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A tremendous feeling of peace came over him. He knew that at last, for once and for ever,
it was now all, finally, over.

— Douglas Adams, The Hitchhiker’s Guide to the Galaxy
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Abstract
Breast cancer is the most common type of cancer in women and, in Sweden, is the most
deadly second only to lung cancer. While treatment and diagnostic options have improved
in the past decades and short- to mid-term survival is good, long-term survival is much
poorer. On the other hand, many women are likely cured by surgery and radiotherapy
alone, but receive unnecessary adjuvant treatment leading to undesirable health-related and
economic side-effects. Reliably differentiating high-risk from low-risk patients to provide
optimal treatment remains a challenge.

The Sweden Cancerome Analysis Network–Breast (SCAN-B) project was initiated in 2009
and aims to improve breast cancer outcomes by developing new diagnostics and treatment-
predictive tests. Within SCAN-B, tumor material and blood are being biobanked and the
transcriptomes of many thousands of breast tumors are being analyzed using RNA sequen-
cing (RNA-seq). The resulting sample collection and dataset provide an unprecedented
resource for research, and the information therein may harbor ways to improve prognosis
and to predict tumor susceptibility or resistance to therapies.

In the four original studies included in this thesis we explored the use of RNA-seq as a
diagnostic tool within breast cancer. In study i we described the SCAN-B processes and
protocols, and analyzed early data to show the feasibility of using RNA-seq as a diagnostic
platform. We showed that the patient population enrolled in SCAN-B largely reflects the
characteristics of the total breast cancer patient population and benchmarked RNA-seq
against prior techniques. In study ii we diagnosed problems in commonly used RNA-
seq alignment software and described the development of a software tool to correct the
problems and improve data usability. Study iii focused on diagnostics for determining the
status of the important breast cancer biomarkers ER, PgR, HER2, Ki67, and Nottingham
histological grade. We assessed the reproducibility of histopathology in measuring these
biomarkers, and developed new ways of predicting their status using RNA-seq-based gene
expression. We showed that expression-based biomarkers add value to histopathology by
improving prognostic possibilities. In study iv we focused on the prospects of using RNA-
seq to detect mutations. We developed a new computational method to profile mutations
and used it to describe the mutational landscape of thousands of patient tumors and its
impact on patient survival. In particular, we identified mutations in a subset of patients
that are known to confer resistance to standard treatments.

The hope is that, together, the diagnostic results made possible by the studies herein may one
day enable oncologists to adapt treatment plans accordingly and improve patient quality of
life and outcomes.
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Popular summary
Breast cancer is the most common type of cancer in women and, in Sweden, is the most
deadly second only to lung cancer. In the western world, approximately 1 in 8 women
will be diagnosed with breast cancer in their lifetime, largely fueled by lifestyle and dietary
choices. Like all cancers, breast cancer is caused by alterations in the genome of normal cells
that lead them to grow uncontrollably. Diagnostic and treatment options have expanded
in the past decades, with the introduction of endocrine and anti-HER2 therapies. While
this has lead to good short-term to mid-term survival of patients, long-term survival is a
lot poorer. On the other hand, many women are likely cured by surgery and radiotherapy
alone, but are being “overtreated”, leading to unnecessary health-related and economic side-
effects. Reliably differentiating patients at high risk of disease relapse from those with low
risk remains a major challenge.

The first sequencing of a human genome in 2001 has set in motion an unprecedented
amount of knowledge generation and technology development in biology and medicine.
Through the advent of high-throughput sequencing technologies that transform the genetic
material of DNA and RNA into large datasets, biology and medicine are becoming increas-
ingly reliant on the field of bioinformatics which provides the computational knowledge
to analyze these datasets. The resulting insights have allowed us to better understand wide-
spread and complex diseases such as cancer. Our increased understanding holds the promise
for a future where precision medicine is reality, and a patient receives treatments that target
the specific weaknesses of their tumor. However, translating the improved understand-
ing of tumors into meaningful clinical interventions remains a challenge and requires the
analysis of large, well characterized patient cohorts.

The Sweden Cancerome Analysis Network–Breast (SCAN-B) project was initiated in 2009
and aims to improve breast cancer outcomes by developing new diagnostics and treatment-
predictive tests. Within the nine participating SCAN-B hospitals the biological material
from many thousands of breast cancer patients is being collected and analyzed using RNA
sequencing (RNA-seq). This technique probes the cancer transcriptome, the complete pic-
ture of all genes turned on and off in a tumor, and enables the precise measurement of
gene activity (expression) and gene alterations (mutations) in patient tumors. This inform-
ation, when trained on patient samples with treatment and outcome information, can then
be used to predict a new patient’s prognosis and may signal susceptibility or resistance to
specific therapies – which is the goal of precision medicine.

In the four original studies included in this thesis we explored the use of RNA-seq as a
diagnostic tool within breast cancer. In study i we described the SCAN-B processes and
protocols, and analyzed early data to show the feasibility of using RNA-seq as a diagnostic
platform. We showed that the patient population enrolled in SCAN-B largely reflects the
characteristics of the total breast cancer patient population and benchmarked RNA-seq
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against previous techniques. In study ii we diagnosed problems in commonly used RNA-
seq analysis software and described the development of a software tool to correct these prob-
lems. Study iii focused on diagnostics for determining the status of important breast cancer
biomarkers. We assessed the reproducibility of the currently used methods to measure these
biomarkers, and developed new ways of predicting their status using gene expression as de-
termined using RNA-seq. We showed that these gene expression-based biomarkers add
value to the currently used techniques by improving prognostic possibilities. In study iv
we focused on the prospects of using RNA-seq to determine gene mutations. We developed
a new computational method to profile mutations and used it to describe the mutational
landscape of thousands of patient tumors and its impact on patient survival. In particular
we were able to identify mutations in a subset of patients that are known to confer resistance
to standard treatments. Providing this information to the clinic may enable oncologists to
adapt treatment plans accordingly.

The diagnostic tools described in this thesis are being evaluated, improved, and validated
further, and will hopefully benefit patients in SCAN-B-participating hospitals in the future.
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Populärwissenschaftliche Zusammenfas-
sung
Brustkrebs ist die häufigste Krebsart bei Frauen und in Schweden nach Lungenkrebs die
Krebsart mit den meisten Todesfällen. Bedingt durch den Lebenswandel und Ernährungs-
gewohnheiten erkrankt in der westlichen Welt etwa jede achte Frau in ihrem Leben an
Brustkrebs. Wie alle Krebsarten wird Brustkrebs durch Veränderungen im Genom von
normalen Körperzellen hervorgerufen, die dazu führen, dass sich die Zellen unkontrolliert
vermehren. Behandlungs- und Diagnostikmethoden haben sich in den letzten Jahrzehn-
ten verbessert, vor allem durch die Einführung von Hormon- und Anti-HER2-Therapien.
Während dies zu guten kurz- bis mittelfristigen Überlebenschancen geführt hat, sind die
langfristigen Überlebenschancen deutlich geringer. Andererseits werden viele Frauen mit
hoher Wahrscheinlichkeit bereits durch die operative Entfernung des Tumors mit anschlie-
ßender Bestrahlung geheilt. Diese werden dann allerdings “übertherapiert”, was zu uner-
wünschten gesundheitlichen und finanziellen Nebenwirkungen führt. Die verlässliche Un-
terscheidung von Patientinnen und Patienten mit einem hohen Risiko der Rückerkrankung
von solchen mit einem niedrigen Risiko ist immer noch eine große Herausforderung.

Die erstmalige Sequenzierung eines menschlichen Genoms im Jahr 2001 hat eine bei-
spiellose Wissens- und Technologieentwicklung in den Bereichen Biologie und Medizin
in Gang gesetzt. Durch die Einführung von Hochdurchsatz-Sequenzierungstechnologien,
die die biologischen Materialien DNA und RNA in große Datenmengen umsetzen, sind
Biologie und Medizin zunehmend auf das Feld der Bioinformatik angewiesen, das die nö-
tigen Kenntnisse bereitstellt, um diese Datenmengen rechnergestützt zu analysieren. Die
dadurch entstehenden Erkenntnisse haben es uns erlaubt, weit verbreitete und komplexe
Krankheiten wie Krebs besser zu verstehen. Dieses verbesserte Verständnis bringt die Mög-
lichkeit der Präzisionsmedizin näher, bei der ein Patient eine Behandlung bekommt, die
maßgeschneidert die Schwächen des jeweiligen Tumors ausnutzt. Das erweiterte Wissen
in wirksame Interventionen umzusetzen ist jedoch eine Herausforderung und erfordert die
Verfügbarkeit und Analyse von großen und gut charakterisierten Patientenkohorten.

Das Sweden Cancerome Analysis Network–Breast (SCAN-B) Projekt wurde im Jahr 2009
in Schweden ins Leben gerufen und zielt darauf ab, die Überlebenschancen von Brustkrebs-
patienten durch die Entwicklung von neuen Diagnostik- und Therapieerfolg-Vorhersage-
möglichkeiten zu verbessern. In den neun teilnehmenden Kliniken wird das biologische
Material von tausenden Brustkrebspatienten gesammelt und mittels RNA-Sequenzierung
(RNA-seq) analysiert. Diese Methode untersucht das Transkriptom von Krebszellen, also
die Gesamtheit der Boten-RNA (mRNA) eines Tumors, die anzeigt, welche Gene ein- und
ausgeschaltet sind. Dies ermöglicht die präzise Messung der Genaktivität (Expression) und
von Genveränderungen (Mutationen) in Tumoren. Zusammen mit Überlebensdaten der
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Patienten können diese Informationen dann dazu genutzt werden, Modelle zu entwickeln
(zu “trainieren”), die präzisere Prognosen für zukünftige Patienten liefern, und vorhersa-
gen könnten, ob ein Tumor anfällig für, oder resistent gegen bestimmte Therapien ist – das
letztendliche Ziel der Präzisionsmedizin.

In den vier Studien, die im Zuge dieser Doktorarbeit durchgeführt wurden und hier disku-
tiert werden, wollten wir die Möglichkeiten der RNA-seq als Mittel für die Brustkrebsdia-
gnostik erforschen. In Studie i haben wir die Prozesse und Protokolle des SCAN-B Projek-
tes beschrieben und erste in SCAN-B generierte Daten analysiert, um die Möglichkeiten
der RNA-seq als diagnostisches Mittel aufzuzeigen. Wir konnten außerdem zeigen, dass
die Patientenpopulation in SCAN-B größtenteils die Eigenschaften aller Brustkrebspati-
enten im Studiengebiet widerspiegelt, und haben die RNA-seq mit vorherigen Methoden
zur Transkriptomanalyse verglichen. In Studie ii haben wir Probleme in häufig genutz-
ter Software zur Analyse von RNA-seq-Daten aufgezeigt, und die Entwicklung eines Soft-
warewerkzeugs beschrieben, das diese Probleme behebt. In Studie iii haben wir uns auf die
Bestimmung wichtiger Brustkrebsbiomarker fokussiert. Wir haben die Reproduzierbarkeit
der momentan genutzten Labormethoden evaluiert und neue Methoden entwickelt, um
den Wert dieser Biomarker mittels Genexpression zu bestimmen. Wir konnten zeigen, dass
diese genexpressions-basierten Biomarker den momentan genutzten Methoden wertvolle
Zusatzinformationen hinzufügen die die Prognosemöglichkeiten dieser Methoden verbes-
sern. In Studie iv haben wir die Möglichkeiten eruiert, Genmutationen auf der Basis von
RNA-seq zu bestimmen. Dazu haben wir eine rechnergestützte Methode zur Mutations-
bestimmung entwickelt. Diese haben wir angewandt, um die Gesamtheit der Mutationen
in den Tumoren tausender Patienten zu beschreiben und deren Einfluss auf die Überle-
benschancen der Patienten zu analysieren. Insbesondere konnten wir in einigen Tumoren
Mutationen entdecken, von denen bekannt ist, dass sie Resistenz gegen Standardtherapi-
en verleihen. Diese Informationen könnten es den behandelnden Onkologen in Zukunft
erlauben, Therapiepläne frühzeitig entsprechend anzupassen.

Die in dieser Doktorarbeit beschriebenen diagnostischen Möglichkeiten werden gegenwär-
tig weiter ausgewertet, verbessert und validiert. In Zukunft werden sie hoffentlich allen
Patienten zugutekommen, die in SCAN-B Kliniken behandelt werden.
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Part I

Research Context





1 | Introduction
Everything starts somewhere, although many
physicists disagree.

— Terry Pratchett, Hogfather

1.1 Cancer

Cancer is a disease that has long plagued humans, animals [1] – including dinosaurs [2] –
and, to a certain extent, even plants [3, 4]. Evidence of tumors has been found in Neander-
thals [5], while the earliest records of tumors in humans come from ancient Egypt, both
via evidence from mummies/skeletons [6–8] and descriptions of various tumor types in the
Edwin Smith Papyrus – an ancient medical text. The abundance of evidence for tumors
across domains of life and human civilizations suggests that cancer is an unavoidable con-
sequence of evolution [9]. However, the risk for developing cancer is modulated by factors
such as lifestyle and increasing life expectancy across the globe (see Section 1.4.1).

Historically, cancer has been attributed to many different causes [10]. For example, the an-
cient Greeks thought it was a product of the four “humors” (black bile, yellow bile, phlegm,
and blood) becoming unbalanced. Theodor Boveri in 1902 was the first to suggest cancer
developing from mitotic origins affecting the chromosomes [11]. While our understanding
of cancer biology steadily increased since then, for example through landmark discoveries
such as the genes BRCA1 [12, 13] and BRCA2 [14, 15] and their relation to breast cancer
susceptibility, the release of the first human genome draft sequence in 2001 [16, 17] has
marked a turning point in our understanding of cancer and its underpinnings.

Generally, cancers can be differentiated into carcinomas (solid tumors of epithelial ori-
gin), sarcomas (solid tumors originating in supportive and connective tissue), myelomas
(originating in plasma cells of the bone marrow), leukemias (originating in the bone mar-
row), lymphomas (originating in the lymphatic system), and mixed types [18]. All cancers
share certain traits, summarized by Hanahan and Weinberg as a list of disease-defining
hallmarks of cancer in 2000 [19], and in an updated form in 2011 [20]. The hallmarks
are summarized in Figure 1.1 and describe the ways tumors overcome the inherent cellular
control mechanisms, grow their own blood vessels, escape the host immune system, and
achieve invasion. The genomic changes leading to these hallmarks can either be activating,
for example causing an activation of cell growth and differentiation, or deactivating, for ex-
ample inhibiting mechanisms involved in cellular regulation and damage repair. Activating
mutations affect oncogenes such as MYC and PIK3CA that have the potential to induce
tumor growth, while deactivating mutations affect tumor suppressor genes such as TP53
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Figure 1.1. The hallmarks of cancer.

Source: Hanahan & Weinberg [20]. Reproduced with permission from Elsevier.

and PTEN that act as moderating breaks on cellular processes.

1.2 The Cancer Genome

Cancer arises from genomic mutations that can occur years to decades before diagnosis [21],
or may even be inherited and present at birth. Mutations can arise spontaneously, for ex-
ample due to errors during mitosis, tautomeric base pairing [22, 23], or through outside
damaging influence such as carcinogens. These mutations can then accumulate, for ex-
ample through DNA proofreading mistakes caused by defective DNA polymerases result-
ing from previously acquired mutations [24].

Mutations in cancer are generally divided into driver mutations that actively promote tumor
growth and are therefore positively selected for, and passenger mutations that happen as
byproducts due to the unstable nature of the tumor genome, for example due to impaired
DNA repair mechanisms [25]. These mutations and the genes harboring them are being
catalogued by the IntOGen project and others [26–29]. The general model is that few
mutations are drivers and the majority of mutations are passengers, although this simplistic
view is being challenged [30].

The emergence of sensitive detection methods has allowed us to better understand tumori-
genesis by investigating somatic mutations in normal tissues [31, 32]. Studies in normal
cells from skin [33, 34], endometrium [35], esophagus [36], colon [37], bladder [38],
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breast [39], and urethra [40] tissue have shown a variety of somatic mutations and posit-
ive selection for them [33, 36, 37]. TP53 mutations in particular have been found to be
clonally selected over the course of a human lifetime [41]. In general, somatic mutations
accumulate with age in normal tissues [42], but even the presence of driver mutations does
not necessarily lead to carcinogenesis [43].

The different types of mutations that characterize the cancer genome, as well as the grouping
of these mutations into signatures and mutational burden are detailed in the following
sections.

1.2.1 Single Nucleotide Variants

Single nucleotide variants are the most common type of mutation in cancer. The pos-
sible nucleotide substitutions can be reduced to the six substitution types C>A, C>G, C>T,
T>A, T>C, and T>G. Transitions (C>T and T>C) are generally more common than trans-
versions (C>A, C>G, T>A, and T>G), since substitutions between purines (A and G) and
between pyrimidines (C and T) are sterically more likely than those between purines and
pyrimidines. Depending on whether or not SNVs lie in a region of the genome coding for
protein sequence, they are classed as coding or non-coding (Figure 1.2). Coding SNVs are
further stratified into synonymous and non-synonymous variants depending on whether
or not they change the amino acid sequence of a protein. Comprehensive classifications,
such as the Sequence Ontology controlled vocabulary [44], further stratify non-coding,
synonymous, and non-synonymous variants into multiple subclasses based on their pre-
dicted impact. Simplified versions are commonly being used for classification, such as the
one we used in study iv to classify non-synonymous variants into missense variants (for
those mutations that lead to a different amino acid being incorporated into the protein
sequence) and nonsense variants (for mutations that induce/remove start or stop codons).
Non-coding and synonymous SNVs are not stratified further. The mutation classes differ
in the severity of their functional impact, where nonsense mutations that lead to a pre-
mature stop codon and loss of the downstream protein are most severe. In cancer these
mutations often affect tumor suppressor genes such as TP53.

While non-synonymous mutations have long been in the spotlight of research, non-coding
and synonymous variants have been understudied. However, increasing evidence suggests
that both have measurable impact on oncogenesis. Non-coding variants have been found
to act as drivers across cancer types [45]. Synonymous mutations, which have been thought
to be silent, may play an important role both in the normal genome [46] and in cancer [47,
48]. While not directly altering protein amino acid sequences, they can affect splicing and
expression regulation and may exert a driving effect in this way.

3



Single Nucleotide Variant

Non-coding Coding

Synonymous Non-synonymous

Missense Nonsense

Figure 1.2. Classification of single-nucleotide variants (SNVs).

1.2.2 Short Insertions and Deletions

Short insertions and deletions (indels) are small, ≤50bp, genomic alterations. If the number
of inserted or deleted bases is divisible by three (the length of a codon) the indel is in-
frame, otherwise it is classified as frame-shift since it changes the reading frame. Frame-
shift indels are common cancer mutations, particularly in tumor suppressor genes, where
they disrupt transcription by inducing premature stop codons. By comparison, in-frame
indels are generally less disruptive but still lead to protein alterations that may affect normal
function.

1.2.3 Structural Variants, Copy Number Variants, and Gene Fusions

Structural variants (SV) are genomic changes that rearrange the sequence of one or two
chromosomes and have a size of >50bp [49]. Rearrangements can occur within one chro-
mosome (intra-chromosomal rearrangements) or between two chromosomes (intra-chromo-
somal rearrangements). Unbalanced SVs affect copy-number relative to the reference gen-
ome, meaning gain or loss of genetic loci, and are referred to as copy-number variants
(CNVs). CNVs can be insertions, deletions, or duplications [50]. These are common in
cancer, where they can lead to overexpression of oncogenes such as ERBB2 due to increased
gene dosage which then drives tumor-growth. Compared to CNVs, simple inversions and
translocations are copy-number neutral, although translocations are often complex and as-
sociated to copy number changes.

Gene fusions are consequences of SVs, where one or both break ends of an SV lie in a genic
region, resulting in a new in-frame gene configuration. Gene fusions are common in many
cancers and can be important driver mutations. The best known example is the BCR-ABL1
fusion gene resulting from a translocation between chromosomes 22 and 9, that is common
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in chronic myelogenous leukemia (CML) and acute lymphobastic leukemia (ALL).

In contrast to SNVs that develop continuously during the lifetime of a tumor, many SVs
largely occur early in tumor development during the “telomere crisis” [51, 52]. Individual
SVs can be part of complex structural events such as chromothripsis, which describes a
single catastrophic chromosomal shattering event followed by incorrect DNA repair [53].
Since then, other recurring complex events have been described, each having their own sig-
nature of structural events [54–56]. Due to their early occurrence, SVs are ideal biomarkers
as many tumor clones will share them. This can be exploited in early detection of disease
recurrence [57].

1.2.4 Epigenetics

Epigenetic changes are those that do not involve alteration of the DNA nucleotide se-
quence and play a major role in tumor development [58]. Several types of epigenetic alter-
ations exist, including promoter hyper- and hypomethylation and histone modifications.
Promoter hypermethylation has a major influence on transcription dynamics through its
ability to silence genes, while hypomethylation has the opposite effect and can lead to in-
creased transcription. Examples in cancer are BRCA1 and PTEN hypermethylation, where
transcriptional silencing leads to loss of protein expression, contributing to oncogenesis.
Histone modifications are addition or loss of functional groups from histone proteins, per-
formed by certain enzymes. Histones are a principal determinant of chromatin openness
and transcription, and alteration of modifications can adversely affect transcription of genes
wound around an affected histone.

1.2.5 Mutational Signatures

The mutational processes that shape the tumor genome often generate tell-tale “signatures”
of mutation type combinations in the genome. Alexandrov et al [59] first employed non-
negative matrix factorization (NMF) to describe a variety of signatures covering SNVs,
their immediate neighbor bases (“sequence context”), and indels across 30 cancer types.
They could associate 11 signatures with specific causes, such as overactivity of members of
the APOBEC family of cytidine deaminases [60], or exposure to ultraviolet light. Since
then, the original signatures have been refined and dozens of other signatures, including
those derived from SVs and CNVs, have been described [61–63]. Importantly, mutational
signatures caused by environmental mutagens [64] and chemotherapies [65] have been
catalogued and may shed further light on these factors.

1.2.6 Tumor Mutational Burden

Tumor mutational burden (TMB) is a measure for the overall number of mutations in a
tumor, typically normalized by megabase (Mb) of sequence. It has been proposed as a bio-
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marker that may be useful for indicating sensitivity to immunotherapies [66]. For as-yet
incompletely understood reasons, these therapies show heterogeneous response and cur-
rently no biomarker is available to reliably predict treatment outcome. TMB is believed
to be a surrogate for neoepitope formation, where body-foreign immunogenic peptides are
expressed by the tumor. TMB is not without controversy, as many questions around it
remain unsolved. They start with how to define TMB, since the number of detected tu-
mor mutations is a function of sequencing experiment setup. Whole genome sequencing
(WGS) or whole exome sequencing (WES) will uncover more mutations than a panel tar-
geting few genes, not even considering RNA sequencing (RNA-seq) based TMB which
we investigated in study iv. Another factor is sequencing depth, where sequencing deeper
will result in more mutations than sequencing shallow. TMB also varies by tumor site and
subtype [67], possibly necessitating different TMB cutoffs to stratify tumors into TMB-
low and TMB-high. Efforts to harmonize TMB determination in certain settings and to
account for some of these questions are ongoing [68].

In 2020 the U.S. Food and Drug Administration (FDA) granted approval for pembroli-
zumab in TMB-high solid tumors, where the TMB cutoff was defined as ≥10 mut/Mb.
This is the first FDA drug approval that allows TMB as a biomarker and, given the ques-
tions around TMB, this decision was highly controversial with voices both for [69] and
against [70]. Adding to the controversy, a reanalysis of public clinical study datasets sug-
gests that TMB is in fact not a good marker of response to immune checkpoint block-
age [71], but that the supposed signal was a statistical artifact. It has been proposed that
it may not the overall mutational burden, but only indels that trigger mRNA nonsense
mediated decay that signal response to immunotherapy [72, 73].

1.3 The Cancer Transcriptome

While the genome provides cellular blueprints, the transcriptome represents the dynamic
state of the cell. Compared to the genome, the transcriptome is underexplored, perhaps
partly due to its inherent complexity. It encompasses the entirety of cellular transcripts
(RNAs), the most important and basic element of which is messenger RNA (mRNA).
Through transcription from a single gene precursor mRNA is produced, which, through
alternative splicing and alternative polyadenylation [74, 75], may be processed into a vari-
ety of mature mRNA isoforms. Adding to this, a variety of non-coding RNAs exist, such as
transfer RNA (tRNA), microRNA (miRNA), Piwi-interacting RNA (piRNA), vault RNA
(vtRNA), and others. These do not code for proteins, but may have functional interac-
tions with each other, with DNA, with mRNA, or with proteins, leading to a complex
and dynamic interaction network that is difficult to grasp. Another level of complexity is
added by the epitranscriptome, a collection of more than 170 types of RNA editing and
modifications, such as deamination of adenosine to inosine (A-to-I editing), methylation
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of adenosine to N⁶-methyladenosine (m⁶A modification), or pseudouridine (ψ), that can
modulate gene expression levels, protein translation, and localization [76–79]. Lastly, cel-
lular processes, such as nonsense-mediated decay, impact gene expression levels. This may
happen by removing mRNAs that contain premature stop codons, for example induced by
transcription errors or small DNA indels.

Compared to the normal transcriptome, the cancer transcriptome is dysregulated due to
changes in transcriptomic processes that alter the delicate and complex balance of the tran-
scriptome. Indeed, all known transcriptomic features and processes have been implicated in
tumor development when dysregulated, such as gene expression [80, 81], alternative spli-
cing [82–84] and intron retention [85], and alternative polyadenylation [86], non-coding
RNAs [45, 87, 88], RNA editing and modifications [89–91], and transcriptomic path-
ways [72, 92].

The properties of the transcriptome as mediator between DNA and proteome make it an
interesting target for diagnostics. It contains information currently diagnostically exploited
on the DNA level, provides a wealth of information that can only be probed on the tran-
scriptome level, and through mRNA expression and modifications has direct impact on the
proteome.

1.4 Breast Cancer

Breast cancer is the most common form of cancer in women. It mostly originates in the duct
tissue (~80%, ductal carcinoma) and lobules (~20%, lobular carcinoma) of the breast [93],
depicted in Figure 1.3. It is inherently heterogeneous, with multiple subtypes that have
distinct genetic, phenotypic, and clinical presentations that translate into differing pro-
gnosis, risk profiles, and susceptibility to treatments. Although the disease can occur in
both women and men, approximately 99% of patients are female [94]. While there are
many commonalities in the disease between women and men, considerable differences ex-
ist in terms of genetics and clinical characteristics [95–97]. This thesis focuses exclusively
on breast cancer in women, and the term “breast cancer” in this thesis will from here on
only refer to the disease affecting women. Compared to other cancer types, considerable
progress has been made in breast cancer diagnosis, treatment, and subsequent patient sur-
vival in the last four decades [98].

1.4.1 Incidence and Mortality

Breast cancer is the most common kind of cancer worldwide accounting for nearly 2.1
million newly diagnosed cases and nearly 630,000 deaths in 2018 [99]. This is 11.6% of
all new cancer cases and 24.2% of cases in women.

There are substantial regional differences in global breast cancer incidence, visualized us-
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Figure 1.3. Anatomy of the female breast. Highlighted are the lymph nodes, nipple, areola, muscles,
chest wall, ribs, fatty tissue, as well as lobules and ducts.

For the National Cancer Institute © 2011 Terese Winslow LLC, U.S. Government has certain rights.
Reproduced with permission from the copyright holder.

ing data from the World Health Organization for 2018 in Figure 1.4. Incidence is age-
standardized to account for the varying age structure between populations. Western soci-
eties have the highest incidence, largely influenced by lifestyle and dietary choices.

In 2018, 30,511 women in Sweden were diagnosed with cancer, of which 7,558 women
were diagnosed with breast cancer and 1,391 women succumbed to the disease. This makes
breast cancer the second most deadly type of cancer in Sweden behind lung cancer [100].
Despite the large number of total deaths, patient survival is generally very good in the short
(98% 1-year survival) to mid-term (88.5% 5-year survival) compared to other types of can-
cer. However, 5-year survival cannot be considered a cure, and survival rates significantly
decline in the long and very-long term (60% 15-year survival, 50% 20-year survival), as
patients experience recurrence of their disease [101, 102].

Breast cancer is the most common type of cancer in women and, in Sweden, is the most
deadly second only to lung cancer.
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Figure 1.4. Global estimated age-standardized incidence rate (ASR) for breast cancer per 100,000
women for the year 2018.

Source: World Health Organization Global Cancer Observatory (https://gco.iarc.fr)

1.4.2 Risk Factors

A diverse range of factors have been identified that increase women’s life-time risk of de-
veloping breast cancer. Age is the most important risk factor, as mutations accumulate
in normal cells over time. In 2018 in Sweden, only 4% of invasive breast cancers were
diagnosed in women under the age of 40 [103]. Breast cancer risk, particularly in post-
menopausal women, is modulated by factors that alter endogenous sex hormone levels.
High baseline hormone levels, oral contraceptives, early menarche, late menopause, and
most hormonal replacement therapies during menopause increase breast cancer risk [104–
106]. Additionally, reproductive aspects such as parity, age at first childbirth, the number
of children, and breast feeding have complex effects on breast cancer risk [107].

A variety of dietary and lifestyle factors have been found to increase breast cancer risk: con-
sumption of alcohol [108, 109] and processed meat [110, 111], as well as active and passive
exposure to tobacco smoke [112]. Obesity and high body fat content, both measured as
body-mass index (BMI) and in a BMI-independent way [113–115], as well as lack of ex-
ercise [116, 117] are associated with higher risk. Lastly, exposure to environmental factors
such as ionizing radiation, including X-radiation and gamma radiation, elevates risk.

A particularly important risk factor is a family history of cancer as approximately 5%–10%
of breast cancers are hereditary. The mechanism of action is thought to be Knudson’s two-
hit hypothesis [118], whereby patients have inherited a damaged copy of a risk gene from
their parents (first hit), and the second copy is damaged during the person’s lifetime leading
to loss of heterozygosity (LoH), for example by exposure to environmental carcinogens
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(second hit). Approximately 25% of all hereditary cases can be explained by high-risk
variants in the BRCA1 and BRCA2 genes [119]. Rare germline mutations in other high-
penetrance genes cause specific forms of breast cancer, the most prominent being PTEN
hamartoma tumor syndrome caused by PTEN variants, and Li-Fraumeni syndrome caused
byTP53 variants. The remaining cases can be partly attributed to variants in medium to low
risk genes including CHEK2, PALB2, RAD50, ATM, and BARD1. However, a proportion
of cases cannot be explained by the risk genes known to date. In Sweden, breast cancer
risk variants are being explored through initiatives such as the SWEA study, and efforts to
identify unknown risk variant carriers through studies such as BRCAsearch [120]. In all
hereditary cases genetic counseling is imperative to guide possible prophylactic measures
such as mastectomy and/or oophorectomy, and to determine whether the patient’s relatives
may carry the risk alleles.

1.4.3 Diagnosis

Breast cancer is most often detected either through early detection techniques such as mam-
mographic screening, or self-examination of the breasts by the patient. While mammo-
graphic screening has led to early detection of many breast cancers [121], it is not without
controversy as it can also lead to overdiagnosis [122]. It is predicted that a significant num-
ber of detected lesions may never become invasive during the patient’s lifetime, however
we currently lack the tools to detect which ones. On the other hand, current screening
methods can miss lesions, for example due to lobular phenotype of the lesion [123], or due
to high breast density [124].

To guide treatment decisions, tumor biopsy and surgery samples are evaluated using histo-
pathological and/or genomic methods and classified by their morphological, clinicopatho-
logical, and genomic features. The most important classification schemes are described in
the following sections.

1.4.4 Classification

Several systems exist to class tumors into prognostic and treatment-predictive subgroups.
These include systems based on histopathology such as Nottingham histological grade
(NHG) and TNM stage, and molecular methods based on gene expression signatures.

Histopathology

Between 15% and 30% of breast tumors are in situ carcinomas; that is, the tumor cell
growths have not broken through the basement membrane layer. These are often detec-
ted using screening programs and consequently the exact percentage of in situ tumors de-
pends on the prevalence of screening in the population. Based on the site of origin one
can differentiate ductal carcinoma in situ (DCIS, ~80%) and lobular carcinoma in situ
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Table 1.1. Nottingham histological grade scoring and interpretation.

Score Grade Interpretation

3–5 1 well differentiated
6–7 2 moderately differentiated
8–9 3 poorly differentiated

Source: Elston & Ellis [127]

(LCIS, ~20%) [125]. Most in situ carcinomas are benign, but some harbor malignant po-
tential and may or may not become invasive if left untreated. One of the major challenges
is improving diagnostics to enable this distinction.

Invasive carcinomas constitute between 70% and 85% of all breast cancers. The major-
ity of these are invasive ductal carcinomas (IDC, ~79%) of not otherwise specified (NOS)
type, followed by invasive lobular carcinomas (ILC, ~10%). The remaining cases can be
further stratified based on cytological features into tubular (~2%), medullary (~5%), mu-
cinous (~2%), papillary (1%-2%), and cribriform (0.8%-3.5%) cancer [126].

Grade

Nottingham histological grade according to the Elston and Ellis modified Scarff-Bloom-
Richardson system (NHG) is a morphological marker that describes how closely tumor
cells resemble normal breast epithelial cells [127]. Generally with increasing grade, resemb-
lance to normal cells decreases and tumor aggressiveness is thought to increase. NHG is a
compound score consisting of the three morphologic components tubular differentiation,
number of mitoses, and nuclear pleomorphism. The component-scores are determined in-
dividually for a tumor, added together, and categorized according to Table 1.1. NHG is
a strong prognostic factor in breast cancer [128], however it has long had reproducibility
problems [129] which we also observed in study iii.

Stage

Pathologic stage describes how advanced a cancer is. The TNM system is the most widely
used staging system in breast cancer. It was originally proposed by Denoix in 1946 [130]
and today is maintained by the Union for International Cancer Control (UICC) and the
American Joint Committee on Cancer (AJCC). The TNM system classifies cancer by the
size of the tumor (T), the number of lymph nodes containing tumor cells (N), and meta-
static spread (M). Each of these categories has subcategories, such as T1–T4 for increas-
ing tumor size, that describe the extent of disease progression. In the simplest use, the
stage group is then determined using only the T, N, and M subcategories according to
Table 1.2. Stage grouping can be made more fine grained by incorporating additional in-
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Table 1.2. Pathologic stage as defined by the 8th edition of the AJCC TNM system description
using only the mandatory parameters T, N, and M.

Stage TNM Categories Interpretation

0 Tis N0 M0 pre-invasive stage

I
T1 N0 M0

low stageT0 N1mi M0
T1 N1mi M0

II

T0 N1 M0

intermediate stage

T1 N1 M0
T2 N0 M0
T2 N1 M0
T3 N0 M0

III

T0 N2 M0

high stage

T1 N2 M0
T2 N2 M0
T3 N1 M0
T3 N2 M0
T4 N0 M0
T4 N1 M0
T4 N2 M0
Any T N3 M0

IV Any T Any N M1 metastatic stage

Source: AJCC Cancer Staging Manual 8t Ed. [131]

formation such as prefix modifiers describing the information source and may be modified
by NHG, histological receptor status, and the score of the Oncotype DX genomic assay
(see Section 1.4.4).

Receptor Status

The expression status of the receptor proteins estrogen receptor (ER), progesterone receptor
(PR or PgR), and human epidermal growth factor receptor 2 (HER2) is routinely determ-
ined using immunohistochemistry (IHC) for breast tumors and is of prime importance for
prognosis and treatment (see Section 1.4.5). Tumor slides are stained for these receptors
using antibodies. Stained cells are counted or estimated versus non-stained cells, resulting
in a stained cell percentage. Receptor status is dichotomized into positive/negative status
based on a cutoff. In Sweden for ER/PgR, a cutoff of 10% stained cells is used, while inter-
nationally a cutoff of 1% is common. For HER2, an additional ERBB2 gene copy-number
analysis using fluorescence or silver in situ hybridization (FISH or SISH) is recommended
if the HER2 IHC result is inconclusive. Recently, a new subgroup of HER2-low has been
proposed to mark tumors with low HER2 protein expression and no ERBB2 gene ampli-
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fication that would traditionally be called HER2- [132]. Increasing evidence suggests that
a subset of these tumors may benefit from HER2 targeting agents.

By combining ER, PgR, and HER2 status, tumors can be categorized into clinical sub-
groups, whereby ER and PgR may be summarized into hormone receptor (HoR¹) status.
Patients with HoR+ tumors have a better survival rate than those with HoR- tumors [133].
This includes the HoR+/HER2- group, which constitutes the largest subgroup with 68% of
cases in the U.S. between 2013 and 2017 [134], and generally has the best prognosis [135]
followed by HoR+/HER2+ tumors (~10%). Compared to these HoR+ groups, survival
of patients with HoR-/HER2+ (~4%) is significantly worse. Triple-negative breast cancer
(TNBC, ~10%) lacks expression of all three receptors, and thus offers no molecular tar-
gets for the most common targeted agents. Consequently it has the worst prognosis, with
chemotherapy being the only treatment option.

Intrinsic Subtypes

In addition to classing tumors by morphology and histology, they can be stratified by their
intrinsic subtype. These define distinct groups of tumors with similar gene expression pat-
terns and clinical characteristics. Molecular subtypes were first discovered by Perou and
Sørlie et al [80] who performed unsupervised hierarchical clustering on the global gene ex-
pression profiles of normal tissues and breast tumor tissues from 42 patients. The subtypes
were quickly found to be prognostic [136]. The originally reported subtypes Luminal-
like, Basal-like, HER2-enriched, and Normal-like were later refined by differentiating the
Luminal-like group into Luminal A-like and Luminal B-like tumors [137]. More recently
the Claudin-low subtype has been defined [138], although its status as a true intrinsic sub-
type has been disputed [139]. The subtypes have been reproduced numerous times across
technology platforms [140, 141] and in metastatic tumors [142–145]. They also exhibit
distinct methylation patterns [146].

The Luminal- and Basal-like subtypes were originally named due to the similarity of their
gene expression patterns to normal luminal and basal epithelial cells. In the Luminal-
like case this is a gene expression signature reflecting estrogen receptor activation. The
Luminal A-like subtype is characterized by a normal HER2 expression profile and low
activity of proliferation genes, while Luminal B-like tumors show elevated proliferation
and can have ERBB2 overexpression. The Basal-like subtype is characterized by a gene
expression signature including activation of basal keratins, integrin-β4, and laminin. The
HER2-enriched subtype features a signature of ERBB2 overactivation [80]. Samples of
Normal-like subtype typically cluster together with true normal breast tissue samples. The
existence of Normal-like as a true intrinsic subtype has been questioned as it is possibly a

¹A more common abbreviation for hormone receptor is HR, however this abbreviation is also commonly
used for the Hazard Ratio. We therefore opted for abbreviating hormone receptor as HoR in studies iii, iv,
and in this thesis.

13



technical artifact caused by samples with low tumor cell content [147–149]. It is therefore
sometimes omitted from analysis.

