magnetiza
m0 ~2.2! by a factor 0.606 in order to simulate the know
reduction ofm0 by intersite quantum fluctuations in a 2
lattice,50

m50.606m0 . ~4.1!

After this reduction the calculated values ofm approach the
value of 0.606 in the limitU˜` @Fig. 1~a!#. One finds also
a very good agreement with the QMC data51 at U/t52 and
4, and a reasonable agreement atU/t58.

In contrast, the AF gapD is significantly reduced from its
HF value@Fig. 1~b!#. This reduction follows from a drastic
change of the one-particle spectra by dynamical effe
which lead to QP states at the edge of the Mott-Hubbard
which are accompanied by a large incoherent part at hig
energies. Also the reduction of the gap found in ED~Ref.
52!, comes out correctly, as shown in Ref. 24. For examp
we found a gap of 4.93t at U/t58, while the corresponding
gap in the HF calculation is 7.14t. This gap reduction can
also be captured by the leading dynamical correlations
scribed within the SOPT, but only in the regime ofU

FIG. 1. Antiferromagnetic state for the Hubbard model atn
51: ~a! magnetizationm ~4.1!, and~b! the AF gapD/U in the 2D
Hubbard model, as obtained using the HF approximation atT50
~dashed lines! and the DMFT approach atT50.05t ~full lines!. The
data points in~a! are QMC results reproduced from Ref. 51. T
diamonds show the results of the IPS with the self-energy ca
lated in SOPT.
r-

F

n

s,
p

er

,

e-

,2.5t. The discrepancy between SOPT and DMFT resu
increases with increasingU, with the gap and the magnet
zationm being too small, and finally the AF order disappea
and the gap closes atU.7t. This shows the very limited
applicability of approaches using the self-energy based
the SOPT,22 which are known to underestimate the region
stability of magnetic states and fail at largeU due to the
uncontrolled increase of the correlation energy in nonm
netic states.

The spectral functions found within the DMFT@Eq. ~3.9!#
are dominated by the lower Hubbard band~LHB!, i.e., PES
part atv,m, and the upper Hubbard band~UHB!, i.e., in-
verse photoemission~IPES! part at v.m, separated by a
large gap~Fig. 2!. Both the PES and IPES spectrum sho
two distinct energy regimes:~i! narrow QP peaks at low
energies, i.e., at the edge of the Mott-Hubbard gap; and~ii !
incoherent and more extended features at higher ener
uvu.5t. The overall shape of the density of statesN(v)
agrees very well with the ED data for a 434 cluster.52 The
spectra have a characteristick dependence with the overa
weight moving from the PES to IPES part along theG-X-M
and G-M directions, whereG5(0,0), X5(p,0) and M
5(p,p), in qualitative agreement with QMC data.53 The
spectra obey the particle-hole symmetry of the model, w
spectra symmetric with respect tov50 at the X and S
5(p/2,p/2) points. The spectrum at theM point is a mirror
image of the one at theG point.

The QP maxima near the Mott-Hubbard gap resem
those found in thet-J model in ED or within the self-
consistent Born approximation,5 in spite of using a local self-
energy in the present scheme. This shows that the lo
many-body problem solved within DMFT suffices to captu
the low-energy scale relevant for the QP propagation. Mo
over, unlike in thet-Jz model, which results in the ladde
spectrum for a single hole,54,55 the QP’scan propagate, as
they couple to the spin flips of the mean-field bath arou
site i 50 at which the many-body problem is being solve
The QP dispersion is;2J @Fig. 3~a!#, with the maxima
along the AF Brillouin zone~BZ!, and remains very close to
that found in thet-J model.5

In the HF approximation, the electron occupation facto
^nk& are larger for the states which belong to the AF BZ th
for the remaining states outside the AF zone. On compa

u-

FIG. 2. One-particle excitation spectra as obtained in the
state at n51 and T50.05t for the Hubbard model withU
58t (t85t950).
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the weights of the electronic states with momentak and k
1Q, one finds that also in the DMFT the electron weigh
are much larger within than outside of the AF BZ@Fig. 3~b!#.
The overall PES weight is smoothly distributed in the 2
BZ, with the maximum~minimum! at theG ~M! point, re-
spectively. This result agrees well with a QMC simulation
and the present data show the same steplike behavior o
electron occupation factor̂nk& when crossing theX point
along theG-X-M direction as the QMC data atU54t and
8t.53,56

A similar steplike behavior is also found in the QP weig
ak along the same line, determined by integrating the sp
tral functions~3.9! in an energy window of 2J which ex-
hausts the range of the QP band in the density of st
N(v). Thek dependence of the QP weight is more comp
than that of^nk& as two competing effects contribute alon
the G-M andG-X directions when the Mott-Hubbard gap
approached:~i! the QP pole moves to lower energies a
thus the weight increases;~ii ! the overall PES weight is larg
est at theG point, and gradually decreases coming closer
the AF BZ. Therefore, the maxima in the QP weight a
found close to k5(p/2,0) and between theG and S
5(p/2,p/2) points, while the~identical! weights at theX
andSpoints are lower. The lowest QP weight is found at t
M point, but here instead a distinct QP exists in the IP
part, in agreement with ED results.57

The QP weightsa(k) increase with increasingJ/t and
agree surprisingly well with the self-consistent Born appro
mation and ED data for thet-J model in the regime ofJ/t
,0.7, as shown in Fig. 4. The average weight first increa
somewhat faster than the numerical results of Ref. 55,
then flattens out aboveJ/t.0.6, and saturates indicating th
the t-J model does not represent faithfully the hole dynam

FIG. 3. Momentum dependence in the main directions of the
BZ, as obtained for the PES spectrum of the Hubbard mode
half-filling with t85t950, U58t, andT50.05t: ~a! QP dispersion
@E(k)2m#/J; ~b! total electron occupation̂nk& ~dashed line! and
QP weighta(k) ~full line!.
,
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in the Hubbard model at larger values ofJ/t, where the ex-
citations to the UHB become important. An equally go
agreement between the self-consistent Born approxima
and ED data and the present DMFT approach is found
individual k points; the values ofa(p/2,p/2) are shown in
Fig. 4, while a very good agreement with ED data at theX
point was presented earlier in Ref. 24.

The energy at the minimum of the polaron band found
the S point follows the power-law behavior found by Ma
tı́nez and Horsch55 in the range ofJ/t,0.4 ~Fig. 4!,

Emin~kS!

t
523.2012.94S J

t D
0.702

. ~4.2!

This power law supports the string picture, but is aga
closer to the full single-hole problem in thet-J model, where
the data obtained from finite cluster diagonalization could
fitted to the relationEmin /t523.1712.93(J/t)0.73 ~see Ref.
58! than to the t-Jz model, which gives insteadEmin /t
522A312.74(Jz /t)2/3 ~see Ref. 59!. It is also quite close to
the exact solution of thet-J model in the infinite-
dimensional lattice, given byEmin /t52412.34(J/t)2/3,
which interpolates to the Nagaoka state.25

Finally, we comment on the modifications of the spec
introduced by the changes in the parametersU and t i j .
Realistic parameters for La22xSrxCuO4 and YBa2Cu3O61x
were estimated using both the cell method in the multiba
charge-transfer model,4 and the down-folding procedure i
the electronic structure calculations.7 Here we use the latte

D
at

FIG. 4. Quasiparticles in the AF state atn51: the minimum of
the QP bandEmin /t ~upper part!, and the QP weighta(k) at k
5(p/2,p/2) and averaged over the BZ~lower part! as functions of
J/t. Filled and empty symbols stand fora(k) found in the present
DMFT approach and in the SCBA of Ref. 55. The inset in the up
part showsEmin /t for 0,J/t,10; the value ofJ/t at which the AF
order vanishes is indicated by an arrow.
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parameters as given in Table I, but the sets do not di
significantly. By increasing the value ofU, one comes close
to the limit of the Heisenberg model, and therefore the m
mentum densitŷnk& is more uniformly distributed over the
BZ @Fig. 5~b!#. This quantity depends mainly on the ratio
U/t, and thus a similar result is obtained at the same valu
U with t8 and t9 nonzero.

In contrast, the earlier studies of thet-t8-t9-J model have
shown that the dispersion of QP’s at low energy are stron
dependent on the values of the extended hopping parame
t8 and t9.6 This strong dependence is also found in t
present calculations based on the DMFT approach; the Q
at theSandX points are not degenerate any more as soo
t8Þ0. Here we present only the representative result
larger values of t8520.28t and t950.18t found in
Sr2CuO2Cl2, with minima located close to theX point @Fig.
5~a!#. Although the QP weight is dominated by the sam
competition between the overall PES weight^nk& and the
position of the QP maximum with respect to the Fermi lev
the consequences of sizablet8520.28t are clearly visible:
the QP weight at theX point is reduced, and the degenera
of the QP energies found before along theG-M and X-G

TABLE I. Values of the model parameters used for the p
sented calculations; the parameter sets chosen for La22xSrxCuO4

and YBa2Cu3O61x follow from the down-folding procedure of Ref
7.

Model parameters t8/t t9/t U/t J/t

Hubbard model 0.0 0.0 8.0 0.50
La22xSrxCuO4 20.11 0.04 10.0 0.40
YBa2Cu3O61x 20.28 0.18 12.0 0.33

FIG. 5. Momentum dependence in the main directions of the
BZ, as obtained for the PES spectrum of the Hubbard mode
half-filling with extended hopping parameterst8520.28t, t9
50.18t, U512t, and T50.05t: ~a! QP dispersion@E(k)2m#/J;
~b! total electron occupation̂nk& ~dashed line! and QP weighta(k)
~full line!.
r
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directions@Fig. 3~b!#, respectively, is now removed. As be
fore, the lowest QP weight is found at theM point, and a
distinct QP exists in the IPES part. Unlike att85t950, the
latter IPES spectrum is different from the PES spectrum
the G point since there is no particle-hole symmetry at fin
t8.

B. Spectral properties in spin-spiral states

As suggested by earlier studies,11–17 hole doping away
from half-filling leads to incommensurate magnetic ord
We found the same sequence of spiral phases with increa
doping as in the HF and slave-boson calculations:14,16the AF
order changes first into the SS withQ5@p(162h),p(1
62h)# along the~1,1! direction@the SS~1,1! state#, and then
at higher doping into the SS withQ5@p(162h),p# along
the~1,0! direction@the SS~1,0! state, or an equivalent SS~0,1!
state#. SS states with the components of the characteri
Q-vector shifted by62h are physically equivalent and hav
the same energy. At fixed dopingd one finds, however, thes
phase transitions at larger values ofU in the present ap-
proach which includes local correlation effects, than in t
effective single-particle theories.14,16 This change of the
phase diagram follows from the correlation effects whi
screen the value ofU to Ū ~2.25!, and strongly depend on th
magnetic order~Table II!. The highest value of effective

Ū/U is obtained in the AF state at half-filling, where th
double occupancy is strongly reduced and the screenin
thus ineffective. The screening is stronger in the doped ca
indicating that the moving electrons correlate and avoid e
other, leading to much weaker effective repulsion, and
particularly pronounced in paramagnetic states. We fou
here a surprisingly good agreement for the effective inter
tion Ū51.98t found at U54t with the fitted value ofŪ
52t in the QMC calculations.36

Two regions of phase separation which follow from t
Maxwell construction14 were found for the Hubbard model a
U/t58 (t85t950): a crossover regime from the AF t
SS~1,1! state for 0,d,0.11, and from the SS~1,1! to
SS~1,0! state for 0.22,d,0.25, respectively~Fig. 6!. The
value of the chemical potentialm is U/2 at half-filling, and
drops abruptly at infinitesimal doping when it enters t

-

D
at

TABLE II. Values of magnetizationm0 ~2.2! and the renormal-

ized interactionŪ ~2.25!, as obtained for the Hubbard model (t8
5t950) at T50.05t, d512n, for different magnetic states: anti
ferromagnetic~AF!, spin spiral@SS~1,1! and SS~1,0!#, and paramag-
netic ~PM! states.