Since expression profiling remains a non-standard diagnostic tool, surrogate intrinsic sub-
types can be derived from traditional clinicopathological biomarkers in combination with
Ki67 protein status as a surrogate marker for proliferation, and NHG using the St. Gallen
classification schema [150]. NHG may also be useful in refining the classification, par-
ticularly for differentiating between Luminal A-like and B-like tumors [151, 152]. How-
ever, concordance between expression-based subtypes and surrogate subtypes is generally
poor [153–155], and thus the surrogate classification remains an imperfect stopgap solu-
tion until expression profiling is integrated into the clinical routine.

In addition to aiding our understanding of breast cancer biology, the introduction of
the St. Gallen surrogate subtypes is a testament to the importance and potential clin-
ical impact of the intrinsic subtypes. In particular the intrinsic subtypes are useful in re-
fining the traditional clinicopathological grouping by receptor status, where the groups
HoR+/HER2-, HoR+/HER2+, HoR-/HER2+, and HoR-/HER2- show heterogeneous
compositions of molecular subtypes [148] with prognostic and treatment-predictive im-
plications [154, 156–159].

Gene Expression Signatures

Gene expression signatures provide a dimension to breast cancer classification beyond tra-
ditional clinicopathological biomarkers. Based on the expression of a defined number of
genes, they capture the transient state of a tumor and are used to define phenotypes such
as the intrinsic subtypes and biomarker status, and to predict risk. While a plethora of
multi-gene signatures have been developed in the research setting to date, these signatures
have shown little gene overlap [160]. Wirapati et al performed an early meta-analysis of
nine expression signatures across 2,833 tumors and found concordance in terms of signa-
ture gene function [161]. Their findings were later reproduced and extended by Huang et
al [162]. More recently, within the SCAN-B study (see Section 1.9), 19 gene signatures
for subtyping and risk prediction were benchmarked across a large population-based tumor
series [163] and found to provide additional prognostic value over traditional clinicopath-
ological classifications in ER+/HER2- disease. However, signatures did not provide further
risk stratification in the patient subgroups with ER-/HER2+ and TNBC disease that have
particularly bad prognosis.

The clinical implications of risk prediction signatures have been reviewed several times
[164–166], highlighting in particular those signatures that have been commercialized and/or
validated in large patient cohorts. The most widely used signatures are the 21 gene signa-
ture, commercialized as the Oncotype DX assay (Genomic Health) [167–169], the 70
gene signature commercialized as MammaPrint (Agendia) [170], the PAM50 Risk of Re-
currence (RoR) score (which excludes the Normal-like subtype), commercialized as the
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Prosigna Breast Cancer Prognostic Gene Signature Assay (NanoString Technologies) [148,
171], and EndoPredict (Myriad Genomics). They share approval as risk prediction signa-
tures for early breast cancers that are at risk of developing distant metastases, and thus may
be utilized to decide upon adjuvant therapy. Several clinical trials are in progress to val-
idate this potential, including MINDACT (ClinicalTrials.gov identifier NCT00433589),
TAILORx (ClinicalTrials.gov identifier NCT00310180), and RxPONDER (ClinicalTri-
als.gov identifier NCT01272037)) [172–174]. Early results indicate that gene expression
profiling tests can indeed identify low risk patients that may be spared unnecessary treat-
ment [175–177].

Other signatures try to reproduce standard histopathological biomarkers such as receptor
status [178–184] and NHG [185–187]. Genomic grade signatures classify tumors into low
or high grade, thus clarifying the intermediate NHG class grade 2. Commercial variants
of this concept are MapQuant DX (Ipsogen) and Breast Cancer Index (Biotheranostics).

Most commercial gene expression signatures presented here are FDA-approved and were
explicitly endorsed by the 2017 St. Gallen conference consensus panel as tools for guiding
treatment with adjuvant chemotherapy in node-negative tumors, including MammaPrint,
PAM50 RoR, EndoPredict, and Breast Cancer Index.

In Sweden, these tests are not widely used as they are expensive and the cost-benefit ratio
has not yet been fully established. Instead, traditional clinicopathological variables and
surrogate subtypes are being used for prognostication and definition of treatment regimens.
However, increasingly guidelines now do recommend the use of a gene expression risk
stratification test, and use of such tests is anticipated to increase dramatically in Sweden in
the near future.

1.4.5 Treatment

The goal of primary breast cancer treatment is to remove all remnants of the tumor and
prevent it from relapsing. The strategy currently recommended by the European Society
for Medical Oncology (ESMO) is outlined in Figure 1.5. Primary treatment is, in virtually
all cases, surgical removal of the tumor, if possible using breast-conserving surgery (BCS).
To prevent relapse in the BCS case, additional radiotherapy is crucial to eradicate possible
leftover tumor deposits. For tumors that are too large for BCS, neoadjuvant therapy may
be attempted to shrink the tumor to a size where BCS is feasible; otherwise, mastectomy
is performed. To support primary treatment and reduce the risk of recurrence, adjuvant
treatment is recommended.

Neoadjuvant Treatment

Neoadjuvant therapies are administered before the primary treatment. They may be used to
shrink a tumor down to a size that makes it feasible to perform surgery at all, or less invasive
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surgery. The neoadjuvant period also provides a window of opportunity for testing how
the tumor reacts to therapies before it is surgically removed, potentially proving guidance
for adjuvant treatment. This concept is being utilized in clinical trials such as the I-SPY
study [189] (ClinicalTrials.gov identifier NCT01042379).

Adjuvant Treatment

Adjuvant treatments are administered after and in support of primary treatment and are
guided by biomarkers and clinicopathological features. The current ESMO adjuvant treat-
ment recommendations are outlined in Figure 1.6 [188]. Tumors determined to be HoR+
are treated with targeted anti-hormonal agents such as tamoxifen, or aromatase inhibitors
that block estrogen synthesis, such as letrozole. Those showing overexpression of the HER2
receptor protein receive targeted anti-HER2 treatment, for example the monoclonal anti-
body trastuzumab. All patients with the exception of those with ER+/HER2- (Luminal
A-like) disease receive additional chemotherapy, typically anthracycline and taxane. For
triple-negative tumors chemotherapy is currently the only first-line treatment option.

Advanced Disease

Despite primary and adjuvant treatment, tumors can advance or recur even after many years
of a patient being disease-free. Often these tumors have developed resistance to standard
treatments used in early disease, so different therapies are needed. Recent years have seen
several treatment innovations in this area, mostly in combination with other therapies.

In hormone therapy resistant ER+/HER2- breast cancer, CDK4/6 inhibitors are showing
promise, for example when combined with selective estrogen receptor degraders (SERDs)
such as fulvestrant [190]. In hospitals participating in the SCAN-B study (see section 1.9),
this type of drug has been used since spring 2017.

Several targeted drugs are being approved or showing strong promise in tumors with specific
gene mutations. Approximately one-third of breast tumors have mutations in the PIK3CA
oncogene. While targeting this gene effectively has long been difficult, recent advances
have led to the approval of the PI3K inhibitor alpelisib (Novartis) [191] in PIK3CA-mutant
HoR+/HER2- disease in combination with fulvestrant [192]. Metastatic tumors often de-
velop therapy resistance to standard treatments such as anti-HER2 drugs prescribed in early
disease. Tyrosine kinase inhibitors (TKIs) such as the recently FDA-approved tucatinib can
overcome this resistance. Additionally, Poly (ADP-ribose) polymerase (PARP) inhibitors
have shown promise in DNA-repair-deficient tumors such as those with BRCA1 or BRCA2
mutations.

Another emerging class of drug are antibody-drug conjugates, where traditional antibod-
ies such as trastuzumab are conjugated with a cytotoxic agent. This combination leads to
a more targeted release of the traditionally systemically-working cytotoxin by guidance to

17

https://clinicaltrials.gov/ct2/show/NCT01042379


Figure
1.6.Algorithm

foradjuvanttreatm
entofearly

breastcancerby
the

European
Society

forM
edicalO

ncology
(ESM

O
).

a
W

ith
possible

exception
ofselected

casesw
ith

very
low

risk
T

1abN
0.

b
Anti-H

ER
2:trastuzum

ab
±

pertuzum
ab.

c
Adenoid

cystic
orapocrine,secretory

carcinom
a,low

-grade
m

etaplastic
carcinom

a.
d

D
epending

on
levelofER

and
PgR

expression,proliferation,genom
ically

assessed
risk,tum

orburden
and/orpatientpreference.

e
Exceptforvery

low
-risk

patientsT
1abN

0
forw

hom
ET

/anti-H
ER

2
therapy

alone
can

be
considered.

Abbreviations:C
hT

–
chem

otherapy;ER
–

estrogen
receptor;ET

–
endocrine

therapy;H
ER

2
–

epiderm
algrow

th
factorreceptor2;N

0
–

node
negative;PgR

–
progesterone

receptor;T
N

BC
–

triple-negative
breastcancer.

Figure
and

descriptionsa–e
reprinted

from
C

ardoso
etal[188]w

ith
perm

ission
from

Elsevier.

18



tumor cells via the antibody. Examples of these drugs include trastuzumab emtansine and
trastuzumab deruztecan approved for treatment of advanced HER2+ tumors, and sacitu-
zumab govitecan in advanced TNBC.

Lastly, immunotherapies have shown promise in many types of difficult to treat tumors.
In breast cancer, PD-1/PD-L1 inhibitors such as atezolizumab and pembrolizumab are
being used to treat metastatic tumors and triple-negative tumors [193]. Beyond PD-1
checkpoint blockage approaches, tumor infiltrating lymphocytes have shown promise in
select cases [194], and other options have been reviewed by Chrétien et al [195]. How-
ever, immunotherapies come with their own risks and are prone to causing a wide range of
immune-related adverse events such as cytokine storms [196] and elevated risk for devel-
oping secondary cancers [197, 198]. Additionally it remains unclear which patients benefit
from immunotherapy and there is a lack of biomarkers predictive of treatment success.

1.4.6 Molecular Landscape

Breast cancers are driven by unique genomic and transcriptomic properties. Large-scale
high-throughput sequencing initiatives including The Cancer Genome Atlas (TCGA), the
Molecular Taxonomy of Breast Cancer International Consortium (METABRIC), the Inter-
national Cancer Genome Consortium (ICGC) [199], and others have thoroughly mapped
the genomic landscape of both early and advanced breast cancer in the past decade [200–
206]. Others have explored the clonal evolution of breast tumors [207–209].

On average, breast tumors have a low to medium mutation burden compared to other can-
cer types such as melanoma [59, 67, 206, 210]. The landscape in early breast cancer is dom-
inated by mutations in the genes PIK3CA and TP53. The oncogene PIK3CA is mutated
in ~35% of breast tumors, and features a wide spectrum of missense mutations that lead to
overactivation of growth signalling via the PI3K-AKT-mTOR pathway. This includes the
most common mutation in breast cancer, PIK3CA H1047R [202, 211]. The tumor sup-
pressor gene TP53 on the other hand is frequently disrupted by dominant-negative point
mutations, frame-shift indels, and nonsense mutations that trigger nonsense-mediated de-
cay of the incomplete TP53 transcripts.

Copy-number alterations play a major role in breast cancer. Particularly the locus 17q11
around the oncogene ERBB2 is frequently amplified, which has lead to the adoption of
HER2 testing to guide treatment with anti-HER2 therapy. Further recurrently amplified
loci are 8q11, 8q13, and 8q24 on chromosome 8, as well as 17q23 and 20q13, involving
genes such as MYC [202]. Other loci are frequently disrupted or lost entirely, such as those
involving PTEN [212] and RB1 [213]. Other SVs are common [214] and genomic SV
hotspots exist [215], but recurrent SVs and gene fusions are rare [215–218]. However,
expressed fusions do appear to negatively impact patient survival in advanced HoR+ breast
cancer [219], and fusions deregulating miRNAs and snoRNAs have been reported [220,
221].
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Other common occurrences in early breast cancer are epigenetic marks such as methyla-
tion. Promoter hypermethylation is common and leads to reduced or lost expression of
important tumor suppressor genes such as BRCA1 [222, 223] and PTEN [224]. Con-
versely, hypomethylation leads to increased expression and has for example been shown in
certain Basal-like tumors in the loci containing the genes MIA, KRT17, and KRT5 [225].

The overall processes leading to these genomic alterations leave a mark in the genome in the
form of mutational signatures that have been thoroughly described in previous studies [54,
59, 226, 227]. All alterations impact the transcriptomic landscape of breast cancer in
specific ways and distinct expression signatures have been associated with several of them,
such as gross PTEN structural aberrations [228].

The alteration landscape of invasive tumors varies by histological and molecular subtype
[229]. Ductal carcinomas are characterized by SNVs and indels in TP53, GATA3 and
MAP3K1 and CNVs involving the oncogenes ERBB2 and MYC, and others. Lobular tu-
mors are defined by nonsense SNVs and frame-shift indels involving CDH1, leading to
loss of mRNA expression and the characteristic loss of E-cadherin protein. Alterations
in PIK3CA and PTEN are also associated with the lobular subtype. Tumors of HER2-
enriched and Basal-like subtype have a higher SNV and indel load than Luminal-like tu-
mors [202], and harbor more SVs [215, 218], highlighting the genomic instability inherent
to these subtypes. All molecular subtypes are also associated with distinct DNA methyla-
tion patterns [146].

The patterns of genomic alterations shift during the evolution from early to advanced breast
cancer, partly due to selection pressure from adjuvant treatment. Compared to primary tu-
mors, metastases have a higher TMB, an elevated frequency of resistance mutations such
as in ESR1 [230] as well as shifted mutational signatures that are associated with adjuvant
treatment [231]. Some metastases switch molecular subtypes compared to the primary
tumor they derived from, particularly from Luminal A-like towards more aggressive sub-
types [145, 232, 233].

1.5 The Human Genome and High-Throughput Transcriptome
Profiling

The sequencing of the human genome and the release of the first draft sequences in 2001
were monumental efforts that fundamentally changed our view on biology and our ap-
proach to biomedical research [234]. With the evolving push towards personalized and
precision medicine, the currently used human reference genome starts to show its limita-
tions [235] and a variety of solutions have been proposed. These range from using multiple
reference genomes, for example per-population reference genomes [236], to constructing
pan-genomes [237, 238], to moving on from the currently predominant linear genome rep-
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resentations towards a graph-based genome representation that it better suited to represent
complex genomic diversity [239].

1.5.1 The Human Reference Genome

Virtually all work in human cancer genomics is currently performed relative to the human
genome reference sequence [16, 17]. The sequence was the result of the herculean effort
by the Human Genome Project (HGP) headed by Francis Collins, as well as the company
Celera Genomics headed by Craig Venter. The HGP approach was to tile along the human
genome sequence using bacterial artificial chromosomes (BACs), thus sequencing the gen-
ome step by step. Celera’s approach was to turn sequencing into a computational problem.
The genome was shotgun sequenced by cutting DNA into short oligonucleotide pieces, se-
quencing them, and computationally re-assembling them into contigs. Being competitors
for a long time, ultimately the two groups combined their efforts into the human reference
genome. The “finished” sequence of the human genome was published in 2004 [240].

Two facts about the human genome reference are important to consider when using it for
analyses. First, its sequence does not represent the sequence of one specific human being,
although approximately 70% of the original human genome reference sequence originated
from one person. Thus it is an amalgamation of sequences derived from different human
beings [241, 242]. Second, the 2001 and 2004 genomes were by no means complete.
The genome contains vast stretches of DNA that are inherently difficult to sequence, such
as centromeres, telomeres, and other highly repetitive regions. Other regions have been
sequenced, but so far could not be correctly placed, and are distributed as additional contigs
(“patches”) in some versions of the reference assembly. Since the release of the “finished”
sequence in 2004, the reference assembly has been steadily improved [243], culminating in
the current GRCh38 assembly [244]. However, to date the sequence remains incomplete.

Another consideration is the lack of diversity in the reference genome. Global genetic
diversity has been explored in a variety of large-scale studies [245–247]. The difference
between a typical human genome and the human reference genome has been estimated to
be 4.1-5 million sites [246], which is likely an underestimation [248]. This was further
illustrated by Sherman et al [249] who constructed an African pan-genome and found that
it contained approximately 296.5Mb of sequence that has no representation in the human
reference genome, resulting in these sites potentially being ignored in analyses relative to
the reference genome. Similar results, albeit on a smaller scale, were found in the Icelandic
population [250]. Consequently, lack of diversity may pose problems for precision medi-
cine in populations with underrepresented genomic information.

Taken together, these limitations have long posed problems to analysis and clinical trans-
lation of sequencing [235, 237], such as reference bias and underdetection of potentially
disease-relevant genes [251], and they are being addressed in various ways. The emergence
of improved technologies such as long (>10,000bp) read sequencing promises to fill the
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gaps in the human genome sequence in the near future. For example, only recently the
map of the Y chromosome centromere was generated [252], and the complete structures
and sequences of chromosomes 8 and X were described [253, 254]. Further, it allows to
detect more human diversity in form of SVs that were not possible to resolve using short-
read sequencing data [248]. The lack of genome diversity has made clear that one single
reference genome is not enough for future research and clinical purposes [237]. Efforts are
ongoing in many countries such as Sweden [255–257], Denmark [258], and Japan [259,
260] to develop country-specific and even region-specific resources, for example reference
genomes and variation databases. Adoption of graph genomes that are directly able to
incorporate genetic variation is another possibility and an active area of research [239].

1.5.2 High-throughput Sequencing

Sequencing technology has improved remarkably since the first RNases were sequenced in
the 1960s [261, 262]. High-throughput short-read sequencing (HTS) – also called high-
throughput sequencing, next-generation sequencing (NGS), deep sequencing, second-gene-
ration sequencing, or massively parallel sequencing – refers to the repeated parallel sequen-
cing of short (<1,000bp) DNA or RNA fragments. Since its introduction in the 2000s it has
transformed biomedical research and our understanding of disease biology. This technique
can result in up to thousands of sequence determinations of the same genomic locus and
has been adopted into a plethora of sequencing methodologies, the most common ones be-
ing whole-genome sequencing (WGS), whole-exome sequencing (WES), targeted-capture
sequencing, RNA sequencing (RNA-seq), and methylation analysis using bisulphite se-
quencing or TET-assisted pyridine borane sequencing (TAPS) [263]. Compared to earlier
profiling technologies such as microarrays, HTS has higher resolution down to single nucle-
otides, can measure previously unknown (de novo) sequences, and provides greater dynamic
range.

A specific variant of HTS – sequencing by synthesis – was originally developed by the
company Solexa, and later bought by Illumina. Also referred to as Illumina sequencing, it
is currently the most commonly used sequencing technology with an estimated worldwide
instrument market share of 80% [264]. All studies included in this thesis make use of data
generated using Illumina RNA-seq, and the technique is described in detail in Section 3.3.

While Illumina sequencing is currently the most commonly used technology, in the last
few years third-generation sequencing or long-read sequencing has gained traction. These
technologies, most prominently developed by the companies Oxford Nanopore and Pacific
Biosciences, enable read lengths of tens of thousands of bases (Pacific Biosciences) to more
than one million bases (Oxford Nanopore). These characteristics open up new opportun-
ities to fill the gaps in reference genomes (see Section 1.5.1), improve SV detection [265],
and variant calling in traditionally difficult to handle genome regions, as demonstrated in
the precisionFDA Truth Challenge V2 [266].
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Figure 1.7. Visualization of the transcriptome profiling techniques bulk RNA-seq, single-cell RNA-
seq, and spatial transcriptomics, as well as the original tissue donor organ using toy bricks. Each
brick represents one cell, and color coding depicts cells with similar expression patterns and thus
similar phenotype.

Image credit: Bo Xia (https://twitter.com/BoXia7)

1.5.3 Transcriptome Profiling

Different techniques are available for probing the cancer transcriptome. Expression mi-
croarrays became available in the early 2000s and could be used to measure the expres-
sion of known genes and isoforms. Around 2010, high-throughput short-read sequencing
(RNA-seq) started to evolve [267] and has since effectively replaced microarrays as the prin-
cipal method for transcriptome profiling. Unlike expression microarrays, RNA-seq is not
restricted to known sequences and provides single base-pair resolution. The three most im-
portant steps in RNA-seq evolution are visualized in Figure 1.7. Bulk RNA-seq was the first
available technique and provides an average readout across the input material. Single-cell
RNA-seq became available in the early 2010s and gives a readout on the level of individual
cells. Spatial transcriptomics was developed in 2016 and enhances single-cell RNA-seq by
enabling spatial resolution of mRNAs in individual tissue sections [268]. The focus of this
thesis is bulk RNA-seq, which will be referred to as RNA-seq from here on.
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In recent years sequencing has been making inroads into the clinic and it is being used to
stratify patients into relevant clinical subtypes, identify treatment-predictive or prognostic
genomic aberrations, and to track minimal residual disease. In many modalities the fo-
cus has been on introducing DNA-based sequencing (DNA-seq) into the clinic, mostly
in order to determine genomic driver alterations. RNA sequencing has received less fo-
cus outside of the research community, although some clinical applications in mendelian
diseases [269–271], myeloproliferative neoplasms [272], childhood cancers [273] and oth-
ers have emerged. In many cases RNA-seq accompanies DNA-seq in multi-omics ap-
proaches [274], and is typically used for subtyping and gene expression signatures. How-
ever, the capabilities of RNA-seq beyond this use case are now being recognized, as evident
from recent reviews that have highlighted the growing importance and capabilities of RNA-
seq, both from a technical and clinical view [275–278].

RNA-seq offers many advantages over previous methods. It has a greater dynamic range
and reproducibility, and can detect de novo transcripts such as fusion genes in addition to
quantifying known transcripts [267]. In addition to isoform and gene expression it offers
single-base resolution, which unlocks a range of applications, for example the possibility
to detect sequence variants [279–286], coarse copy-number aberrations [287–290], and
structural variants [291, 292].

Through its sweet-spot between the genome and the proteome, transcriptome profiling us-
ing RNA-seq may be a powerful first-line clinical diagnostic tool. By enabling profiling
of expression and genomic alterations simultaneously and within an actionable timeframe
from surgery, a variety of gene expression signatures, for example for treatment response
prediction, can be applied and drug susceptibility and resistance mutations can be evalu-
ated.

1.6 Bioinformatics

While computational methods have been used in biochemistry since the 1960s, for example
through the work of Margaret Dayhoff [293], the initial sequencing of the human genome
and the advent of high-throughput molecular techniques such as HTS have transformed
biology into a data-driven subject that requires computational knowledge. The term bioin-
formatics was originally coined in the 1970s by Paulien Hogeweg and Ben Hesper to de-
scribe “the study of informatic processes in biotic systems” [294]. Since then the term has
evolved to describe a vibrant interdisciplinary field that develops, curates, and applies com-
putational methods to transform data into biological and clinical insights. Bioinformatics
encompasses a wide range of subject areas, including structural bioinformatics and pro-
teomics, HTS, sequence analysis, and biological networks. An integral part of the field’s
culture has been the embrace of open source software development and permissible licenses
for code and, increasingly, data [295–297]. In spite of its importance for the life sciences,
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the field still struggles with acceptance in the academic and medical realm, including lack
of funding for development and maintenance of even critical methods [298], as well as lack
of recognition and career options [299–301].

Bioinformatics is a crucial part of HTS, as the sequencing process transforms a traditionally
wet-lab problem into a computational problem. Data processing is performed using com-
putational pipelines or workflows, i.e. chains of different methods that work in concert to
transform the data into the desired outcome or insight. To gain a better understanding of
breast cancer and develop clinically meaningful diagnostic tools, the development of new
computational methods and workflows is paramount.

1.7 Major Challenges

Survival of breast cancer patients has improved in recent years, however many challenges
remain. Screening programs have enabled the early detection of lesions and thus either the
chance to remove them before potentially becoming malignant, or if already malignant, to
prevent cancer from spreading. However, this has resulted in increased detection of in situ
lesions that would perhaps never develop into invasive breast cancer. Distinguishing harm-
less lesions from those that will become malignant is currently not reliably possible. As a
consequence a significant fraction of women are likely cured by surgery and radiotherapy
alone, or may only need comparably mild adjuvant therapy, but are being overtreated and
thus suffer from unnecessary side effects, including long-term effects such as developing
secondary cancer [302]. In addition to its physical and psycho-social effects, overtreatment
also poses a significant economic burden on healthcare systems [303] and the patients them-
selves. Much effort is being put into finding ways to downstage low-risk tumors to spare
treatment, such as the TAILORx clinical trial and others [304]. On the other end of the
spectrum, patients who have lived disease-free for 15 years or more may still develop disease
recurrence and ultimately succumb [101]. Distinguishing patients who will do well from
those that will not is a major task for the future. Current diagnostic tools are imperfect,
and in addition to the cases mentioned above, they also falsely identify a small proportion
of cases as low risk, when in fact they are high-risk and could perhaps benefit from more
or different treatments. We partly address this challenge in study iii.

While treatment options have broadened in the last decades, resistance to drugs coupled
with tumor heterogeneity continues to be a major challenge. External stimuli, such as treat-
ments, provide selection pressure on the tumor and drive the evolution of resistant clones.
Clones that harbor or develop a resistance mutation can thrive while competing clones suc-
cumb [305]. Examples of clinically important resistance mutations are endocrine-resistance
causing mutations in ESR1 [230], ERBB2 [306, 307], genes of the FGF and FGFR families
[308], as well as activating ESR1 mutations and PTEN loss of function mutations that lead
to alpelisib resistance [309]. While resistance mutations are particularly prevalent in meta-
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static tumors [307, 310], they can already occur in treatment-naïve primary tumors [311],
as we also show in study iv.

A major unmet need is effective treatments for the patient population with triple-negative
tumors. While for other tumors targeted treatment options such as anti-hormonal or
anti-HER2 therapies are available, TNBC tumors currently lack viable molecular targets
and have poorer survival. In recent years several subtypes of TNBC have been identi-
fied [312], and alternative therapies such as PARP inhibitors and immune checkpoint in-
hibitors [313] are in clinical trials and showing promise, possibly also in combination [314].
Many of these tumors harbor germline or somatic BRCA1/BRCA2 mutations, or exhibit
“BRCAness”, meaning they exhibit homologous repair deficiency but are not BRCA-muta-
ted [315]. These tumors can be detected using mutational and copy-number signatures
such as HRDetect [316], and may likewise benefit from therapies such as PARP inhibitors.

The primary cause for breast cancer death is relapse of the disease in form of metastases.
Detecting relapse is currently routinely being done using imaging techniques, either at reg-
ular checkup-intervals, or prompted by patient symptoms such as headache or bone pain.
Since the early 2010s liquid biopsy approaches in form of circulating tumor cells (CTC)
and circulating tumor DNA (ctDNA) have shown promise in tackling this problem [57,
317]. Both rely on the fact that tumors shed genetic material into bodily fluids such as
blood where it can be detected in patient plasma from a simple blood draw. Prospect-
ive studies will be needed to bring these technologies into routine use for monitoring of
minimum residual disease and treatment response.

1.8 Precision Medicine

Precision medicine – also called personalized medicine – is an approach to tailor treatments
to the specific genetic, environmental and lifestyle conditions of a patient. In cancer this
means in particular determining and taking into account the genomic traits of the tumor
and targeting its specific aberrations, as well as adjusting the therapy choices, doses, and
durations depending on the clinical follow-up and predictive laboratory tests. The field is
moving from designing drugs by tumor site to targeting specific genomic aberrations across
different cancer types. For example a recent clinical trial of the HER tyrosine receptor
kinase (TRK) inhibitor neratinib enrolled patients based on mutations in the ERBB2 and
ERBB3 genes, independent of the tumor site [318]. Another trial evaluated the efficacy
of the TRK inhibitor larotrectinib across cancers with TRK fusions [319]. A milestone
for precision medicine occurred in the year 2017 when the drug pembrolizumab achieved
approval by the FDA for treatment of solid tumors with microsatellite instability or DNA
mismatch repair deficiency, independent of tumor type. This marked the first time a drug
was approved based on genomic biomarkers alone instead of histopathology [320].

While precision medicine has many proponents, it is not without controversy [321]. Crit-
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ics have noted that thus far few tangible success stories exist, despite high promises and
expectations, and a great deal of money that has been spent in this area by funding agen-
cies, nonprofit organizations, and corporations. Further, genome-driven oncology does not
currently benefit the majority of U.S. patients [322]. Even for the ones it does benefit, the
number of patients with measurable survival benefits varies [321].

Besides matters of practical implementation and the arguments for and against precision
medicine, it is important to keep its economic side in mind. Health care systems need
to balance patient care with economic cost, which is a challenge in western societies due
to rising cancer incidence and notoriously expensive cancer drugs [323, 324]. Genomics-
guided diagnostics have the potential to drive down costs in the future by optimizing drug
allocation and the ability to perform a multitude of computational tests and signatures
based on data from a single laboratory test. Whether these hopes actually become reality
needs to be determined by detailed economic studies, however preliminary studies indicate
that sequencing benefits patients and is cost effective [325, 326].

As in most cases, the current reality about precision medicine lies between the extreme
positions of its proponents and opponents. While the expectations on precision medicine
were overly optimistic, particularly after the release of the first draft sequences of the human
genome (see Section 1.5.1) and the early days of HTS, the reality is that precision medicine
is moving into the clinics. In certain modalities such as advanced non-small cell lung can-
cer (NSCLC), diagnostics technologies such as qPCR, dPCR, and targeted sequencing are
routinely being used to test for the presence of biomarkers such as the EGFR L858R muta-
tion, which signals susceptibility to TKIs such as afatinib and crizotinib, and EGFR T790M
which confers resistance to these TKIs, but which can be overcome with other drugs such
as osimertinib. While not all cancer patients currently benefit from genomic technologies
and targeted treatments, these numbers will increase, as they already have between 2006
and 2016 [322]. An example of precision medicine in real-life is the National Cancer In-
stitute Molecular Analysis for Therapy Choice (NCI-MATCH) study (ClinicalTrials.gov
identifier NCT02465060) [327] study, where patients are guided to therapies based on
their genomic profiles across several tumor types.

1.9 TheSwedenCanceromeAnalysisNetwork –Breast (SCAN-B)
Initiative

The Sweden Cancerome Analysis Network – Breast (SCAN-B) Initiative (ClinicalTrials.gov
identifier NCT02306096) is a precision medicine initiative started in 2009 by Prof. Åke
Borg as a joint effort of researchers, physicians, nurses and other health-care specialists
to improve diagnostics, treatment, survival, and quality of life for breast cancer patients.
The initiative is described in detail in study i and by Rydén et al [328]. The SCAN-B
study initially started enrolling patients in 2010 at seven participating hospitals in Malmö,
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LundMalmö
Kristianstad

Helsingborg Karlskrona

Halmstad Växjö

Jönköping (Jul 2015)

Uppsala (Oct 2013)

Figure 1.8. Map of Sweden with the sites participating in the SCAN-B initiative marked: Malmö,
Lund, Kristianstad, Helsingborg, Karlskrona, Halmstad, Växjö, Uppsala, and Jönköping.

Lund, Kristianstad, Helsingborg, Karlskrona, Halmstad, and Växjö, all located in the South
Sweden healthcare region. Since then sites in Uppsala (2013) and Jönköping (2015) have
joined the effort (Figure 1.8), and there is a standing open invitation to hospitals in the
Nordics to join.

The goals of the initiative are threefold: to introduce gene expression and genomic tumor
profiling into the clinical routine for breast cancer; to improve tumor classification, dia-
gnosis, prognostication and prediction of treatment effects; and to make improvements
accessible to patients through implementation within the healthcare system, clinical trials,
and cooperation with the drug and biotechnology industry.

All patients with breast cancer at participating sites are eligible to enroll in SCAN-B, which
started in August 2010 with the main SCAN-B study enrolling patients with primary breast
cancer. In addition, since January 2019 patients with metastatic breast cancer are eligible to
enroll in the SCAN-B-rec sub-study (ClinicalTrials.gov identifier NCT03758976). Each
participating patient gives written informed consent, and donates a piece of their tumor as
well as a pre-operative blood sample. After the surgery further blood samples are taken at
defined follow-up time points. All samples are sent to the Division of Oncology at Lund
University for central analysis and biobank storage. Currently the analysis process con-
sists of performing mRNA sequencing (RNA-seq) of the tumor samples, typically within
one week of surgery. This short time-span from surgery to data is critical for the eventual
translation of biomarkers in a clinically-actionable manner.

Compared to earlier studies and patient cohorts, SCAN-B represents a significant advance.
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Patients have been treated with modern nationally standardized care regimens, such as anti-
hormonal therapies and anti-HER2 therapies, and have been enrolled prospectively across
a wide geography with nearly all new patients diagnosed being consented for SCAN-B.
Older cohorts are often not representative since these treatments were not available at the
time, or the cohorts are heterogeneous or not population-based, complicating comparisons
with today’s patients and thus seriously hindering their use in biomarker development. Its
population-based nature and real-world conditions ensures that conclusions drawn from
SCAN-B-based studies are representative and generalizable for the wider population. The
importance of this was highlighted by Xie et al [329] who analyzed 70 widely used public
breast cancer gene expression datasets and found that they do not reflect the disease at
a population level. Instead, high grade and ER- tumors are over-represented, potentially
leading to biased conclusions. As of December 2020, more than 16,000 patients have
consented to be part of SCAN-B, translating to approximately 85% of eligible patients,
and more than 13,500 RNA-seq libraries (including replicates) have been sequenced.

In addition to studies i–iv included in this thesis and many ongoing projects, the uses of
the SCAN-B cohort thus far have covered research into many areas such as triple-negative
[205] and BRCA1-abnormal tumors [223], benchmarking of gene expression signatures
[163], investigation of gene fusions [220], molecular subtyping [155, 330] and psycho-
logical resilience [331], development of predictors of lymph-node metastasis [332], and
comparisons of circulating tumor DNA (ctDNA) and circulating tumor cells (CTCs) for
liquid biopsies [333].
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2 | Aims
“They’re pretty high mountains,” said Azhural,
his voice now edged with doubt. “Slopes go up,
slopes go down,” said M’bu gnomically. “That’s
true,” said Azhural. “Like, on average, it’s flat
all the way.”

— Terry Pratchett, Moving Pictures

RNA-seq is a versatile yet underused technique for cancer diagnostics. The overarching aim
of this thesis was to evaluate, explore, and improve the usability of RNA-seq as a clinical
diagnostics tool within the SCAN-B project and breast cancer diagnostics.

The specific aims of the four studies included in this thesis were as follows:

i To describe the SCAN-B study and its protocols and computational RNA-seq
pipeline, provide an early evaluation of the enrolled patient cohort, evaluate the
generated RNA-seq data by comparison of RNA-seq and expression microarrays
performed on the same samples, and prototype variant calling.

ii To describe format validity problems in the widely-used RNA-seq alignment soft-
ware packages TopHat and TopHat2 and develop a software tool to correct the
problems.

iii To assess variation within standard clinical histopathology, explore classification of
clinically important biomarkers from RNA-seq-based gene expression profiles, and
validate the classifications on overall patient survival in an independent cohort.

iv To develop a computational pipeline for detection of somatic SNVs and indels
from tumor-only RNA-seq data, and explore the mutational landscape of a large
real-world primary breast cancer cohort in relation to patient overall survival.
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3 | Methods
Sometimes it’s better to light a flamethrower
than curse the darkness.

— Terry Pratchett, Men at Arms

3.1 Patients, Samples, and Ethics

All patients who contributed tumor material to the studies in this thesis were enrolled in the
SCAN-B study, or the precursor study All Breast Cancer in Malmö (ABiM). As part of the
enrollment process they were informed about the study by trained medical professionals,
and patients provided written informed consent. Studies i, iii, and iv were approved by
the Lund ethics review board and performed in accordance with the Declaration of Hel-
sinki. Study ii did not include patient material or data and thus no ethics permissions were
required.

The enrollment, biospecimen sampling, and analysis processes of the SCAN-B study are
described in detail in study i. Importantly, surgical tumor specimen are kept in RNAlater
(Ambion) preservative after the routine pathology assessment, ensuring high quality RNA
for later sequencing. Only remaining tumor material after the pathological assessment is
included in SCAN-B, ensuring that SCAN-B enrollment is not a detriment to routine
clinical care. ABiM samples were collected at surgery and stored fresh-frozen.

Table 3.1. Patient datasets and experimental setups used in studies i, iii, and iv.

Source Material Experimental Setup Patients Samples Study

SCAN-B Tumor RNA-seq / Microarray 49 49 i
SCAN-B Tumor RNA-seq 3,273 3,273 iii
ABiM Tumor / Normal RNA-seq / Targeted DNA-seq 273 275 iv
SCAN-B Tumor RNA-seq 3,217 3,217 iv

The patient cohorts and experimental setups used in this thesis are described in Table 3.1.
Study i included 49 tumors that were analyzed using RNA-seq and expression microarrays.
Study iii included 3,273 tumors, which were selected according to the flow diagram in
Figure 3.1 to include all invasive, non-metastatic, unilateral breast tumors. For study iv
we used a cohort of 275 tumors from 273 patients (two patients with bilateral disease)
assembled from the ABiM study, and re-used the cohort assembled for study iii. Applying
additional quality checks reduced the number of patient tumors in the latter cohort to
3,217.
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Enrolled SCAN-B patients
(n=5101 patients, 87%)

Enrolled patients with tumor
biopsy sample for analysis

(n=3847 patients, 75%)

Validation cohort with quality
controlled RNA-seq data
(n=3273 patients, 85%)

Not enrolled (n=791)

No tumor tissue for study (n=1205)
or tumor tissue obtained after
neoadjuvant therapy or previous
biopsy (n=49)

All breast cancer patients in the
South Sweden healthcare region 

diagnosed between
Sept. 1 2010 and Mar. 31 2015

and operated for invasive
primary* breast cancer

(n=5892 patients)

Insufficient or poor quality RNA and 
RNA-seq not performed or failed 
(n=464); RNA-seq data failed QC 
(n=110)

Figure 3.1. Patient cohort diagram for study iii. * Non-metastatic primary unilateral breast cancer,
which excluded patients with a diagnosis of synchronous (<3 months) contralateral invasive breast
cancer.

Source: Adapted from Study iii, Supplementary Figure A1 (CC-BY 4.0)

3.2 DNA Microarrays

DNA microarrays were first developed in the mid 1990s [334] and were the dominant tool
to measure RNA expression, SNPs, methylation, and other markers in the 2000s. They
allowed the expression of large numbers of genes to be simultaneously measured for the
first time. While RNA-seq has since become the preferred tool for expression profiling,
microarrays are still widely used. Microarrays are chips with tens of thousands to hundreds
of thousands of short oligonucleotide probes attached to a solid surface. The working
principle is visualized in Figure 3.2. Each probe is complementary to a part of the target
DNA molecule or “feature” to be measured. For gene expression profiling, the input mRNA
is reverse-transcribed into cDNA and labelled with a fluorescent dye. The cDNA sample
solution is then flooded over the chip, allowing the cDNA to hybridize to the probes,
while unhybridized cDNA is washed away. Hybridization is quantified using a scanner
that excites the labelled DNA using a laser and measures the resulting fluorescence. The
resulting data needs to be analyzed while accounting for technical factors.

Microarrays have several limitations. First, they can only detect previously known se-
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Figure 3.2. Microarray working principle. Fluorescently labelled target sequences hybridize to
complementary probes on the microarray surface. Probe-bound sequences produce a fluorescence
signal when laser-excited (green stars), while unbound sequences are washed away and thus do not
produce signals (red stars).

Source: https://commons.wikimedia.org (Public Domain)

quences, since complementary probes need to be present on the chip for detection. In
cancer, this means de novo transcripts such as novel gene fusions, mutated transcripts, or
unknown isoforms resulting from, for example, aberrant splicing cannot be detected. While
microarrays can measure expression, they cannot resolve the more intricate features of the
transcriptome such as RNA modifications, or sequence changes such as those caused by
somatic mutations. Technical problems such as cross-hybridization and hybridization fail-
ure lead to high levels of background noise and missing values in the resulting data [335,
336]. High background noise and signal saturation limit the dynamic range so very low
or very high expression cannot be accurately reflected. Due to variability of microarray
platforms, comparison of microarray datasets from different platforms is inherently diffi-
cult and requires extensive normalization (techniques reviewed by Walsh et al [337]. Like
many other high-throughput techniques, including RNA-seq, microarrays are prone to
batch effects that influence interpretation and may have to be corrected [338, 339].

These technical problems pose challenges to the data analysis of microarray experiments.
To compensate, microarrays typically contain control probes to estimate background noise.
Using these, the estimated noise can be removed from all other measurements. Another
common problem is missing values, since many downstream algorithms require complete
data. This has led to the development of a variety of imputation methods to “predict”
missing values from other samples, reviewed by Aittokallio [340]. If a gene shows missing
expression values in too many samples it is typically prudent to exclude it from further
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analysis, since incorrect imputation may lead to false conclusions.

In study i we compared expression data resulting from the SCAN-B RNA-seq pipeline to
Illumina Human HT12 v4 BeadChip microarrays covering 47,231 probes across the hu-
man transcriptome [341]. While expression levels were comparable between the platforms,
the comparison highlighted the superiority of RNA-seq compared to microarrays in terms
of dynamic range and reproducibility. We also compared molecular subtyping based on
three gene lists and found high concordance between the two technologies. However, this
task highlighted another issue, in that probe annotations may be wrong or incomplete, but
are required to map probes to their target mRNAs. For example in study i we were able to
match most but not all probes included in the Sørlie [137] and Hu [140] subtyping lists
with our RNA-seq data.

3.3 High-Throughput Sequencing

High-throughput sequencing has revolutionized molecular biology. While third-generation
technologies such as Pacific Biosciences single molecule real-time sequencing (SMRT) and
Oxford Nanopore are gaining popularity, Illumina sequencing is by far the most commonly
used [342]. Depending on the setup it can be used for DNA sequencing (DNA-seq) or
RNA-seq. Common DNA-seq experimental setups are WGS, WES, or targeted sequen-
cing hybrid capture-based panels. The difference between these setups is which exact part
of the genome is being sequenced. As part of study iv, we used a custom hybrid-capture
sequencing panel, while the remaining sequencing data in studies i, iii, and iv is based on
whole mRNA RNA-seq.

Illumina sequencing machines use a method based on sequencing by synthesis (SBS) and
reversible terminators. The method was invented by Shankar Balasubramanian and David
Klenerman, and first commercialized by the company Solexa, which Illumina acquired in
2007. A schematic of Illumina sequencing is shown in Figure 3.3. The sequencing process
is performed in a “flow cell” – a compartment containing lanes through which reagents can
flow in from one side, react with the surface, and are flushed out the other side. Depending
on the sequencing machine model one or more flow cells can operate in parallel, with each
flow cell containing multiple lanes. During sample preparation, sequencing adapters are
ligated to the template cDNA molecules to be interrogated. These adapters are immobilized
onto the flow cell surface using complementary bait oligonucleotides. Each immobilized
template sequence is multiplied into a cluster of ~1,000 sequences using bridge amplifica-
tion (Figure 3.3A). On the flow cell surface(s), many millions of clusters are generated which
can then be sequenced simultaneously and in parallel. Depending on the setup, sequencing
is performed in single-end or paired-end mode. In single-end mode, each molecule in a
cluster is only sequenced from one end, resulting in a single read. In paired-end more, each
molecule is sequenced from both ends, resulting in two reads. This provides additional in-
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Figure 3.3. Illumina sequencing working principle using four distinct colors for the nucleotides A,
T, G, C. A. The path from hybridization of template reads to the flow cell to cluster generation using
bridge amplification. B. High-throughput sequencing using sequencing by synthesis with reversible
terminators.

Source: Chaitankar et al [343]; reprinted with permission from Elsevier (panel C. not shown).

formation to subsequent in silico analysis, as the expected distance between the paired reads,
as well as their orientation is known. The sequencing process itself is performed in cycles,
where each cycle starts by flooding the lanes with millions of deoxyribonucleotide triphos-
phates (dNTPs: A, T, G, C) that contain a reversible terminator that blocks polymerase
activity (Figure 3.3B). Each terminator is labelled with one of two or four (depending on
the instrument) fluorophores that emit a different color when laser-excited. One dNTP
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Table 3.2. Phred base qualities for defined base call accuracies.

Phred Quality Score (Q) Probability of Incorrect Base Call (P ) Base Call Accuracy

10 1 in 10 90%
20 1 in 100 99%
30 1 in 1,000 99.9%
40 1 in 10,000 99.99%
50 1 in 100,000 99.999%

Source: Illumina Technical Note: Quality Scores for Next-Generation Sequencing [346].

is incorporated into each template strand on the flow cell. After that, two or four flow
cell images are recorded, corresponding to the number of colors used and the terminators
are removed so the next cycle can begin. Due to the presence of terminators, each cycle
can only incorporate one base. The number of sequencing cycles is user-configurable, but
is typically between 50 and 150 cycles, depending on the sequencing instrument. The
per-cycle images are analyzed and converted into base calls by on-instrument software. In
addition to the base calls themselves, Illumina sequencers assign a quality value to each call.
This value is determined according to the Phred model shown in Equation 3.1 [344, 345],
where P is the probability of calling a wrong base. A Phred score of 30 therefore equals
a base call accuracy of 99.9% (Table 3.2). Base quality values are crucial for downstream
analysis, and in a typical Illumina sequencing run the vast majority of bases have a Phred
quality of ≥30.

Q = −10 · log10(P ) (3.1)

Multiple sample libraries can be sequencing in the same flow cell using multiplexing or
pooling. During the library preparation DNA molecules are tagged using sample-specific
barcode sequences. Multiple libraries are then pooled and sequenced concurrently. After
sequencing the reads can be demultiplexed in silico into sample-specific sequence files using
their sample barcodes.

All sequencing data used in this thesis was generated using Illumina HiSeq 2000 and
NextSeq 500 instruments. These instruments differ in their workings in that the HiSeq
2000 represents each of the nucleotides A, C, G, and T with a distinct fluorophore emitting
a different color when laser-excited. The NextSeq uses a simplified system based on two
colors where C (red) or T (green) are labelled with dedicated colors, A is labelled with both
colors, and G is unlabelled. This system causes a reduction of the number of images that
need to be taken during each sequencing cycle to two, down from four with the four-color
system. While this simplified system has led to a decrease of sequencing price, it is more
prone to over-calling G bases, since a genuine base call cannot be distinguished from a situ-
ation where no signal is detected due to technical error, such as cluster degradation [347].
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3.4 RNA Sequencing

RNA sequencing using high-throughput short-read sequencing (RNA-seq) has emerged as
the leading methodology for transcriptome profiling [267]. In recent years, it has effect-
ively replaced microarrays as the principal method for transcriptome profiling since it offers
many advantages over previous methods. RNA-seq has a greater dynamic range and repro-
ducibility, detection of de novo transcripts such as fusion genes in addition to quantifying
known transcripts, as well single-base resolution. These capabilities enable a multitude of
applications, such as the possibility to detect fusion genes and calling sequence variants
[279–282, 284–286], coarse copy-number aberrations [287–290], and structural variants
[291, 292], and the analysis of splicing and isoform switching [348].

While the name suggests direct sequencing of RNA molecules, it is instead typically per-
formed by sequencing cDNA resulting from RNA reverse-transcription. While direct Il-
lumina short-read RNA sequencing is possible in principle, it has never matured and con-
sequently is essentially unused [349, 350]. More recent sequencing technologies such as
nanopore sequencing have been used to directly sequence RNA [351–353], and even detect
RNA modifications [354, 355].

A general overview of the RNA-seq workflow from sample to result is depicted in Figure 3.4.
To prepare a sample for sequencing, input RNA has to be transformed into a sequencing
library. All RNA-seq of SCAN-B samples included in this study were sequenced using a
customized version of the stranded dUTP protocol [356]. Selection of this protocol was
made based the results of a comparison of stranded protocols from the literature [357]
and an in-house comparison of the Parkhomchuk second strand dUTP approach, Illumina
directional RNA ligation and the Epicentre ScriptSeq protocols. Newer libraries within the
SCAN-B RNA-seq workflow have shifted to newer protocols and today use the off-the-shelf
Illumina TruSeq protocol.

RNA-seq libraries can be prepared in a variety of ways. Two important properties are
whether or not the library preserves information about which strand a transcript originated
from (strand specificity), and whether single-end of paired-end sequencing is performed,
i.e. whether a template molecule is only sequenced from one end, or both ends.

3.4.1 Library Preparation and Sequencing

The RNA-seq data used in studies i, iii, and iv are based on libraries originating from a
customized version of the strand-specific dUTP protocol by Parkhomchuk et al [356], that
is described in detail in study i. While RNA-seq library preparation protocols have many
commonalities with DNA-seq protocols, specific steps are included to ensure preservation
of RNA properties. Most importantly, care has to be taken to preserve strandedness.

The customized dUTP protocol used for all SCAN-B samples included in the studies within
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Figure 3.4. High-level view of the RNA-seq workflow.

this thesis is described in detail in study i, and the steps are summarized in Figure 3.5. In
brief, starting from 1µg total RNA, mRNA is purified using poly-DT DynaBeads (Thermo
Fisher Scientific), and subjected to Zinc-mediated fragmentation (Ambion). The resulting
approximately 240bp fragments are isolated using Zymo spin columns (Zymo Research).
Using the fragmented mRNA as input, first-strand cDNA synthesis is performed by adding
random hexamer primers, reverse transcriptase, and dNTPs. Following cleanup of excess
reagents, second-strand synthesis is initiated by adding polymerase and dNTPs with dUTP
instead of dTTP. Resulting double-stranded cDNA is isolated using Zymo spin columns
(Zymo Research), followed by 5’/3’ end-repair and ligation of Illumina TruSeq sequencing
adapters (Illumina), including sample barcodes. Size-selection is then performed to remove
excess free adapters. To preserve strandedness, the dUTP-containing second cDNA strand
is digested using uracil-DNA glycolase (UDG).

An important parameter in a sequencing setup is the average depth of coverage or number
of reads to target for each samples. In a DNA-seq experiment, sequencing reads are distrib-
uted approximately uniformly along the targeted area of genome. An example target depth
is 30X, meaning on average each targeted base is covered by 30 reads. Deviations from the
uniform coverage assumption occur due to biases during library preparation and sequen-
cing, for example caused by GC-rich regions [358, 359]. RNA-seq differs from DNA-seq
in that reads are distributed approximately proportional to their expression level in the in-
put sample, meaning that the average sequencing depth across an RNA-seq dataset is not
a useful metric. Instead, the total number of sequencing reads is used to express how deep
one has sequenced.

The product of the library preparation process is a library of adapter-ligated double-stranded
cDNA that is ready to be loaded onto a sequencer and multiple libraries are pooled. Within
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Figure 3.5. Simplified workflow of the dUTP library preparation protocol.

SCAN-B, on the HiSeq 2000 instrument library pools were sequenced across two flow cells
in two lanes per flow cell to insure against technical failures and to reduce technical bias.
The newer NextSeq 500 instrument loads one flow cell containing 4 lanes, and the library
pool is automatically sequenced across all lanes. All RNA-seq samples included in studies i,
iii, and iv were prepared using the dUTP protocol, and sequenced in paired-end mode on
Illumina HiSeq 2000 or NextSeq 500 sequencers with a sequencing target of approximately
30 million read-pairs per sample.

3.4.2 Computational RNA-seq Analysis

Data processing and analysis is a key step in the RNA-seq workflow. The SCAN-B RNA-
seq processing pipeline that studies i, iii, and iv relied on is implemented within the BASE
laboratory information management system [360, 361] through the extension package Reg-
gie [362]. The pipeline follows the general computational RNA-seq workflow outlined in
Figure 3.6, and is described in detail in studies i and iii, as well as by Häkkinen et al [362].
It will be summarized here, and discussed in more detail in the following sections.

In brief, the SCAN-B computational pipeline used in studies i, iii, and iv consisted of
the following steps. Base-calling was performed using Illumina’s on-instrument software.
After sample demultiplexing, reads were trimmed to remove adapters and low quality 5’/3’
bases using Trimmomatic [363]. Reads that aligned to the PhiX phage genome, ribosomal
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Figure 3.6. General computational RNA-seq workflow.

DNA/RNA, or the UCSC RepeatMasker track [364] using Bowtie2 [365] were removed.
Bowtie 2 alignments were also used to estimate the fragment size distribution of the remain-
ing reads. Using this information, reads were aligned to the GRCh37/hg19 (study i) or the
GRCh38/hg38 (studies iii and iv) version of the human reference assembly and the UCSC
knownGenes transcriptome model using TopHat2 [366]. Unmapped reads were correc-
ted using TopHat-Recondition as discussed in paper ii. Using the aligned reads, transcript
expression was estimated using Cufflinks [367, 368] and summed on the gene level.

More recently, SCAN-B samples are being processed with a pipeline that has been updated
to use HISAT2 [369] for alignment, and StringTie [370] for expression estimation. These
updates provide considerable improvements to both run-time and resource use. In addi-
tion, StringTie provides the ability to output read counts, which is the recommended input
for differential expression profiling according to best practices [371].

The variant calling pipeline developed as part of study iv was based on demultiplexed
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FASTQ files from the SCAN-B pipeline, but deviated from it from this point. Alignment
was based on HISAT2 using a version of the GRCh38 reference assembly that included al-
ternative sequences and decoys to optimize alignment and reduce artifactual variants caused
by alignment problems. The pipeline was implemented within the bcbio-nextgen [372]
framework.

The individual steps involved in RNA-seq computational analysis are discussed in the fol-
lowing sections.

Demultiplexing and FASTQ Conversion

Illumina sequencers convert fluorescence signals from read clusters into nucleotide base calls
using Illumina’s on-instrument CASAVA software. Base calls are stored in the Illumina-
own BCL format. To convert BCL to the widely used FASTQ format, and to separate
the pooled samples for further analysis, sequencing reads are demultiplexed into sample-
specific FASTQ files. Two widely used software solutions for this task are the Illumina-
own bcl2fastq and IlluminaBasecallsToFastq from the Picard suite [373], which is used to
demultiplex SCAN-B sequencing runs.

Read Trimming and Filtering

Raw sequencing reads may be very short, contain adapter sequences, and/or low quality
5’ and 3’ bases, all of which may complicate subsequent analysis and in particular read
alignment. Adapter contamination occurs when the cDNA template being sequenced is
shorter than the requested read length and thus sequencing continues into the adapter. Low
quality bases occur, for example, at the 5’ ends due quality model calibration, and at the 3’
end due to imperfect sequencing. Each cluster on the flow cell consists of ~1,000 individual
cDNA templates. After many sequencing cycles, synthesizing the individual reads can get
out of sync causing lower confidence base calling.

Many computational pipelines, including SCAN-B, trim these potentially problematic read
features to improve downstream analysis. Whether and how much trimming improves
downstream analysis however, and which parameters are optimal, is often unclear and sys-
tematic evaluations of these questions are rare. An early study concluded that it is benefi-
cial for germline variant detection, but not necessarily for expression profiling with mod-
ern alignment software such as TopHat2 [374]. Similarly, a recent study concluded that
trimming is not necessary for expression profiling, since modern aligners such as HISAT2
support soft-clipping [375], which allows for low-quality read ends to remain in place in an
alignment dataset, leaving it to downstream processing software to ignore or consider them.
If trimming is performed, the choice of parameters that guide trimming aggressiveness have
a substantial impact on analysis quality [376].

Sequencing datasets frequently contain unwanted reads. For example the PhiX lambda
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phage DNA is frequently spiked-in as a control, and RNA samples contain a large amount
of ribosomal RNA (rRNA). Although RNA-seq library preparation protocols typically in-
clude rRNA depletion, or as within the SCAN-B protocol, selection of poly(A)-tailed RNA,
these procedures are imperfect and rRNA may still be sequenced. Removing these se-
quences saves computational time and space, removes a potential of analysis errors, and im-
proves expression estimation. Technically this is accomplished by aligning all reads against
the unwanted sequences, and only selecting reads that do not align to these sequences for
future analysis.

Alignment

During read alignment, also called mapping, individual reads are placed into the correct
position along a reference genome. For RNA-seq this is typically done with the help of a
transcriptome annotation that provides information about splice junctions and transcript
isoforms. Compared to aligners written for DNA, RNA-seq aligners are splicing-aware
and can take this extra information into account during alignment. Aligners that fall into
this category include TopHat [377], TopHat2 [366], HISAT [378], HISAT2 [369], and
STAR [379]. In studies i and iii we used TopHat2 in combination with the post-processor
TopHat-Recondition described in study ii to correct problems in unaligned reads. In study
iv we used HISAT2, the successor of TopHat2.

Duplicate Marking

Duplicate reads most often occur as a product of PCR during the library preparation process
(PCR duplicates) or due to the sequencer detecting the same template cluster multiple times
(optical duplicates), but they can also occur naturally as true duplicates. Marking duplic-
ate reads allows downstream analyses to ignore them, since in many cases they do not add
additional information, but can bias analyses such as variant calling. Several software tools
for duplicate marking exist [380–384] and virtually all of them follow the approach imple-
mented by the MarkDuplicates tool from the Picard suite [373]. It works by comparing the
5’ coordinates and sequences of single reads or read-pairs. Matching reads/read-pairs are
ranked by the sum of their base qualities, and all but the highest scoring read/read-pair are
flagged as duplicate. While the tools work similarly at the core, they differ in implementa-
tion, which influences performance and functionality. For example, biobambam supports
steaming, meaning it can operate in Unix pipes, while Picard MarkDuplicates does not
[383].

Whether or not marking duplicates in RNA-seq data is appropriate is unclear, but may
depend on the specific use case. The chance that reads with the same start/end coordin-
ates arise from distinct molecules is typically higher in an RNA-seq experiment compared
to WES/WGS due to lower library complexity. On the other hand, library preparation
involving PCR results in many reads that originate from the same molecule. Parekh et al
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[385] found the impact of duplicate marking on RNA-seq differential expression in the
best case improved metrics only mildly, and could otherwise even be detrimental. On the
other hand, Quinn et al [386] found duplicate marking beneficial in RNA-seq SNP detec-
tion. Not marking duplicates in this case can severely overestimate variant allele frequencies
(VAFs), potentially leading to false positive calls (see Section 3.4.2). Thus, whether or not
to mark duplicates is a judgement call that has to be made with taking the experimental
setup, for example the number of PCR cycles, and the analysis endpoint in mind.

The need for duplicate marking can be avoided or reduced by using PCR-free library pre-
paration protocols, or by using unique molecular identifiers (UMIs) [387], where during
library preparation each input molecule is tagged with an individual barcode. After sequen-
cing, reads can then be regarded as duplicated if they share barcodes and map to the same
genome coordinates [388–390]. This approach is common in single-cell RNA-seq [391]
and HTS approaches for sensitive variant detection.

The standard SCAN-B computational pipeline as used in studies i, iii, and iv performs
expression profiling as analysis endpoint and does implement duplicate marking, although
the Cufflinks expression estimation software does not exclude duplicate reads from analysis.
The variant calling pipeline developed in study iv is distinct from the standard pipeline,
but does mark duplicates as well, for the reasons outlined above.

Expression Profiling

Expression estimation on the transcript and gene level is the most common use-case for
RNA-seq. Traditionally, the input for this type of analysis are sequencing reads that have
been aligned to a reference genome, although methods based on pseudo-alignment have
become available since [392, 393]. With the help of a transcript annotation that describes
introns and exons, the number of reads can be counted per transcript. Raw counts are
biased by transcript length and number of reads per sample so counts need to be normal-
ized to enable within-sample and between-sample comparison. Different methods for nor-
malization are available, all with their own biases and drawbacks [371, 394–396]. Starting
from raw read counts, the measures reads/fragments per kilobase of exon model per mil-
lion mapped reads (RPKM/FPKM, for single-end/paired-end data respectively) were in-
troduced as a measure for expression that is within-sample normalized for library size and
transcript length [397]. This makes it difficult to compare RPKM/FPKM measurements
between samples [398]. A later measure is transcripts per million reads (TPM), which ac-
counts for the same factors, but reverses the order of normalization operations to enable
better comparability between samples. Contemporary methods for differential expression
analysis largely require raw counts, since they account for transcript length and library size
themselves [371].

In studies i, iii, and iv we used expression estimated in FPKM as generated by Cufflinks
[367, 368]. To reduce skewing of the data and ease fold-change calculations and compar-
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isons we further transformed the values using log2(FPKM + C), with C = 0.1. The
addition of a constant is needed to avoid zeros, since log2(0) is undefined.

Variant Calling

Variant calling (detection) of SNVs and indels from HTS data is important to identify
somatic cancer mutations. Since HTS has become available, dozens of methods (callers)
have been developed (partly reviewed and/or benchmarked in [399–407]). An important
distinction is whether a method has been developed for germline calling, somatic calling, or
both. Somatic variant calling, particularly in cancer genomes, poses additional challenges
due to aneuploidy and potential artifacts due to challenging read alignment. The gold
standard for somatic variant detection is calling using data from matched tumor and normal
samples from the same patient. This setup allows the caller to reliably differentiate between
somatic and germline variants. While DNA-seq can in principle recover variants genome-
wide, RNA-seq variant calling is limited to the expressed parts of the genome. Even if
a variant is expressed it may be missed, due to transcriptional processes such as NMD
removing the mutated transcripts from view before they can be captured for sequencing.
On the other hand, RNA-seq provides exceptional sequence coverage in highly expressed
genes, which may be used to detect low VAF variants that may be missed by DNA-seq.

A wide variety of somatic variant callers is available, with VarScan [408], VarDict/VarDict-
Java [409], and MuTect2 [410] being among the most widely used. While variant call-
ing from DNA is the most common setting and not all somatic variant callers have been
tested or are recommended for RNA-seq, several approaches for RNA-seq mutation call-
ing, mostly in combination with matched tumor and/or normal DNA, have been developed
[279–286]. Combined variant calling of tumor RNA and tumor DNA makes it possible
to discern true somatic mutations from transcriptomic effects such as RNA editing, while
the use of normal DNA has already been discussed.

Often, reference datasets such as those generated by the Genome in a Bottle consortium
are used for benchmarking and optimizing variant calling pipelines [411, 412]. These are
currently focused on DNA-seq and comparably well characterized tumor RNA-seq datasets
are missing.

For detection of SNVs and indels we used VarScan [408] in study i, while in study iv we
used VarDict-Java, a reimplementation of VarDict [409] in the Java language. We switched
from VarScan to VarDict-Java based on its streamlined workflow that performs realign-
ment around indels, does not require sequence pileups as input, and generates a wealth
of sequence-based annotations, as well as internal benchmarks that were later affirmed by
external benchmarks [404, 405, 413]. MuTect2 [410] only became available during the
course of study iv, and has since been used for RNA-seq data [414, 415]. Quaglieri et
al [413] determined that 30–40 million read-pairs are necessary to detect the majority of
known recurrent mutations in the tested acute myeloid leukemia TCGA samples, which
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matches the sequencing target of approximately 30 million read-pairs per sample used by
SCAN-B.

Error Sources

A major challenge in variant calling is the differentiation between true somatic variants
and false positive calls due to technical artifacts or germline variants, particular when call-
ing using tumor-only data. Technical artifacts can occur at different levels before, dur-
ing, and after the sequencing process (reviewed in [416]). Before sequencing, prolonged
time between surgery and sample preservation by flash-freezing or RNAlater may lead to
DNA/RNA degradation. During library preparation, several processes may induce arti-
facts, most importantly PCR amplification of DNA leading to misincorporations and chi-
meras [417–419]. The sequencing process itself is imperfect and can lead to wrong base
calls, particularly in challenging regions such as repeats, homopolymer stretches, and GC-
rich regions [358, 359, 420, 421]. Even after sequencing, alignment artifacts may lead to
false positive variant calls.

Annotation

The wide range of error sources necessitates extensive filtering to remove false-positive calls.
To enable better filtering and aid in downstream analysis, variant calls need to be annotated
with additional information that allows them to be evaluated in the genomic and clinical
context. Relevant information includes locational context, such as nearby genes or location
in an intron or exon, population frequency through databases such as dbSNP [422] and
the Genome Aggregation Database (gnomAD) [423]. Clinical information, such as can-
cer driver status and whether presence of the variant signals susceptibility or resistance to
drugs, for example through database such as the Catalogue of Somatic Mutations in Can-
cer [424, 425] or CIViC [426], is particularly important in cancer. An additional layer is
the predicted functional impact which can be obtained from tools such as PolyPhen [427],
SnpEff [428], and the Ensembl Variant Effect Predictor (VEP) [429]. In study i we used
ANNOVAR [430] for annotation, while in study iv we used vcfanno [431] due to its speed
and flexibility.

Filtering

Using variant annotations added by the variant caller and during the annotation process,
variants can be filtered using various criteria. The exact settings may vary depending on
the specifics of the downstream analysis. For tumor-only somatic variant calling, filtering
germline variants is essential. To compensate for the lack of a matched normal sample
this can be partly addressed using global germline variant databases such as dbSNP [422]
and gnomAD [423], and national resources such SweGen [432]. For filtering of tech-
nical artifacts a variety of variables are important, for example base quality, proximity to
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low complexity areas such as repeats or homopolymers, and GC content. Since valid and
clinically important variants may be filtered out, variants may be “rescued” by evaluating
their presence in databases such as COSMIC [424] and CIViC [426]. Even after filtering,
manual refinement and curation of variant calls is often necessary to establish clinical rel-
evance. This process is not currently standardized, however standard operating procedures
have been proposed [433, 434].

Technical background noise makes it challenging to detect variants below 1% VAF, al-
though sequencing approaches exist that go below this [435, 436]. Competing technologies
such as digital PCR (dPCR) allow detection of single or up to few specific variants as low
as 0.001% VAF using assay technologies such as IBSAFE/SAGAsafe (SAGA Diagnostics)
[333, 437–439] with lower cost and faster turnaround time than HTS.

Quality Control and Sequencing Metrics

High-throughput sequencing is a complicated process comprised of many individual steps,
ranging from the initial nucleic acid extraction from a sample, over the preparation of
sequencing libraries, to the sequencing process itself. Each step may induce errors and
biases, which makes quality control at various points in the process a necessity [440].

Basic quality control can be performed after demultiplexing to check whether base- and
read-level metrics conform to expectations. Important metrics include the number of reads
per sample barcode, average base quality and read length, GC and unique kmer content,
and sequencing adapter contamination. These metrics are partly generated by demulti-
plexing software such as IlluminaBasecallsToFastq from the Picard suite [373], the popular
software FastQC [441], and others. If quality problems are detected at this stage, further
analysis can be avoided and the library can be re-sequencing, or a new library can be pre-
pared. More advanced metrics can be examined after sequence alignment and duplicate
marking. Interesting metrics at this level include the percentage of uniquely aligned reads,
the percentage of duplicated reads, average insert size, and for paired-end sequenced lib-
raries the percentage of properly paired reads, defined as read-pairs with both reads aligned
within the expected distance and orientation. A variety of software packages for QC at this
stage exist, including RNA-SeQC and Qualimap [442, 443]. A comprehensive quality
analysis of early SCAN-B RNA-seq datasets has been performed previously [444].

An important confounding problem in RNA-seq are batch effects, where technical factors
add variation and thus have systematic impact on the results. In other words, they describe
a setting where variation between samples can be better explained by technical factors than
by true biological variation. This is a problem in particular for quantitative analyses such
as expression estimation. Several approaches have been developed for detecting and cor-
recting batch effects in high-throughput experiments in general, and expression data in
particular [338, 445–448]. Within SCAN-B, laboratory and sequencing processes have
been optimized to minimize batch effects, and the swamp R package [446] is used to cor-
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relate expression data with a set of clinical variables, as well as technical variables such as
dates of library preparation and sequencing.

3.5 DNA Sequencing

DNA sequencing in various forms is the most commonly used form of sequencing. Al-
though this study focuses on RNA-seq, we used DNA-seq to optimize properties of our
RNA-seq analyses. In study iv we used 275 samples from 273 patients that were sequenced
using a custom targeted panel of 1,697 genes and 1,047 miRNAs (Agilent SureSelect)
[449].

The computational analysis pipeline is very similar to that discussed for RNA-seq in Sec-
tion 3.4, but simpler in many ways, and excludes expression-related analyses that are spe-
cific to RNA-seq. Sequence alignment does not need to account for a transcriptome model
including splice sites, making the alignment process easier. While variant calling from
DNA-seq data is not a solved problem and considerable variation between approaches still
exists [450–452], it is easier compared to RNA-seq calling, since the complexity of the
transcriptome does not contribute to false positive calls.

3.6 Molecular Subtype Inference

Since the description of the intrinsic molecular subtypes Luminal A-like, Luminal B-like,
HER2-enriched, Basal-like and Normal-like [80, 137], multiple gene signatures have been
developed for classifying tumors [137, 140, 148, 453, 454]. The PAM50 method [148]
has become the de facto standard for classifying tumor expression profiles into intrinsic
molecular subtypes. It was named after the Prediction Analysis of Microarrays (PAM)
[455] method that was used to determine the subtype centroids, and the list of 50 genes
the signature is based on. More recent and refined subtyping schemes such as IntClust
[456] comprising ten subtypes derived from gene expression and CNVs have not gained
much traction yet.

Inference of molecular subtypes is performed using single sample predictors (SSPs), defined
by Perou et al as “. . . any predictor where the algorithm and any parameter values are ex-
clusively determined from a training set, and test cases are assessed independently” [457].
Widespread clinical translation of subtyping SSPs has been hampered by several factors,
summarized by Staaf and Ringnér [458]. Notably, different methodologies were found to
be only moderately concordant on a cohort level, although they stratified prognosis similar
to one another. There was a lack of robustness on a single sample level, where subtype in-
ferences with different SSPs often disagree [459, 460]. The causes for this include inexact
subtype definitions exemplified by the progression from the initially suggested classifica-
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tion gene list [136] to the now widely used PAM50 signature, to unclear descriptions of
methodology, all taken together leading to reproducibility problems [459–462].

An additional problem is that previously developed SSPs, including PAM50, rely on nor-
malization methods such as gene centering against a large heterogeneous set of samples for
robust classification [461, 463]. Centering scales the expression of each gene across samples
in the dataset so that the mean or median expression is 0. This compensates for different
expression scales caused by technical platforms different from that originally used to train
the SSP, as well as batch effects between datasets. This step adds an implicit dependency
on other samples and contradicts the definition of an SSP as given previously.

To improve the robustness of subtype classification, a variety of different approaches have
been proposed [454, 464–468]. Particularly the Absolute Intrinsic Molecular Subtypes
(AIMS) approach suggested by Paquet and Hallett [454] garnered interest, as it promises
true single sample prediction. During training, AIMS generates a number of binary rules
in the form “ESR1 < FOXC1” that capture the relative within-sample expression between
two genes in a specific subtype, and thus obviating additional normalization.

We performed inference of molecular subtypes in studies i, iii, and iv. Study i was still at an
early stage in the SCAN-B, were subtyping had not yet been implemented on a SCAN-B-
wide level. For this study we used PAM50 subtyping implemented in the genefu R package
[469]. In time for studies iii and iv we refined our subtyping procedure by following the
approach by Parker et al [148] using a SCAN-B-internal reference dataset that matches the
original Parker et al cohort in terms of clinical characteristics. Before subtyping tumors,
gene expression of the PAM50 genes for each tumor was centered to the reference dataset
in order to normalize it to the original training cohort.

3.7 Histopathology

Histopathology is the mainstay of current cancer diagnostics. In breast cancer, immuno-
histochemistry (IHC) is routinely used to determine the status of the biomarkers ER, PR,
HER2, Ki67, and NHG. It works by staining tissue slides with protein-specific antibod-
ies, and counting or estimating the percentage of stained cells in a representative section
of the slide. Using a cutoff value, the percentage is categorized, typically into the “low”
and “high” categories. Generally, this technique is prone to reproducibility problems, both
from a technical and human perspective. On the technical side, dozens of factor can in-
fluence good IHC results, such as choice of antibody and method of staining [470]. On
the human side, the same IHC staining may be interpreted differently by two pathologists,
or even by the same pathologist at different times. Considerable effort has been spent to
standardize IHC for routine breast cancer biomarkers in terms of antibodies, procedures,
and interpretation. This has resulted in very high concordance for ER and PgR. While
HER2 reproducibility is good with IHC alone, additional gene copy-number testing us-
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ing in situ methods such as FISH or SISH is recommended in borderline cases to verify
ERBB2 amplification [471]. Reproducibility for NHG is considerably lower, mostly ow-
ing to the existence of the intermediate category grade 2. Ki67 only recently entered the
clinical guidelines, and standardization efforts are still ongoing [472]. While concordance
is improving, it does not reach the high standards of ER, PgR, and HER2 yet.

One way to improve reproducibility is digital pathology, where the IHC slides are scanned
and scoring is performed by machine learning based pattern recognition [473–476]. How-
ever, image recognition only addresses the variation caused by the reader; the technical
problem of staining variation remains. Other approaches have evaluated the possibility of
using gene expression based to determine biomarker status [178–184], however they are
still not widely used. An important consideration for gene expression based approaches is
that gene expression and protein expression are not always well correlated. Processes such
as NMD can remove mRNA transcripts before translation, and epitranscriptomic modi-
fications may impact translation rates. The mechanisms of mRNA and protein correlation
have been reviewed by Buccitelli and Selbach [477].

In study iii we evaluated the concordance between stains and between readers by perform-
ing a multiple-stain, multiple-reader evaluation in a cohort of 405 breast tumors. We also
proposed gene expression based approaches of determining the status of ER, PgR, HER2,
Ki67, and NHG, and validated classifiers for all five biomarkers in a large population-based
SCAN-B cohort.

3.8 Machine Learning

Machine learning refers to the process of teaching a computer to perform a task based on
prior learning. The field encompasses a wide range of techniques. In genomics, the two
most commonly used approaches are supervised and unsupervised learning [478]. This
nomenclature refers to whether the actual classes or “labels” of the input data are available
to the algorithm (supervised) or not (unsupervised). Supervised methods such as Ran-
dom Forests and Support Vector Machines are often used for sample classification, while
unsupervised methods such as k-means and hierarchical clustering structure data solely us-
ing the intrinsic properties of the dataset and are thus well suited for exploratory analysis.
Artificial neural networks with many layers (“deep learning”) can be either supervised or
unsupervised, depending on how they are used [479].

Hundreds of learning algorithms have been developed, complicating selection and evalu-
ation. According to the “no free lunch” theorem [480], there is no one algorithm that is
clearly superior in all use cases, and an approach that works well in one problem domain
may work poorly in a different one. In general it is unclear whether machine learning
methods are generally superior to simpler statistical approaches such as logistic regression
[481].
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Figure 3.7. Data splitting for model training and validation. A. Standard data split into training,
test, and validation datasets. B. Cross-validation data split into training and validation datasets.

Machine learning in biology and particularly in genomics typically has to deal with the
“curse of dimensionality”, where the number of features (variables) is much larger than
the number of observations (samples). Thus, a major consideration in supervised machine
learning is bias due to overfitting which can reduce the generalizability of a model. Over-
fitting can be counteracted in multiple additive ways. The best but often most impractical
way is increasing the number of samples. Generally, simpler models are less likely to suf-
fer from overfitting than complex models. Ways to achieve simpler models are removing
features or adding regularization which penalizes complex models. Splitting data appro-
priately for training and testing is another way to avoid overfitting. Data is typically split
into three subsets: training, test, and validation¹ (Figure 3.7A). A model is fitted in the
training set and evaluated in the test set. Based on the evaluation the model features and

¹There are differences in the nomenclature for test and validation in the literature, causing the two terms
to be used interchangeably.
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parameters can be adapted before being evaluated again. This training loop can be repeated
as many times as needed, although this may, again, contribute to overfitting. Alternatively,
particularly when the available dataset is small, cross-validation can be used (Figure 3.7B).
During cross-validation, the sample set N is split into M equal partitions. M − 1 parts
are used for training and the M t part is used as a test set. The procedure is repeated until
every partition has been used as test set.

Importantly, information leaks from the validation dataset to the model must be avoided.
These can happen for example when testing a model against the validation dataset and
adjusting the model based on the results. In this case the validation dataset loses its inde-
pendence and further tests of the adjusted model are invalid, as the performance measures
obtained from it would not be generalizable.

In studies i, iii, and iv we used a variety of unsupervised and supervised methods. Study i
and iv used hierarchical clustering to group samples based on gene expression and pathway
mutations. In study iii we used the supervised PAM method based on nearest shrunken
centroids [455] implemented in the caret and pamr R packages [482, 483] to develop
classification models for the breast cancer biomarkers ER, PgR, HER2, Ki67, and NHG
based on gene expression data. A centroid here is the mean expression value of all included
genes. The method was initially developed for microarray-based transcription profiling and
thus can handle highly dimensional data. It works by calculating a standardized centroid
for each class in the training dataset by dividing the per-class centroids by the respective
within-class standard deviation, and afterwards “shrinking” the per-class centroids towards
the overall centroid by a user-configurable threshold parameter. The shrinkage step reduces
the effect of noise and eliminates non-informative genes [455]. To classify a new sample,
the standardized centroid for this sample is calculated, and the distance to each per-class
centroid is determined. The sample is then assigned the class with the shortest distance of
its per-class centroid to the sample centroid. In our study we used repeated cross-validation
to optimize the shrinkage parameter, train classification models, and estimate the variation
across multiple different cross-validation splits. We validated the resulting classifiers in a
large cohort of breast cancer samples. We strictly adhered to keeping the validation set
independent and only used it to evaluate the final models.

While we developed RNA-seq variant filters in study iv using a training and validation
set, we did not aim to keep the validation set independent. Due to the complexity of
the problem we instead explicitly used information from the validation set to improve the
filters. As such the filters may be overfitted to SCAN-B data and not generalizable to other
datasets.

3.8.1 Classifier Performance Metrics

The performance of a binary classification model can be expressed through a confusion mat-
rix (Figure 3.8) which describes true positives (TP), true negatives (TN), false positives (FP,
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Figure 3.8. Confusion matrix for two-class problems, consisting of true positives (TP), true negat-
ives (TN), false positives (FP), and false negatives (FN).

Type I errors), false negatives (FN, Type II errors). Based on these a variety of model per-
formance metrics have been developed. Simple measures such as accuracy (Equation 3.2)
assess raw performance, but do not account for the fact that a classification model can
“guess” right just by chance. More sophisticated measures such as Kappa (Equation 3.4)
and Matthews Correlation Coefficient (MCC; Equation 3.5) take this chance effect into
account. These metrics are commonly interpreted according to a scheme proposed by Viera
and Garrett [484], outlined in Table 3.3, that adds intuition to the pure numbers.

A common way to visualize the performance of a classifier using different thresholds is
plotting the receiver operating characteristic (ROC) curve using the metrics sensitivity and
1−specificity. Other graphical methods that are thought to perform better than ROC for
unbalanced datasets include precision/recall curves and MCC-F1 curves [485]. One can
then select the threshold that maximizes the area under the curve (AUC).