Ground state d U/t m0 Ū/U

AF 0.0 8 0.871 0.899
AF 0.125 8 0.689 0.755

SS~1,1! 0.125 8 0.675 0.735
SS~1,0! 0.125 8 0.657 0.733

AF 0.250 8 0.390 0.491
SS~1,1! 0.250 8 0.571 0.614
SS~1,0! 0.250 8 0.525 0.589

PM 0.125 8 0.0 0.327
PM 0.125 4 0.0 0.494
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LHB in a doped system. The doping dependence of the
energy indicates a phase separation at low doping; this
gion becomes gradually narrower with increasingU, in
agreement with other calculations.60,61 In contrast, the tran-
sition to the SS~1,0! state moves to larger doping with in
creasingU, and finally disappears. Already at the model p
rameters of doped La2CuO4 we found no region of stable
SS~1,0! state. It is worth noting, however, that in this case
small region of almost flat chemical potentialm was found
for d.1/8 which could be considered as a precursor eff
for the phase separation. It might lead to a different magn
state at still lower temperatures,13,60 as the stripe structure
observed in the neutron experiments.9

Thek-resolved spectral functions~Figs. 7 and 8! allow us
to identify the generic features of the doped antiferromagn
described by the Hubbard model, in the regime of largeU.
First of all, the spectra are still dominated by the largeMott-
Hubbard gapwhich separates the LHB from the UHB. Th
Mott-Hubbard gap develops from the respective gap at h
filling and is considerably reduced fromU by the QP sub-
bands which occur next to the large gap both in the LHB a
in the UHB. This large gap is accompanied by a sma
pseudogap;2t between the occupied~PES! and unoccupied
~IPES! part of the LHB at low temperatureT50.05t ~taking
t.0.4 eV it corresponds to;200 K). This pseudogap re
sults from the SS order, and separates the majority and
nority spin states~with respect to the local coordinates
each site!. It is best visible along theG-X and X-M direc-
tions at d50.125, and becomes somewhat wider and l
distinct in the SS~1,0! spiral at higher dopingd50.25. We
emphasize that the two features below and above the ch
cal potentialm originate from the same QP peak at ha
filling. This shows that the QP found in the spectral functi
of one hole in thet-J ~or Hubbard! model cannot describe
the regime with finite doping as therigid band picture
breaks down.

The pseudogap is visible along theG-X direction starting
from k5(p/2,0), and the maximum above the chemical p
tential m grows gradually toward theX point. Consider first

FIG. 6. Chemical potentialm/t as a function of dopingd, as
obtained atT50.05t for three sets of parameters given in Table
the Hubbard model withU58t ~full line! and the model parameter
of La22xSrxCuO4 ~dotted line! and YBa2Cu3O61x ~long-dashed
line!. The regions of phase separation obtained from the Maxw
construction are indicated by dashed lines. The inset shows the
energyF/t per site.
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the case of lower dopingd50.125 ~underdoped case!. One
finds that most of the spectral weight at theX point is still at
v,m, with a sharp QP peak atv.20.44t. Increasingk
along the X-M direction gives a transfer of the overa
weight to higher energies, and the QP peak belowm gradu-

ll
ee

FIG. 7. Spectral functionsA(k,v) in the main BZ directions
G-X, M -X, andG-M in the SS~1,1! state atd50.125 andU58t for
T50.05t ~top! and T50.5t ~bottom!. The spectra along theG-M

direction have been averaged over the~1,1! and (1̄,1̄) spirals, de-
fined byQ5p(122h)(1,1) andQ5p(112h)(1,1), respectively.
A shadow band belowm in the M -X direction atT50.05t is indi-
cated by arrows.

FIG. 8. Spectral functionsA(k,v) as in Fig. 7, but ford
50.25 and~1,0! spiral atT50.05t. The conventions are the same
in Fig. 7.
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ally loses intensity, while the peak abovem takes over
aroundk5(p,p/3). However, the feature atv,m is still
well visible as a ‘‘shadow’’ QP band~Fig. 7!, with a width
;2J. Thus the QP band of thet-J model is drastically modi-
fied at finite doping, and an energy scale;1.5t due to the
pseudogap accompanies the dispersive QP feature below
chemical potential.

A similar situation is found also at higher dopingd
50.25 ~overdoped regime!, and the pseudogap is quite pr
nounced along theG-X and X-M directions~Fig. 8!. How-
ever, except for the neighborhood of theG point, more spec-
tral weight is found at high energies. Already at theX point
one finds that the peak atv.t has a higher intensity than th
one belowm. It becomes gradually weaker when theM point
is approached, and disperses in the energy range;3J, while
the feature belowm still has a similar dispersion;2J as in
the d50.125 case. We note that the pseudogap increase
;2.5t. Moreover, one finds that the QP dispersion is broa
at d50.25, indicating the gradual weakening of the loc
magnetic order with increasing doping.

The spectra are drastically changed, in particular in
low-energy range ofuv2mu,2t when the temperature i
increased. AtT.0.3t the SS order is unstable against the A
order which we interpret as a crossover to the small regi
of the short-range order with the preferably AF ordering
nearest-neighbor spins. The spectra found for dopingd
50.125 atT50.5t consist of broad maxima which corre
spond to the LHB and UHB, respectively, and only a sin
maximum is found inA(k,v) next to theX point. These
data, and also the spectral functions forT50.33t reported
earlier,24 agree remarkably well with the results of QM
calculations.62 The spectra atd50.25 andT50.5t are quite
similar to those at lower dopingd50.125, with more weight
in the IPES part of the LHB.

We do not intend to present a detailed analysis of
spectra obtained using the extended hopping parame
which correspond to the electronic structure
La22xSrxCuO4 and YBa2Cu3O61x , respectively. Instead, we
point out the important similarities and differences to t
Hubbard model as far as the SS states are concerned.
sider first the effective parameters of La22xSrxCuO4. First of
all, a narrow QP band is also found below the Fermi ene
~Fig. 9!, but the measured dispersion between theG and X
points is;0.80t (;2.56t) at d50.125 (d50.25), while it
amounts only to;0.36t at d50. Note that the energies o
the QP peak are much closer to each other for the pre
parameters than in the Hubbard model witht85t950, where
one finds instead the dispersion of 1.37t (3.58t) at d
50.125 (d50.25) atU58t, while it amounts to 1.1t in the
undoped case. This gradual widening of the QP dispers
with increasing doping may be understood as a consequ
of the admixture of ferromagnetic components with incre
ing doping in the SS~1,1! states. The same trend is also o
served for the parameters of YBa2Cu3O61x , where one finds
the QP states in the PES part separated by;0.39t
(;1.94t) between theG andX points atd50.10~0.25! ~Fig.
10!, while this splitting is only;0.07t at half-filling.

Finally, the finite hopping elements to the second a
third neighbors also stabilize the SS~1,1! state with respect to
the SS~1,0! state at higher doping~see Fig. 6!, and therefore
the
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the intensity at theX point does not cross the Fermi lev
even atd50.25 for both parameter sets. In fact, takingJ
50.125 meV (t/J53), the QP state at theX point is found
at v.20.56 eV, and does not change significantly as
function of doping~Fig. 10!. In contrast, in the ARPES ex
periments for Bi2Sr2CaCu2 the QP state atX point is found
at energy.20.20 eV (.20.056 eV) in the underdoped
~optimally doped! compound.40 This indicates that either an
improved solution of the many-body problem is still r
quired, or the actual magnetic order in these compou
might be different from SS states. However, the obser
increase of the onset of incommensurability with increas
U andt8 is consistent with the observations made by Igara
and Fulde17 and with QMC calculations of Duffy and
Moreo.63

C. Total densities of states

We already pointed out24 a very good agreement betwee
the calculated density of states~3.11! and the results of ED

FIG. 9. Spectral functionsA(k,v) along the two main directions
in a 2D BZ: G-X @with the step of (p/3,0)# and X-Z, where Z
5(p,p/2) @with the step of (0,p/6)#, in SS~1,1! state as obtained
for the model parameters of doped La22xSrxCuO4 ~Table I! at dop-
ing d50.125~left! andd50.25~right!, and after averaging over al
equivalent SS states with different values ofQ. The dispersive fea-
ture with the strongest intensity is indicated by vertical lines.

FIG. 10. The same as in Fig. 9, but for the model parameter
doped Y~Bi! superconductors~Table I! at dopingsd50.10 ~left!
and d50.25 ~right!, and after averaging over all equivalent S
states with different values ofQ.
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by Dagottoet al.52 Here we present instead a comparis
between the density of states obtained within the DM
method and that found in the HF approximation~Fig. 11!.
First of all, one notices a narrower gap of width;2J which
separates the QP subbands in DMFT, instead of the HF
particle states, on the scale of;2t. This part of the spectra
density might also be reproduced in effective single-part
approaches, as for instance in the slave-boson mean-
theory. However, the incoherent parts which extend on
energy scale down touv2mu.9t result from many-body
scattering, and can only be reproduced if the dynamical
of the self-energy is included. The overall width of the su
bands atv,m and v.m is ;7t, respectively, as known
from the analysis of thet-J model in ED and in QMC
calculations.5

It is evident that due to the changes ofN(v) in the range
of uv2mu<1.5t with respect to the QP band in the undop
system, the low-energy part of the spectrum cannot be re
duced in a renormalized one-particle theory. The pseudo
in the doped systems is not visible in the HF densities
states, and it remains a challenge whether an effective
particle theory which captures this essential new energy s
could be constructed. As expected, the agreement betw
the HF and DMFT densities of states improves somewha
higher doping d50.25, where the Mott-Hubbard gap
gradually lost, and the system approaches the single-par
limit. We note, however, that the gap between the LHB a
UHB relies on magnetic order in our approach, and a m
accurate approach in the strongly doped regime at largU
would instead have to include the scattering on local m
ments.

In spite of very good agreement between the pres
DMFT approach and the ED data,24 it is interesting to inves-
tigate to what extent the analytic formula for the self-ene
~2.22! describes the hole dynamics in a doped system. Th
fore, we also performed a DMFT-QMC calculation of loc
ŜQ( iv) for SS states, and the corresponding densities

FIG. 11. Total densities of statesN(v) as obtained within
DMFT ~full lines! for d50 ~AF state!, 0.125@~1,1! spiral#, and 0.25
@~1,0! spiral# with U/t58 and T50.05t. The dashed lines show
N(v) for the magnetic ground states found in the HF approxim
tion.
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states, shown in Fig. 12. The QP peaks are very close to e
other at half-filling, while the incoherent states at higher e
ergies in the LHB and UHB have almost the same weigh
but are moved to somewhat higher energies in the Q
calculation. The increase of the spectral weight close to
Fermi level is well pronounced in the latter calculation atd
50.125, but one finds insteada pseudogap smaller by a
factor close to 5. However, one should realize that th
present calculation performed at low temperatureT50.05t
corresponds in practice to the ground state, while the sa
temperature in QMC already includes thermal fluctuatio
which considerably reduce the size of the pseudogap. Ind
using the ED method to solve the self-energy within DMF
we find a pseudogap in the SS state of;0.7t. It might be
expected that this reduction of the energy scale would re
in a better quantitative description of the spectral functio
and the related excitations across the pseudogap, leading
reduced energy scale for the low-energy features of the
tical conductivity~Sec. V!. We also found a more extende
energy range of the incoherent states which belong to
UHB in the QMC calculation. Altogether, the compariso
with the DMFT-QMC calculation demonstrates that the an
lytic method developed in this paper is very useful to gain
qualitative insight into the possible changes of magne
states under doping and their consequences for the prope
measured in experiment.

V. OPTICAL AND TRANSPORT PROPERTIES

A. Optical conductivity in the Hubbard model

The evolution of the spectral functionsA(k,v) and the
density of statesN(v) with doping, reported in Secs. IV A
and III A, motivates an investigation of the optical prope
ties. Here we make use of the theory introduced in Sec. II

-

FIG. 12. Total densities of statesN(v) as obtained within
DMFT at U58t by calculating the self-energy either using an an
lytic formula ~2.22! ~solid lines!, or by DMFT-QMC method
~dashed lines!. Different panels show the results obtained ford
50 ~AF state!, 0.125@~1,1! spiral#, and 0.25@~1,0! spiral#, respec-
tively, at T50.05t.
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where we have shown how the optical conductivity can
derived from the local self-energy in the present DMF
treatment.

As an illustrative example, we concentrate on the opti
conductivity found for the Hubbard model with the neare
neighbor hopping (t85t950) and U58t. We present the
optical data in Figs. 13 and 14 at two temperaturesT
50.05t and 0.2t. While the magnetic order is AF at half
filling, the SS states characterized by theQ5@p(1
62hx),p(162hy)# wave-vector change with doping an
temperature. At a lower dopingd50.125 we find a SS~1,1!
with hx5hy50.125 (0.09) atT50.05t (T50.2t), respec-

FIG. 13. Optical properties as functions of energyv/t for the
Hubbard model withU58t at low temperatureT50.05t for d50
~dashed lines!, d50.125 ~full lines!, and d50.25 ~dash-dotted
lines!: ~a! real part of the optical conductivitys8(v); ~b! imaginary
part of the optical conductivitys9(v); ~c! scattering rate 1/t(v);
~d! effective massm* (v)/me .

FIG. 14. Optical properties as functions of energyv/t for the
Hubbard model withU58t at intermediate temperatureT50.2t;
the meaning of lines is as in Fig. 13.
e

l
-

tively, while at higher dopingd50.25, a SS~1,0! state (hy
50) with hx50.25 (0.23), or an equivalent SS~0,1! state, is
found instead.