Which metric to use for classifier evaluation during training includes the question which
property of a classifier to prioritize. In study iii we used balanced accuracy (Equation 3.3)
[486] during training for this task, since it strikes a balance between sensitivity and spe-
cificity, and works well in unbalanced datasets. For performance evaluation in the valida-
tion dataset we used accuracy (Equation 3.2), MCC (Equation 3.5), Kappa (Equation 3.4),
and positive/negative predictive value (Equations 3.6 and 3.7).

Accuracy (ACC):

ACC =
TP + TN

TP + TN + FP + FN
(3.2)
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Table 3.3. Common interpretation of the Kappa and MCC statistics according to Viera and Garrett.

Kappa / MCC Agreement

≤ 0 Less than chance
0.01–0.20 Slight
0.21–0.40 Fair
0.41–0.60 Moderate
0.61–0.80 Substantial
0.81–0.99 Almost perfect

Source: Viera and Garrett [484]

Balanced Accuracy (BACC):

BACC =
1

2
(

TP

TP + FN
· TN

TN + FP
) (3.3)

Cohen and Fleiss’ Kappa:

Kappa =
(po − pc)

(1− pc)
(3.4)

where po is the observed agreement, and pc is the chance agreement.

Matthew’s Correlation Coefficient (MCC):

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(3.5)

Positive Predictive Value (PPV):

PPV =
TP

TP + FP
(3.6)

Negative Predictive Value (NPV):

NPV =
TN

TN + FN
(3.7)

3.9 Statistical Analysis

Statistical hypothesis testing deals with the question of whether or not a specific null hy-
pothesis can be explained by the available data. They result in a probability (P-value) for
obtaining the observed or more extreme results, for example the quantitative difference
between two groups, if the null hypothesis were true. For better or worse, a P-value of
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P<0.05 is commonly interpreted as a difference being significant. Importantly, P-values
only give the probability that an effect exists, but are not a measure of effect size. P-values
are intricately linked with sample size in that large sample sizes can lead to small P-values
even if the effect size is very small [487].

Based on their assumptions, statistical tests can be stratified into parametric and non-
parametric tests. Parametric tests rely on the approximate normal distribution of the input
data, while non-parametric tests do not. In studies i, iii, and iv we relied on 1-sided and
2-sided Fisher’s exact tests for all hypothesis tests. Additionally we performed survival ana-
lyses in studies iii and iv, which will be described below. All statistical analyses in studies i,
iii, and iv were performed in R using diverse set of extension packages, most importantly
the survival package.

3.9.1 Survival Analysis

Survival analysis refers to investigation of time to the occurrence of a specific event. In can-
cer the specific event depends on the selected endpoint, summarized in the guidelines of the
Definition for the Assessment of Time-to-event Endpoints in CANcer trials (DATECAN)
initiative [488]. For example the event may be patient death from any cause (overall sur-
vival, OS), or relapse of the disease (relapse-free survival, RFS).

The most common method for survival analysis is that by Kaplan and Meier (Kaplan-
Meier, KM) [489]. It is a univariable method to estimate the survival function for a group
of patients, for example stratified by the status of a biomarker, using patient status at last
observation and the time to event. The KM method is used to calculate the fraction of
patients still alive at a given time, for example after diagnosis of breast cancer. To test for
significant differences in the survival curves between patient groups, the log-rank test is
typically used.

To estimate the size of the effect of a variable such as biomarker status on the time to event,
Cox proportional hazards models can be evaluated [490]. Cox models are often used in
conjunction with KM-analysis to estimate the effect of the same variable visually analyzed
using KM plots (univariable analysis). It can then be expanded to correct for additional
variables, most importantly possible confounding variables (multivariable analysis). The ef-
fect is estimated as the hazard ratio (HR), which is a measure of relative risk and interpreted
as follows. A HR of 1 for a variable means no risk difference between groups. A HR of 1.5
equals a 50% risk increase relative to the comparison group, whereas a HR of 0.5 means a
reduction of risk by 50%. This interpretation depends on the adherence of the model to
the proportional hazards assumption, so a change in HR of 0.1 approximately equals an
increase/reduction of relative risk by 10%. Common methods to test that this assumption
is upheld are QQ plots, Schoenfeld residuals [491], and Grambsch and Therneau’s test for
non-proportionality [492].
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In studies iii and iv we performed survival analysis using the KM method, log-rank tests,
and Cox models, and OS as endpoint. In particular we evaluated the association of pre-
dicted biomarkers and somatic mutations in various constellations with patient survival.
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4 | Results and Discussion
Vimes felt that a comment was called for.
He said: ’Arrgh.’

— Terry Pratchett, Guards! Guards!

Study i
The Sweden Cancerome Analysis Network–Breast (SCAN-B) Initi-
ative: a large-scale multicenter infrastructure towards implementa-
tion of breast cancer genomic analyses in the clinical routine

The SCAN-B initiative was launched in 2010 as a population-based study to sample bioma-
terial from breast cancer patients for molecular research. The purpose of study i was to de-
scribe the SCAN-B study and infrastructure, including the protocols and workflows, and to
describe the clinical features of the patient population enrolled between the years 2010 and
2013. Many biomarkers and signatures for breast cancer classification have already been
developed using transcriptome profiling techniques such as microarrays. We compared a
sample of 49 SCAN-B tumors (six as technical replicates) processed by the SCAN-B RNA-
seq pipeline with tumors profiled using Illumina HumanHT-12 v4 BeadChip microarrays,
and evaluated whether array-developed techniques yield the same results when subjected
to RNA-seq data. As examples for such array-based signatures we chose subtyping signa-
tures based on the gene lists identified by Sørlie et al [137], Hu et al [140], and Parker
et al (PAM50) [148]. We also highlighted the potential of mutation calling in RNA-seq
samples.

In this study we showed that SCAN-B enrolled 85% of the eligible patients across the accru-
ing sites in the early years of enrollment. By comparing the distribution of several clinical
characteristics within all patients and enrolled patients we demonstrated the population-
based nature of the study. In our hands, gene expression and subtyping between RNA-seq
and microarrays was highly concordant. Results were highly reproducible between primary
and replicate samples. In general, this study showed the feasibility of using RNA-seq as
primary analytical tool within SCAN-B, its advantages over microarrays such as increased
dynamic range, and the quality of the generated data. The routines and workflows described
as part of this study paved the way for studies iii and iv. In particular we demonstrated that
mutation calling using the generated RNA-seq data is feasible, which lead us to explore this
topic in depth in study iv.
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Study ii
TopHat-Recondition: A post-processor for TopHat unmapped reads

A principal part of the RNA-seq workflow is a computational pipeline that cleans the raw
sequencing reads, aligns them to the human reference genome, and performs quality as-
sessment. TopHat and TopHat2 were popular spliced-read mappers [366] for alignment
with close to 20,000 combined citations. TopHat2 was used in studies i and iii. All ver-
sions of TopHat/TopHat2 contain bugs that cause their output to diverge from the Binary
Alignment/Map (BAM) format specification [380, 493]. Due to the design decision of
the TopHat/TopHat2 authors to write aligned and unmapped reads to separate files, and
the focus of most analyses on aligned reads, these problems remained undetected and un-
corrected. This can make downstream analysis challenging and is relevant not only for
ongoing sequencing, but also for the hundreds of sequencing datasets processed with To-
pHat/TopHat2 that have been deposited in archives such as the Gene Expression Omnibus
(GEO) and the European Nucleotide Archive (ENA).

While most analyses focus on aligned reads, unmapped reads have a number of uses. First
of all, they can be used for quality control purposes. A high number of unmapped reads
may indicate quality issues such as low quality reads or cross-species contamination of input
samples or reagents [494–496]. Recently, unmapped reads were used to improve the human
reference genome by identifying sequences that are missing from the genome [249, 497],
and to uncover missed indels [498]. Within structural variant calling, read-pairs with one
unmapped read are being used to detect and refine breakpoints by re-aligning them to the
genome sequence around the putative breakpoint to better localize the exact breakpoint
coordinates [57, 499]. Lastly inspecting unmapped reads in detail can aid in improving
alignment software itself.

We developed the software TopHat-Recondition as a post-processor for TopHat/TopHat2
files that can repair them so they conform to the specification, and thereby improve com-
patibility with important downstream software such as the Picard suite and GATK [500].
Through availability in the popular Bioconda software repository [501] and integration in
the bcbio-nextgen [372] RNA-seq pipeline, the software is readily available for use.

Since the publication of this study, the SCAN-B pipeline has been updated to replace
TopHat2 with its official successor, HISAT2. The BAM files written by this software do not
have the same issue as those written by TopHat2, and consequently TopHat-Recondition
has been retired from the pipeline. While even the original authors of TopHat/TopHat2
discourage the use of their software in favour of newer tools such as HISAT2, publications
referencing TopHat2 and even TopHat are still being published, indicating they are still
being used. As such, there remains a potential userbase for TopHat-Recondition beyond
deposited data.
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Study iii
Clinical Value of RNA Sequencing-Based Classifiers for Prediction
of the Five Conventional Breast Cancer Biomarkers: A Report From
the Population-based Multicenter Sweden Cancerome Analysis
Network–Breast Initiative

The biomarkers estrogen receptor (ER), progesterone receptor (PgR), epidermal growth
factor receptor 2 (HER2), Ki67, and Nottingham histologic grade (NHG) are established
prognostic and predictive biomarkers in breast cancer care. Since current evaluation of these
biomarkers by histopathology is imperfect, we thought to develop computational classifiers
to predict these markers from tumor transcriptional profiles.

We performed a comprehensive histopathological evaluation of 405 primary breast tumors
using technical replicates and readings by three pathologists to estimate inherent variability
in clinical pathology and to generate reliable consensus scores for each biomarker. Using the
consensus scores, we determined optimal expression cutoffs for the biomarkers with a single
underlying gene (ER, PgR, HER2, and Ki67) resulting in single-gene classifiers (SGCs).
We also trained multi-gene classifiers (MGCs) by fitting nearest shrunken centroid models
[455], and performed cross-validation to determine optimal parameters. The performance
of the SGC and MGC classification models was validated in an independent cohort of
3,273 tumors from the SCAN-B study by comparing classification results to the clinical
pathology results and, importantly, to patient overall survival (52 months median follow-up
time).

In this study we showed that histopathology for ER, PgR, and HER2 is highly concordant,
but less concordant for Ki67 and NHG. Similarly, concordance between histopathology
and the developed SGC and MGC models was high for ER, PgR, and HER2, and lower
for Ki67 and NHG. Since the training labels for the models were based on histopathology,
this result likely reflects the quality of the training data and the inherent variability within
histopathology. Discordant results between classifiers and histopathology were associated
with significant differences in patient overall survival in several biomarker and treatment
groups. The MGC models have been integrated into the standard SCAN-B computational
pipeline, and the classifications are part of preliminary RNA-seq-based clinical reports that
can be automatically generated for each patient enrolled in SCAN-B [361, 362]. A pilot
study for integrating SCAN-B reports into clinical practice was performed at Helsingborg
Hospital in 2016 and included 113 patients.
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Study iv
Themutational landscape of the SCAN-B real-world primary breast
cancer transcriptome

To expand the usefulness of RNA-seq beyond gene expression we strived to develop a bioin-
formatics approach to call somatic mutations in tumor-only RNA-seq datasets. Using 275
samples from 273 patients for which custom targeted capture tumor and normal DNA-
seq data as well as RNA-seq data was available, we developed a computational pipeline for
variant calling. By comparing DNA-seq and RNA-seq data, we optimized filters for re-
moving germline calls and technical artifacts. Using the pipeline and filters we analyzed
mutations in an independent population-based SCAN-B cohort of 3,217 tumors to de-
scribe the mutational landscape and relate mutations to patient overall survival (75 months
median follow-up time).

Of the RNA-seq variants resulting from our 275 sample training cohort, 60.6% were iden-
tified as somatic in DNA, 17.0% as germline in DNA, and 22.4% as unique to RNA.
The mutational landscape of the validation cohort was dominated by mutations in the
genes PIK3CA and TP53. While mutation frequencies of oncogenes were comparable
to previous DNA-based mutational profiling studies, we identified reduced mutation fre-
quencies in tumor suppressor genes compared to DNA-based studies. Overall we iden-
tified mutations in genes with an existing drug targeting it in 86.6% of cases. Import-
antly we identified known treatment resistance mutations in the genes ESR1 and ERBB2
in early untreated breast cancer. Mutations were significantly associated with patient sur-
vival in several patient groups. To make our dataset useful for the wider research com-
munity we developed the web portal SCAN-B MutationExplorer, available at https:
//oncogenomics.bmc.lu.se/MutationExplorer/.

Building on the RNA-seq mutational profiling proof of concept work in study i, this
study showed that RNA-seq mutational profiling is indeed feasible on a large scale. While
tumor-only mutational profiling has several limitations, such as increased contamination
by germline events, the overall mutational landscape was similar to previous studies on
the DNA level. In particular the ability to detect known resistance mutations is clinically
valuable and may be used to alter treatment regimens or increase surveillance for affected
patients.

Similar to the work performed in study iii, the computational pipeline defined during this
study has been implemented in the standard SCAN-B workflow and mutations are now
called for every patient enrolled in SCAN-B. We also extracted the pipeline from bcbio-
nextgen into a stand-alone Snakemake [502] workflow that we have used in an unrelated
project in renal cancer [503].

62

https://oncogenomics.bmc.lu.se/MutationExplorer/
https://oncogenomics.bmc.lu.se/MutationExplorer/


5 | Conclusions
In a distant forest a wolf howled, felt
embarrassed when no one joined in, and
stopped.

— Terry Pratchett, The Light Fantastic

The studies included in this thesis have helped advance the implementation of precision
medicine within breast cancer care in Sweden as part of the SCAN-B infrastructure. With
a focus on RNA-seq, SCAN-B has built a platform for large-scale transcriptome profiling,
and we have evaluated current clinical biomarker assessment, developed and benchmarked
expression-based tools for biomarker prediction, and described the mutational landscape
of a large population-based primary cancer cohort. These findings provide the basis for
clinical translation, and allow more advanced diagnostic tools to be developed in the future,
for example through integration of gene expression and mutational data.
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6 | Future Perspectives
The phrase “Someone ought to do something”
was not, by itself, a helpful one. People who
used it never added the rider “and that
someone is me”.

— Terry Pratchett, Hogfather

Clinical Translation of Molecular Diagnostics

Molecular methods – particularly HTS – have taken the research world by storm and are in-
creasingly being used in clinical decision-making. It is safe to assume that this adoption will
continue as prices drop, while quality, read length, and sequencing speed increase. While
the technical factors steadily improve, soft factors such as skilled personnel and training
in how to interpret genomic information remain a limiting factor. The old issue of the
“$1,000 genome but $100,000 analysis” [504] will continue for the time being, with ana-
lysis being difficult and demand for bioinformatics expertise being high. Leadership on all
levels, not least on the clinical side, will be necessary to truly translate genomic methods
such as expression-based subtyping into the clinical routine [505].

SCAN-B

The SCAN-B project has come long way since its inception in 2009. Thousands of tumors
have been profiled by RNA-seq, and many dozens of studies are underway that take advant-
age of this dataset and the SCAN-B biobank. Clinical implementation of the first genomic
biomarkers is currently underway and will hopefully benefit patients in the near future.
The use of true SSPs will be imperative for this purpose to achieve robust and reproducible
classifications and predictions in a changing technological landscape.

The vision of precision medicine is to integrate data from as many layers as possible, for
example patient characteristics, genome, methylome, transcriptome, proteome, and mi-
crobiome data, to make diagnoses/classifications/predictions as precise and accurate as pos-
sible. The completion of this vision is still ways ahead for both technological and economic
reasons. Until then, RNA-seq may be a suitable proxy method that within a single analysis
can profile the transcriptome and interrogate other layers such as DNA at least partially.
The studies included in this thesis provide a first step in this direction. In the future we will
hopefully see many more clinically meaningful tests, for example signatures for prediction
of treatment response and resistance.

65



Third Generation Sequencing

Third generation sequencing technologies such as the Pacific Biosciences SMRT and Ox-
ford Nanopore platforms provide exciting research and diagnostic opportunities by en-
abling long read sequencing. Nanopore technology is particularly exciting in the context
of transcriptome profiling, as it allows for direct sequencing of RNA [351–353] and dir-
ect detection of RNA modifications [354, 355]. These methods may help untangle the
transcriptome and its involvement in oncogenesis.

Bioinformatics

The field of bioinformatics is in an interesting situation. On the one hand it is indispens-
able for the life sciences and will be crucial for precision medicine to become a reality. On
the other hand it suffers from lack of funding for maintenance of many crucial resources
and software packages [298]. Further, lack of recognition and career options causes a drain
of talent from academia to industry, or worse, other fields entirely. This problem is not
necessarily unique to bioinformatics, but can be expanded to research software in general.
Recently, private initiatives such as Essential Open Source Software for Science by the Chan
Zuckerberg Initiative [506] have stepped in to fund several core research software projects,
and research software engineering organizations have begun to form [507]. Taken together,
these problems hint at failures on the side of universities and governments to provide ad-
equate support for the field. This will need to be remedied for bioinformatics to advance
and remain a reliable part of the life sciences.

From a technological point of view the adoption of graph genomes will be crucial to fully
represent variation within populations and diseases such as cancer. These genome repres-
entations have the potential to alleviate reference allele bias and provide a more accurate way
to represent complex structural events such as chromothripsis and non-trivial variation in-
cluding the same allele between samples. For example one could envision a SCAN-B graph
genome that represents the mutations in tumors of all enrolled patients.

Liquid Biopsies

The development of liquid biopsy technologies, particularly using ctDNA, shows great
promise for early cancer detection, detection of minimal residual disease, and monitoring
of treatment response. Translation of these technologies into clinical practice as companion
diagnostics will take well designed prospective clinical studies to validate their impact in
improving patient treatment and survival.
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Abstract

Background: Breast cancer exhibits significant molecular, pathological, and clinical heterogeneity. Current
clinicopathological evaluation is imperfect for predicting outcome, which results in overtreatment for many patients,
and for others, leads to death from recurrent disease. Therefore, additional criteria are needed to better personalize care
and maximize treatment effectiveness and survival.

Methods: To address these challenges, the Sweden Cancerome Analysis Network - Breast (SCAN-B) consortium
was initiated in 2010 as a multicenter prospective study with longsighted aims to analyze breast cancers with
next-generation genomic technologies for translational research in a population-based manner and integrated
with healthcare; decipher fundamental tumor biology from these analyses; utilize genomic data to develop and
validate new clinically-actionable biomarker assays; and establish real-time clinical implementation of molecular
diagnostic, prognostic, and predictive tests. In the first phase, we focus on molecular profiling by next-generation
RNA-sequencing on the Illumina platform.

Results: In the first 3 years from 30 August 2010 through 31 August 2013, we have consented and enrolled 3,979
patients with primary breast cancer at the seven hospital sites in South Sweden, representing approximately 85%
of eligible patients in the catchment area. Preoperative blood samples have been collected for 3,942 (99%) patients and
primary tumor specimens collected for 2,929 (74%) patients. Herein we describe the study infrastructure and protocols
and present initial proof of concept results from prospective RNA sequencing including tumor molecular subtyping
and detection of driver gene mutations. Prospective patient enrollment is ongoing.

Conclusions: We demonstrate that large-scale population-based collection and RNA-sequencing analysis of breast
cancer is feasible. The SCAN-B Initiative should significantly reduce the time to discovery, validation, and clinical
implementation of novel molecular diagnostic and predictive tests. We welcome the participation of additional
comprehensive cancer treatment centers.

Trial registration: ClinicalTrials.gov identifier NCT02306096.
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Background
Breast carcinoma is one of the most common cancers
worldwide and a leading cause of cancer-related death in
women. Approximately one in nine women will be diag-
nosed with breast cancer during their lifetime, and in
Sweden it accounted for 7,087 new diagnoses and 1,401
deaths in 2011 alone [1]. Contemporary treatment, con-
sisting of surgery, radiotherapy, endocrine therapy,
chemotherapy, as well as targeted agents, is driven by
standardized clinicopathological criteria and has led to a
modest decrease in mortality the last two decades. For
example, in the Nordic countries the 5-year survival rate
is over 85% [2]. Despite this encouraging statistic, the
complete portrait is less than ideal. Unfortunately, ap-
proximately 25% of women who survive 5 years will,
within the subsequent 15 years, die from recurrent dis-
ease [3]. This is in stark contrast to many other cancer
types where a 5-year survival is essentially a cure (for ex-
ample, uterine cancer). On the other hand, it is also rec-
ognized that a significant proportion of breast cancer
patients are being overtreated: many patients are likely
cured by locoregional therapy alone, but are enduring
the side effects of unnecessary additional systemic ther-
apies [4]. Our inability to reliably identify such patients
has a significant impact on patient quality of life, and
adds significantly to the direct economic costs of treat-
ing breast cancer as well as the indirect effects on soci-
etal productivity [5,6]. Furthermore, we also have limited
tools to predict which patients will fail on an indicated
therapy due to inherent resistance, or to predict which
therapy among statistically equivalent options will be the
most effective for an individual patient. Thus, there is still
a pressing need for improved biomarkers in breast cancer.
Like all malignancy, breast carcinoma is caused by ab-

errations in the genome of formerly healthy cells. These
aberrations include changes in the normal DNA genetic
sequence (for example gene mutations or gains or losses
of genetic material) as well as changes in the accessibility
and regulation of DNA (such as hypermethylation and
chromatin marks). These genomic aberrations affect
gene function, and, in concert, also manifest themselves
by markedly changing the expression levels of thousands
of genes in the tumor from what is the normal pattern
in the healthy tissue. Moreover, many of these gene-,
genomic-, and gene expression alterations (termed col-
lectively here as biomarkers) are believed to relate to the
patient’s prognosis and response to therapy. In breast
cancer, the study of gene expression alterations and their
relation to clinical outcomes is the most mature,
whereas DNA copy number aberrations and clinical
course has not advanced as far (with one notable excep-
tion, HER2), and much less is understood about somatic
mutations and therapy response and survival. Despite
much study, there are only a handful of examples of

breast cancer biomarkers in clinical use today (for ex-
ample, the estrogen receptor and HER2).
Recent technological advances have opened exciting

new possibilities for studying carcinogenesis at an un-
precedented molecular detail, and for developing new
clinical tools to improve cancer diagnosis, prognosis,
and treatment decision-making. One of the most signifi-
cant of these new technologies is massively-parallel se-
quencing, also called next-generation sequencing or
deep sequencing [7]. Deep sequencing allows one to
‘read’ the sequence of nucleotide bases of DNA or RNA
molecules and identify abnormal sequence variations
such as gene mutations and chromosomal rearrange-
ments. Moreover, deep sequencing is also quantitative:
the number of sequencing reads that map to a given se-
quence is proportional to the number of nucleic acid
molecules (DNA or RNA) with that sequence in the ori-
ginal sample. Therefore, by sequencing a tumor’s DNA
one can measure the DNA copy number of each seg-
ment of the genome, and by sequencing a tumor’s mes-
senger RNA (mRNA), one can quantitate the expression
level of each gene transcript. In contrast to microarray
methods, where expression level or copy number can
only be reported for the pre-determined probe se-
quences that are present on the microarray, an added
advantage of deep sequencing is that it operates at the
whole-genome scale where a complete representation of
the population of DNA or RNA molecules in a sample
can be queried simultaneously. Most next-generation
technologies are also several orders of magnitude more
efficient and less costly than prior sequencing ap-
proaches. The cost of gene expression profiling by RNA
sequencing (RNA-seq) is similar to the cost of a micro-
array gene expression experiment. On the other hand,
whole-genome sequencing or targeted exome sequen-
cing remains significantly more costly per sample than
RNA-seq; however sequencing costs continue to fall.
Therefore, routine clinical tests based on tumor deep se-
quencing can be economically viable, especially consid-
ering that many different test results could be reported
from a single sequencing analysis.
A major challenge to translating a new cancer bio-

marker to the clinic is the study sample size. In the de-
velopment phase, the number of patients studied and its
representation of the natural biological and clinical di-
versity has been inadequate in many studies, usually
numbering in only a few hundred samples in the largest
studies, and often suffering from various types of selec-
tion biases. Validation phase studies often suffer from
similar issues. This leads to several consequences, for ex-
ample the failure to discover potential biomarkers in the
development phase, overfitting of data and non-
generalizability of biomarkers, and biomarker failure at
the validation phase. As a result, thus far there are few
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multigene assays for breast cancer in limited clinical use:
the two most commonly used are a microarray-based
test, MammaPrint (Agendia BV), and the OncotypeDX
qRT-PCR assay (Genomic Health, Inc). However, these
assays are expensive (approximately €3,000 per test), and
due to the fact that they were developed based on rela-
tively small study populations (MammaPrint: 78 pa-
tients) [8] or only one subgroup of the disease
(OncotypeDX: patients with estrogen-receptor-positive
tumors with no involved lymph nodes and treated with
tamoxifen) [9], the overall clinical utility of these tests
beyond the selection of patients with limited benefit
from adjuvant chemotherapy, and whether better tests
could be developed, has been debated [10,11].
To address these clinical and practical challenges and

to continue our efforts to develop improved clinical bio-
marker tests for breast cancer [12-16], we initiated the
multicenter and multidisciplinary consortium, Sweden
Cancerome Analysis Network - Breast (SCAN-B) [17]
(ClinicalTrials.gov identifier NCT02306096). Launched
in the autumn of 2010, the study is fully integrated in
the clinical routine and has enrolled more than 6,000 pa-
tients to date and collected tumors and blood specimens
at a rate of 25 to 30 per week, representing approxi-
mately 85% of all breast cancer diagnoses in southern
Sweden. Based on our prior experiences, in the first
phase we are performing whole-transcriptome RNA-seq
and have sequenced over 3,000 breast tumors to date.
The primary objectives are to develop, validate, and im-
plement clinically beneficial molecular tumor analyses
into the routine healthcare setting for patients with
breast cancer in order to improve their care, quality of
life, and outcome. Herein we present an overview of the
SCAN-B Initiative, our optimized protocols, the status of
patient accrual and sample processing for the first 3 years,
and the results of initial proof of concept RNA-seq ana-
lyses for 49 consecutive patient tumors analyzed in parallel
on gene expression microarrays including tumor subtyp-
ing and analysis of mutations in cancer-associated genes.

Methods
Ethics statement
The study was conducted in accordance with the Declar-
ation of Helsinki and has been approved by the Regional
Ethical Review Board of Lund (diary numbers 2007/155,
2009/658, 2009/659, 2014/8), the county governmental
biobank center, and the Swedish Data Inspection group
(diary number 364-2010). Written information is given
by trained health professionals and all patients provided
written informed consent.

Infrastructure
SCAN-B involves researchers, clinicians, and healthcare
professionals at Lund University Hospital, Division of

Oncology and Pathology, the South Sweden Breast
Cancer Group [18], the Regional Cancer Center South,
and all seven hospital centers treating breast cancer pa-
tients in the Southern Healthcare Region (Malmö,
Lund, Helsingborg, Kristianstad, Halmstad, Växjö and
Karlskrona), and operates under the auspices of the
South Sweden Breast Cancer Group and Regional Cancer
Center South. An overview of the study infrastructure is
presented in Figure 1.

Patients and samples
Patient enrollment is integrated and performed as part of
the clinical routine (Figure 1). From 30 August 2010,
breast cancer patients across the south of Sweden have
been offered inclusion in SCAN-B. The eligibility criterion
was a preoperative diagnosis of primary invasive breast
cancer, and since the autumn of 2012, patients with a pre-
operative suspicion for breast cancer are also eligible as
well as patients receiving neoadjuvant therapy. Patients
who participate in SCAN-B receive the same standard of
care as patients who do not participate, and at the present
time, results from this prospective study are not used to
alter any clinical decisions. The study affects the clinical
routine minimally. At time of routine preoperative/pre-bi-
opsy blood work, three additional study blood tubes are
collected and biobanked as whole blood, buffy coat,
plasma, and serum. Clinical routines at surgery, radiology,
pathology, and oncology proceed normally. After the rou-
tine assessment of the surgical specimen by the patholo-
gist, remainder tumor-cell enriched fresh specimen(s) is
placed in a study sample tube(s) containing RNAlater re-
agent (Ambion) and the time to preservation is recorded.
Very small tumors do not always yield excess material for
the study, and due to clinical considerations, at present it
is difficult to sample cases that appear to be purely or pri-
marily carcinoma in situ. For included patients undergoing
preoperative biopsy, additional study biopsies are taken
and placed in RNAlater. Sample tubes, identified by bar-
codes, are shipped twice per week at 4°C via inter-hospital
transport to the central research laboratory of the Can-
ceromics Branch, Division of Oncology and Pathology,
Lund University Cancer Center [19]. Clinical and patho-
logical information tied to the patient and diagnosis as
well as follow-up data is retrieved from the national qual-
ity registry for cancer patients (INCA) (Figure 1). Postop-
erative blood samples are also collected as above at
6 months, 12 months, and 36 months after primary sur-
gery. In accordance with ethics and privacy guidelines and
laws, clinical and sample information are coded and
strictly confidential.

Tumor sample processing
Tumor specimens sent in RNAlater are processed con-
tinuously in our central laboratory (see Additional file 1
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for detailed protocols) with handling standards that meet
or exceed recommendations of the Breast International
Group (BIG). Each tumor specimen is weighed, and
when possible, partitioned into three parts: one 30 mg
(approximately) piece for simultaneous isolation of
DNA, RNA, and protein; one adjacent 10 mg (approxi-
mately) piece used for manufacture of a formalin-fixed
paraffin-embedded low-density tissue microarray (TMA);
and any remainder is stored frozen for future use. The
TMA is used for estimation of tumor cellularity and as a
research resource. Nucleic acids and protein fraction are
isolated from tumor specimen using the AllPrep method
and automated using QIAcube machines (Qiagen). RNA
and DNA quality control is performed by NanoDrop spec-
trophotometry and BioAnalyzer (Agilent) or Caliper
LabChip XT (PerkinElmer) capillary gel analysis. The
extracted RNA, DNA, and flow-through portion that
contains proteins and short nucleic acids, are stored
frozen for future use. All study information, sampling

information, and analysis information are recorded in a
secure relational data management and analysis system,
BASE [20-22], and user-friendly sample and protocol
workflows are interactively generated by the system to
ensure standard laboratory operating procedures and
efficiency.

Library preparation for RNA-sequencing
Customized protocols for RNA-seq using 1 μg of start-
ing total RNA were developed and automated for a
high-throughput workflow (Figure 1). The complete
methods and protocols are described in the Additional
file 1. In brief, poly(A) mRNA is isolated from the total
RNA in up to 96-well microtiter plate format by two
rounds of purification with Dynabeads Oligo (dT)25
(Invitrogen) using a KingFisher Flex magnetic particle
processor (ThermoScientific). Zinc-mediated fragmenta-
tion (Ambion) is performed and the fragmented mRNA
retrieved using column purification (Zymo-Spin I-96

Enrollment 
Patients are enrolled during pre-
surgery visit at surgery/oncology 

clinic 

Surgery 
Surgery follows clinical routine; 

time of ischemia for surgical 
specimen is noted 

Pathology 
Tumor samples taken after 
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SCAN-B laboratory 
Samples and referral forms 

registered together with accrued 
accessory information

Blood 
Study blood samples taken in 
conjunction with routine pre-

operative blood sampling 

INCA Registry
Clinical information reported to 

national quality assurance 
register in clinical routine 

Extraction 
Tissue lysis and 

purification of nucleic 
acids (AllPrep)
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extraction and TMA

Sequencing
Preparation of 

sequencing libraries 
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dUTP
tagged 
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Figure 1 Overview of the SCAN-B infrastructure. Shown are the SCAN-B clinical (green boxes), laboratory (blue), and computational and
analytical (orange) components. Solid black arrows indicate flow of material, and dashed black lines indicate flow of information. Enrollment and
sampling of patients at time of preoperative (neoadjuvant) biopsy is not shown. ds, double-stranded; INCA, Swedish national breast cancer registry;
TMA, tissue microarray.
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plates; Zymo). The sequencing library generation proto-
col is a modification of the dUTP method, which im-
portantly retains the directionality (stranded-ness) of the
sequenced RNA molecules [23,24]. First strand cDNA
synthesis is performed using random hexamers and
standard dNTP mix followed by cleanup using Sephadex
gel filtration (Illustra AutoScreen-96A plates; GE Health-
care), and second strand cDNA synthesis is performed
using dUTP in place of dTTP in the dNTP-mix and
cleanup using Zymo-Spin I-96 plates. The cDNA is end-
repaired and A-tailed, and diluted TruSeq adapters with
barcodes are ligated using a modified protocol (Illumina)
[23]. Adapter-ligated cDNA is then size-selected to re-
move short oligonucleotides using carboxylic acid (CA)
paramagnetic beads (Invitrogen) and polyethylene glycol
(PEG), similar to the previously described methods [25],
and automated on the KingFisher Flex. The second
cDNA strand is digested using uracil-DNA glycosylase
and the product is enriched by 12 PCR cycles (Illumina).
The PCR product undergoes two cycles of size selection
using CA-beads and varying concentrations of PEG, first
to exclude DNA fragments >700 bp and then to exclude
fragments <200 bp. Quality control is performed on con-
trol libraries using Qubit fluorometric measurement
(Life Technologies) and Caliper LabChip XT microcapil-
lary gel electrophoresis. Typically, 10 to 24 barcoded li-
braries are included in a pool and each pool is
sequenced in at least one lane across dual flowcells.
Paired-end sequencing of 50 bp read-length is per-
formed on an Illumina HiSeq 2000 instrument.

RNA-seq gene expression measurements
Raw sequencing read data are demultiplexed using an
in-house software and collated by library barcode into
sample data sets (Figure 1). Each data set is filtered to
remove reads that align (using Bowtie 2 [26] with default
parameters except -k 1 –phred33 –local) to ribosomal
RNA/DNA (GenBank loci NR_023363.1, NR_003285.2,
NR_003286.2, NR_003287.2, X12811.1, U13369.1), phiX174
Illumina control (NC_001422.1), and sequences contained
in the UCSC hg19 RepeatMasker track (downloaded 14
March 2011). The remaining reads are aligned using
TopHat2 [27] to the human genome reference GRCh37/
hg19 (with b37 masked chromosome Y and hs37d5 decoy
sequences) together with 80,884 transcript annotations
from the UCSC knownGenes table (downloaded 10
September 2012). Default TopHat2 parameters are
used except for –mate-inner-dist (average size with
adapters 355, range 268 to 465, measured for each
sample individually) –mate-std-dev 100 –library-type
fr-firststrand –keep-fasta-order –no-coverage-search.
Cufflinks v2.1.1 [28] is used to calculate expression
levels, fragments per kilobase of exon per million mapped
reads (FPKM), using default settings except –frag-bias-

correct –multi-read-correct –library-type fr-firststrand
–compatible-hits-norm. Unmapped reads are processed
to be usable by downstream analysis tools using custom
software [29]. Read duplication statistics and routine qual-
ity assessment were performed using the Bioconductor
Rsamtools v1.12.4 package [30]. Herein we present analysis
for 55 sample libraries generated from 49 tumor speci-
mens, six run with technical replicates using separate ali-
quots of total RNA. RNA-seq read statistics are presented
in Additional file 2: Table S1. Gene expression data were
pre-processed by collapsing on 27,979 unique gene sym-
bols (sum of FPKM values of each matching transcript),
adding to each gene’s expression measurement 0.1 FPKM,
performing a log2 transformation, and centering the gene
expression values by subtracting the row-wise (gene) me-
dian (calculated across the 49 primary data sets) from the
values in each row of data.

Microarray gene expression measurements
To compare to RNA-seq, the same 55 RNA samples as
above (49 tumors, six as technical replicates) were ana-
lyzed on Human HT12 v4 BeadChip microarrays follow-
ing the manufacturer’s standard protocol (Illumina).
Data from each microarray were pre-processed in BASE
[20-22]: background correction was performed, and a
constant of 11 was added to each intensity measure-
ment. Genes with missing values in >10% of samples
were excluded; otherwise missing values were imputed
using k-nearest neighbors implemented in the impute R
package. The data were quantile normalized using the
preprocessCore R package, log2 transformed, and each
gene was median centered across samples as for the
RNA-seq data.

Molecular subtyping
Intrinsic molecular subtyping was performed by nearest
centroid method and Spearman correlation within the
genefu R package, using three published gene lists
(Sørlie, Hu, and PAM50) [31-33]. Mapping of genes be-
tween data sets was performed using the probemapper
1.0.0 R package [34]. For PAM50, all 50 genes were used
for subtyping on both RNA-seq and HT12 platforms; for
the Sørlie classification, 432 genes were matched for
RNA-seq and 434 genes for HT12; and for Hu classifica-
tion, 225 genes and 229 genes, respectively. To facilitate
unbiased between-platform comparison, each tumor was
assigned to the class with the highest correlation. For
visualization, hierarchical clustering was performed
using the ConsensusClusterPlus R package with 1,000
sub-samplings of 80% of samples (or genes; run inde-
pendently), Pearson distance metric, Ward linkage, and
the RNA-seq PAM50 expression values as input. Clus-
ters stabilized at five sample and seven gene clusters.
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RNA-seq mutation analysis
Sequence variants were investigated in known and likely
breast cancer driver genes. A list of candidate driver
genes of interest was compiled based on the union of
genes identified in several large studies: the TCGA
breast cancer study (supplementary table 2 in [35]); the
Sanger 100 breast cancer exome study (supplementary
table 4 in [36]); the Cancer Gene Census of breast can-
cer drivers [37]; and additional genes with evidence for
hereditary breast cancer predisposition. The union re-
sulted in 90 genes (see Additional file 2: Table S2). Using
the TopHat-aligned BAM files, pileup files restricted to
the exonic regions (plus padding of 10 bases) for these
90 genes were created for each sample using samtools
v0.1.18 and read metrics were calculated using bam-
readcount [38]. VarScan v2.3.5 [39] was used to call sin-
gle nucleotide variants (SNVs) and indels using the fol-
lowing settings: –min-coverage 2 –min-reads2 2 –min-
avg-qual 10 –min-var-freq 0.05 –p-value 1. The first six
bases of each read were ignored for mutation analysis in
subsequent steps as mismatches can be introduced by
random hexamer priming during library preparation.
The local reference sequence around each variant was
retrieved using BEDTools [40]. Variant calls were anno-
tated using ANNOVAR [41] with the databases refGene,
snp137NonFlagged, and cosmic65 from the ANNOVAR
website; additional databases of SNVs and indels were
created, tcgaBreast using data from the Level 2.5.1.0
MAF file from the TCGA Data Portal [42], and ste-
phens2012 using data from supplementary table 4 in ref-
erence [36]. To reduce false positive mutation calls,
variants were excluded if they matched any of the fol-
lowing criteria: present in dbSNP137NonFlagged, not
present in cosmic65 or tcgaBreast or stephens2012, lo-
cated in 5′ or 3′ UTRs, synonymous variants, variants
with adjacent homopolymer stretches of ≥5 bases, SNVs
with an average base quality of the variant allele <20,
and variants with an average distance to the 3′ end of
the read <5% of the total read length (after clipping).
Thus, only previously identified somatic mutations
remained. For plotting amino acid variants, Pfam protein
domains were obtained using the biomaRt R package by
first mapping RefSeq transcript identifiers to UniProt
entries within the Ensembl hsapiens_gene_ensembl data
set, and then querying the InterPro protein data set with
these UniProt entries.