At half-filling one finds a large gap belowv.4.9t at
U/t58 and no Drude peak, which shows that the system
in the insulating phase.45 The conductivity atv.4.9t is in-
coherent, and originates from excitations across the M
Hubbard gap. This changes drastically when the system
doped, and two new features occur at lower energy:
Drude peak and the midgap state atv.2t, both with in-
creasing intensity betweend50.125 and 0.25 at low tem
perature~Fig. 13!. These features are accompanied by
incoherent background of the excitations within the LH
The peak atv.2t corresponds to excitations across t
pseudogap; as such it is more influenced by the increa
temperature in the underdoped regime, where the SS~1,1!
state is less robust than the SS~1,0! state in the overdoped
regime.

Below v54.9t the frequency dependent scattering ra
1/t(v) and the effective massm* (v)/me can also be di-
vided into two regions:~i! abovev.2t the scattering rate
increases monotonically with increasing frequency;~ii ! be-
low v.2t it has a maximum at energyv.1.15t (1.0t) for
d50.125 (0.25), and drops to zero forv˜0 at finite dop-
ing. This behavior forv˜0 and T˜0 is consistent with
Fermi-liquid behavior, which follows from the local approx
mation to the self-energy~2.11!. A finite value atv50 is a
numerical effect due to finite broadening of the spectrae
50.1t).

The frequency region in which the scattering is su
pressed has a direct relation to the existence of a pseud
region in the single-particle spectral functionA(k,v), re-
ported in Sec. IV B, and indicates that SS LRO reduces
scattering of the charged carriers in the energy rangev
,1.15t. At the same time, the effective massm* (v) rises to
a maximum value of;5me within the pseudogap region
and is found to be rather independent of hole doping. As
temperature increases toT50.2t, the pseudogap disappea
and the region of suppressed scattering is filled up in
underdoped regime withd50.125, while the low scattering
persists forv,1.0t at d50.25 ~see Fig. 14!. At the same
time, the midgap state in the real part of the optical cond
tivity changes into a smooth feature which extends down
the Drude peak ford50.125, contrary to the case withd
50.25, where the spectral weights of the above two featu
remain well separated. This is clearly related to the beha
observed inA(k,v) with increasing temperature, where th
pseudogap along theX-M direction filled up with spectral
weight asT increased ford50.125.

These changes of the midgap state with temperature
due to the changes of the magnetic correlations in the do
systems included in our calculations, which do not dist
guish between long- and short-range magnetic orders,
treat local dynamical correlations. However, there are in
cations that the midgap feature results from an interplay
tween short-range magnetic order and electron correlation64

Therefore, the rather strong evolution of the low-ener
weight with increasing temperature shown in Figs. 13 and
may be overestimated in the present treatment of the s
energy, which does not allow one to obtain a metal-insula
transitionwithoutan accompanying magnetic LRO. We als
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5238 PRB 60FLECK, LICHTENSTEIN, OLEŚ, AND HEDIN
note that midgap states are likely a bare consequence o
strongly correlated nature of optical and one-particle exc
tions in the Hubbard model,64 and it is still a challenge to
describe them better in a theory which would treat the
and paramagnetic states with local moments on equal f
ing.

The frequency-dependent scattering rate allows us to
a crossover temperature T* at which the pseudogap close
We estimated thatT* .0.26t for d50.125, and observed
monotonic increase of 1/t(v,T* ) up to v;4.1t. At T
50.2t the effective mass increases up to;10me within the
pseudogap atd50.125. At half-filling andT50.2t, one finds
that the charge-transfer gap is only slightly reduced from
value atT50.05t, and the insulating behavior is accomp
nied by AF LRO. We estimated the Ne´el temperature for
U58t to beTN.0.62J.

Further evidence of a characteristic crossover tempera
T* may be found in the behavior of the in-plane dc resist
ity ~3.27!. The resistivity has received a lot of attention
connection with the observed normal state pseudogap in
electronic excitation spectrum,65 and from a theoretical poin
of view.66,67 In fact, the physical origin of the linearT de-
pendence ofr(T) for samples of high-Tc compounds close
to the optimal doping level remains puzzling.

The results forrxx(T) obtained for the Hubbard model a
two doping levels,d50.125 and 0.25, are shown in Fig. 1
At low temperaturesT,0.06t, the resistivity shows Fermi
liquid behavior for both hole densities, i.e.,rxx(T)}T2. As
usual in DMFT calculations,67 the T2 dependence ofrxx(T)
originates from the low-frequency behavior of the imagina
part of the local self-energy. In the regime of high tempe
tures (T.0.9t), the resistivity increases linearly with tem
perature which is due to temperature independence of
spectral functionsAss8(k,v) at T˜`, and the high tem-
perature limit of the derivative@(2]nF(v)/]v)˜1/(4T)#,
thus leading tosxx(T)}1/T, i.e.,rxx(T)}T. As the tempera-
ture is lowered, the magnetic moments gradually build
and a kink in the resistivity appears. Therefore, the incre
in the resistivity as the temperature is lowered can be att
uted to an enhancement in the scattering of electrons by l
spin fluctuations.

FIG. 15. Resistivityr(T)/r0 as a function of temperatureT/t as
obtained for the Hubbard model withU58t for d50.125~full line!
andd50.25 ~dashed line!. The inset shows the weightz* (T) ~5.1!
found at theX point atd50.125 ~full line!, and averaged weight
over the Brillouin zone atd50.125 ~dashed line! and atd50.25
~dash-dotted line!. Arrows in the inset indicateT* .
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Conversely, for large hole doping the system is a be
metal, hole spin correlations are gradually lost, and the
crease of resistivity is less pronounced in the tempera
regionT,0.88t at d50.25. The maximum ofrxx(T) for d
50.125 is located almost exactly atT'0.26t (;750 K
taking the experimental value of the superexchangeJ
5125 meV), where the pseudogap in the single-particle
citation spectra opens, leading to a suppression of the ef
tive scattering rate 1/t(v,T), as discussed previously. Th
defines the crossover temperatureT* . Remarkably, the
change from a linear to a nearly linearT dependence,
rab(T)}T11e (e.0), of the in-plane dc resistivity of
La22xSrxCuO4 was found to be atT* .600 K for x.0.13,
and was attributed to the opening of a pseudogap in
electronic excitation spectrum.65 However, the saturation o
the resistivityrab(T) cannot be observed in a real system
the carriers also couple to other bosonic excitations, e.g
phonons, which are neglected here.