Statistics
Enrollment statistics are based on study records in our
relational data management system BASE. The counts
for blood samples and tumor specimens are based on
the number of patients with at least one sample or speci-
men collected. To compare the distribution of patient
and clinicopathological annotations between sets of

patients, Fisher’s exact test was used. A P value less than
0.05 was considered significant.

Bioinformatics implementation
Customized Bash shell scripts, Python, and R code, as
well as relevant software packages as described above,
were used to perform all bioinformatics analyses.

Data availability
The RNA-seq and microarray gene expression data
herein are available from the NCBI Gene Expression
Omnibus [43] under accession GSE60789.

Results
Population-based enrollment
We summarize here the results for the first three years
of patient accrual, from 30 August 2010 to 31 August
2013. During this period, 3,961 women and 18 men en-
rolled in SCAN-B (Figure 2A). For the 2011 and 2012
calendar years, where it was possible to match complete
annual records to the Swedish national breast cancer
registry (INCA), this represents an estimated 85% of the
eligible patient population (with a preoperative diagno-
sis) within the catchment region (Figure 2B). Approxi-
mately 3% of eligible patients decline participation in the
study, and 12% are lost to enrollment. There is no bias
in terms of clinical variables (estrogen receptor status,
progesterone receptor status, HER2 status, patient age,
Nottingham grade, or tumor size) between the included
patients and the population of all eligible breast cancer
diagnoses (Figure 2C-H).
Patients diagnosed with breast cancer are prospectively

enrolled at the rate of 25 to 30 per week. For 99% of in-
cluded patients, preoperative blood samples are bio-
banked (Figure 2A). For 2,929 patients (74%; Figure 2A),
at least one tumor specimen has been submitted to the
central laboratory, usually within 1 to 3 days after bi-
opsy/surgery. Most commonly, the reasons for not sub-
mitting a tumor specimen include it being judged by the
clinical pathologist to be too small for sampling (73%) or
the tumor appearing to be carcinoma in situ only (7%).
The subgroup of patients for which a tumor specimen
was collected does not differ significantly from the
population of enrolled patients with respect to all clin-
ical variables with the exception of tumor size and Not-
tingham grade (Figure 2C-H). The median tumor
specimen ischemia time, from excision from the patient
to placement in preservative solution, is 46 min (inter-
quartile range (IQR), 32 to 65 min), and the median spe-
cimen weight is 63 mg (IQR, 34 to 108 mg).
Processing of tumor specimens is performed in near

real-time in our central laboratory. As of 31 August 2013,
2,890 of 2,929 tumor specimens (99%) had been parti-
tioned for AllPrep, TMA, and reserve piece, processed,
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and the nucleic acids isolated (see Methods and Additional
file 1). In the first round of processing (with half of the spe-
cimen lysate stored frozen for future use), a median of
8.5 μg total RNA (IQR, 3.7 to 16.5 μg) and 15.4 μg DNA
(IQR, 7.6 to 25.5 μg) has been isolated per tumor speci-
men. The isolated nucleic acids are of high purity, with a

median 260/280 ratio of 2.05 (IQR, 2.03 to 2.07) and 260/
230 ratio 1.93 (IQR, 1.61 to 2.08) for the RNA, and median
260/280 ratio of 1.87 (IQR, 1.86 to 1.88) and 260/230 ratio
1.78 (IQR, 1.38 to 1.99) for the DNA. All unused tissue, ly-
sates, and extracted nucleic acids are stored frozen for fu-
ture use. The focus of our molecular analyses is initially on
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whole-transcriptome RNA sequencing using the Illumina
HiSeq 2000 platform. For this purpose, greater than 1 μg
of total RNA was isolated from 95% of patient samples in
the first round of processing, and the median RNA quality
score (RQS) is 8.4 (IQR, 7.8 to 8.7).

RNA sequencing of breast cancer transcriptomes
We have developed a customized high-throughput
RNA-seq library generation protocol (Additional file 1).
Thus far, it has been used to sequence the transcrip-
tomes of over 3,000 breast tumors. Here we present ini-
tial proof of concept results for a representative series of
49 population-based breast cancer patients whose pri-
mary surgery occurred during the fall of 2011 and that
we analyzed in parallel by RNA-sequencing and gene ex-
pression microarrays. From these 49 cases, six were se-
quenced in technical replicates making for a total of 55
libraries. For each library, a median of 47.6 million
passed-filter (PF) paired-reads of 50 bp length were an-
alyzed (IQR, 43.4 to 54.2 million) (Additional file 2:
Table S1). An average of 83.0% (range, 73.0% to 88.6%)
of the paired-reads remain after initial filtering against
a database of non-mRNA targets (passing contamination

filter, PCF). Of the remaining reads, a median of 68.0%
(IQR, 65.3% to 75.3%) can be mapped to the reference
transcriptome map. The average base quality Q-score per
read cycle was never below 29, and the duplication rate
was low, with a median 63.3% read-pairs being unique
(IQR, 55.1 to 69.1%).
Quantitative gene expression levels, in the form of

fragments per kilobase of exon per million mapped reads
(FPKM), were derived from the aligned RNA-seq data.
As anticipated, the molecular subtypes of breast cancer
were readily apparent when classifying tumors using sev-
eral of the published molecular signatures, such as
PAM50 or the intrinsic gene lists of Sørlie et al. and Hu
et al. (Figure 3A and Additional file 2: Figure S2)
[31-33]. To compare our RNA-seq method to a prior
standard for gene expression profiling, in parallel we
performed microarray analysis using Illumina HT12
BeadChips with the same RNA from these 49 tumors,
including performing the same six cases in replicate.
Concordance of molecular subtypes between RNA-seq
and microarray platforms was high using the PAM50,
Sørlie, or Hu signatures (90%, 92%, and 96%, respectively)
(see also Additional file 2: Figure S2). Gene expression
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Figure 3 RNA sequencing and microarray analysis for population-based breast tumors. (A) Hierarchical clustering of 49 primary breast
tumors (clustered columns) using the RNA-seq gene expression measurements and the PAM50 intrinsic gene signature (clustered rows). Clinical
annotations for estrogen receptor (ER), progesterone receptor (PgR), and HER2 are indicated below the sample dendrogram, and PAM50 intrinsic
subtyping is shown for classification using RNA-seq data as well as using microarray data generated from the same input RNA (90% concordant;
results for Sørlie (92%) and Hu (96%) signatures are presented in Additional file 2: Figure S2). Genes of interest are highlighted in red, and relative
expression level is indicated by the box color (see color key below the heatmap). For six tumor samples, technical replicates from the same RNA
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levels derived from RNA-seq compared favorably to
microarray-derived gene expression levels. Replicate ex-
periments for six tumors, performed on both platforms,
show that the measurement range and reproducibility are
higher for RNA-seq, with less apparent noise, as compared
to microarrays (Figure 3B and C). The gene expression
levels for ESR1, which encodes the estrogen receptor alpha
(ER) receptor, was compared to the clinical ER immuno-
histochemistry scores and illustrates the wide dynamic
range of RNA-seq for an important breast cancer bio-
marker (Figure 3D). Corresponding plots are shown for
PGR (progesterone receptor (PgR)) and ERBB2 (HER2) in
Additional file 2: Figure S3.

Mutation screening by RNA sequencing
In addition to these technical attributes, RNA-seq data
can be used to detect gene mutations, splice variants,
and fusion transcripts, opening up new avenues of study.
As proof of principle, we utilized the 49 tumor RNA-seq

data to screen for sequence alterations in 90 genes known
to be mutated in human breast cancers (Figure 4A;
Additional file 2: Table S2; GSE60789). Typical muta-
tions were detected in these breast cancers with the ex-
pected frequencies and association to clinicopathological
characteristics: for example, 17/49 (35%) cases were deter-
mined to harbor mutations in the oncogene PIK3CA and
these occurred most frequently in luminal A (8/14),
HER2-enriched (3/8), and normal-like (2/4) tumors
[35,44]. Similarly, TP53 was found to be mutated in 17/49
(35%), almost exclusively in grade 3 tumors (16/17), most
frequently within the basal-like (9/12), HER2-enriched
(4/8) and luminal B (3/11) subtypes, and least fre-
quently in normal-like (0/4) and luminal A tumors (1/14).
The detected spectrum of mutations was in-line with ex-
pectations: for example, PIK3CA mutations affecting resi-
due H1047 in the kinase domain of p110-alpha protein
were the most frequently observed, whereas none of the
TP53 mutations were observed more than once in this
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series of population-based cases (Figure 4B and C). Muta-
tions in 18 out of 90 genes investigated could also be reli-
ably detected in the transcriptome, such as KMT2C
(MLL3), MAP3K1, ERBB2, ARID1A, PTEN, and RB1, and
39/49 (80%) of tumors had at least one of these 18 genes
mutated (Figure 4A).
Tissue microarrays, constructed from a piece of each

tumor adjacent to that used for nucleic acid extractions,
were evaluated for cellularity composition by hematoxylin
and eosin staining and scored for invasive tumor, in situ
tumor, normal epithelium, lymphocyte, stroma, and adipo-
cyte content. Generally, approximately 75% of cases con-
tain >50% tumor cells and 15% of cases contain less than
30% tumor cells. Few cases appear to be overtly affected
by tumor cell content with respect to supervised analyses,
for example in the intrinsic molecular subtyping or muta-
tion analysis (Figures 3A and 4A).

Discussion
We have developed a mature infrastructure for prospect-
ive, multicenter, population-based, enrollment of breast
cancer patients, coupled to an optimized genomics plat-
form for gene expression profiling and mutation analysis
by RNA sequencing. Powerful biomarker discovery pro-
jects will be possible after we have studied many hun-
dreds to many thousands of breast tumors and related
these data to patient characteristics, treatment response,
and outcomes. The established infrastructure will enable
SCAN-B-derived biomarker tests to be validated using
independent series of population-based cases from the
ongoing prospective SCAN-B study. In a similar way,
biomarker tests (such as gene expression signatures)
from the literature can be tested and validated within
our patient material. For validated biomarker tests that
are proven to be clinically relevant, the goal is to per-
form the analysis as a diagnostic test and communicate
the result back to the treating physicians within a
clinically-actionable time-frame (within weeks after sur-
gery or biopsy). Thus, within the framework of an initia-
tive such as SCAN-B, the cycle time from biomarker
discovery, to independent validation, to clinical imple-
mentation can be made more rapid and efficient.
With the current participating sites, the SCAN-B Ini-

tiative has and will continue to assemble a very large
series of breast cancer cases over many years, prospect-
ively analyzed with the same methods and platforms.
The first phase of SCAN-B prioritizes the sequencing of
expressed mRNAs because of our prior experience and
interest, the maturity of the field, experimental cost, as
well as the fact that expression level as well as isoform
and variant status can be ascertained simultaneously.
The wealth of small and long non-coding RNAs, DNA-
level aberrations, and epigenetic changes are not yet
investigated. Future analyses will investigate global

mutational portraits and differential expression of gene
isoforms, and ample study material is stored for future
genomic, transcriptomic, and proteomic analyses such as
whole-genome and targeted exome sequencing, sequen-
cing of non-coding RNAs, and studies of active proteins.
The SCAN-B Initiative will enable numerous types of in-
vestigations that are population-based and appropriately
powered. For example, we aim to identify and validate
RNA and DNA biomarkers predicting exceptionally fa-
vorable prognosis without need for adjuvant therapy,
biomarkers for resistance to specific therapies, such as
trastuzumab resistance or resistance to endocrine ther-
apy, and biomarkers to refine the intermediate prognosis
cases, such as tumors of histological grade 2. Within the
coming years, we will have amassed many cohorts of
hundreds to thousands of patients receiving any particu-
lar standard treatment, linked to >5 years follow-up his-
tory, and with corresponding RNA-sequencing data.
Gene expression patterns and mutational patterns, and
other biologically relevant information discernible from
the SCAN-B data such as expression of alternatively
spliced transcripts, fusion genes, and allele-specific ex-
pression, will be analyzed in the context of the clinico-
pathological information, therapy, and patient outcome
in order to develop and validate new biomarker tests for
eventual clinical use. We also aim to use the SCAN-B
infrastructure to identify patients who may benefit from
participation in specific clinical trials, for example to se-
lect patients whose gene expression or gene mutation
status suggests sensitivity to an emergent therapeutic.
Tumor tissues, grossly dissected at pathology, are the

most practical samples to analyze in a large-scale setting
as compared to microdissection; moreover, the non-
tumoral gene expression signals, such as from immune
cells and stroma, may be highly biologically and clinic-
ally relevant. For example, it has been shown that im-
mune response signatures can be predictive of outcome
across a wide range of cancer forms [45-48]. Therefore,
depending on the purpose, we foresee the importance of
interpreting genomic biomarker results in the context of
the estimated compartmental cellularity of each analyzed
specimen.
Comparison of mutation analysis at the level of

mRNA- versus DNA-sequence warrants further investi-
gation and is currently underway. Based on our early ex-
periences as well as the work of others, we posit that
mutations of oncogenes should be efficiently detectable
by RNA-seq, but that some mutations in tumor suppres-
sor genes may be more difficult to detect due to lowered
expression levels, loss of heterozygosity, and/or non-
sense mediated decay [49-51]. We hope to add DNA-
level profiling to the SCAN-B routine in the future. For
example, the BRCAsearch subproject is investigating,
after additional informed consent, the consecutive
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testing of germline BRCA mutations. Another project
currently in progress is comparing the classification of
the five conventional clinical biomarkers (clinical deter-
minations for ER, PgR, HER2, Ki67, and histological
grade) to paired classifications based on RNA-seq gene
expression signatures. The influence of intra-tumoral
heterogeneity, subclonality, other cell types such as non-
tumoral epithelial and stromal cells, and the limitations
of sampling require further study. For patients receiving
primary medical treatment, we are currently implement-
ing an extensive sampling program including sequential
blood sampling and an additional tumor biopsy after
two cycles of preoperative chemotherapy. We also plan
to soon begin systematic collection and analysis of meta-
static breast cancer samples upon disease relapse, which
will provide a rich and informative platform for studying
tumor progression and tumor evolution. We believe
these results and future results from SCAN-B will com-
plement the existing clinical and pathological evaluation
and can become another part of our armamentarium in
diagnosing, evaluating, and treating breast cancer.
We present the feasibility of large-scale multicenter

collection of population-based breast cancer patient ma-
terial and analysis with next-generation genomic analyt-
ical methods. In our hands, 85% of new diagnoses are
enrolled across a wide geography of Sweden, and the
specimen collection reflects well the clinicopathological
characteristics of breast cancer in the catchment region.
Due to primacy of the clinical diagnostic evaluation, very
small/low-grade tumors are slightly under-sampled. We
anticipate improvements in patient enrollment, and in-
creases in the fraction where a tumor specimen can be
collected, as the procedures become further integrated
into the healthcare routine and the importance of tissue
and blood sampling for genomic analyses becomes fur-
ther evident through forthcoming studies from us and
others. We are expanding the infrastructure to include
patients diagnosed with metastatic breast cancer, and
also drawing blood samples at routine intervals during
the clinical course for liquid biopsy studies.
Lastly, we extend an open invitation to other hospital

systems in Sweden and the Nordic countries to join the
SCAN-B network. Most recently, Uppsala County joined
the network in October 2013. SCAN-B may also serve
as a model for similar translational projects in other
types of cancer and diseases.

Conclusions
In summary, we present the successful implementation
of a multicenter infrastructure for genomic biomarker
development in breast cancer across a wide geography
of Sweden, and the optimization of RNA-seq protocols
for high-throughput analyses. To our knowledge, this is

the largest endeavor of its kind and is distinctive in its
population-based approach.
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Introduction 
This is a custom protocol for the tissue sample treatment of tumor samples for genomic analysis of 

breast cancer within the SCAN-B Initiative.  The procedure is divided into preservation, 

partitioning, histology, and isolation using the AllPrep method of total RNA for fragments > 200bp, 

DNA isolation, and possibility for protein isolation and small RNA isolation from the retained 

flow-through fraction. 

Samples: Preserved tumor samples (or fresh/snap frozen specimens), 

optimal weight: 5-30 mg (min 1 mg, max 50 mg). 

1. Tissue Preservation
1.1. Clinical Pathology

1.1.1. Tissues should be transported and manipulated on ice.   

1.1.2. Tissue specimens of approximately 3x3x3 mm are collected but a single smaller 

piece may suffice. For efficient preservation, the widest dimension of a collected 

sample should not exceed 5 mm. 
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1.1.3. Place specimen(s) in pre-aliquoted SCAN-B tubes (Corning 2.0 ml cryogenic vials, 

cat# 430659) containing 1 ml RNAlater (at least 5 parts RNAlater to 1 part 

specimen). 

1.1.4. Use separate tubes for multiple specimens if they are considered separate samples, 

e.g., a multifocal tumor or a lymph node. Annotate details on barcode stickers and 

referral form. 

1.1.5. Apply barcode sticker and fill in SCAN-B pathology form. 

1.1.6. Place tube in 4°C and record date/time.  RNAlater should be allowed to penetrate 

specimen for at least 16 hours prior to processing or freezing. 

1.1.7. Ship to Lund Pathology following schedule and using inter-hospital transport. 

1.1.8. At Lund Pathology, all SCAN-B specimen tubes are placed in Lund SCAN-B 4°C 

refrigerator to await pick-up by SCAN-B personnel. 

1.1.9. Tested RNA stability after the 16h @ 4°C incubation:   

Temperature    Stability 

4°C    = up to 4 weeks (we aim to store at 4°C for < 5 days) 

RT    = up to 5 days 

-80°C    = long term 

 

2. Collection and LIMS Registration 
Specimens and referral forms are delivered in cold-pack insulated carrier bags. 

 

2.1. Collection and Registration in LIMS 

2.1.1. Match collected specimen tubes with SCAN-B pathology forms. If a pathology form 

or specimen tube is missing, notify the clinical liaison.  

2.1.2. Note time of surgery and check which specimens can be partitioned the same day. 

Specimens should be stored at 4°C for at least 16 hours before partitioning or 

freezing. 

2.1.3. Log in to: BASE → Extensions → Reggie → Sample processing wizards → 

Specimen tube registration. 

2.1.4. Enter Case Name (step 1 of 3). Use the barcode reader to enter Case name (“studie 

löp nr”) → Next to proceed. 
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2.1.5. Enter Case information (step 2 of 3). Fill in: Number of tubes, Arrival date, 

Sampling date and time, RNA Later date and time, Laterality, Specimen type, Biopsy 

type, Other path note; → Next to proceed. 

2.1.6. Enter tube information (step 3 of 3). Assigned box number in freezer will come up. 

Fill in delivery comment → Create to save. 

2.1.7. When the referrals have been registered in BASE, leave them in the “UT” tray. 

Unregistered referrals may be left in the “IN” tray. Note: The referrals must always 

be kept in the secure location.  

2.1.8. Go to the Brady computer and log in to BASE → Extensions → Reggie → Sample 

processing wizards → Partition registration wizard. Select specimen tubes that you 

want to process → next → download label files. Save downloaded file on desktop as 

CSV with the date as filename (e.g., 20120221.csv). 

2.1.9. Open the software Multiple_Brady_Printer → Data sources → Database → Create. 

Under Select a datasource choose csv and select the file that was downloaded and 

saved on the desktop → ok.  

2.1.10. In software Multiple_Brady_Printer, Select Print direct under Print to check if the 

number is in the correct position on the printed labels, preferably as far down as 

possible. If needed change position on screen or move the label in the printer. When 

it is ok select → Print → More → all records → ok. 

2.1.11. Collect printed labels for lab tubes: one for AllPrep, Histology, and the Remainder.  

3. Specimen Partitioning 
Optimally we process a ~30 mg piece of each specimen for extraction of nucleic acids using the 

AllPrep method. The tumor pieces are delivered in tubes containing 1 ml of RNAlater.  Store them 

at 4°C for at least 16 hours from operation time to allow full penetration of tissue with the 

preservative.  All received samples must be properly registered in BASE prior to sample 

processing. 

 

3.1. Before you start 

3.1.1. Spray lab benches with Ambion RNAse Away (cat# 10328-011) and wipe them dry.  

3.1.2. Put a sterile blanket on the bench; change when needed (if possible every day). 
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3.1.3. Prepare 2.0 ml Eppendorf Safe-Lock tubes with pre-printed barcoded labels for 

AllPrep, Histology, and Remainder. Add 500 µl RNAlater to tubes for Histology and 

Remainder (no RNAlater for AllPrep tubes). Write last 3 digits of barcode on top of 

tubes. 

3.1.4. Prepare for tissue dissection by having petri dishes (35 x 10 mm) and single use 

scalpels (blade no. 10) for each tissue sample to be dissected.  

 

3.2. Partitioning 

3.2.1. Log in to the laptop next to the scale (partitioning lab bench), “wake” the scale by 

pressing any button. Press the green icon (Metler Toledo Balance link software) 

select → Configuration → interface → Port, COM3 →ok.  

3.2.2. Log in to BASE → Extensions → Reggie → Sample processing wizards → Partition 

registration wizard. Select specimens to be partitioned and press → Next.  

3.2.3. Put fresh petri dish on the bench and get the first tissue piece out of its tube and onto 

the dish. Make note of the appearance of the tumor and enter the Number of pieces 

(NofPieces) in the BASE form. 

3.2.4. Cut off desired sections with a scalpel. In priority order: one representative piece for 

AllPrep (~30 mg), one section immediately adjacent to be used for Histology (5-10 

mg), and one for Remainder (if there is any left).  The AllPrep piece should be 

subpartitioned into smaller pieces to enhance tissue lysis. Use single-use scalpels and 

forceps to handle each sample.    Note: check the box ‘Mult’ if sampling multiple 

pieces is required to get material for AllPrep. 

3.2.5. If the delivered specimen is <15 mg, then only take a piece for AllPrep.  If the 

specimen is exactly 15 mg, then take 10 mg to Allprep and 5 mg to Histology. 

3.2.6. Dispose of used single-use utilities and discard the scalpels in the yellow sharps box. 

3.2.7. Repeat for each tissue sample. 

3.2.8. As prompted by BASE, weigh each tube containing the 500 µl RNAlater, tare, and 

place the appropriate cut section(s) into the labeled tube, and record in BASE by 

pressing print on the scale.   

3.2.9. If Histology piece cannot be sampled, write 0 in the HisWeight field. 

3.2.10. Place the tubes with the pieces for AllPrep, Histology, and Remainder in their 

assigned storage locations in the -80°C freezer (AllPrep and Remainder) or 4°C 

fridge (Histology). 
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4. Tissue Disruption and Lysis 
Tissue samples are lysed and homogenized with the TissueLyzer (TL) and the RNA/DNA is 

extracted using the AllPrep method, automated on the QIAcube (all from Qiagen).  Flow-though 

fraction is saved for eventual isolation of small RNAs and proteins. 

 

4.1. Before you start 

4.1.1. Log in to BASE → Extensions → Reggie → Sample processing wizards → 

DNA/RNA extraction wizards → Lab Tracking Protocol for Allprep isolation. 

4.1.2. Select the 12 samples that are next in line under Select unprocessed lysate items → 

Finish → Print. 

4.1.3. Make sure that the samples selected are in the AllPrep storage box in the -80°C 

freezer and check the “ApWeight” (printed in remark).  If any sample is less than 10 

mg or more than 50 mg this sample should be treated differently (described later in 

this protocol). 

4.1.4. Chill the TissueLyser (TL) adapter at -20°C for at least 1 hour. 

4.1.5. Take out samples from freezer to thaw at room temperature if they are in RNAlater. 

If fresh frozen tissue is being used, it should at all times be on dry ice. 

4.1.6. Retrieve the remaining pre-printed labels for all samples to be processed. 

 

4.2. Prepare lysis buffer 

4.2.1. Always use Eppendorf 2.0 ml Safe-Lock tubes for disruption/lysis. Mark two 

tubes/sample: 

• One with the label ending with “.l” (lysate) and the number of the sample on the 

lid (together with position in Qiacube).  

• The other with the last three numbers of the sample on the side and the QIAcube 

number on the lid (for AllPrep isolation) 

4.2.2. From this step work on the ventilated bench.  Prepare the “Lysis buffer mix” (800 

µl/sample).  Mix 790 µl RLT Plus lysis buffer + 8 µl 2-Mercaptoethanol (BME). 

Make a lysis mastermix for 13 samples if you are processing 12 samples (10,270 µl 

RLT + 104 µl BME in a 15 ml tube).  Be aware that, if any of the samples are over 

50 mg, additional buffer will be needed; therefore check this before preparing the 

mastermix. 
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4.2.3. Rinse the steel beads (5 mm) to be used (2 per sample) in 1 ml fresh RLT Plus lysis 

buffer using a 2 ml tube and a clean pair of forceps (maximum 12 beads in one tube).  

 

4.3. Tissue disruption 

4.3.1. Quickspin the thawed sample tubes and remove the RNAlater solution (~600 µl). Be 

sure that all the salt precipitate is dissolved. 

4.3.2. Add 2ul Reagent DX-Antifoaming reagent to each sample. 

4.3.3. Place 2 steel beads in each sample tube and store the samples in the pre-cooled TL 

adapter (12 samples/run). 

4.3.4. Add 400 µl lyses buffer mix and disrupt the samples in the TissueLyser, disrupt the 

samples at 50 Hz for 2 x 4 minutes (pause in-between). 

4.3.5. After disruption centrifuge the samples briefly and keep at room temperature 

4.3.6. For samples 10-50 mg, add an additional 400 µl lysis buffer and mix well 

4.3.7. For samples <10 mg, do not add additional lysis buffer. 

4.3.8. For samples >50 mg, add 600 µl lysis buffer. 

4.3.9. Add up to 800 µl lysed sample to the pre-labeled QIAshredder columns. 

4.3.10. Centrifuge at 16000 g for 5 minutes at room temperature.  Spin longer if precipitate 

appears loose in order to pellet it. 

4.3.11. Flow-through contains RNA/DNA and protein.  Continue with 350 µl of flow-

through lysate for RNA/DNA isolation in a new tube, and store the remaining ~390 

µl in a new labeled tube for storage (suffix “.l”), taking care to leave behind any 

precipitate.  If the specimen was <10 mg, then there will be no lysate for storage.  If 

the specimen was >50 mg, then repeat loading the same QIAshredder column and 

split the flow-through such that 350 µl is used immediately for RNA/DNA isolation 

and the remainder lysate is stored for future use. 

4.3.12. Store the homogenized samples for at least 30 minutes at -80°C or on dry ice before 

continuing with RNA/DNA isolation. 

4.3.13. The homogenized samples for storage should be put in the “lys” box in the position 

indicated by BASE. 

4.3.14. Dispose of BME waste appropriately. 
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5. AllPrep RNA/DNA/flow-through isolation using the QIAcube 
This is the protocol for isolation of RNA and DNA from 350 µl homogenized tissue sample in RLT 

Plus buffer using the AllPrep method.  Customized QIAcube protocols were developed for 

SCAN-B which modified slightly the standard protocols provided by Qiagen. Additional 

instructions are found in the QIAcube Protocol Sheet and in the Customized Protocol General 

Information ID 1608 v2.  Protocols are available under: 

RNA → AllPrep DNA/RNA Mini Kit → Animal tissues and cells → 

Part A (DNA Purification): → Custom part A 

Part B (protein/smallRNA FT): → AllPrep Mod 1 part B 

Part C (RNA Purification): → AllPrep Mod 1 part C 

 

5.1. Preparation 

5.1.1. Thaw the samples processed above and bring them to RT. Continue using the “Lab 

Tracking Protocol for Allprep isolation” printed out from BASE.  

5.1.2. Retrieve the labels previously printed out.  

5.1.3. The label ending with “.d” (DNA) and label ending with “.r” (RNA) should go on 

1.5 ml safe-lock tubes (cat# , Eppendorf), and mark the lids with the sample ID. 

5.1.4. The last label, ending with “.ft” (flow through) should be put on a 1.5 ml protein 

low-binding safe-lock tube (cat# , Eppendorf). Mark the lid with the number. 

5.1.5. Mark (using pen) two Rotor adapter and two 1.5 ml collection tubes (from the 

AllPrep kit) for each sample, with QIAcube position number. Put them on two 

separate rotor adapter holders. 

5.1.6. Put marked collection tube in position 3 on respective Rotor adapter and fasten lid in 

position L3 (see picture below or “Protocol sheet”). 

 
5.1.7. Fill up with Filter-tips (1000 µl) in the QIAcube. 

5.1.8. Prepare one 2 ml safe-lock tube (cat# Eppendorf) with RNAse free water (for 12 

samples 1336 µl) for the RNA elution step and put the tube in slot A in the QIAcube. 
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For fewer samples than 12 see volume “Protocol Sheet”. It is important to have the 

exact volume that is described in the protocol sheet. 

5.1.9. Check the “QIAcube-AllPrep-Buffer Exchange List” if any reagents needs to be 

exchanged.  Put the bottles in the Reagent Bottle Rack in correct position (see 

Protocol Sheet). Fill up with solutions from kit if needed (it should be at least 2/3 in 

each bottle). Note: mark the bottle with date if a new bottle is opened.  

5.1.10. Remove the caps from the reagent bottles and put them in the assigned box. Put the 

reagent bottle rack in the QIAcube. 

5.1.11. Cut the lids off the AllPrep DNA spin columns. 

5.1.12. Work on the ventilated bench after running each QIAcube program. 

 

5.2. Part A (DNA isolation) 

5.2.1. Place the labeled elution tubes in position 3 and the lidless AllPrep DNA spin 

columns into position 2 of each rotor adapters.  (Position 1 is empty). 

5.2.2. Place the rotor adapters into the QIAcube centrifuge. 

5.2.3. Quickspin the thawed samples lysates and place them in their correct positions in the 

QIAcube shaker. 

5.2.4. Close the QIAcube and start the program → Custom part A.  Run time is 

approximately 30 minutes for 12 samples.  Note: This is a modified program; 

importantly an additional 1 minute incubation following addition of wash buffer was 

added. 

5.2.5. At the end of the program take out the rotor adapters and place into the rotor adapter 

holder. 

5.2.6. Remove the DNA spin column and save the labeled DNA elution tube on ice. 

5.2.7. Transfer the eluted DNA to a new labeled 1.5 ml safe-lock DNA tube.  

5.2.8. Transfer the flow-through (containing total RNA and protein) from the used rotor 

adapter Position 2 (approximately 310 µl) into Position 2 of a fresh rotor adapter. 

 

5.3. Part B (collection of flow-through for protein/smallRNA) 

5.3.1. Prepare a second set of Rotor adapters. 

5.3.2. Place clean RNeasy spin columns in position 1 with the lid fastened in position L1 of 

the new adapters. 

5.3.3. Place RNA elution tubes into position 3 of the new adapters. 
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5.3.4. Transfer the flow-through (containing total RNA and protein) from the used rotor 

adapter Position 2 (~310 µl) from above into Position 2 of the new rotor adapter. 

5.3.5. Place the rotor adapters into the correct positions in the QIAcube. 

5.3.6. Close the QIAcube and start the program → AllPrep Mod 1 part B.  Run time is 

approximately 13 minutes for 12 samples.  Note: This is a modified program to allow 

for saving of the flow-through which contains the protein and small RNA fractions. 

5.3.7. At the end of the program take out the rotor adapters and place into the rotor adapter 

holder. 

5.3.8. Save the protein/small RNA flow-through (550 µl) from the space between the 

adapter positions and transfer to a new pre-labeled 1.5 ml protein low-binding safe-

lock tube and store at -80°C according to position indicated by BASE. 

5.3.9. Place the rotor adapters back into the QIAcube maintaining the same centrifuge 

adapter holder positions as before. 

 

5.4. Part C (complete RNA isolation) 

5.4.1. Close the Cube and start the program → AllPrep Mod 1 part C.  Run time is 

approximately 23 minutes for 12 samples. 

5.4.2. At the end of the program take out the rotor adapters and place into the rotor adapter 

holder. 

5.4.3. Remove the RNeasy spin columns and save the labeled RNA elution tubes on ice. 

5.4.4. Transfer the eluted RNA into a new pre-labeled 1.5 ml safe-lock tube and store on 

ice. 

5.4.5. Take out reagent bottles and put the lids on to prevent ethanol evaporation.  

5.4.6. Clean the QIACube with 70% ethanol if needed and then clean out used tips from 

drawer and clean the inside of the drawer with 70% EtOH and put it back again. 

Dispose of waste appropriately. 

5.4.7. Store all samples at -80°C in labeled boxes and in positions as directed by BASE. 
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6. RNA and DNA QC 
6.1. Nanodrop 

6.1.1. Directly after isolation of RNA and DNA, log in to the 8-channel Nanodrop (ND-

8000) computer and log in to BASE → Extensions → Reggie → Sample processing 

wizards → DNA/RNA extraction wizards → DNA/RNA/Flowthrough registration.  

6.1.2. Select the 12 samples that have been extracted under Select unprocessed lysate items 

→ Next; fill in information on Lysis and Qiacube run under Common information 

from Lysate and Qiacube step → Next. 

6.1.3. Under RNA/DNA/Flowthrough details → NanoDrop Sample ID → click Download 

→ save file on desktop (remove file when finished). 

6.1.4. Open the ND-8000 program and upload the file when prompted (Load Sample ID 

file). The DNA samples are now listed on row 1 and 2 and the RNA samples are 

listed on 3 and 4. If any of the samples get an error message or look strange do the 

re-measurement in the same position. Measurements that are done in other positions 

will not be uploaded into BASE. 

6.1.5. After measurement of samples save the report as a “txt” file on the server 

sky1:\scanb\SCAN-B\Nanodrop_resultat  in folder with appropriate “month-year”. 

Name the file with “date of extraction + _DNA_RNA”. Print the file. 

6.1.6. Go back to BASE Extensions → Reggie → RNA/DNA/FlowThrough details → 

NanoDrop values → click ‘Browse’ → Select the results file from ND measurement 

→ open. The concentrations should now appear for each sample.  

6.1.7. Check that the values are the same as on the ND results file. If any of the samples 

have been re-measured BASE will automatically take the measurement with the 

highest value, if this is not correct change the value in BASE. 

6.1.8. Check that the lysate volumes are correct. If samples had a weight < 10 mg the 

Lysate Total is only 350 µl and if a sample had a weight > 50 mg the Lysate Total is 

900 µl. For normal samples the lysate is 700 µl. 

6.1.9. If anything needs to be changed or a comment is to be added press → Edit… → 

change what’s needed → ok → Finish. 
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6.2. Preparation of RNA aliquots for Caliper run 

6.2.1. In BASE → Reggie → Sample processing wizards → RNA quality control wizards 

→ Create aliquots on Bioanalyzer/Caliper plates → Select the RNA extracts to be 

aliquoted → Next.  

6.2.2. Positions of samples on Caliper plate and concentrations appear and if the RNA 

sample concentration is <35 ng/µl the HS (High Sensitivity assay on Caliper) box is 

ticked.  

6.2.3. Write down the positions of the samples on the Caliper plate in the comment box on 

the “Lab Tracking Protocol for Allprep isolation” for current run. Also note if any of 

the samples are to be run with the HS assay; press → Finish. 

6.2.4. Prepare 12-tube strips for RNA quality check on Caliper, write the 3 last numbers of 

the sample on each tube on the strip. For HS, aliquot 2 µl per sample to the strip. For 

Std take 2 µl up to 200 ng/µl, and if at a higher concentration then dilute to <200 

ng/µl and aliquot 2 µl to the Caliper strip. 

6.2.5. Put strip caps on and label them with plate position and the ends with column 

number and put them in the correct position in the specific Caliper plate in the -80°C 

freezer.  

6.2.6. When the plate is complete it will be run on Caliper. The results are stored directly in 

BASE. For Caliper instructions see protocol “Caliper LabChip GX HT RNA Assay 

user instructions”. 

6.2.7. Store all samples at -80°C in correct positions in labeled boxes as indicated by 

BASE. 

6.2.8. Put the completed “Lab Tracking Protocol for Allprep isolation” with the print out of 

the NanoDrop results in folder named “SCAN-B QC”. 

7. Equipment, Consumables, and Reagents 
 

Equipment: 

• QIAcube (cat# 9001293, Qiagen) 

• TissueLyser LT (cat# 85600, Qiagen) 

• Caliper LabChip GX (cat# 122000, PerkinElmer) 
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Consumables and Reagents: 

• Cyogenic vial 2 ml (cat# 430659, Corning) 

• Brady label stickers (cat# BPT-628-461, Brady) 

• Petri dish 35 x 10 mm (cat# 353001, Falcon) 

• Single-use no. 10 scalpels (cat# REF0501, Swann-Morton) 

• AllPrep DNA/RNA Mini Kit (cat# 80204, Qiagen) 

• Stainless Steel Beads 5 mm (cat# 69989, Qiagen) 

• TissueLyser 2x24 adapter set (cat# 69982, Qiagen) 

• Reagent DX (cat# 19088, Qiagen) 

• Buffer RLT Plus (cat# 1053393, Qiagen) 

• RNAlater 500 ml (cat# AM7021, Ambion) 

• Safe-lock Tubes 2.0 ml (cat# 0030 123.344, Eppendorf) 

• Safe-lock Tubes 1.5 ml (cat# 0030 123.328, Eppendorf) 

• Protein low-bind Safe-lock Tubes 1.5 ml (cat# 0030 097.221, Eppendorf) 

• 2-Mercaptoethanol >98% (cat# M3148-100ml, Sigma) 

• QIAshredder columns (250 pcs) (cat# 79656, Qiagen) 

• QIAcube Filter Tips 1000 µl (cat# 990352, Qiagen) 

• QIAcube Rotor Adapters (240 pcs) (cat# 990394, Qiagen) 

• QIAcube Reagent Bottle (30 ml) (cat# 990393, Qiagen) 

• 12-tube strips (200 µl) (cat# 732-0553, VWR) 
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Introduction 
This is the SCAN-B RNA-seq protocol for preparation of Illumina-compatible sequencing libraries 

from total RNA in a high-throughput format with an integrated workflow together with the 

BioArray Software Environment (BASE) laboratory information management and analysis web-

based platform. The library preparation method is an adaptation of the dUTP strand-specific method 

as described by Parkhomchuk et al. (Nucleic Acids Res 2009) and modified by Lohan and 

colleagues (Nalpas et al., BMC Genomics 2013). Size selection using polyethylene glycol and 

carboxylic acid (CA)-beads is adapted from described methods by Borgstrom et al. (PLOS One 

2011).   
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1. mRNA Purification from Total RNA 
This is a modification of the Invitrogen protocol “Dynabeads mRNA DIRECT Kit (rev008)” (cat# 

61012) for automatization on the ThermoScientific KingFisher Flex Magnetic Particle Processor 

(KF-Flex). Input material is 1.1 µg (1-2 µg can readily be used) total RNA diluted in 50 µl 

nuclease-free water. Two rounds of mRNA purification are performed to reduce ribosomal RNA. 

For breast cancer samples, the expected yield of mRNA after the 2nd round is approximately 1-2% 

of total RNA. Relative humidity in the KF-Flex should be stabilized by placing open plates with 

water inside prior to starting.  

 

1.1. Diluting total RNA samples 

1.1.1. Use BASE to create the worksheet for the next batch of total RNA samples to be 

purified: BASE → Extensions → Reggie → Library preparation wizards → Lab 

protocols for mRNA and cDNA preparation. Select mRNA bioplate and input 

concentration of the Stratagene Universal Human Reference RNA (cat# 740000, 

Agilent) being used. Print out List layout and Plate layout. 

1.1.2. Dilute all samples in a 96-well 4titude PCR plate, 1.1 µg total RNA in 50 µl nuclease 

free water.     

Note: this is an optional stopping-point: plate can be sealed and stored at -80°C. 

1.1.3. Vortex plate and spin it down before incubation. 

1.1.4. Incubate the samples at 65°C for 5 min in a thermocycler (e.g. Eppendorf 

vapo.protect). 

1.1.5. Place denatured diluted total RNA samples on ice. 

 

1.2. Preparation of Binding Plates 

1.2.1. In advance, contents of Ambion mRNA Purification Kit should be brought to room 

temperature (allow at least 20 min). 

1.2.2. Vortex the Dynabeads and transfer 100 µl Dynabeads per well into the Binding 

Plate1 (KingFisher 96 plate 200 µl, cat# 97002540).     

Note: 100 µl/well Dynabeads is prepared to cover both round #1 and round #2. 

1.2.3. Remove suspension buffer by applying plate to 96-position magnetic stand and wait 

until the solution is completely clear (1-2 min); then discard the supernatant by 

pipetting. 
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1.2.4. Wash beads: add 100 µl Binding Buffer and mix by pipetting. 

1.2.5. Remove Binding Buffer by applying plate to 96-position magnetic stand, wait until 

clear (1-2 min), and discard the supernatant by pipetting. 

1.2.6. Add 100 µl Binding Buffer and mix by pipetting. 

1.2.7. Per well, transfer 50 µl of the resuspended Dynabeads to Binding Plate2 for later use 

in round #2 (see section below). 

1.2.8. Add 50 µl of the diluted total RNA samples to each well in Binding Plate1 and mix 

by pipetting (total volume 100 µl). 

 

1.3. Preparing KF-Flex for round #1 of mRNA purification  

1.3.1. Label and fill the KF 96 plates as follows: 

 1 - Tip Plate: Put 1 new KingFisher 96 tip comb on to the TIP Plate 

 2 - Elution Plate: 55 µl nuclease free water 

 3 - Wash Plate 2: 60 µl Washing Buffer B 

 4 - Wash Plate 1: 60 µl Washing Buffer B 

 5 - Binding Plate: 50 µl prepared Dynabeads + 50 µl prepared Samples (as 

described above)  

 

1.4. Run KF-Flex, purification round #1 

1.4.1. Make sure that the A1 positions on the plates are in the same corner as the A1 

positions of the KF-Flex disc. 

1.4.2. Start program mRNA_DB10fl, follow on-screen instructions. 

1.4.3. After completed run, remove elution plate immediately and place on 96-position 

magnetic stand and wait until the solution is completely clear (1-2 min). 

1.4.4. Transfer 50 µl of the samples (all) into a new PCR plate, seal the plate, and store it 

on ice until round #2.              

Note: when proceeding directly to round #2 samples are already denatured from the 

elution step, otherwise a separate denaturation should be added by incubation at 

65°C for 5 min in a thermocycler. 
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1.5. Preparing KF-Flex for round #2 

Note: Dynabeads for Binding Plate2 is prepared together with Binding Plate for round #1 

(above). Prepare for round #2 while round #1 is running in the KF-Flex. 

1.5.1. Label and fill the KF 96 plates as follows (note lower volume in Elution Plate 

compared to round #1):  

 1 - Tip Plate: Put 1 new KingFisher 96 tip comb on the TIP Plate 

 2 - Elution Plate: 50 µl nuclease free water 

 3 - Wash Plate 2: 60 µl Washing Buffer B 

 4 - Wash Plate 1: 60 µl Washing Buffer B 

 5 - Binding Plate2: 50 µl prepared Dynabeads + 50 µl Sample from 

round #1 

 

1.6. Run KF-Flex 2nd Round 

1.6.1. Make sure that the A1 positions on the plates are in the same corner as the A1 

positions of the KF-Flex disc. 

1.6.2. Start program mRNA_DB10fl, follow on-screen instructions. 

1.6.3. After completed run, remove elution plate immediately and place on 96-position 

magnetic stand and wait until the solution is completely clear (1-2 min). 

1.6.4. Transfer 45 µl of the samples (all) into a new PCR plate, seal the plate, and store it 

on ice.  

Safe stopping point – may store at -80°C 

 
1.7. Comments 

After two rounds of mRNA purification using Dynabeads, mRNA yield will be between   

1-5% of the total RNA.   

Figure 1. Example BioAnalyzer analysis of mRNA purification after 1 round and 2 rounds. 
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2. Fragmentation of mRNA 
Purified mRNA is fragmented to ~240 bp fragments using the Ambion buffered zinc fragmentation 

reagents (cat# AM8740). In our hands, incubation for 1.5 minutes yields optimally-sized fragments. 

Fragmentation is robust to variation in input-RNA concentration and to delay in addition of Stop 

Buffer as long as samples are put on ice immediately after incubation. 

2.1. Fragmentation of mRNA 

2.1.1. Assemble the following reaction in PCR tube/strip/plate format: 

• mRNA       45 µl 

• 10X Fragmentation Reagent     5 µl 

2.1.2. Incubate at 70°C for 1.5 minutes in a thermocycler. 

2.1.3. Place the tube/plate on ice. 

2.1.4. Add 5 µl of Stop Buffer. 

Safe stopping point – may store at -80°C 

 

3. Recovery of Fragmented mRNA  

The Zymo Oligo Clean & Concentrator with high EtOH (~70%) is used to clean and concentrate 

fragmented mRNA larger than 16 nucleotides. This can be performed in either column (cat# D4061, 

Zymo Research) or 96-well plate (cat# D4063) format. 

3.1. Recovery of fragmented mRNA 

3.1.1. Add 100 µl Oligo Binding Buffer to a new deep well collection plate (from Zymo 

kit). 

3.1.2. Transfer fragmented mRNA (~55 µl) to the collection plate and mix by pipetting.  

3.1.3. Add 400 µl absolute ethanol to the collection plate with Oligo Binding Buffer and 

fragmented mRNA, mix briefly by pipetting and transfer mixture to the 

corresponding well of a Zymo-Spin I-96 Plate. 

3.1.4. Centrifuge at 5000 g for 5 minutes. Discard the flow-through. 

3.1.5. Add 800 µl Wash Buffer to all the wells on the plate.  

3.1.6. Centrifuge the plate at 5000 g for 5 minutes and discard the flow-through.  
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3.1.7. To completely dry the plate, centrifuge at 5000 g for 7 minutes and discard any flow-

through.  

3.1.8. Transfer the plate onto an Elution Plate (in this case we use a PCR plate). Add 15 µl 

water directly to the column matrix (make sure that the entire volume is on the 

matrix) and let the plate stand for 1 minute. Centrifuge at 5 000 g for 7 minutes to 

elute the mRNA. 

3.1.9. Transfer 10.5 µl of the eluate to a new PCR plate.             

Note: transfer to a new PCR plate is not required if an appropriate stand/rack is 

used to support (prevent damage) the PCR plate during centrifugation; however, 

verify that volumes are even across wells. 

 

3.2. Quality Control (optional) 

Quality control of fragmented mRNA can be performed by RNA Pico Chip on the Bioanalyzer. 

Since an amount of the sample is lost when running quality control, samples must be pre-

selected from the start and compensated by inputting an extra amount of total-RNA in the 

mRNA	  purification	  (add an extra 11% of total-RNA). 

3.2.1. Aliquot 1.2 µl for selected samples to perform quality control on a RNA Pico Chip 

on the Bioanalyzer. Add back 1.2 µl water to these samples to compensate the total 

volume. 

3.2.2. Use BASE to register mRNA plate and upload Bioanalyzer PDF file: BASE → 

Extensions → Reggie → Library preparation wizards → mRNA registration and 

quality control results. 

Safe stopping point – may store at -80°C 

 
Figure 2. Example of typical QC results for fragmented mRNA from well A6 (left) and F8 (right). 
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4. First Strand cDNA Synthesis 
First strand cDNA is synthesized using random hexamer priming, dNTP mix, and SuperScript II 

Reverse Transcriptase reagents (cat# 18064-014, Life Technologies). 

 

4.1. Priming 

4.1.1. Assemble the following reaction in a PCR tube/PCR plate 

• Fragmented mRNA  10.5 µl 

• Random hexamers (3 µg/µl)      1 µl 

4.1.2. Mix well with a pipette.  

4.1.3. Incubate 65°C for 5 minutes in a thermocycler. 

4.1.4. Place tube/plate on ice. 

 

4.2. cDNA synthesis  

4.2.1. Mix the following 1st Strand Synthesis Mix, per sample (use SCAN-B calculator): 

• 5X First Strand buffer        4 µl 

• 0.1 M DTT        2 µl 

• 10 mM dNTP mix       1 µl 

• RNaseOUT (40 U/µl)    0.5 µl 

4.2.2. Add 7.5 µl of 1st Strand Synthesis Mix to the mRNA+hexamers sample, mix well 

(total volume 19 µl). 

4.2.3. Place in thermocycler, run the following program:  

o 25°C 2 min  

o PAUSE, add 1 µl SuperScript II, take care to mix well (mix w larger volume) 

o Resume program, 25°C 10 min  

o 42°C 50 min 

o 70°C 15 min 

o 4°C Hold 

4.2.4. After completed program store samples on ice and proceed directly to clean-up. 
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5. First Strand cDNA Clean-up 
First strand clean-up is performed using the Illustra AutoScreen-96A plate (cat# 25-9005-98, GE 

Healthcare) to remove unincorporated dNTPs.  Note: Set out AutoScreen-96A plates ahead of time 

(~2 hr) as they must be used at room temperature or else performance will be erratic. 

 

5.1. Prepare AutoScreen-96A Well Plate 

5.1.1. Remove the AutoScreen-96A from the foil storage pouch.  

5.1.2. Remove both the top and bottom adhesive seals and place it directly on a collection 

plate (U-bottom plate).  

5.1.3. Centrifuge for 5 min at 910 g. 

5.1.4. Add, drop wise, 150 µl of distilled water. 

5.1.5. Centrifuge for 5 min at 910 g.  

5.1.6. Discard collection plate and replace it with a fresh PCR plate (4titude PCR plate). 

5.1.7. Slowly apply 20 µl of first strand cDNA to the center of the column resin bed in the 

AutoScreen-96A plate. 

5.1.8. Centrifuge the samples for 5 min at 910 g. 

5.1.9. Take note of eluted volume for each well. If needed add water to final volume of 

16ul. 

5.1.10. Store first strand collection plate on ice and proceed immediately to 2nd strand 

synthesis. 

6. Second Strand cDNA Synthesis 
Second strand synthesis incorporates dUTP instead of dTTP. To make a 400 µl mix of 10 nM of 

each nucleotide substituting dUTP for dTTP, take 40 µl of each 100 nM stock of dATP + dGTP + 

dCTP + dUTP, plus 240 µl H2O. Prepare nucleotide mix in advance.                

Note: for a full 96-well plate a total of 306 µl is typically needed.  

 

6.1. Second strand synthesis 

Note: the recipe for 2nd Strand Synthesis Mix includes water for a final reaction volume of 100 

µl. However, if elution volumes from first cDNA clean-up are variable, the volume of water in 

the 2nd Strand Synthesis Mix may be reduced and the final reaction volume adjusted with water 

after the 1st strand cDNA reaction sample has been added. 
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6.1.1. Mix the following 2nd Strand Synthesis Mix, per sample (use SCAN-B calculator): 

• 5X First Strand buffer      1.3 µl 

• 5X Second Strand buffer      20 µl 

• 10 mM dUTP+dATP+dGTP+dCTP mix     3 µl 

• 0.1 M DTT          1 µl 

• DNA Pol I (10 U/µl)         5 µl 

• RNaseH (10 U/µl)      0.2 µl 

• H2O        53.5 µl 

6.1.2. Chill 2nd Strand Master Mix on ice for at least 5 minutes before aliquoting. 

6.1.3. Add 84 µl of 2nd Strand Master Mix to each 1st strand cDNA reaction and mix (final 

total volume 100 µl). 

6.1.4. Incubate at 16°C in a thermocycler for 2.5 hours (no heated lid). 

6.1.5. Proceed to second strand cDNA clean-up. 

 

7. Second Strand cDNA Clean-up  
Second strand cDNA clean-up is performed using the Zymo Research Oligo Clean & Concentrator 

and low EtOH (~57%) to concentrate and clean oligonucleotides >80 bp. This can be performed in 

either column (cat# D4061, Zymo Research) or 96-well plate (cat# D4063) format. 

 

7.1. Second strand cDNA clean-up 

7.1.1. Add 200 µl Oligo Binding Buffer to a new collection plate. 

7.1.2. Transfer 100 µl sample to the collection plate containing Oligo Binding Buffer. 

7.1.3. Add 400 µl absolute EtOH to the collection plate with sample and Oligo Binding 

Buffer, mix briefly by pipetting and transfer mixture to the corresponding well of a 

Zymo-Spin I-96 Plate.  

7.1.4. Centrifuge at 5000 g for 5 minutes. Discard the flow-through. 

7.1.5. Add 800 µl Wash Buffer to all the wells on the plate.  

7.1.6. Centrifuge the plate at 5000 g for 5 minutes and discard the flow-through.  

7.1.7. To completely dry the plate, centrifuge at 5000 g for 7 minutes and discard any flow-

through. 
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7.1.8. Transfer the plate onto an Elution Plate (in this case we use a PCR plate). Add 34 µl 

water directly to the column matrix (make sure that the entire volume is on the 

matrix) and let the plate stand for 1 minute. Centrifuge at 5 000 g for 7 minutes to 

elute the cDNA. 

7.1.9. Verify that volumes are even across wells, or transfer 30 µl to a new PCR plate. 

7.1.10. Use BASE to register cDNA plate: BASE → Extensions → Reggie → Library 

preparation wizards → cDNA registration. 

 

7.2. Quality Control (optional) 

7.2.1. For selected standard samples (e.g. Stratagene Reference RNA) measure 

concentration using Qubit (will only consume 1 µl of sample, replace used volume 

with water). Concentrations can be tracked over time across multiple plates for 

quality assurance. 

7.2.2. For selected standard samples (e.g. Stratagene Reference RNA) run BioAnalyzer 

(will only consume 1 µl of sample). Results can be tracked over time across multiple 

plates for quality assurance. 

Safe stopping point – may store at -80°C 
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8. End-Repair/A-Tailing and Adaptor Ligation 
As a combination module, end-repair, A-tailing, and adapter ligation are performed in an additive 

reaction. Illumina TruSeq barcoded adapters kits A and B (FC-‐121-‐2001	  and	  FC-‐121-‐2002) are 

used, with the adapters first diluted 1:5.  Use BASE to assign	  barcoded adapters samples:	  BASE → 

Extensions → Reggie → Library preparation wizards	  → Assign	  barcodes	  to	  cDNA	  plate,	  select	  

cDNA	  bioplate	  and	  appropriate	  preconfigured	  barcode	  layout.	  	  Use BASE to create	  

worksheets	  for	  barcoded adapters:	  BASE → Extensions → Reggie → Library preparation wizards	  

→ Lab	  protocols	  and	  files	  for	  library	  preparation,	  select	  cDNA	  bioplate	  and	  Print out List layout 

and Plate layout. 

 

8.1. End-Repair/A-Tailing 

8.1.1. Make an end-repair/A-tailing master mix, per sample (use SCAN-B calculator): 

• 10X T4 Ligase Buffer  4 µl 

• 10 mM dNTP mix  2 µl 

• ATP (10 mM)    1 µl 

• T4 DNA pol (5U/ul)  1 µl 

• T4 PNK (10U/ul)  1 µl 

• Taq DNA pol   1 µl 

8.1.2. Take 10 µl of mastermix to 30 µl cDNA, mix well (final volume 40 µl). 

8.1.3. Place in thermocycler, run the following program:  

o 25°C 20 min 

o 72°C 20 min 

o 12°C Hold 

 

8.2. Adaptor Ligation 

8.2.1. The adaptors are first diluted 1:5 with water and we have 24 different adaptors 

available from Illumina TruSeq DNA LT Sample Prep Kit A and B. 

8.2.2. Make an adapter ligation master mix, per sample (use SCAN-B calculator): 

• T4 DNA Ligase (5 U/µl)  3 µl 

• 10X T4 DNA Ligase buffer 1 µl 

• H2O    5 µl 

8.2.3. Add 1 µl of diluted adaptors to each 40 µl sample 



SCAN-B Protocol 

RNA-SEQUENCING LIBRARY PREPARATION (v2.0) 

Page 12 of 20 

8.2.4. Add 9 µl of the adaptor ligation mix, mix well, final volume of 50 µl. 

8.2.5. Place in thermocycler, run the following program:  

o 22°C 30 min 

o 4°C Hold 

8.2.6. Proceed to size selection. 

 

Safe stopping point – may store at -80°C 
	  

9. Size Selection with CA Beads 
Size selection is performed using polyethylene glycol 8000 (PEG) at appropriate (titrated) final 

concentration and carboxylic acid (CA)-beads to remove fragments <200 bp. We prepare a PEG 

stock solution (40%) that is sterile-filtered (0.22 µm filter) and aliquoted in 15 ml tubes: we aliquot 

13 ml in each tube to cover use for both size-selection and 2-step PCR purification. Aliquot tubes 

are labeled with preparation date, PEG lot# and stored at 4°C protected from light. Before first use, 

each new PEG stock solution must be titrated to evaluate size-selection properties to determine 

appropriate final working concentration, as this can vary between stock solutions. 

 

9.1. Prepare Samples 

9.1.1. Add appropriate volume of H2O to the wells (1-2 µl) to bring up to 50 µl. 

9.1.2. Store the samples on ice until the KF96-Binding plate has been prepared. 

 

9.2. Prepare PEG mastermix and 80% EtOH  

9.2.1. Vortex a new PEG stock-solution tube (15 ml tube) vigorously. Let sit for several 

minutes (in dark). The PEG stock-solution is going to be used for both size selection 

and for 2-step PCR purification step so calculate required volume and make sure that 

enough volume in available. 

9.2.2. Make fresh 40 ml 80% EtOH, by taking 32 ml absolute EtOH + 8 ml H2O. 

 

9.3. Prepare PEG mastermix 

9.3.1. Prepare the mastermix, MM, using JVC-1-step-CA-MM-calculator-v2.0.xlsx to 

calculate the master mix.           
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Note: the mastermix is prepared using PEG stock-solution, 5M NaCl stock-solution, 

and water to permit preparation of a binding reaction (final volume 100 µl) by 

combining sample (50 µl) and mastermix (50 µl) to achieve an appropriate final 

PEG concentration at 0.9M NaCl. The final PEG concentration in the binding 

reaction will vary with every new batch of PEG stock-solution and is typically in the 

range of 7-10% PEG. 

 

9.4. Preparing KF-Flex for size selection run 

9.4.1. Allow sufficient time to allow the beads to equilibrate to RT. Shake the magnetic 

beads bottle for at least 30 min at RT (Heidolph Vibramax 100 Shaker, 300 rpm).   

9.4.2. Label and fill the KF 96 plates as follows: 

 1 - Tip Plate: Put 1 new King Fisher 96 tip comb on to the TIP Plate 

 2 - Elution Plate: 15 µl EB 

 3 - Wash plate: 180 µl fresh 80% EtOH 

 4 - Binding Plate: 50 µl MM + 50 µl sample, mix by pipetting (thorough 

mixing is crucial) 

 5 - CA bead plate 40 µl CA beads + 160 µl EB 

 

9.5. Run KF-Flex 

9.5.1. Make sure that the A1 positions on the plates are in the same corner as the A1 

positions of the KF-Flex disc. 

9.5.2. Start program CA_HP6fl (it will take around 23 minutes), follow on-screen 

instructions. 

9.5.3. After completed run, remove elution plate immediately and place on 96-position 

magnetic stand and wait until the solution is completely clear (1-2 min). 

9.5.4. Transfer 13 µl of sample from the elution plate into a UDG plate (prepared in 

advance) containing UDG master mix, mix well, and store it on ice.  

9.5.5. The Binding Plate can be sealed and stored at 4°C and used for further analyses. 

 

Prepare Second Strand Digestion with UDG while the KF-Flex is running. 
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10. Second Strand Digestion with UDG  
The second strand with incorporated dUTP is specifically digested using uracil-DNA glycosylase 

(New England Bio Labs, cat# M02805). 

 

10.1. Digestion with Uracil-DNA Glycosylase  

10.1.1. Make an UDG master mix, per sample (use SCAN-B calculator): 

• 10X UDG Buffer  1.5 µl 

• UDG (5 U/µl)  0.1 µl 

• H2O   0.4 µl 

10.1.2. Take 2 µl of the master mix to a new PCR plate and transfer 13 µl of DNA from CA 

purification (final volume 15 µl) and store on ice. Mix well. 

10.1.3. Place in thermocycler, run the following PCR program:  

o 37°C 15 min 

o 94°C 10 min 

o 4°C Hold 

Safe stopping point – may store at -80°C 

11. PCR Enrichment 
Single-stranded cDNA is amplified by PCR. 
	  

11.1. PCR enrichment mastermix 

11.1.1. Make a PCR enrichment mastermix, per sample (use SCAN-B calculator): 

• Illumina Primer Cocktail (1:2 dilution) 2.625 µl 

• 10 mM dNTP mix       0.9 µl  

• Phusion Mix (NEB)     22.5 µl 

• H2O     4.875 µl 

11.1.2. Add 30.9 µl of PCR mastermix to 15 µl UDG digested cDNA, final volume of 45.9 

µl. 

11.1.3. Place in thermocycler, run the following PCR program:  

o 98°C 3 min 

o 12 cycles of: 98°C 30 sec, 60°C 30 sec, 72°C 30 sec 

o 72°C 10 min 

o 4°C Hold 
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11.1.4. After PCR place sample tube/plate on ice. 

11.1.5. Proceed to two-step purification with CA size selection.  

 

11.2. Quality Control (optional) 

11.2.1. For selected standard samples (e.g. Stratagene Reference RNA) measure 

concentration using Qubit (will only consume 1 µl of sample). Concentrations can be 

tracked over time across multiple plates for quality assurance. 

 

Safe stopping point – may store at -20°C 

 

12. Two-Step PCR Purification by CA-Bead Size Selection  
The PCR product undergoes two cycles of size selection using CA-beads and varying 

concentrations of PEG, first to exclude DNA fragments >700 bp and then to exclude fragments 

<200 bp.  Due to variations in ambient humidity and temperature and between batches of PEG 

preparations, this two-step PCR purification should always be done first with QC libraries (e.g. 

Stratagene Reference RNA, cat# 740000, Agilent) with different PEG concentrations to determine 

the optimal solution to proceed with for the entire plate of sample libraries on the same date. 

 

12.1. Sample preparation 

12.1.1. Make sure that the sample volume (PCR product) is at least 43 µl (expected volume 

~45 µl). Top off wells with water if necessary.  

 

12.2. PEG Mastermix-1 (MM-1) and Mastermix-2 (MM-2) 

12.2.1. Note: The volumes will vary with every new batch of PEG solution. Prepare the 

mastermixes, MM-1 and MM-2 using JVC-2-step-CA-MM-calculator-v5.0.xlsx.  

Note: MM1 is prepared to permit set-up of the 1st binding reaction (final volume 80 

µl) by combining sample (43 µl) and MM1 (37 µl) to achieve an appropriate final 

PEG concentration at 0.9M NaCl.  Conversely, MM2 is prepared to permit set-up of 

the 2nd binding reaction (final volume 160 µl) by combining sample (70 µl from 1st 

binding reaction) and MM2 (90 µl) to bring final PEG concentration to an 

appropriate level at 0.9M NaCl.  Note: final PEG concentrations in the binding 

reactions will vary with every new batch of PEG stock-solution and is typically in the 
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range of 7-9% for the 1st binding reaction and in the range of 8-12% in the 2nd 

binding reaction. 

 

12.3. Preparation of KF-Flex 2-step run, step 1 

12.3.1. Place the beads at RT for at least 2 hours. Shake the bottle with the magnetic beads 

for at least 30 min at RT (Heidolph Vibramax 100 Shaker, 300 rpm)  

12.3.2. Label and fill the KF 96 plates as follows: 

 1 - Tip Plate: Put 1 new King Fisher 96 tip comb on to the TIP Plate 

 2 - Binding Plate: 37 µl MM-1 + 43 µl sample, mix by pipetting (thorough 

mixing is crucial) 

 3 - CA Bead Plate: 40 µl CA beads + 160 µl EB, mix by pipetting 

 

12.4. Run KF-Flex 2-step, first step 

12.4.1. Make sure that the A1 positions on the plates are in the same corner as the A1 

positions of the KF-Flex disc. 

12.4.2. Start program CA2ST_C_fl, follow on-screen instructions. 

12.4.3. After completed run, remove plates immediately and prepare for KF-Flex step 2 run. 

12.4.4. Store the Binding plate that will be used in the second step run. 

 

12.5. Preparation of KF-Flex 2-step run, step 2 

12.5.1. Label and fill the KF 96 plates as follows: 

 1 - Tip Plate: Put 1 new King Fisher 96 tip comb on to the TIP Plate 

 2 - Elution Plate: 15 µl EB 

 3 - Wash Plate: 180 µl fresh 80% EtOH 

 4 - Binding Plate: Binding plate from step 1 run + 90 µl MM-2, mix by 

pipetting (thorough mixing is crucial) 

 5 - CA Bead Plate: 60 µl CA beads + 140 µl EB, mix by pipetting 

 

12.6. Run KF-Flex 2-step, second step 

12.6.1. Make sure that the A1 positions on the plates are in the same corner as the A1 

positions of the KF-Flex disc. 

12.6.2. Start program CA2ST_B_fl, follow on-screen instructions. 

12.6.3. After completed run, remove elution plate immediately and place on 96-position 
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magnetic stand and wait until the solution is completely clear (1-2 min). 

12.6.4. Transfer 13-14 µl (all) of the purified library samples in a new low-binding deep-

well Eppendorf PCR plate (cat# 0030503104), seal, and store on ice. 

12.6.5.  The Binding Plate can be sealed and stored at 4°C and used for further analyzes. 

12.6.6. Run the Bioanalyzer DNA High Sensitivity Chip (cat# 5067-4626) on tester 

Stratagene Reference RNA libraries to verify which PEG concentration should be 

used for the entire plate.  

 

12.7. Quality Control (optional) 

12.7.1. Qubit: 1 µl to Qubit 2.0 Fluorometer (cat# Q32866, Life Technologies). Measure 

with Qubit prior to aliquoting to Caliper. If the samples have a concentration <500 

ng/ml, SpeedVac (Savant) them down to 8 µl, measure once again on Qubit, then 

aliquot to Caliper. 

12.7.2. Caliper: Prefill a blue frame 4titude PCR plate (cat# 4TI-0960/B) with 20 µl nuclease 

free water; add 2 µl of the samples. Run Caliper according to protocol: Caliper HT 

DNA High Sensitivity Labchip GX Assay (cat# CLS760672, PerkinElmer) user 

instruction. 

Safe stopping point – may store at -20°C 

 

 
Figure 3. Example of typical QC results for Stratagene Reference RNA libraries from well H12 

(left) and H8 (right); size-selection at 9% and 8% (left and right, respectively) and 2-step 

purification at 7.7% followed by 9%.  
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13. Clustering and Sequencing 
 

We use BASE to track libraries and pooled libraries and to create protocols for pooling. 

Concentration and fragment size for libraries are registered in BASE and used to dynamically create 

pooling recipes. Libraries are diluted to 2nM and pooled according to pre-configured layouts; 

typically 21 libraries are pooled together. 

  

• Use BASE to register quality control for Stratagene Reference RNA test samples: BASE → 

Extensions → Reggie → Library preparation wizards → Register quality control results.  

• Use BASE to register results from Qubit and Caliper results for the whole plate: BASE → 

Extensions → Reggie → Library preparation wizards → Library registration. 

• Use BASE to create pooling schema for libraries according to pre-configured layouts: BASE 

→ Extensions → Reggie → Pooling wizards → Create pooled libraries. 

• Use BASE to generate and download pooling protocols: BASE → Extensions → Reggie → 

Pooling wizards → Lab protocols for pooling. 

• Register library pools: BASE → Extensions → Reggie → Pooling wizards → Register 

pooled libraries. 

 

We use Clustering	  and	  Sequencing	  wizards	  in	  BASE to track pools when clustering flow-cells and 

to track flow-cells through sequencing. Typically each pool is clustered on a total of 4 lanes across 

2 separate flow-cells (2 lanes per flow-cell).  Pools are diluted to 12 pM according to Illumina’s 

standard procedure and spiked with 0.5% PhiX control. We typically achieve a cluster density 

between 800-900 K/mm2 for a total number of PF clusters per lane between 180-200 M (HiSeq 

2000). 

 

14. Equipment, Consumables, and Reagents 
 

Equipment: 

• KingFisher Flex Magnetic Particle Processor (KF-Flex; ThermoScientific) 

• PCR themocycler (Eppendorf vapo.protect) 

• 96-positition magnetic stand, Dynal MPC-96S 
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• Sigma centrifuge 4K1S 

• BioAnalyzer 

• NanoDrop 

• Qubit 

• Caliper LabChip GX 

 

Consumables: 
96-well 4titude PCR plate Saveen Werner 4ti-0740 

KingFisher	  96	  plate	  200	  μl	  (Elution-‐,	  Wash-‐,	  and	  

Binding Plate)	  ??? 

VWR FINN97002540 

KingFisher 96 tip comb VWR 733-3015 

Low-binding deep-well Eppendorf PCR plate VWR 0030503.104 

 

Reagents: 
mRNA purification  
Dynabeads mRNA Purification Kit Life Technologies cat# 61006 
Column-based Oligo Clean & Concentrator Zymo Research cat# D4061 
RNA Fragmentation Reagents Ambion cat# AM8740 
Oligo Clean & Concentrator (single columns) Zymo Research cat# D4061 
ZR-96 Oligo Clean & Concentrator Zymo Research cat# D4063 
First strand cDNA Synthesis and Clean-up  
Random hexamer Invitrogen Custom Oligo NNNNNN, 

10U 
SuperScript II Reverse Transcriptase Life Technologies cat# 18064-014 
Superscript II RT 1000U Invitrogen cat# 18064014 
5X First strand buffer and 0.1 M DDT provided with 
SuperScript II Reverse Transcriptase 

  

RNase OUT 40U/ul Invitrogen cat# P/N 100000840 
10 mM dNTP Thermo Scientific cat# R0192 
Illustra AutoScreen-96A plate GE Healthcare cat# 25-9005-98 
Second Strand cDNA Synthesis 
5X First strand buffer and 0.1 M DDT provided with 
SuperScript II Reverse Transcriptase 

  

5X Second-Strand Buffer Life Technologies (Invitrogen) cat# 10812-014 
dATP 10mM Thermo Scientific cat# R0141 
dUTP 10mM Thermo Scientific cat# R0133 
dGTP 10mM Thermo Scientific cat# R0161 
dCTP 10mM Thermo Scientific cat# R0151 
DNA polymerase I 10U/ul New England Bio Labs cat# M0209L 
RNaseH 10U/ul Ambion cat# AM2293 
   
End-Repair/A-Tailing and Adaptor Ligation 
T4 DNA Ligase 5 Weiss U/µl +10x Buffer T4 DNA 
ligase 

Thermo Scientific cat# EL0011 

T4 DNA polymerase 5U/µl  Thermo Scientific cat# EP0062 
T4 PNK 10U/ul New England Bio Labs cat# M0201L 
Taq DNA polymerase 5U/ul Thermo Scientific cat# EP0402 
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10 mM dNTP Thermo Scientific  cat# R0192 
ATP 100mM Thermo Scientific cat# R0441 
Adaptors. Included in Illumina TruSeq DNA LT 
Sample Prep Kit A and B 

Illumina FC-121-2001 and FC-121-
2002 

Carboxylic acid (CA)-bead purification  
Polyethylene glycol 8000 (PEG) Sigma cat# P1458-50ml 
Dynabeads MyOne Carboxylic acid Life Technologies (Invitrogen) cat# 65012 
Sodium chloride solution Sigma cat# 71386-1L 
Second strand Digestion with UDG 
10x UDG Reaction Buffer New England Bio Labs cat# B0280S 
UDG 5U/ul New England Bio Labs cat# M02805 
PCR Enrichment 
PCR Primer Coctail. Included in Illumina TruSeq	  
DNA	  LT	  Sample	  Prep	  Kit	  A	  and	  B 

Illumina cat# FC-121-2001 and FC-
121-2002 

2x Phusion Master Mix w. HF buffer Thermo Scientific cat# F-531L 
Other 
Stratagene Universal Human Reference RNA Agilent cat# 740000 
EB Buffer  Qiagen Cat# 19086 
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microarray gene expression data with clinical and mutational annotations are available from 
the NCBI Gene Expression Omnibus under accession GSE60789. 



Figure S2 – Hierarchical clustering of 49 primary breast tumors using the RNA-seq gene 
expression measurements and the PAM50 intrinsic gene signature as in Figure 3. 
Here, each tumor’s molecular subtype is shown for three different signatures (PAM50,
Sørlie, and Hu) using data from either RNA-seq (HiSeq) or microarray (HT12) platforms.  See 
Materials and Methods section Molecular subtyping. 
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Figure S3 – RNA-seq-derived expression level of (A) PGR, which encodes the progesterone 
receptor (PgR), is shown compared to the clinical PgR IHC score for each tumor.  Cases with 
missing percentage positive cells are not shown. In (B) the expression level of ERBB2, 
encoding the human epidermal growth factor receptor 2 (HER2), is shown compared to the 
clinical HER2 status.  
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Table	  S1. RNA-Seq	  Data

Tumor	  Number

Raw	  
Sequencing	  

Reads	  
(million) PF	  Rate

PF	  Reads	  
(million) PCF	  Rate

PCF	  Reads	  
(million)

TopHat	  
Alignment	  

Rate

TopHat	  
Aligned	  
Reads	  
(million)

Fraction	  
PF	  Reads	  
Mappable

Total	  
Reads	  
Aligned	  
(million)

Fraction	  Unique	  
Read-‐Pairs

(non-‐duplicates)
1 74.9 82.5% 61.8 83.3% 51.5 68.9% 35.5 74.1% 45.8 70.2%
2 58.9 82.3% 48.5 81.9% 39.7 65.3% 26.0 71.6% 34.7 66.1%
3 54.3 89.3% 48.5 84.0% 40.8 72.3% 29.5 76.8% 37.2 69.8%
4 80.5 79.4% 63.9 87.2% 55.8 77.2% 43.0 80.1% 51.2 51.2%
5 53.9 81.5% 43.9 78.2% 34.3 70.6% 24.2 77.0% 33.8 74.6%
6 68.1 84.2% 57.3 76.8% 44.1 68.9% 30.4 76.1% 43.6 70.2%
7 21.0 89.6% 18.8 84.0% 15.8 61.9% 9.8 68.0% 12.8 24.9%
8 38.2 89.8% 34.3 80.3% 27.6 63.9% 17.6 71.0% 24.4 66.7%
9 48.4 89.5% 43.3 84.4% 36.6 67.4% 24.7 72.4% 31.4 58.3%
10 47.5 88.6% 42.1 84.1% 35.4 64.9% 22.9 70.5% 29.6 56.1%
11 53.2 84.9% 45.2 86.4% 39.0 76.0% 29.7 79.3% 35.8 54.9%
12 55.6 82.1% 45.7 87.8% 40.1 73.9% 29.7 77.1% 35.2 57.7%
13 68.2 82.1% 55.9 88.6% 49.6 65.3% 32.4 69.2% 38.7 66.2%
14 59.4 84.1% 49.9 84.2% 42.1 68.0% 28.6 73.0% 36.5 72.4%
15 47.5 84.3% 40.0 82.3% 33.0 61.8% 20.4 68.5% 27.4 40.4%
16 58.6 81.1% 47.5 85.6% 40.6 67.8% 27.5 72.4% 34.4 74.1%
17 71.3 83.4% 59.5 79.4% 47.2 71.0% 33.5 76.9% 45.8 68.3%
18 53.0 83.1% 44.0 82.2% 36.2 63.1% 22.8 69.6% 30.7 55.3%
19 61.2 83.6% 51.2 87.1% 44.6 76.9% 34.2 79.8% 40.9 51.1%
20 66.6 84.1% 56.0 86.6% 48.5 76.7% 37.2 79.8% 44.7 62.9%
21 56.6 83.4% 47.2 82.1% 38.7 78.1% 30.3 82.0% 38.7 53.9%
22 45.5 83.4% 38.0 87.3% 33.1 75.2% 24.9 78.3% 29.7 52.4%
23 48.8 83.5% 40.7 81.8% 33.3 61.6% 20.5 68.6% 27.9 47.9%
24 47.0 79.3% 37.2 79.5% 29.6 56.1% 16.6 65.1% 24.3 80.8%
25 59.8 89.7% 53.7 79.6% 42.7 65.4% 27.9 72.5% 38.9 55.4%
26 67.3 80.6% 54.3 84.7% 46.0 72.1% 33.1 76.4% 41.5 77.2%
27 69.2 83.8% 58.0 78.4% 45.5 75.5% 34.3 80.8% 46.8 65.8%
28 55.2 83.2% 45.9 82.2% 37.7 71.1% 26.8 76.3% 35.0 75.8%
29 60.5 82.6% 50.0 84.9% 42.4 64.1% 27.2 69.5% 34.7 43.6%
30 62.6 81.4% 50.9 86.5% 44.1 67.4% 29.7 71.8% 36.6 65.1%
31 49.5 84.4% 41.8 81.1% 33.9 64.6% 21.9 71.3% 29.8 44.2%
32 63.4 85.2% 54.1 76.1% 41.2 77.9% 32.1 83.2% 45.0 66.7%
33 55.9 84.6% 47.2 79.6% 37.6 76.6% 28.8 81.4% 38.5 63.3%
34 69.0 84.5% 58.3 85.7% 50.0 77.1% 38.5 80.4% 46.9 59.4%
35 75.8 82.0% 62.2 85.8% 53.4 65.4% 34.9 70.4% 43.8 65.8%
36 56.9 83.7% 47.6 73.0% 34.8 65.8% 22.9 75.1% 35.7 67.8%
37 55.8 81.9% 45.7 83.2% 38.0 67.5% 25.7 73.0% 33.3 70.9%
38 52.4 82.9% 43.4 84.9% 36.8 67.3% 24.8 72.3% 31.4 73.6%
39 67.4 84.5% 57.0 83.2% 47.4 65.3% 31.0 71.1% 40.5 61.8%
40 69.2 84.7% 58.6 86.4% 50.7 81.0% 41.0 83.6% 49.0 63.5%
41 42.1 86.0% 36.3 80.1% 29.1 76.3% 22.2 81.0% 29.4 44.6%
42 51.2 84.2% 43.1 79.9% 34.5 77.5% 26.7 82.0% 35.4 66.0%
43 65.7 80.3% 52.8 78.1% 41.2 73.6% 30.3 79.4% 41.9 59.3%
44 70.8 85.0% 60.1 84.7% 50.9 79.4% 40.4 82.6% 49.7 60.7%
45 58.2 83.3% 48.5 87.0% 42.2 67.7% 28.6 71.9% 34.9 72.8%
46 57.0 82.6% 47.1 80.9% 38.1 69.8% 26.6 75.6% 35.6 79.3%
47 51.6 82.9% 42.8 82.7% 35.4 61.6% 21.8 68.2% 29.2 55.5%
48 50.3 80.8% 40.6 83.8% 34.0 65.9% 22.4 71.4% 29.0 65.3%
49 56.9 83.5% 47.5 78.2% 37.2 68.0% 25.3 75.0% 35.6 53.0%