Upon lowering the temperature belowT* , atT,0.24t for
both d50.125 and 0.25, we observed a nearly linearT de-
pendence ofrxx(T). In this temperature range the SS wa
vector, Q5@p(162hx),p(162hy)#, becomes strongly
temperature dependent, and maintains the directional de
tion from the AF wave vector,QAF5(p,p), with hx5hy
5h(T) for d50.125 andhx5h(T) (hy50) for d50.25.
In both casesh(T) increases fromh(T* ).0 with decreas-
ing temperature, and saturates at its ground-state valueh(T
50).2d belowT.0.08t. In the linear regime (T,T* ) the
resistivity can be fitted quite well by a linearT dependence,
as expected for the SS states,11 rxx

fit (T)5rxx
fit (0)1zr0d21T,

with rxx
fit (0)/r0521.05 (20.25) for d50.125 (0.25), re-

spectively, where the increase of the negative tempera
coefficientrxx

fit (0) is a further manifestation of the gradu
loss of local magnetic moments as doping is increased. C
versely, in the paramagnetic phase of the Hubbard mode
d5`, one finds rxx

fit (0)>0.67 Furthermore, the slope o
rxx(T) in the low-temperature regime is given byz.1.46,
independent of hole density. This value is larger by abou
factor of 2.5 than the respective slope found in t
retraceable-path approximation,68 and in ED studies at finite
temperature,66 being z50.55 and 0.60, respectively, an
demonstrates that the changes in the magnetic order
increasing temperature influence significantly the system
sistivity. Unfortunately, such effects cannot be studied by
ED method due to the small size of the considered clust

In order to further support our observation that the cro
over temperatureT* is related to the pseudogap in th
single-particle excitation spectrum, in the inset of Fig. 15
plot an average of the single-particle spectral weight wit
an energy window}T around the Fermi energyv50, de-
fined by69,39

z* ~T!52(
ss8

Gss8Q~kX ,t5b/2!5
1

2E2`

`

dv
A~kF ,v!

cosh~bv/2!
.

~5.1!

Similarly, a measure for the temperature dependence of
density of states at the Fermi energyN(0) is obtained from
the local Green’s function~2.11!, zloc* (T)52(sGssQ(t
5b/2). In the low-temperature limit,N(0) can be obtained
from the relation N(0).bzloc* (T)/p,69 which gives
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.0.20 (.0.26) for d50.125 (d50.25), respectively.
However, one finds that the one-particle density of state
the Fermi energy does not evolve smoothly to lo
temperature values, but instead states are depleted from
region v.m as T is reduced belowT* .0.26t (0.43t) for
d50.125 (d50.25), respectively. In particular, we ob
served a faster loss of the QP weight with momentumkX
5(p,0) for d50.125~Fig. 15!. This shows that the openin
of the pseudogap in the one-particle excitation spectrum
(p,0) coincides with the suppression of the effective scat
ing rate 1/t(v,T).

Experimentally, the resistivity changes from a linear to
nearly linearT dependence atT* of the order of 500 K.
Although our calculations do not allow us to interpret t
linear part ofrxx(T) at high temperatureT.T* as only the
electronic degrees of freedom are included, we note that
enhanced slope ofrxx(T) at low temperatureT;100 K and
the negative temperature coefficient agree qualitatively w
the experimental results for YBa2Cu3O72x in the under-
doped regime.70 Our calculations confirm the conjecture
Shraiman and Siggia of a nearly linearT dependence of the
resistivity for a system with SS magnetic order.59 These fea-
tures can be seen as generic fingerprints of incommensu
magnetic correlations.

B. Implications of extended hopping

Similar changes in the optical excitation spectra as a fu
tion of hole doping were also found using effective sing
band models with parameters representative
La22xSrxCuO4 ~Fig. 16! and YBa2Cu3O61x ~Fig. 17!, re-
spectively. Due to somewhat larger values of the effectiveU,
the gap in the optical spectra increases to;6.5t and;7.1t
in these two compounds. One finds again that the Dr

FIG. 16. Optical properties as functions of energyv/t for the
Hubbard model with extended hopping parameters
La22xSrxCuO4 ~Table I! at low temperatureT50.05t for d50
~dashed lines!, d50.125 ~full lines!, and d50.25 ~dash-dotted
lines!: ~a! real part of the optical conductivitys8(v); ~b! imaginary
part of the optical conductivitys9(v); ~c! scattering rate 1/t(v);
~d! effective massm* (v)/me .
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weight and the midgap state appear in the conductiv
of doped systems. For the parameters
La22xSrxCuO4 (YBa2Cu3O61x), the region of suppresse
scattering extends up to.1.3t (.1.8t) at d50.125. This
regime of lowv gives an enhanced effective mass;4me for
both sets of model parameters. At larger dopingd50.25 the
coherence of the charge carriers is enhanced byt8 and t9
hopping, and one finds a significantly reduced effective sc
tering between charged carriers, extending with roughly
structure over a rather broad energy range. Simultaneou
the effective mass;1.5me is only little enhanced at low
energies.

The overall shape ofs8(v) ~Fig. 16! shows a qualita-
tively similar behavior to the optical conductivity o
La22xSrxCuO4 reported by Uchidaet al.46 At low doping the
midgap band centered atv.1.7t ~corresponding to 0.53 eV
for J5125 meV and the present parameters withJ50.4t) is
clearly distinguishable from the Drude contribution. It mov
to higher energyv.2.2t ~0.7 eV! at d50.25. It is quite
remarkable that our DMFT calculations qualitatively repr
duce the structures observed in the frequency dependen
fective scattering rate 1/t(v) and in the effective mass
m* (v)/me of La22xSrxCuO4.46 In particular, the strong dop
ing dependence of 1/t(v) and m* (v)/me show the same
trends, namely, a pronounced reduction of scattering and
fective carrier mass for the heavily doped systems, and
ther justifies the importance of extended hopping parame
in the cuprates. This behavior originates from an increas
QP weight in the single-particle excitation spectrum induc
by doping.

Puchkovet al.71 reported extensive studies of the infrare
properties of YBa2Cu3O61x , Bi2Sr2CaCu2O81x , and other
high-Tc compounds. They found that the far-infrared effe
tive scattering rate 1/t(v) and the effective massm* (v)/me
differ significantly between underdoped and optimally dop
samples aboveTc . The optimally doped samples show

f
FIG. 17. Optical properties as functions of energyv/t for the

Hubbard model with extended hopping parameters
YBa2Cu3O61x ~Table I! at low temperatureT50.05t for d50
~dashed lines!, d50.10~full lines!, andd50.25~dash-dotted lines!:
the meaning of different panels is the same as in Fig. 13.
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structureless and lower effective scattering rate 1/t(v), and
a nearly constant and unrenormalized massm* (v). Con-
versely, in underdoped samples the scattering between
charged carriers below'0.12 eV is strongly suppresse
andm* (v)/me is enhanced in the low-energy region. The
observations are in remarkably good agreement with
findings, and support our conclusion that the observed d
ing dependence of 1/t(v) andm* (v)/me originate from an
increased coherence of the one-particle excitation spectr
ported in Sec. IV B, and experimentally observed in ARP
spectra of Bi2Sr2CaCu2O81x by Kim et al.41 The suppres-
sion of 1/t(v) belowv.0.12 eV originates from the open
ing of a pseudogap in the one-particle excitation spectr
Using J5125 meV and the value ofJ5t/3, adequate for
YBa2Cu3O61x , we find the energy threshold below whic
QP scattering is strongly suppressed in the weakly do
system at.0.68 eV. Unfortunately, this is about a factor
5 larger than the experimental value for underdop
YBa2Cu3O61x being ;J. Similar discrepancies in the en
ergy of the QP state with momentum (p,0) were reported in
Sec. IV B.

C. Drude weight and spectral weight transfer

Finally, we compare the Drude weightD @Eq. ~3.26!# and
the kinetic energy density associated withx-oriented links
^2kx& @Eq. ~3.16!# for the three model parameter sets in F
18. DMFT gives^2kx&50.46t for the Hubbard model a
half-filling (d50) with U58t, which is smaller by a factor
;1.81 than the HF result, and is in excellent agreement w
the value of^2kx&50.49t obtained in QMC calculations.56

We also found an overall satisfactory agreement of^2kx& as
a function of doping with ED data of Dagottoet al.52 The
kinetic energŷ 2kx& increases with doping not only becau
the actual carrier density changes, but also as a consequ
of changing wave vector in the SS stateQ5@p(1
62h),p(162h)# with a gradually increasing pitchh al-
lowing for coherent electronic transport through the syste
In agreement with QMC data,63 we observe that increase
extended hopping amplitudes accelerate the SS forma
and result in a stronger increase of^2kx& with d for
YBa2Cu3O61x than for La22xSrxCuO4 model parameters
The x-directed kinetic energy shows a linear doping dep

FIG. 18. Kinetic energy along thex direction ^2kx&/t and the
Drude weightD/t as functions of the hole dopingd for representa-
tive values of parameters given in Table I: Hubbard model~circles!,
La22xSrxCuO4 ~squares!, and YBa2Cu3O61x ~diamonds!.
he

r
p-

re-

.

d

d

.

h

nce

.

on

-

dence in the regime of low hole doping, and^2kx& changes
by a factor of;1.66 (1.22) with respect to half-filling in the
case of the YBa2Cu3O61x (La22xSrxCuO4) model param-
eters; one finds a faster increase of the total spectral we
in the case of stronger hopping to second and third ne
bors, as realized in YBa2Cu3O61x .

The calculated total optical spectral weights are}^2kx&,
following the optical sum rule~3.22!, and we made a quan
titative comparison with the experimental data. The dop
dependence of the total integrated spectral weight below
charge-transfer band edge at 1.5 eV, reported by Coo
et al.72 for La22xSrxCuO4, is strikingly similar to the nu-
merical data of Fig. 18. The model reproduces a rapid
crease of spectral weight up to;10% Sr doping, and a
rather doping-independent spectral weight in the range
0.1<x<0.2. The increase of}^2kx& with increasing doping
is faster for the parameters of YBa2Cu3O61x , with the inte-
grated spectral weight increased by;1.7 at d50.18 with
respect to its value atd50. This value compares again ver
well, taking the simplicity of the effective single-band Hub
bard model, with a factor of;1.8 found by Orensteinet al.73

in the compound with highestTc .
At d50 we find a vanishing Drude weight for all thre

sets of model parameters, and the system is an insulator.
is of course an expected result at half-filling, but in t
present context it serves as a test of the internal consiste
of theory, like the kinetic-energy term̂2kx&Þ0 in Eq.
~3.26!, and has to be compensated for by the current-cur
correlation functionLxx(q50,2p iT) in the limit of low tem-
perature. At small hole doping we observed an almost p
fect linear increase of the Drude weight withd for all three
sets of model parameters, which is an indication of stro
electron correlations near the Mott insulator
half-filling.64,74 Such a behavior is compatible with a pictu
of a dilute hole gas in a background with SS LRO whi
contributes to the optical response. However, the crosso
to a metal due to increasing doping has been analyzed
cently using scaling theory,75 and ED technique combine
with scaling theory,76 which giveD}d2 for a small doping
concentrationd in a 2D t-J model. This last result is in shar
contrast to the present picture of a dilute hole gas in an AF
SS background, and might indicate that other correlations
realized in the spin background when the system is dop
namely, that the dilute hole gas is unstable toward mic
scopic phase separation, such as realized in polaronic s
tions or stripe phases.

The present results demonstrate a substantial transfe
spectral weight to low energy in the doped systems. We
ready pointed out earlier24 that the spectral weight trans
ferred into the LHB in the one-particle spectra agrees w
the predictions of perturbation theory in the strongly cor
lated regime.74 In the optical spectra for the Hubbard mod
at U/t58, one finds that the weight transferred into the
gion below the Mott-Hubbard gap is increased by a fac
;1.3 with respect tod50.125 when the system is doped
d50.25. This change is significant as the total weight o
tained from Eq.~3.22! via ^2kx& remained roughly constan
@see Fig. 18~a!#, indicating a spectral weight transfer from
the high- to low-energy region in the single-particle exci
tion spectrum.74 In particular, the weight transfer is in favo
of the Drude weight@Fig. 18~b!#, which increased in the
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same doping range by a factor;2.15 although the hole den
sity increased only by a factor 2. These changes in the
herent optical weight are consistent with the observat
made in Sec. IV B that the single-particle excitation spec
becomemore coherentas the hole density increases.