3-‐replicate 47.6 89.8% 42.7 82.6% 35.3 72.9% 25.7 77.6% 33.1 55.5%
10-‐replicate 50.1 89.3% 44.7 87.0% 38.9 63.0% 24.5 67.8% 30.3 47.7%
18-‐replicate 59.1 83.5% 49.3 81.6% 40.2 67.2% 27.0 73.2% 36.1 68.0%
22-‐replicate 70.8 82.7% 58.6 87.9% 51.5 77.1% 39.8 79.9% 46.8 59.2%
38-‐replicate 60.4 84.6% 51.1 84.4% 43.1 66.7% 28.8 71.9% 36.7 76.0%
45-‐replicate 64.0 84.2% 53.9 87.9% 47.4 62.9% 29.8 67.4% 36.3 50.1%

Minimum 21.0 79.3% 18.8 73.0% 15.8 56.1% 9.8 65.1% 12.8 24.9%
Maximum 80.5 89.8% 63.9 88.6% 55.8 81.0% 43.0 83.6% 51.2 80.8%

Mean 57.9 84.0% 48.5 83.0% 40.3 69.6% 28.2 74.7% 36.4 61.4%
STDEV 10.3 2.6% 8.2 3.4% 7.3 5.7% 6.3 4.8% 7.2 10.9%

Median 57.0 83.5% 47.6 83.3% 40.1 68.0% 27.9 74.1% 35.7 63.3%
75th	  Percentile 66.1 84.6% 54.2 85.7% 45.0 75.3% 31.5 79.3% 41.2 69.1%
25th	  Percentile 51.4 82.5% 43.4 80.6% 35.4 65.3% 24.6 71.2% 31.4 55.1%



Table	  S2. 90	  Genes	  Screened	  for	  Mutations

Gene	  symbol Gene	  name Location HGNC	  ID
AFF2 AF4/FMR2	  family,	  member	  2 Xq28 HGNC:3776
AKAP3 A	  kinase	  (PRKA)	  anchor	  protein	  3 12p13.3 HGNC:373
AKT1 v-‐akt	  murine	  thymoma	  viral	  oncogene	  homolog	  1 14q32.32-‐q32.33 HGNC:391
AKT2 v-‐akt	  murine	  thymoma	  viral	  oncogene	  homolog	  2 19q13.1-‐q13.2 HGNC:392
APC adenomatous	  polyposis	  coli 5q21-‐q22 HGNC:583
ARID1A AT	  rich	  interactive	  domain	  1A	  (SWI-‐like) 1p36.1-‐p35 HGNC:11110
ARID1B AT	  rich	  interactive	  domain	  1B	  (SWI1-‐like) 6q25.3 HGNC:18040
ARID2 AT	  rich	  interactive	  domain	  2	  (ARID,	  RFX-‐like) 12q13.11 HGNC:18037
ASXL1 additional	  sex	  combs	  like	  1	  (Drosophila) 20q11 HGNC:18318
ATM ataxia	  telangiectasia	  mutated 11q22-‐q23 HGNC:795
ATN1 atrophin	  1 12p HGNC:3033
ATP2B2 ATPase,	  Ca++	  transporting,	  plasma	  membrane	  2 3p25.3 HGNC:815
BAP1 BRCA1	  associated	  protein-‐1	  (ubiquitin	  carboxy-‐terminal	  hydrolase) 3p21.31-‐p21.2 HGNC:950
BARD1 BRCA1	  associated	  RING	  domain	  1 2q34-‐q35 HGNC:952
BRCA1 breast	  cancer	  1,	  early	  onset 17q21.31 HGNC:1100
BRCA2 breast	  cancer	  2,	  early	  onset 13q12-‐q13 HGNC:1101
BRIP1 BRCA1	  interacting	  protein	  C-‐terminal	  helicase	  1 17q22.2 HGNC:20473
CASP8 caspase	  8,	  apoptosis-‐related	  cysteine	  peptidase 2q33-‐q34 HGNC:1509
CBFB core-‐binding	  factor,	  beta	  subunit 16q22.1 HGNC:1539
CCND1 cyclin	  D1 11q13 HGNC:1582
CCND3 cyclin	  D3 6p21 HGNC:1585
CDH1 cadherin	  1,	  type	  1,	  E-‐cadherin	  (epithelial) 16q22.1 HGNC:1748
CDKN1B cyclin-‐dependent	  kinase	  inhibitor	  1B	  (p27,	  Kip1) 12p13.1-‐p12 HGNC:1785
CDKN2A cyclin-‐dependent	  kinase	  inhibitor	  2A 9p21 HGNC:1787
CHEK2 checkpoint	  kinase	  2 22q12.1 HGNC:16627
CLEC19A C-‐type	  lectin	  domain	  family	  19,	  member	  A 16p12.3 HGNC:34522
CTCF CCCTC-‐binding	  factor	  (zinc	  finger	  protein) 16q21-‐q22.3 HGNC:13723
DCAF4L2 DDB1	  and	  CUL4	  associated	  factor	  4-‐like	  2 8q21.3 HGNC:26657
DGKG diacylglycerol	  kinase,	  gamma	  90kDa 3q27-‐q28 HGNC:2853
EP300 E1A	  binding	  protein	  p300 22q13.2 HGNC:3373
ERBB2 v-‐erb-‐b2	  avian	  erythroblastic	  leukemia	  viral	  oncogene	  homolog	  2 17q11.2-‐q12 HGNC:3430
ETV6 ets	  variant	  6 12p13 HGNC:3495
FAM157B family	  with	  sequence	  similarity	  157,	  member	  B 9q34 HGNC:34080
FAM47C family	  with	  sequence	  similarity	  47,	  member	  C Xp21.1 HGNC:25301
FOXA1 forkhead	  box	  A1 14q12-‐q13 HGNC:5021
GATA3 GATA	  binding	  protein	  3 10p15 HGNC:4172
GPR32 G	  protein-‐coupled	  receptor	  32 19q13.33 HGNC:4487
GPS2 G	  protein	  pathway	  suppressor	  2 17p13.1 HGNC:4550
HIST1H1C histone	  cluster	  1,	  H1c 6p21.3 HGNC:4716
HIST1H2BC histone	  cluster	  1,	  H2bc 6p22.1 HGNC:4757
KCNB2 potassium	  voltage-‐gated	  channel,	  Shab-‐related	  subfamily,	  member	  2 8q13.2 HGNC:6232
KRAS Kirsten	  rat	  sarcoma	  viral	  oncogene	  homolog 12p12.1 HGNC:6407
MAP2K4 mitogen-‐activated	  protein	  kinase	  kinase	  4 17p12 HGNC:6844
MAP3K1 mitogen-‐activated	  protein	  kinase	  kinase	  kinase	  1,	  E3	  ubiquitin	  protein	  ligase 5q11.2 HGNC:6848
MAP3K13 mitogen-‐activated	  protein	  kinase	  kinase	  kinase	  13 3q27 HGNC:6852
MED23 mediator	  complex	  subunit	  23 6q22.33-‐q24.1 HGNC:2372
MICA MHC	  class	  I	  polypeptide-‐related	  sequence	  A 6p21.3 HGNC:7090
KMT2D lysine	  (K)-‐specific	  methyltransferase	  2D 12q13.12 HGNC:7133
KMT2C lysine	  (K)-‐specific	  methyltransferase	  2C 7q36 HGNC:13726
MRE11A MRE11	  meiotic	  recombination	  11	  homolog	  A	  (S.	  cerevisiae) 11q21 HGNC:7230
MYB v-‐myb	  avian	  myeloblastosis	  viral	  oncogene	  homolog 6q22-‐q23 HGNC:7545
NCOR1 nuclear	  receptor	  corepressor	  1 17p11.2 HGNC:7672
NF1 neurofibromin	  1 17q11.2 HGNC:7765
NTRK3 neurotrophic	  tyrosine	  kinase,	  receptor,	  type	  3 15q24-‐q25 HGNC:8033
OR2G3 olfactory	  receptor,	  family	  2,	  subfamily	  G,	  member	  3 1q44 HGNC:15008
OR2L2 olfactory	  receptor,	  family	  2,	  subfamily	  L,	  member	  2 1q44 HGNC:8266
OR6A2 olfactory	  receptor,	  family	  6,	  subfamily	  A,	  member	  2 11p15.4 HGNC:15301
PALB2 partner	  and	  localizer	  of	  BRCA2 16p12.1 HGNC:26144
PBRM1 polybromo	  1 3p21 HGNC:30064
PIK3CA phosphatidylinositol-‐4,5-‐bisphosphate	  3-‐kinase,	  catalytic	  subunit	  alpha 3q26.3 HGNC:8975
PIK3R1 phosphoinositide-‐3-‐kinase,	  regulatory	  subunit	  1	  (alpha) 5q13.1 HGNC:8979
PIWIL1 piwi-‐like	  RNA-‐mediated	  gene	  silencing	  1 12q24.33 HGNC:9007
PNPLA3 patatin-‐like	  phospholipase	  domain	  containing	  3 22q13.31 HGNC:18590
PTEN phosphatase	  and	  tensin	  homolog 10q23 HGNC:9588
PTPN22 protein	  tyrosine	  phosphatase,	  non-‐receptor	  type	  22	  (lymphoid) 1p13.2 HGNC:9652
PTPRD protein	  tyrosine	  phosphatase,	  receptor	  type,	  D 9p24.1-‐p23 HGNC:9668
RAD50 RAD50	  homolog	  (S.	  cerevisiae) 5q23-‐q31 HGNC:9816
RAD51C RAD51	  paralog	  C 17q25.1 HGNC:9820
RAD51D RAD51	  paralog	  D 17q11 HGNC:9823
RB1 retinoblastoma	  1 13q14.2 HGNC:9884
RPGR retinitis	  pigmentosa	  GTPase	  regulator Xp11.4 HGNC:10295
RUNX1 runt-‐related	  transcription	  factor	  1 21q22.3 HGNC:10471
RYR2 ryanodine	  receptor	  2	  (cardiac) 1q43 HGNC:10484
SEPT7P2 septin	  7	  pseudogene	  2 7p12.3 HGNC:32339
SETD2 SET	  domain	  containing	  2 3p21.31 HGNC:18420
SF3B1 splicing	  factor	  3b,	  subunit	  1,	  155kDa 2q33.1 HGNC:10768
SMAD4 SMAD	  family	  member	  4 18q21.1 HGNC:6770
SMARCD1 SWI/SNF	  related,	  matrix	  associated,	  actin	  dependent	  regulator	  of	  chromatin,	  subfamily	  d,	  member	  1 12q13-‐q14 HGNC:11106
SRPR signal	  recognition	  particle	  receptor	  (docking	  protein) 11q24-‐q25 HGNC:11307
STK11 serine/threonine	  kinase	  11 19p13.3 HGNC:11389
TBL1XR1 transducin	  (beta)-‐like	  1	  X-‐linked	  receptor	  1 3q26.33 HGNC:29529
TBX3 T-‐box	  3 12q24.21 HGNC:11602
TLR4 toll-‐like	  receptor	  4 9q33.1 HGNC:11850
TP53 tumor	  protein	  p53 17p13.1 HGNC:11998
TPRX1 tetra-‐peptide	  repeat	  homeobox	  1 19q13.33 HGNC:32174
TRIM53AP tripartite	  motif	  containing	  53A,	  pseudogene 11q14.3 HGNC:19025
TRIM6-‐TRIM34 TRIM6-‐TRIM34	  readthrough 11p15.4 HGNC:33440
USH2A Usher	  syndrome	  2A	  (autosomal	  recessive,	  mild) 1q41 HGNC:12601
WNT7A wingless-‐type	  MMTV	  integration	  site	  family,	  member	  7A 3p25 HGNC:12786
ZFP36L1 ZFP36	  ring	  finger	  protein-‐like	  1 14q22-‐q24 HGNC:1107
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TopHat-Recondition: a post-processor for
TopHat unmapped reads
Christian Brueffer and Lao H. Saal*

Abstract

Background: TopHat is a popular spliced junction mapper for RNA sequencing data, and writes files in the BAM
format – the binary version of the Sequence Alignment/Map (SAM) format. BAM is the standard exchange format for
aligned sequencing reads, thus correct format implementation is paramount for software interoperability and correct
analysis. However, TopHat writes its unmapped reads in a way that is not compatible with other software that
implements the SAM/BAM format.

Results: We have developed TopHat-Recondition, a post-processor for TopHat unmapped reads that restores read
information in the proper format. TopHat-Recondition thus enables downstream software to process the plethora of
BAM files written by TopHat.

Conclusions: TopHat-Recondition can repair unmapped read files written by TopHat and is freely available under a
2-clause BSD license on GitHub: https://github.com/cbrueffer/tophat-recondition.

Keywords: RNA-seq, Deep sequencing, Sequence alignment, Sequence analysis

Background
RNA sequencing (RNA-seq) has become as a corner-
stone of genomics research. TopHat and TopHat2 [1, 2]
(jointly referred to as TopHat from here on) is a highly-
cited spliced read mapper for RNA-seq data that is used
in many large-scale studies around the world, for exam-
ple in breast cancer [3]. A search for the term “TopHat”
in the NCBI Gene Expression Omnibus (GEO) and the
European Nucleotide Archive (ENA) yields 288 and 197
datasets using TopHat, respectively, with the true number
being likely much higher.
TopHat writes read data in the BAM format – the

binary version of the Sequence Alignment/Map (SAM)
format [4], but unlike other read mappers, it writes
separate files for reads it could map to the reference
genome (accepted_hits.bam) and reads it could not
map (unmapped.bam). Although many analyses focus
on mapped reads alone, often it is necessary to con-
sider unmapped reads, for example to perform quality

*Correspondence: lao.saal@med.lu.se
Division of Oncology and Pathology, Department of Clinical Sciences, Lund
University Cancer Center, Lund University, Medicon Village Building 404-B2,
223 81 Lund, Sweden

assurance, to deposit the data in online archives, or to
analyze the unmapped reads themselves.
However, all released versions of TopHat to date (ver-

sion ≤ 2.1.1) generate unmapped.bam files that are
incompatible with common downstream software, e.g.,
the Picard suite (http://broadinstitute.github.io/picard),
SAMtools [4], or the Genome Analysis Toolkit (GATK)
[5]. Even if the problems leading to the incompatibility
are corrected in future versions of TopHat, an immense
amount of data has already been aligned with affected
versions and would need to be realigned, and potentially
reanalyzed. TopHat-Recondition is a post-processor for
TopHat unmapped reads that corrects the compatibility
problems, and restores the ability to process BAM files
containing unmapped reads.

Implementation
TopHat-Recondition is implemented in Python using
the Pysam library (https://github.com/pysam-developers/
pysam) and requires Python 2.6 or higher. The simpli-
fied workflow of the software is shown in Fig. 1. First,
the unmapped.bam file is loaded into memory, both for
performance reasons and to enable random access to the
unmapped reads. In the first pass over the unmapped
reads the /1 and /2 suffixes are removed from read

© 2016 Brueffer and Saal. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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Fig. 1 Simplified workflow of TopHat-Recondition

names (only TopHat prior to version 2.0.7), MAPQ is set
to 0, missing 0x8 flags are added to unmapped read-
pairs, and the reads are indexed by their read names
(QNAME). In the second pass all unmapped reads with
mapped mate are recorded to enable detection of missing
mapped mates. The accepted_hits.bam file is read
sequentially to obtain information to correct unmapped
reads with mapped mate; the previously built index is
used to quickly access the unmapped mate of the cur-
rent mapped read. The mate-related bits (0x1, 0x2, 0x8,
0x20, 0x40, 0x80) in the FLAGS field of unmapped
reads for which the mapped paired read could not be
found are unset, effectively making them unpaired. Addi-
tionally, the RNAME, RNEXT, PNEXT and POS fields are
modified as described above. The corrected unmapped
reads are written as unmapped_fixup.bam in the spec-
ified directory (by default the input BAM file directory),
along with a log file detailing the performed modifica-
tions. TopHat-Recondition can process a library with 50
million reads in ten minutes on a standard PC, with the
disk read performance being the limiting factor.

Results and discussion
TopHat’s unmapped.bam incompatibility with other
tools has three origins: software bugs resulting in vio-
lations of the SAM/BAM specification (https://samtools.

github.io/hts-specs/SAMv1.pdf), divergences from the
specification’s recommended practices, and different
interpretation of acceptable values for some of the file
format’s fields between software.
Two TopHat issues impair compatibility: First, all

unmapped read-pairs lack the 0x8 bit (next segment in
the template unmapped) in their FLAGS field. This leads
to downstream software incorrectly assuming the reads
to be mapped. Second, for unmapped reads where the
FLAGS field declares the paired read to be mapped, this
mapped paired read may be missing from the sequence
files. This makes the unmapped read’s fields invalid and
can lead to software searching for, and failing to find the
paired read.
The SAM/BAM specification contains a section on rec-

ommended practices for implementing the format. For
read-pairs with one mapped and one unmapped read,
TopHat does not follow the recommendations that RNAME
and POS of the unmapped read should have the same field
values as the mapped read. Additionally we found that
setting RNEXT to the mapped read’s RNEXT value, and
PNEXT to 0 improves compatibility.
Lastly, there are differing interpretations of which field

values are acceptable in certain conditions between soft-
ware packages. For example, the valid range of values for
the BAMmapping quality (MAPQ) is 0-255. For unmapped
reads, TopHat always sets the MAPQ value of unmapped
reads to 255, and BWA [6] sets the value to greater than
0 in certain conditions, while the Picard suite asserts that
this value be 0 and returns an error when encountering
such a read, which can confuse users.
Some BAM-processing software, e.g., Picard and GATK

can be configured to accept reads that do not conform
to its expectations by ignoring errors, thus allowing pro-
cessing to succeed. However, the resulting BAM files
remain non-compliant to the specification which can
lead to issues in later analysis steps that are difficult to
debug.
The occurrence of these problems is dependent on both

the sequencing depth and the percentage of unmapped
reads in the dataset; a higher value in either category can
result in a higher rate of errors.
TopHat-Recondition either repairs or works around

these problems, which allows processing to complete
with all SAM/BAM-compliant software without relying
on reducing strictness requirements.
Usage information and a walk-through example can be

found in Additional file 1.

Conclusions
TopHat-Recondition enables easy and fast post-
processing for TopHat unmapped reads. The tool can
be used to process TopHat-written unmapped reads
to make them compatible with downstream tools
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such as samtools, the Picard suite and GATK, which
is currently not possible with the stock unmapped
reads. This will increase the utility of the immense
amount of RNA-seq data that has been analyzed by
TopHat.

Availability and requirements
Project name: TopHat-Recondition
Project home page: https://github.com/cbrueffer/tophat-
recondition
Operating system(s): Platform independent
Programming language: Python
Other requirements: Pysam
License: 2-clause BSD
Any restrictions to use by non-academics: none

Additional file

Additional file 1: Usage information and walk-through example.
(PDF 166 kb)
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Supplementary Materials for TopHat-Recondition 1.0
Christian Brueffer and Lao H Saal

Usage
TopHat-Recondition can be obtained from GitHub (https://github.com/cbrueffer/tophat-recondition/). Here we
assume it is available as ~/tophat-recondition/tophat-recondition.py.
The only required argument for the software is a directory containing the TopHat output files accepted_hits.bam and
unmapped.bam, such as the default TopHat tophat_out output directory. A full list of options can be obtained by running
tophat-recondition.py without arguments.
$ ~/ tophat - recondition /tophat - recondition .py
Usage :

tophat - recondition .py [-hqv] [-l logfile ] tophat_output_dir [ result_dir ]

-h print this usage text and exit ( optional )
-l log file (optional , default : result_dir /tophat - recondition .log)
-q quiet mode , no console output ( optional )
-v print the script name and version , and exit ( optional )
tophat_output_dir : directory containing accepted_hits .bam and unmapped .bam
result_dir : directory to write unmapped_fixup .bam to (optional , default : tophat_output_dir )

By default, TopHat-Recondition will write the corrected unmapped read file unmapped_fixup.bam to the directory containing
the input BAM files.

Example Run
To show the usage and operation of TopHat-Recondition, we use the workflow and data outlined in the TopHat tutorial:
Tutorial: http://ccb.jhu.edu/software/tophat/tutorial.shtml
Data: http://ccb.jhu.edu/software/tophat/downloads/test_data.tar.gz

Running TopHat
We extract the data and run TopHat 2.1.0 as instructed in the tutorial.
$ tar zxvf test_data .tar.gz
$ cd test_data
$ tophat -r 20 test_ref reads_1 .fq reads_2 .fq

[2015 -10 -30 12:58:40] Beginning TopHat run (v2 .1.0)
-----------------------------------------------
[2015 -10 -30 12:58:40] Checking for Bowtie

Bowtie version : 2.2.5.0
[2015 -10 -30 12:58:40] Checking for Bowtie index files ( genome )..

Found both Bowtie1 and Bowtie2 indexes .
[2015 -10 -30 12:58:40] Checking for reference FASTA file
[2015 -10 -30 12:58:40] Generating SAM header for test_ref
[2015 -10 -30 12:58:40] Preparing reads

left reads : min. length =75 , max. length =75 , 100 kept reads (0 discarded )
right reads : min. length =75 , max. length =75 , 100 kept reads (0 discarded )

[2015 -10 -30 12:58:40] Mapping left_kept_reads to genome test_ref with Bowtie2
[2015 -10 -30 12:58:41] Mapping left_kept_reads_seg1 to genome test_ref with Bowtie2 (1/3)
[2015 -10 -30 12:58:41] Mapping left_kept_reads_seg2 to genome test_ref with Bowtie2 (2/3)
[2015 -10 -30 12:58:41] Mapping left_kept_reads_seg3 to genome test_ref with Bowtie2 (3/3)
[2015 -10 -30 12:58:41] Mapping right_kept_reads to genome test_ref with Bowtie2
[2015 -10 -30 12:58:41] Mapping right_kept_reads_seg1 to genome test_ref with Bowtie2 (1/3)
[2015 -10 -30 12:58:41] Mapping right_kept_reads_seg2 to genome test_ref with Bowtie2 (2/3)
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[2015 -10 -30 12:58:41] Mapping right_kept_reads_seg3 to genome test_ref with Bowtie2 (3/3)
[2015 -10 -30 12:58:41] Searching for junctions via segment mapping
[2015 -10 -30 12:58:41] Retrieving sequences for splices
[2015 -10 -30 12:58:42] Indexing splices
Building a SMALL index
[2015 -10 -30 12:58:42] Mapping left_kept_reads_seg1 to genome segment_juncs with Bowtie2 (1/3)
[2015 -10 -30 12:58:42] Mapping left_kept_reads_seg2 to genome segment_juncs with Bowtie2 (2/3)
[2015 -10 -30 12:58:42] Mapping left_kept_reads_seg3 to genome segment_juncs with Bowtie2 (3/3)
[2015 -10 -30 12:58:42] Joining segment hits
[2015 -10 -30 12:58:42] Mapping right_kept_reads_seg1 to genome segment_juncs with Bowtie2 (1/3)
[2015 -10 -30 12:58:43] Mapping right_kept_reads_seg2 to genome segment_juncs with Bowtie2 (2/3)
[2015 -10 -30 12:58:43] Mapping right_kept_reads_seg3 to genome segment_juncs with Bowtie2 (3/3)
[2015 -10 -30 12:58:43] Joining segment hits
[2015 -10 -30 12:58:43] Reporting output tracks
-----------------------------------------------
[2015 -10 -30 12:58:43] A summary of the alignment counts can be found in ./ tophat_out / align_summary .txt
[2015 -10 -30 12:58:43] Run complete : 00:00:02 elapsed

Running TopHat-Recondition
TopHat writes its output files — accepted_hits.bam and unmapped.bam — to the directory tophat_out. We run TopHat-
Recondition with this directory as argument. By not specifying a separate output directory, the corrected unmapped read file
— unmapped_fixup.bam — will be written to the input directory tophat_out.
$ tophat - recondition .py tophat_out
2015 -10 -30 12:59:45 - Starting run of tophat - recondition 1.0
2015 -10 -30 12:59:45 - Command : tophat - recondition .py tophat_out
2015 -10 -30 12:59:45 - Current working directory : /home/ chris / test_data
2015 -10 -30 12:59:45 - Writing logfile : tophat_out /tophat - recondition .log
2015 -10 -30 12:59:45 - Opening unmapped BAM file: tophat_out / unmapped .bam
2015 -10 -30 12:59:45 - Loading unmapped BAM file into memory : tophat_out / unmapped .bam
2015 -10 -30 12:59:45 - Setting missing 0x8 flag for unmapped read -pair: test_mRNA_150_290_0
2015 -10 -30 12:59:45 - Setting missing 0x8 flag for unmapped read -pair: test_mRNA_96_238_3
2015 -10 -30 12:59:45 - Setting missing 0x8 flag for unmapped read -pair: test_mRNA_75_235_21
2015 -10 -30 12:59:45 - Setting missing 0x8 flag for unmapped read -pair: test_mRNA_48_207_39
2015 -10 -30 12:59:45 - Setting missing 0x8 flag for unmapped read -pair: test_mRNA_94_291_40
2015 -10 -30 12:59:45 - Setting missing 0x8 flag for unmapped read -pair: test_mRNA_33_189_4a
2015 -10 -30 12:59:45 - Setting missing 0x8 flag for unmapped read -pair: test_mRNA_172_294_4f
2015 -10 -30 12:59:45 - Setting missing 0x8 flag for unmapped read -pair: test_mRNA_4_191_5d
2015 -10 -30 12:59:45 - Opening mapped BAM file: tophat_out / accepted_hits .bam
2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_5_197_46
2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_11_190_1a
2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_21_208_24
2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_23_186_42
2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_28_188_11
2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_28_206_1f
2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_30_231_3c
2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_33_223_4e
2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_44_225_1e
2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_44_193_3f
2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_46_195_17
2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_51_194_49
2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_57_231_8
2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_58_234_7
2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_58_220_3d
2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_65_238_2e
2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_69_229_23
2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_81_228_3a
2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_82_255_2
2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_89_230_b
2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_89_245_15
2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_92_266_43
2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_92_250_44
2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_97_275_26
2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_114_277_5b
2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_16_194_10
2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_131_260_33
2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_39_219_5c
2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_50_224_2d
2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_51_248_14
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2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_128_252_36
2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_52_261_1b
2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_110_267_22
2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_111_268_d
2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_104_274_1c
2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_85_275_38
2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_75_277_3b
2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_125_280_48
2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_151_286_e
2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_125_293_60
2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_111_297_61
2015 -10 -30 12:59:45 - Standardizing flags of unmapped read: test_mRNA_145_300_37
2015 -10 -30 12:59:45 - Writing corrected BAM file: tophat_out / unmapped_fixup .bam
2015 -10 -30 12:59:45 - Program finished successfully .

Verifying the Result
The log details the modifications performed on the reads. To verify them, we can compare the original unmapped.bam file and
the corrected unmapped_fixup.bam file.
In the original unmapped.bam file, unmapped read pairs cannot be identified by the bits set in their FLAGS fields (both reads
having the "mate is unmapped" bit set), even though it clearly contains eight such pairs.
$ cd tophat_out
$ samtools view -f 0x8 unmapped .bam
$
$ samtools view unmapped .bam | cut -f 1 | sort | uniq --repeated
test_mRNA_150_290_0
test_mRNA_172_294_4f
test_mRNA_33_189_4a
test_mRNA_4_191_5d
test_mRNA_48_207_39
test_mRNA_75_235_21
test_mRNA_94_291_40
test_mRNA_96_238_3

The corrected unmapped_fixup.bam file shows the unmapped read pairs correctly.
$ samtools view -f 0x8 unmapped_fixup .bam
test_mRNA_150_290_0 77 * 0 0 * * 0 0

TCCTAAAAAGTCCGCCTCGGTCTCAGTCTCAAGTAGAAAAAGTCCCGTTGGCGATCCGTCTACGTCCGAGTAAGA
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

test_mRNA_150_290_0 141 * 0 0 * * 0 0
TACGTATTTGTCGCGCGGCCCTACGGCTGAGCGTCGAGCTTGCGATCCGCCACTATTACTTTATTATCTTACTCG
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

test_mRNA_96_238_3 141 * 0 0 * * 0 0
GATGCAGCGACTGGACTATTTAGGACGATCGGACGGAGGAGGGCAGTAGGACGCTACGTATTTGGCGCGCGGACC
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

test_mRNA_96_238_3 77 * 0 0 * * 0 0
GATCCGTCTACGTCCGCGTAAGATAATAAAGTACTAGTAGCGTATCGCAAGCTCGACGCTCAGCCGTAGGGCCGC
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

test_mRNA_75_235_21 77 * 0 0 * * 0 0
ACGGACGGACTTAGAGCGTCAGATGCAGCGACTGGACTATTTAGCACGATCGGACTGAGGAGGGCAGTAGAACGT
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

test_mRNA_75_235_21 141 * 0 0 * * 0 0
CCGTCTACGTCCGAGTAAGATAATAAAGTAATAGTGGCGTATCGCAAGCTCAACGCTCAGCCGTAGGGCCGTGCG
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

test_mRNA_48_207_39 77 * 0 0 * * 0 0
GCCCCTACGGGGATGACGACTAGGACTACGGACGGATTTAGACCGTCAGATGCAGCGACTGGACTATTTAGGACG
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

test_mRNA_48_207_39 141 * 0 0 * * 0 0
TAAGAGTGGCGTATCGCAAGATCGACGCTCAGCCGTAGGGCCGCGCGCCAAATACGTAGCGTCCTACTTCCCTCC
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

test_mRNA_94_291_40 141 * 0 0 * * 0 0
GTCCCAAAAAGTCCGCCTCGATCCCAGTCTCAAGTAGAAAATGTCGCGTTGCCGATCCGTCTACGTCCCAGGAAG
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

test_mRNA_94_291_40 77 * 0 0 * * 0 0
CAGATGCAGCGACTGTACTATTTAGGACGACCTGACTGAGGAGGGTAGTAGGACGCTACGTATTTGGCGCGCGGC
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

test_mRNA_33_189_4a 77 * 0 0 * * 0 0
AGCCCGACGCTCAGCCGTAGGGCCGCGCGCCAAATAGGTAGCGTCCTACTGCCCTCCTCAGTCCGATCGTCCTAA
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
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test_mRNA_172_294_4f 77 * 0 0 * * 0 0
ACGGATGAGCGTCGAGCTTGCGATACGCCACTATTACTTTATTATCTTCCTCGGACGTAGACGGATCGCCAACGG
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

test_mRNA_33_189_4a 141 * 0 0 * * 0 0
ACTGAGCTAGGACGTGCCACTACGGGGATTACCACTAGGGCTACGGACGGACTTAGAGCGTCAGATGCAGCGACT
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

test_mRNA_172_294_4f 141 * 0 0 * * 0 0
CCCGTCCTAAAACGTCCGCCTCGATCCCAGTCTCAAGTAGAAAAAGTCCCGCTGCCGACCCGTCTACGTCCGAGT
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

test_mRNA_4_191_5d 77 * 0 0 * * 0 0
CAAGCTCGACGCTCAGCCGTAGGGCCGCGCGCCAAATACGTAGTGTCCTACTGCCCTACTCAGTCCGATCGTCCT
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

test_mRNA_4_191_5d 141 * 0 0 * * 0 0
ACTATCTGACGAGACTGGAGGCGCTTGCGACTGAGCTAGGACGTACCATTACGCGGATGACGACTAGGACTACGG
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Example Use Case: Picard AddOrReplaceReadGroups
We can try to add a basic read group header to a merged file merged.bam, generated by merging the accepted_hits.bam
with either the original unmapped.bam or the corrected unmapped_fixup.bam file.
With the original unmapped.bam:
$ samtools merge merged .bam accepted_hits .bam unmapped_fixup .bam
$ samtools sort merged .bam merged_refsort
$
$ java -jar ~/ software /picard -tools -1.115/ AddOrReplaceReadGroups .jar INPUT = merged_refsort .bam OUTPUT =

merged_refsort_rg .bam RGLB =1 RGPL= illumina RGPU=NA RGSM=LU
[Thu Nov 12 10:40:56 CET 2015] picard .sam. AddOrReplaceReadGroups INPUT = merged_refsort .bam OUTPUT =

merged_refsort_rg .bam RGLB =1 RGPL= illumina RGPU=NA RGSM=LU RGID =1 VERBOSITY =INFO QUIET = false
VALIDATION_STRINGENCY = STRICT COMPRESSION_LEVEL =5 MAX_RECORDS_IN_RAM =500000 CREATE_INDEX = false
CREATE_MD5_FILE = false

[Thu Nov 12 10:40:56 CET 2015] Executing as chris@host on Linux 2.6.32 -358.23.2. el6. x86_64 amd64 ;
OpenJDK 64- Bit Server VM 1.7.0 _45 - mockbuild_2013_10_23_08_18 -b00; Picard version : 1.115(30
b1e546cc4dd80c918e151dbfe46b061e63f315_1402927010 ) JdkDeflater

INFO 2015 -11 -12 10:40:56 AddOrReplaceReadGroups Created read group ID =1 PL= illumina LB =1 SM=LU

[Thu Nov 12 10:40:56 CET 2015] picard .sam. AddOrReplaceReadGroups done. Elapsed time: 0.00 minutes .
Runtime . totalMemory () =376963072
To get help , see http :// picard . sourceforge .net/ index . shtml # GettingHelp
Exception in thread "main" htsjdk . samtools . SAMFormatException : SAM validation error : ERROR : Record 143 ,

Read name test_mRNA_150_290_0 , Mapped mate should have mate reference name
at htsjdk . samtools . SAMUtils . processValidationErrors ( SAMUtils .java :452)
at htsjdk . samtools . BAMFileReader$BAMFileIterator . advance ( BAMFileReader .java :643)
at htsjdk . samtools . BAMFileReader$BAMFileIterator .next( BAMFileReader .java :628)
at htsjdk . samtools . BAMFileReader$BAMFileIterator .next( BAMFileReader .java :598)
at htsjdk . samtools . SamReader$AssertingIterator .next( SamReader .java :514)
at htsjdk . samtools . SamReader$AssertingIterator .next( SamReader .java :488)
at picard .sam. AddOrReplaceReadGroups . doWork ( AddOrReplaceReadGroups .java :107)
at picard . cmdline . CommandLineProgram . instanceMain ( CommandLineProgram .java :183)
at picard . cmdline . CommandLineProgram . instanceMainWithExit ( CommandLineProgram .java :124)
at picard .sam. AddOrReplaceReadGroups .main( AddOrReplaceReadGroups .java :74)

As the error indicates, Picard AddOrReplaceReadGroups cannot process the merged BAM file containing the original unmapped.bam
file. Running AddOrReplaceReadGroups with the VALIDATION_STRINGENCY=LENIENT option would work by simply ignoring
the errors, but the result would be a BAM file with the same issues as the input files.
On the other hand, with the corrected unmapped_fixup.bam file, the command succeeds:
$ samtools merge merged .bam accepted_hits .bam unmapped_fixup .bam
$ samtools sort merged_fixup .bam merged_fixup_refsort
$
$ java -jar ~/ software /picard -tools -1.115/ AddOrReplaceReadGroups .jar INPUT = merged_fixup_sort .bam OUTPUT

= merged_fixup_refsort_rg .bam RGLB =1 RGPL= illumina RGPU=NA RGSM=LU
[Wed Nov 11 17:43:33 CET 2015] picard .sam. AddOrReplaceReadGroups INPUT = merged_fixup_refsort .bam OUTPUT =

merged_fixup_refsort_rg .bam RGLB =1 RGPL= illumina RGPU=NA RGSM=LU RGID =1 VERBOSITY =INFO QUIET =
false VALIDATION_STRINGENCY = STRICT COMPRESSION_LEVEL =5 MAX_RECORDS_IN_RAM =500000 CREATE_INDEX = false

CREATE_MD5_FILE = false
[Wed Nov 11 17:43:33 CET 2015] Executing as chris@host on Linux 2.6.32 -358.23.2. el6. x86_64 amd64 ;

OpenJDK 64- Bit Server VM 1.7.0 _45 - mockbuild_2013_10_23_08_18 -b00; Picard version : 1.115(30
b1e546cc4dd80c918e151dbfe46b061e63f315_1402927010 ) JdkDeflater
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INFO 2015 -11 -11 17:43:33 AddOrReplaceReadGroups Created read group ID =1 PL= illumina LB =1 SM=LU

[Wed Nov 11 17:43:33 CET 2015] picard .sam. AddOrReplaceReadGroups done. Elapsed time: 0.00 minutes .
Runtime . totalMemory () =376963072

In conclusion, the unmapped_fixup.bam or merged_fixup.bam files containing the corrected unmapped reads can be used
as input for further BAM processing and analysis software, e.g., Picard, GATK, or quality assessment software like RNA-SeQC
(https://www.broadinstitute.org/cancer/cga/rna-seqc). This can be done without the need for reduced strictness
requirements that could mask other problems in the data file, or discarding non-conforming reads from the file, both of which
would lead to ignoring potentially useful data. The corrected files can also be deposited in a sequencing archive like NCBI Gene
Expression Omnibus (GEO) or the European Nucleotide Archive (ENA), without the need for others to deal with the problems
described in this paper.

5



Study III





© 2018 by American Society of Clinical Oncology ascopubs.org/journal/po JCO™ Precision Oncology 1

Clinical Value of RNA Sequencing–
Based Classifiers for Prediction 
of the Five Conventional Breast 
Cancer Biomarkers: A Report From 
the Population-Based Multicenter 
Sweden Cancerome Analysis 
Network—Breast Initiative 

Purpose In early breast cancer (BC), five conventional biomarkers—estrogen receptor 
(ER), progesterone receptor (PgR), human epidermal growth factor receptor 2 (HER2), 
Ki67, and Nottingham histologic grade (NHG)—are used to determine prognosis and 
treatment. We aimed to develop classifiers for these biomarkers that were based on tumor 
mRNA sequencing (RNA-seq), compare classification performance, and test whether  
such predictors could add value for risk stratification.
Methods In total, 3,678 patients with BC were studied. For 405 tumors, a comprehensive 
multi-rater histopathologic evaluation was performed. Using RNA-seq data, single-gene 
classifiers and multigene classifiers (MGCs) were trained on consensus histopathology 
labels. Trained classifiers were tested on a prospective population-based series of 3,273 
BCs that included a median follow-up of 52 months (Sweden Cancerome Analysis 
Network—Breast [SCAN-B], ClinicalTrials.gov identifier: NCT02306096), and results 
were evaluated by agreement statistics and Kaplan-Meier and Cox survival analyses.
Results Pathologist concordance was high for ER, PgR, and HER2 (average κ, 0.920, 
0.891, and 0.899, respectively) but moderate for Ki67 and NHG (average κ, 0.734 and 
0.581). Concordance between RNA-seq classifiers and histopathology for the inde-
pendent cohort of 3,273 was similar to interpathologist concordance. Patients with  
discordant classifications, predicted as hormone responsive by histopathology but non–
hormone responsive by MGC, had significantly inferior overall survival compared with 
patients who had concordant results. This extended to patients who received no adjuvant 
therapy (hazard ratio [HR], 3.19; 95% CI, 1.19 to 8.57), or endocrine therapy alone (HR, 
2.64; 95% CI, 1.55 to 4.51). For cases identified as hormone responsive by histopathol-
ogy and who received endocrine therapy alone, the MGC hormone-responsive classifier 
remained significant after multivariable adjustment (HR, 2.45; 95% CI, 1.39 to 4.34).
Conclusion Classification error rates for RNA-seq–based classifiers for the five key BC 
biomarkers generally were equivalent to conventional histopathology. However, RNA-
seq classifiers provided added clinical value in particular for tumors determined by histo-
pathology to be hormone responsive but by RNA-seq to be hormone insensitive.
JCO Precis Oncol. © 2018 by American Society of Clinical Oncology Licensed under the Creative Commons Attribution 4.0 
License

abstract

original reports

Christian  Brueffer

Johan  Vallon-
Christersson

Dorthe  Grabau†

Anna  Ehinger

Jari  Häkkinen

Cecilia  Hegardt

Janne  Malina

Yilun  Chen

Pär-Ola  Bendahl

Jonas  Manjer

Martin  Malmberg

Christer  Larsson

Niklas  Loman

Lisa  Rydén

Åke  Borg

Lao H.  Saal

Author affiliations and 
support information (if 
applicable) appear at the 
end of this article.
Licensed under the 
Creative Commons Attri-
bution 4.0 License

†Deceased.