VI. SUMMARY AND CONCLUSIONS

We reported a generalization of the DMFT to magne
cally ordered states, and showed that this method allows
a very transparent study of spectral properties of the Hubb
model at and close to half-filling. The crucial step is t
derived formula for the self-energy using th
Berk-Schrieffer38 spin-fluctuation exchange interaction wi
an effective potential due to particle-particle scattering.34 We
have demonstrated that this treatment of many-body eff
reproduces the leading dependence on doping and tem
ture, and gives a very favorable comparison with the av
able numerical data obtained in the QMC and ED calcu
tions for a 2D Hubbard model. Although thek dependence
of the self-energy was not included, the spectral functions
a single hole in a Mott-Hubbard insulator agrees well w
the known structure for thet-J model,5 and gives a PES
spectrum consisting of acoherentQP peak with a dispersion
;2J, and anincoherentpart of width;7t at lower energies.
We have verified that the QP weight agrees well with the
data in the range ofJ/t,0.7,55 and supports the string
picture.77 Furthermore, the calculation reveals a nontriv
relation between the electron occupation factors^nk& and the
QP weightsak , and shows that the maximum ofak is shifted
away from the (p/2,p/2) point, in agreement with the ED
results of Eskes and Eder.57

Our study has shown that doping of a Mott-Hubbard
sulator leads to an incommensurate magnetic order at
temperatures, which depends on the actual values of the
ping parameters and the Coulomb interactionU. This kind of
magnetic order induces apseudogap in the one-particl
spectra, which is one of the generic features of the dop
Mott-Hubbard insulators. The dependence of the pseudo
on the incommensurate magnetic order explains why it co
not be observed in ED data on small clusters at fin
temperature,66 or in the infinite-dimensional Hubbard mod
in the paramagnetic state.78 This energy scale, due to
pseudogap of magnetic origin, demonstrates a combinatio
of physics arising from the Slater picture and the Mo
Hubbard description of strongly correlated electron syste

The coherent QP states survive in the doped system
agreement with QMC and ED results. However, the num
cal studies suggest that a strongk dependence of the self
energy might be necessary to describe the spectra, as th
dispersions change. This failure of the rigid QP band pict
here has quite a different explanation:the changes of the QP
dispersion follow from the incommensurate magnetic or
which develops with doping, and the leading effects in
hole dynamics are stillcaptured by a local self-energy.

The one-particle and optical spectra are interrelated,
the opening of a pseudogap at low temperatures leads
midgap state next to the Drude peak in the optical cond
tivity, both with growing intensity under increasing dopin
Such features, observed in SS states at low temperature
the suppressed scattering rate and the large effective ma
o-
n
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the underdoped regime, and almost no enhancement o
effective mass in a broad energy range in overdoped syste
are in remarkably goodqualitative agreement with the ex
perimental findings in the cuprates.46,70 This is consistent
with the reduced density of statesN(m) at the Fermi energy
at low temperature. With increasing temperature the value
N(m) increases, which could not be explained in param
netic calculations performed within the DMFT approach.
should be realized that such a strong temperature depend
of N(m) should have important consequences for seve
measurable quantities in the normal phase, as for exam
the Knight shift.

Here we limited ourselves to the qualitative consequen
of the extended hoppingt8 and t9 for the one-particle and
optical spectra. First of all, the QP dispersion is stron
influenced by these parameters, and at half-filling reprodu
the experimental width and dispersion of the QP band
Sr2CuO2Cl2.79 Second, the deviation of the characteristicQ
vector from the AF vector (p,p) increases as a function o
doping in SS states, and this process is accelerated by a
value of second- (t8) and third-neighbor (t9) hopping. This
explains why systems with extended hopping are more
tallic which is indicated by the low effective mass and larg
Drude weight.

The dependence of the magnetic order on temperature
also rather drastic consequences for the measurable qu
ties. The onset of magnetic order below a characteristic t
perature results in quite different one-particle and opti
spectra at low temperatures from those obtained in a p
magnetic phase. The changes of the spiralQ vector with
decreasing temperature allow one to introduce a cross
temperatureT* , below which the low-lying excitations are
gradually modified along with the changes in local magne
order. Such a modification gives a quasilinear resistivity, a
verifies the conjecture of Shraiman and Siggia.11

In spite of very good agreement for the undoped syste
however, we identified several important features which
not agree with the experiments in the doped cuprates eve
a qualitative level, that might indicate that a more accur
treatment of the many-body problem is necessary, or
more complex magnetic structures are stabilized in th
compounds:~i! The value of the pseudogap in the on
particle spectra, and the accompanying energy scale for
suppressed scattering rate in the optical conductivity,
overestimated by a factor close to 5 with respect to the
perimental observations.~ii ! The SS~1,1! state obtained for
the La22xSrxCuO4 model parameters leads to a differe
splitting of the magnetic scattering peak in neutron expe
ments than the experimentally observed~1,0! and ~0,1!
splittings.9 ~iii ! The incommensurate order deviates too f
from the AF state for the model parameters
YBa2Cu3O61x , which results in different spin-spin correla
tions than those observed in experiment, and a QP pea
the X point moving to too low energies.40 ~iv! The doping
behavior of the pseudogap and of the related crossover
peratureT* is opposite to the one observed in the cuprat
In these materials the pseudogap andT* decrease upon dop
ing, whereas here the corresponding quantities increase
the d50.125 to thed50.25 case. With increasing dopin
charge fluctuations become more and more important, wh
gives rise to the suppression of magnetic order, and co
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quently the pseudogap closes. However, such correlat
areunderestimatedin the present treatment, and one inste
finds a persisting pseudogap.~v! Finally, the spiral spin or-
dering in the~1,1! direction contrasts with experimental ev
dence from neutron scattering in the cuprates, suggesting
stripe ordering might play a prominent role in these syste
at very low temperatures.9,80 We have found a phase separ
tion at low doping levels, and therefore the presently stud
dilute hole gas in SS states is unstable toward magnetic
larons or stripe phases at doping levels lower thand.0.1.
This motivates a further search for more complex magn
ground states with incommensurate order, and more accu
methods to describe them in theory.

Summarizing, we presented a successful formulation
the DMFT for strongly correlated magnetic systems, wh
opens the possibility of further applications in transitio
metal oxides. In contrast to earlier formulations based on
modified second-order formula for the self-energy,19 the
present self-energy, which describes dynamical effects in
ra
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h
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e

propagation of a hole coupled to spin fluctuations, allo
one to obtain stable magnetic solutions: AF ordering at h
filling and SS in doped systems. Although it is likely th
better variational states, possibly with stripe ordering,9,80,81

could be found, it is expected that the presented spectral
optical properties are generic for strongly correlated syste
with an incommensurate order parameter. A better und
standing of the cuprates, however, requires a further de
opment of theory which should be able to capture the grad
changes of local magnetic correlations in doped Mo
Hubbard systems under increasing temperature.
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