C.B. and J.V.-C. contrib-
uted equally to this work.

(continued)

Downloaded from ascopubs.org by 31.208.74.188 on March 10, 2018 from 031.208.074.188
Copyright © 2018 American Society of Clinical Oncology. All rights reserved.



INTRODUCTION

Histopathologic analysis of breast cancers (BCs) 
for estrogen receptor (ER) and progester-
one receptor (PgR) content, human epidermal 
growth factor receptor 2 (HER2) gene amplifi-
cation, and Nottingham histologic grade (NHG) 
are the mainstays of current clinical practice.1 
Increasingly, assessment of the proliferation 
antigen Ki67 is clinically recommended.2 These 
five biomarkers carry prognostic and predictive 
information and are used in combination with 
other clinicopathological factors for risk stratifi-
cation and therapy selection.1

Current evaluation of these BC biomarkers is 
imperfect. Immunohistochemistry (IHC) is the 
principal method for ER, PgR, HER2, and Ki67 
measurement, and in situ hybridization (ISH) 
methods are used to refine HER2 IHC. Among 
laboratories, significant differences exist in, for 
example, fixation, antigen retrieval, antibodies, 
chemistries, scoring systems, and interpretation. 
Accuracy and reproducibility are concerns, with 
up to 20% false-positive or false-negative ER/
PgR IHC determinations.3 Varying discordance 
has been reported for HER2 IHC and fluo-
rescent ISH (FISH).4-7 Accordingly, consensus 
guidelines emphasize standardization and vali-
dation of analytic performance.1,2,8 Lack of stan-
dardization has slowed the entrance of Ki67 into 
clinical routines.9 For example, Ki67 status was 
only moderately concordant in an interlabora-
tory reproducibility analysis.10 Thresholds for 
Ki67 positivity are evolving; cutoffs between 
20% and 29% were recommended by the 2015 
St Gallen/Vienna panel for laboratories with a 
quality assurance program.11 Swedish quality 
assurance program guidelines recommend that 
each laboratory calibrate a cutoff yearly such 
that one third of 100 consecutive occurrences 
are Ki67-high. The NHG system was developed 
to establish better standards and improve repro-
ducibility, and it is the recommended method for 
BC grading today. NHG reproducibility stud-
ies12 have reported modest agreements (pairwise 
κ, 0.43 to 0.83), which correspond to 15% to 
30% discordance.

Microarray and reverse transcriptase polymerase 
chain reaction–based gene expression analyses 
of BCs have yielded many signatures for tumor 
subtyping, prognosis, and survival, as well as for 
individual biomarkers, such as ER, PgR, HER2, 
and PTEN.13-16 Massively parallel sequencing 

of mRNA (RNA-seq) has advantages compared 
with earlier methods, including greater dynamic 
range and reproducibility and the ability to dis-
cover and quantify transcripts without a priori 
sequence knowledge. In 2010, toward imple-
mentation of molecular profiling in the clinical 
routine, we launched the Sweden Cancerome 
Analysis Network Breast Initiative (SCAN-B; 
ClinicalTrials.gov identifier: NCT02306096), 
an ongoing population-based multicenter obser-
vational study covering a wide geography of 
Sweden that prospectively invites all patients 
with BC to participate.17 To date, approxi-
mately 85% of the eligible catchment popu-
lation are included, more than 11,000 patients 
have enrolled, and blood and fresh tumor tissues 
are sampled for molecular research. In the first 
phase, all tumors are analyzed by RNA-seq gen-
erally within 1 week after surgery. Thus, for each 
BC, it will be possible to report a multitude of 
biomarker tests simultaneously on the basis of 
its RNA-sequencing data and within a clinically 
actionable time frame.

Herein, we aimed to validate the SCAN-B mul-
ticenter infrastructure and provide molecular 
analyses of clinical value by developing RNA-
seq–derived classifiers for the conventional his-
topathologic BC biomarkers ER, PgR, HER2, 
Ki67, and NHG. For this purpose, both single- 
gene classifiers (SGCs) and multigene classifi-
ers (MGCs) were developed by using a training 
cohort, the prediction accuracy was compared 
against current clinical practice across a large 
independent prospective cohort, and the classi-
fier predictions and their discrepancies to histo-
pathology were evaluated with respect to patient 
survival.

METHODS

Patients

The study (Fig 1) was approved by the Regional 
Ethical Review Board of Lund at Lund Uni-
versity and the Swedish Data Inspection group. 
Health professionals provided patient infor-
mation, and patients gave written informed 
consent. Clinical data were retrieved from the 
Swedish National Breast Cancer Registry. Diag-
nostic pathology slides, snap-frozen surgical 
tumor specimens, and formalin-fixed paraffin- 
embedded tissue blocks were retrieved for 405 
patient cases, selected for classifier training 
with an over-representation of HER2-positive 
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and ER-negative tumors (training cohort; Data 
Supplement). For classifier testing, an indepen-
dent, prospective, and population-based mod-
ern cohort of 3,273 patients with early BC was 
assembled from the ongoing SCAN-B study17 
(validation cohort; Appendix Fig A1; Data Sup-
plement).

Histopathology

For the training cohort, all biomarkers with 
the exception of Ki67 were evaluated at time 
of diagnosis. In addition, new formalin-fixed 
paraffin-embedded slides were analyzed for 
ER, PgR, and Ki67 IHC and for HER2 silver  
ISH, all performed at a central laboratory 
(Helsingborg Hospital). The diagnostic slides 
and newly stained slides were each scored in 
total by three pathologists independently by 
using 1% or greater tumor cell staining thresh-
old for hormone receptor positivity, standard 
HER2 HercepTest (Agilent/Dako, Santa Clara, 
CA) and ISH criteria (Roche/Ventana, Tucson, 
AZ), greater than 20% positive nuclei for Ki67-
high status, and the NHG scoring system (Data 

Supplement). On the basis of all evaluations, a 
consensus score for each biomarker was deter-
mined with the majority scores.

Tumor Processing and RNA Sequencing

Snap-frozen (training cohort) or RNAlater- 
preserved (validation cohort) tumor specimens 
were processed and sequenced, and the raw data 
(Data Supplement) was processed as described 
previously.17,18 All data are available from the 
NCBI Gene Expression Omnibus (Accession 
Nos. GSE81538 and GSE96058).

Classifiers

Within the 405-patient training set, SGCs were 
built for the ER, PgR, HER2, and Ki67 bio-
markers by determining the optimal expression 
thresholds for the genes ESR1, PGR, ERBB2, 
and MKI67 that maximized concordance to the 
respective histopathology consensus score (Data 
Supplement). MGCs for ER, PgR, HER2, 
Ki67, and NHG were built by training near-
est shrunken centroid (NSC)19 models with the 
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Fig 1. Study design 
flow diagram. ER, estrogen 
receptor; HER2, human 
epidermal growth factor 
receptor 2; Ki67, prolifer-
ation antigen Ki67; MGC, 
multigene classifier; NHG, 
Nottingham histologic 
grade; PgR, progesterone 
receptor; SGC, single-gene 
classifier.
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5,000 most varying genes across the training 
cohort (Data Supplement) and the histopathol-
ogy consensus scores as training labels. Within 
the training set, optimal model parameters were 
determined by using cross-validation and then 
were used to train prediction models with all 
training samples. The resulting four SGCs and 
five MGCs were used to predict the biomarker 
status of 3,273 independent validation BC sam-
ples. The biologic functional annotation clusters 
of each MGC signature were evaluated with the 
DAVID Bioinformatics Resource.20

Statistical Analysis

Histopathology evaluations and single-gene 
and multigene predictions were compared with 
agreement statistics21 (defined in the Data Sup-
plement) and balanced statistics—Cohen’s κ and 
Matthews correlation coefficient (MCC)—and 
were interpreted according to Viera and Gar-
rett.22 The κ and MCC values were comparable 
(Data Supplement), so we focused on κ. Kaplan-
Meier and Cox regression survival analyses were 
performed with overall survival as the end point. 
Multivariable Cox models included the variables 
age at diagnosis, lymph node status, tumor size, 
ER, PgR, HER2, and NHG as covariates, as rel-
evant (Data Supplement). All calculations were 
performed with R 3.2.3. P values of ≤ .05 were 
considered significant.

RESULTS

Clinical Histopathology

To estimate the inherent variability within clini-
cal histopathology and to determine a consensus 
score for each BC biomarker for classifier train-
ing, a comprehensive histopathologic analysis 
was performed for 405 patient breast tumors 
with three readings of up to two independent 
stains for the five conventional biomarkers: ER, 
PgR, HER2, Ki67, and NHG (Fig 1). With the 
diagnostic evaluation as the reference, agreement 
statistics were calculated (Table 1; Data Supple-
ment). Concordance for histopathologic evalu-
ation of ER, PgR, and HER2 into positive and 
negative groups was high; the average pairwise 
agreements were 97.3% (average κ [Aκ], 0.920), 
95.5% (Aκ, 0.891), and 96.6% (Aκ, 0.899), 
respectively, whereas agreements were lower 
for Ki67 (86.8%; Aκ, 0.734) and NHG (74.8%; 
Aκ, 0.581). As expected with minimization of 

technical and heterogeneity factors, within-slide 
concordances were slightly better than between-
slide concordances (Data Supplement).

Classifier Training

Whole-transcriptome expression profiles were 
generated for the 405 training samples using 
RNA-seq. For the SGCs, optimal thresholds 
were determined for ESR1 (which encodes the 
ER protein), PGR (PgR), ERBB2 (HER2), and 
MKI67 (Ki67) (Data Supplement). Next, MGCs  
were trained, and the training-cohort cross- 
validation accuracy was determined (balanced 
accuracy or accuracy ± standard deviation; Data 
Supplement) as follows: ER, 95.3% ± 2.4%; PgR, 
90.4% ± 2.9%; HER2, 88.5% ± 3.8%; Ki67, 
84.9% ± 3.4%; and NHG, 73.8% ± 3.9%. For 
MGCs, the NSC method has the property of 
eliminating noninformative genes (zero weight 
for the classification). The ER classifier had 459 
weighted genes; PgR, 184; HER2, 312; Ki67, 273; 
and NHG, 206 (Data Supplement). In total, 869 
genes had nonzero weights in at least one MGC 
classifier. The constituent biologic themes for 
each MGC classifier were investigated with func-
tional annotation clustering (Data Supplement).

Performance on Independent Data

To evaluate the classifiers, we tested them on 
RNA-seq data generated for 3,273 independent 
tumors from the prospective population-based 
multicenter SCAN-B study (n = 136 tumors were 
analyzed in technical replicates). Concordance 
between the diagnostic histopathologic results 
and the SGC predictions was substantial for ER 
(overall agreement, [OA], 96.1%; κ, 0.730) and 
HER2 (OA, 94.92%; κ, 0.749) and moderate 
for PgR (OA, 89.6%; κ, 0.588) and Ki67 (OA, 
76.7%; κ, 0.516; Fig 2; Appendix Figs A2 and 
A3; Data Supplement). Similarly, for the MGCs, 
concordance was substantial for ER (OA, 91.9%; 
κ, 0.606) and HER2 (OA, 92.4%; κ, 0.667), 
moderate for PgR (OA, 88.7%; κ, 0.568) and 
NHG (OA, 67.7%; κ, 0.418), and fair for Ki67 
(OA, 66.3%; κ, 0.370). For RNA-seq replicates, 
534 (98.2%) of 544 SGC classifications and 675 
(99.3%) of 680 MGC classifications were con-
cordant (Data Supplement). Similar results were 
obtained when an ER/PgR IHC cutoff of 10% 
or greater positive cells (current Swedish stan-
dard) was used.
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Table 1. Concordance Among Three Pathologist Evaluations for Five Biomarkers and Multiple Stains Within the 
Training Cohort

Biomarker Staining 
Pathology

Overall Agreement Concordance

% 95% CI κ 95% CI

ER (diagnostic IHC)

Routine (reference) — — — — — —

Versus 2 98.8 97.1 99.6 0.965 0.931 0.993

Versus 3 98.8 97.1 99.6 0.965 0.931 0.993

ER (new IHC)

Versus 1 95.8 93.4 97.5 0.873 0.810 0.929

Versus 2 96.5 94.3 98.1 0.898 0.842 0.947

Versus 3 96.5 94.3 98.1 0.898 0.842 0.947

ER summarized

Average (v reference) 97.3 95.2 98.6 0.920 0.871 0.962

Complete concordance 94.1 (381 of 
405)

PgR (diagnostic IHC)

Routine (reference) — — — — — —

Versus 2 96.0 93.7 97.7 0.904 0.855 0.947

Versus 3 96.0 93.7 97.7 0.902 0.851 0.945

PgR (new IHC)

Versus 1 96.0 93.7 97.7 0.905 0.857 0.949

Versus 2 93.8 91.0 96.0 0.853 0.793 0.906

Versus 3 95.3 92.8 97.2 0.889 0.836 0.934

PgR summarized

Average (v reference) 95.5 93.0 97.3 0.891 0.838 0.936

Complete concordance 91.1 (369 of 
405)

HER2 (diagnostic IHC)

Routine (reference) — — — — — —

Versus 2 72.8 68.2 77.1 0.628 0.568 0.686

Versus 3 75.3 70.8 79.4 0.661 0.602 0.717

HER2 (new SISH)

Clinical status 
(reference)

— — — — — —

Versus 1 96.6 94.3 98.2 0.902 0.844 0.95

Versus 2 96.4 94.1 98.0 0.895 0.837 0.945

Versus 3 96.6 94.3 98.2 0.901 0.844 0.95

HER2 SISH summarized

Average (v reference) 96.6 94.2 98.1 0.899 0.842 0.948

Complete concordance 96.3 (360 of 
374)

Ki67 (new IHC)

Reader 1 (reference) — — — — — —

Versus 2 85.9 82.2 89.2 0.717 0.648 0.783

Versus 3 87.7 84.0 90.7 0.751 0.684 0.811

(Continued on following page)
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Survival Analysis

To evaluate the possible clinical utility of our 
classifiers, we analyzed our classifier predictions 
within the validation cohort with respect to 
overall survival. Kaplan-Meier analysis revealed 
comparable patient stratification for both diag-
nostic histopathology and SGCs for the five 
biomarkers across the entire validation cohort, 
whereas the MGCs had a noticeably richer strat-
ification, particularly for the hormone receptors 
and the hormone-responsive group, defined 
by ER positivity and PgR positivity (Appen-
dix Figs A4 and A5). Therefore, and to reduce 
the number of comparisons, we focused on the 
MGCs for each biomarker and within the major 
treatment groups. Patients with tumors dis-
crepant for hormone responsiveness (hormone 
responsive by pathology but not responsive by 
MGC) had significantly worse outcomes across 
the entire cohort (hazard ratio [HR], 1.64; 95% 
CI, 1.17 to 2.28; log-rank P = .0034) as well as 
within subgroups defined by adjuvant treatment: 
no systemic therapy (HR, 3.19; 95% CI, 1.19 to 
8.57; P = .015) and only endocrine therapy (HR, 
2.64; 95% CI, 1.55 to 4.51; P < .001; Fig. 3A). 
Furthermore, MGC predictions added value to 
predictions of HER2, Ki67, and NHG (Figs 3B 

to 3D). After adjusting for important covari-
ates in multivariable Cox analyses, the MGC 
prediction for hormone nonresponsiveness was 
a significant stratifier among patients with his-
topathologic hormone-responsive disease who 
were treated with endocrine therapy, as were the 
MGC predictions discordant for HER2-negative  
or Ki67-high status in patients who received che-
motherapy with or without trastuzumab and/or 
endocrine therapy. Conversely, the NHG MGC 
became nonsignificant (Fig 3).

DISCUSSION

Despite efforts to develop better standards for 
clinical histopathologic evaluation of breast 
tumors, intra/interlaboratory and -reader vari-
ation remain problematic. Previously, several 
gene expression–based approaches for determi-
nation of known treatment-predictive biomark-
ers have been developed16,23-26; however, they 
are not widely used clinically in most countries. 
Supplementation of histopathologic biomark-
ers with biomarkers determined from RNA-seq 
profiling is becoming feasible today: costs are 
less than $300 per transcriptome, and projects, 
such as SCAN-B and others, that use RNA-seq 
in the clinic are emerging.17,27,28 In this study, we 
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Table 1. Concordance Among Three Pathologist Evaluations for Five Biomarkers and Multiple Stains Within the 
Training Cohort (Continued)

Biomarker Staining 
Pathology

Overall Agreement Concordance

% 95% CI κ 95% CI

Ki67 summarized

Average (v reference) 86.8 83.1 89.9 0.734 0.666 0.797

Complete concordance 80.0  
(324 of 405)

NHG (diagnostic H&E)

Routine (reference) — — — — — —

Versus 2 75.3 70.8 79.4 0.589 0.520 0.655

Versus 3 74.3 69.8 78.5 0.573 0.504 0.642

NHG summarized

Average (v reference) 74.8 70.3 79.0 0.581 0.512 0.649

Complete concordance 62.0  
(251 of 405)

NOTE. Within a biomarker staining group (left-most column headings), all comparisons presented are the reference evaluation (the 
diagnostic reading made in the clinical routine, or reader 1 in the case of Ki67) versus each specified reader number. Overall agreement 
was defined as the number of concordant determinations (assigned to the same class) divided by the total sample size. Complete con-
cordance was defined as the number of occurrences for which all readings were concordant across all stains divided by the total sample 
size (Data Supplement). 
Abbreviations: ER, estrogen receptor; H&E, hematoxylin and eosin; HER2, human epidermal growth factor receptor 2; IHC, immu-
nohistochemistry; NHG, Nottingham histologic grade; PgR, progesterone receptor; SISH, silver in situ hybridization.
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demonstrated that accurate classifiers for ER, 
PgR, HER2, Ki67 and NHG can be built with 
RNA-seq data, can provide a valuable comple-
ment to traditional histopathology, and repre-
sent the first of many potential clinical reports  
that can be delivered from a single RNA-seq mea-
surement. In the future, we foresee the develop-
ment, validation, and clinical implementation of a 
multitude of signatures, classifiers, and mutational 
profiles within the SCAN-B population-based 
infrastructure and RNA-seq platform.17,18 We also 
aim to use RNA-seq analyses in the performance 
of interventional clinical trials.29

The quality of machine-learned classifiers is cru-
cially dependent on the quality of the labels on 
which they have been trained. To ensure highly 
accurate pathology labels, we sought to reduce 
variance by generating consensus scores for each 
biomarker. Matched against routine histopatho-
logic evaluation, repeated ER, PgR, and HER2 
readings showed good concordance, whereas 
Ki67 and NHG had notably lower concordance 
between pathologists (Table 1). Reproducibil-
ity of tumor grading systems has long been 
debated,30 and Ki67 has been shown to have 
high intralaboratory but low interlaboratory 
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Fig 2. Performance of trained classifiers in the 3,273-tumor independent validation cohort. (A) Forest plots of concordance statistics for histo-
pathologic evaluation in the training set (blue square markers), and single-gene classifiers (SGCs; gold circles) and multigene classifiers (MGCs; 
gray diamonds) in the validation cohort, which plots overall agreement with 95% CIs, specific agreements (positive and negative agreements for 
estrogen receptor [ER], progesterone receptor [PgR], human epidermal growth factor receptor 2 [HER2], and Ki67) and Nottingham histologic 
grade (NHG) category agreements (grade [G] 1, G2, and G3), and κ values with 95% CIs. Overall agreement is defined as the number of concor-
dant determinations (assigned to the same class) divided by the total sample size. Positive, negative, and G1/G2/G3 agreements are the proportions 
of agreement specific to the given category (Data Supplement). (B) Overall agreement of classifiers from the literature compared with our SGCs 
and MGCs. SCAN-B, Sweden Cancerome Analysis Network—Breast.
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reproducibility.10 Here, the histopathologic vari-
ability was highest for Ki67 and NHG, which 
added uncertainty even to our consensus scores. 
It is unlikely that a classifier would perform bet-
ter than the quality of training labels; therefore, 
it is not surprising that our classifiers had the 
worst performance for Ki67 and NHG. More-
over, because we benchmarked our biomarker 
predictions in the validation cohort to the clin-
ical diagnostic histopathology results that con-
tained this inherent variability, we could not 
expect our classifiers to have higher accuracy 
than what is achievable within histopathology.

Generally, SGCs performed comparably to clin-
ical diagnostic pathology. The SGC ER and 
HER2 classifiers had substantial κ agreement 

compared with the clinical average, and PgR 
and Ki67 had moderate agreement. Likewise, 
our MGCs had comparable performance. The 
MGC ER and HER2 classifiers had substan-
tial agreement in line with the clinical average, 
whereas PgR and NHG classifiers had moderate 
agreement, and the Ki67 classifier had fair agree-
ment. Earlier work on mRNA-based classifiers  
for ER, PgR, and HER2 has been performed with 
microarrays, quantitative reverse-transcriptase 
polymerase chain reaction, and, recently, with 
RNA-seq and mainly has been restricted to sig-
natures of either one16,31 or few23,24,26,32,33 genes. 
The performance of our classifiers generally were 
in line with the results of these previous studies, 
which indicates the suitability of our RNA-seq 
approach (Fig 2B).
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Fig 3. Kaplan-Meier overall survival estimates and Cox regression survival analysis for multigene classifiers (MGCs) within the independent 
validation cohort. (A) Histopathologically hormone responsive (defined as estrogen receptor [ER] positive and progesterone receptor [PgR] posi-
tive) group stratified by MGC hormone responsive classification (concordant [blue curve] or discordant [gold curve] to histopathology) within the 
subgroup of patients who received (left) no adjuvant systemic therapy, (middle) endocrine therapy alone, or (right) chemotherapy with or without 
trastuzumab or endocrine therapy. (B) Human epidermal growth factor receptor 2 [HER2]–negative histopathology group stratified by HER2 
MGC for the same three treatment subgroups as in A.
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Discrepancies between RNA-seq–based classi-
fications and histopathology may be a result of 
staining and reader variations, as discussed in 
this paper. Discrepancies may also develop from 
tissue sampling and heterogeneity, in which the 
specimen used for sequencing may not be rep-
resentative of the piece selected for histopathol-
ogy. Another consideration is the biologic layer 
at which biomarker status is assessed: mRNA 
versus protein abundance or DNA copy number. 
The consequence is that a mismatch between 
mRNA biomarker prediction and histopathol-
ogy may be influenced by various mechanisms 
active between these layers, for example RNA 
silencing/interference/translation, protein sta-
bility and epitope availability, or tumor hetero-
geneity.

Despite these possible explanations for dis-
crepancies, when benchmarked against patient 
outcome, our classifiers exemplified enhanced 
stratification of patients with significant differ-
ences in overall survival (Fig 3; Appendix Figs 
A4 and A5). The fact that MGCs performed 
best overall suggests that a multigene signature 
captures the biologic signaling up- and down-
stream of the biomarker in question in a more 
consequential way than the expression of the 
single gene or protein alone. This conclusion 
is supported by each signature’s underlying bio-
logic themes and pathways (Data Supplement), 
and by our observation for technical replicates, 
in which MGCs had near-perfect reproducibil-
ity and an error rate that was approximately 
half that of SGCs (0.7% v 1.8%). Ultimately, 
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Fig 3. (Continued). (C) Ki67-high histopathology group stratified by Ki67 MGC for the same three treatment subgroups as in A. (D) Notting-
ham histologic grade (NHG) combined grade [G] 1 and G2 histopathology group stratified by NHG MGC for the same three treatment subgroups 
as in A. In each Kaplan-Meier plot, the histopathology to MGC concordant tumor cases are plotted in blue, the discordant tumor cases are plotted 
in gold, the log-rank P value is given, and the hazard ratio (HR) for discordant-versus-concordant result is given with a 95% CI and after multi-
variable (MV) Cox regression adjustment. Covariables included in the MV analysis were age at diagnosis, lymph node status, tumor size, and the 
variables denoted by the following symbols: †, ER, PgR, and NHG; ‡, ER, PgR, HER2, and NHG; §, HER2 and NHG; #, ER, PgR, and HER2.
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these results can be used to identify patients who 
may benefit from additional treatment. Another 
approach is to use clinical outcome as the train-
ing labels to develop new prognostic/predictive 
signatures.13,34 The SCAN-B material is excel-
lently suited to evaluate previously published 
signatures; as we accrue longer follow-up, we 
aim to develop RNA-seq signatures trained on 
clinical outcomes.

Ki67 has been introduced relatively recently in 
international guidelines.11 To our knowledge, 
this study is the first to develop a validated pre-
dictor for Ki67 status. The lower concordance 
between our Ki67 predictions compared with 
the clinical reference is related to the relatively 
larger Ki67 interrater disagreement seen within 
our consensus pathology evaluation, which is 
likely a consequence of the continuous nature of 
Ki67 expression and of the spectrum of prolifer-
ation activity and pathways in BC.

NHG is distinct from the other biomarkers. 
It has no single underlying gene but rather is  
a compound biomarker that consists of three 
morphologic properties: tubular differentiation, 
nuclear pleomorphism, and mitotic count. More-
over, NHG prediction is a three-class problem. 
Even for pathologists, NHG can be difficult to 
determine, as evidenced by the moderate κ and 
OA results within clinical pathology, in line with 
the literature.12 Most misclassified tumor cases 
in this study were histologically grade 1 (G1) or 
grade 3 that were misclassified as grade 2 (G2) 
by our predictor. Large interrater disagree-
ment, especially for G1 and G2, could explain 
the results of our classifier with only moderate 
OA to histopathology (67.7%). All histologic 
G1 occurrences were misclassified, which may 
have been a result of the imbalanced compo-
sition of the training set for NHG (48 of 405 
samples consensus-scored G1), or may have 
occurred because G1 is not a discrete entity 
but rather the lower end of an underlying con-
tinuous scale. Indeed, Kaplan-Meier analy-
sis showed that the curves G1 and G2 largely 
overlapped in the validation cohort (Appendix 
Fig A4). Another approach, instead of recapit-
ulation of the pathology grading scheme, could  
be to reduce the problem to a binary classifica-
tion of either low or high grade. This approach 
has been suggested by others as a viable gene- 
expression–based alternative to NHG for 

translation into a clinical setting35,36 and essen-
tially is what our NHG predictor has become.

An important question when building classi-
fiers is how many genes to use. We compared 
single-gene and multigene classifiers. When 
compared with clinical pathology, SGCs have 
slightly better concordance than MGCs for ER 
and HER2, whereas the SGC and MGC per-
formances were comparable for PgR and Ki67. 
This difference may have developed because 
these biomarkers are faithfully represented by 
their associated single genes. Another consider-
ation for classifiers is robustness toward missing 
values. MGCs may be more robust than SGCs, 
because they are able to classify tumors correctly 
even when the main gene that underlies a bio-
marker is poorly measured in a particular analy-
sis. When clinical outcome was considered, the 
survival analyses indicated that our MGCs gen-
erally contained greater potential clinical utility 
than SGCs to complement histopathology.

In summary, we have performed a systematic patho-
logic evaluation of 405 BC tumors, which resulted  
in consensus scores for the five conventional BC 
biomarkers and estimated a well-controlled best-
case scenario for the inherent uncertainty within 
clinical histopathology. With tumor RNA-seq data 
and the consensus scores, we trained SGCs and 
MGCs and evaluated the classifiers on an inde-
pendent set of 3,273 tumors. The accuracy of 
our classifiers was comparable to the inherent 
accuracy of clinical pathology and was highly 
reproducible. Classifiers based on the expression 
of single genes performed slightly better than 
MGCs for concordance to histopathology, but 
MGCs performed significantly better for strat-
ification of patients into groups with clinically 
meaningful differences in survival, in particular 
for histopathologic hormone-responsive BCs. In  
conclusion, RNA-seq–based classifiers may be suit-
able complementary diagnostics for BC, in partic-
ular for difficult diagnoses in which the classifier 
can add an additional vote toward the therapeutic 
choice. For future implementation of our MGCs 
in the clinical routine, additional health econom-
ics analyses and external validation are needed.
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Patients enrolled in SCAN-B
(n = 5,101: 87%)

Enrolled patients with tumor
biopsy sample for analysis

(n = 3,847: 75%)

Validation cohort with quality
controlled RNA-seq data

(n = 3,273: 85%)

Not enrolled
(n = 791)

No tumor tissue for study (n = 1,205)
or tumor tissue obtained after

neoadjuvant therapy or previous
biopsy (n = 49)

All patients with breast cancer in the
South Sweden health care region

diagnosed between September 1, 2010,
 and March 31, 2015 who underwent 

operation for invasive primary* 
breast cancer
 (N = 5,892)

Insufficient or poor quality RNA and
RNA-seq not performed or failed
(n = 464); RNA-seq data failed QC

(n = 110)

Fig A1. Flow diagram 
for Sweden Cancerome 
Analysis Network—Breast 
(SCAN-B) popula-
tion-based 3,273-tumor 
independent validation 
cohort. (*) Nonmetastatic 
primary unilateral breast 
cancer, which excluded 
patient cases that had a 
diagnosis of synchronous 
(< 3 months) contralateral 
invasive breast cancer. QC, 
quality control.
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Fig A2. Prediction of 
biomarker status in the 
3,273-case independent val-
idation cohort. For estrogen 
receptor (ER), progesterone 
receptor (PgR), human 
epidermal growth factor 
receptor 2 (HER2), and 
Ki67 clinical histopathology 
diagnostic results (y-axis), 
the single-gene classifier 
(SGC) gene expression 
(x-axis) (A) or the trans-
formed multigene classifier 
(MGC) score (x-axis) (B) is 
plotted for the validation 
cohort (circles). Within a 
biomarker prediction, gold 
circles were concordantly 
biomarker negative, blue 
circles were concordantly 
positive, and gray circles 
were discordant by the 
classifier or histopathology. 
Vertical dotted (SGC) and 
dashed (MGC) lines repre-
sent the classifier threshold 
that distinguished the 
classes. FPKM, fragments 
per kilobase of transcript 
per million mapped reads.
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Fig A3. Transformed 
multigene classifier (MGC) 
score (x-axis) versus single- 
gene classifier (SGC) gene 
expression (y-axis) in the 
3,273 samples of the inde-
pendent validation cohort 
(circles) for (A) estrogen 
receptor (ER), (B) proges-
terone receptor (PgR), (C) 
human epidermal growth 
factor receptor 2 (HER2), 
and (D) Ki67. Gold circles 
are negative or low by 
histopathology, and blue 
circles are positive or high 
by histopathology. Vertical 
dashed lines are drawn at 
the MGC score threshold of 
0 to distinguish the classes, 
and horizontal dotted lines 
are drawn at the SGC gene 
expression thresholds  
determined from the 
training cohort. FPKM, 
fragments per kilobase 
of transcript per million 
mapped reads. 
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Fig A4. Kaplan-Meier overall survival estimates for histopathology, single-gene classifiers (SGCs), and multigene classifiers (MGCs) 
within the validation cohort (neg, classified as negative; pos, classified as positive; grade [G]1, G2, or G3). The biomarker is indicated at the 
far left, and the number of tumor cases with complete data across pathology, SGC, and MGC for a given biomarker is shown below each 
biomarker name. In columns are plotted the Kaplan-Meier survival curves for each classification: (left) pathology, (middle) SGC, and (right 
column) MGC. The log-rank P value is displayed, and horizontal dashed lines are drawn to aid identification of Kaplan-Meier estimates with 
the poorest outcome classification group within each row. Generally, histopathology and SGCs had similar curves, whereas the MGCs had 
noticeably improved stratification, for the hormone receptors, in particular.

Downloaded from ascopubs.org by 31.208.74.188 on March 10, 2018 from 031.208.074.188
Copyright © 2018 American Society of Clinical Oncology. All rights reserved.



18 ascopubs.org/journal/po JCO™ Precision Oncology

log-rank P < .001

ER

Concordant ER negative

Concordant ER positive

Pathology ER negative/MGC ER positive

Pathology ER positive/MGC ER negative

Ov
er

al
l S

ur
vi

va
l (

pr
op

or
tio

n)

0.8

0.6

0.4

0.2

6543210

Concordant
ER negative

No. at risk:

Concordant
ER positive

Path ER negative
/MGC ER positive

Path ER positive
/MGC ER negative

375

20

25

949

3

42

71

1,591

4

98

124

2,185

8

171

188

2,536

12

209

227

2,582

12

221

232

2,594

12

229

238

7

1.0

Time (years)

A

No. at risk:

log-rank P < .001

PgR

Concordant PgR negative

Concordant PgR positive

Pathology PgR negative/MGC PgR positive

Pathology PgR positive/MGC PgR negative

Ov
er

al
l S

ur
vi

va
l (

pr
op

or
tio

n)

0.8

0.6

0.4

0.2

1.0

6543210 7

Time (years)

Concordant
PgR negative

Concordant
PgR positive

Path PgR negative
/MGC PgR positive

Path PgR positive
/MGC PgR negative

324

7

23

19

837

25

56

61

1,419

45

120

119

1,953

80

211

184

2,272

98

260

226

2,312

98

276

229

2,320

99

287

234

B

No. at risk:

log-rank P < .001

Hormone responsive

Concordant hormone nonresponsive

Concordant hormone responsive

Pathology hormone nonresponsive/
MGC hormone responsive

Pathology hormone responsive/
MGC hormone nonresponsiveOv

er
al

l S
ur

vi
va

l (
pr

op
or

tio
n)

Concordant
hormone 

nonresponsive

Concordant
hormone 

responsive

Path hormone 
nonresponsive

/MGC hormone 
responsive

Path hormone 
responsive

/MGC hormone 
nonresponsive

321

7

24

21

832

26

61

57

1,413

46

136

106

1,946

82

232

166

2,262

101

286

203

2,302

101

303

205

2,310

102

314

210

0.8

0.6

0.4

0.2

1.0

6543210 7

Time (years)

C

Fig A5. Kaplan-Meier 
overall survival estimates for 
groups defined by pathology 
(path) versus multigene 
classifiers (MGCs) within 
the validation cohort; the 
log-rank P value is given. 
(A) The entire validation 
cohort stratified by con-
cordance or discordance 
between estrogen receptor 
(ER) histopathology and the 
ER MGC. (B) Progesterone 
receptor (PgR) status strat-
ified by histopathology and 
PgR MGC. (C) Hormone 
responsiveness status strat-
ified by histopathology and 
MGC; responsive is defined 
as ER and PgR positive; 
nonresponsive, as ER nega-
tive or PgR negative. 

Downloaded from ascopubs.org by 31.208.74.188 on March 10, 2018 from 031.208.074.188
Copyright © 2018 American Society of Clinical Oncology. All rights reserved.



1 
 

Clinical Value of RNA Sequencing-Based Classifiers for Prediction of 

the Five Conventional Breast Cancer Biomarkers: A Report From 

the Population-Based Multicenter Sweden Cancerome Analysis 

Network-Breast Initiative 

 

Christian Brueffer, MSc, Johan Vallon-Christersson, PhD, Dorthe Grabau, MD PhD, 

Anna Ehinger, MD, Jari Häkkinen, PhD, Cecilia Hegardt, PhD, Janne Malina, MD, 

Yilun Chen, MSc, Pär-Ola Bendahl, PhD, Jonas Manjer, MD PhD, Martin Malmberg, 

MD PhD, Christer Larsson, PhD, Niklas Loman, MD PhD, Lisa Rydén, MD PhD, 

Åke Borg, PhD, and Lao H. Saal, MD PhD 

 

 

 

SUPPLEMENTARY METHODS 

  



2 
 

SUPPLEMENTARY METHODS 

Patients 

The study schema is presented in Figure 1. The study was approved by the Regional 

Ethical Review Board of Lund at Lund University (diary numbers 2007/155, 

2009/658, 2009/659, 2010/383, 2012/58, 2013/459) and the Swedish Data Inspection 

group (364-2010). Trained health professionals provided patient information and 

patients gave written informed consent. Clinical records were retrieved from the 

Swedish National Cancer Registry (NKBC). Diagnostic pathology slides, snap-frozen 

surgical tumor specimens, and formalin-fixed paraffin-embedded (FFPE) tissue 

blocks were retrieved for 405 patients (training cohort; Supplementary Table 1) 

diagnosed between 2006 and 2010 and treated at the Skåne University Hospital in 

Malmö and Lund. The 405 cohort was assembled for classifier training purposes and 

not for survival analysis, and thus an overrepresentation of HER2+ and ER– cases 

was selected for. 

Independent validation cohort 

For testing of the classifiers and for survival analyses, an independent, prospective, 

and population-based cohort of 3273 primary breast tumors, diagnosed between 

September 2010 and March 2015, was assembled from the ongoing SCAN-B study1 

(validation cohort; Supplementary Table 1 and Supplementary Figure 1). 

Histopathology 

For the 405 training cases, all biomarkers with the exception of Ki67 had been 

evaluated at time of diagnosis. The original clinical diagnostic pathology slides and 

scores were retrieved. For ER and PgR, the diagnostic IHC results were classified into 

the categories 0%, 1-10%, 11-50%, and >50% positive cells, and the international 

threshold of ≥1% was used to define positive status. Routine HER2 IHC was 

evaluated according to the HercepTest criteria using standard local practices, with 

follow-up HER2 fluorescent in situ hybridization (FISH) as needed.  Tumor grade 

was scored according to the Nottingham histological grade (NHG) system, which 

involves semiquantitative evaluation of three morphological features, tubule 
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formation, nuclear pleomorphism, and mitotic count, using a 3 grade scoring scheme 

for each feature.2 For this study, new 4-micron slides were cut from the archival 

pathology blocks for ER, PgR, HER2, and Ki67 IHC, and for HER2 silver in situ 

hybridization (SISH). For NHG only the diagnostic hematoxylin and eosin slides were 

used. The new immunostainings were performed by a central laboratory (Helsingborg 

Hospital) using Ventana instrumentation: ER IHC used antibody SP1 (Ventana); PgR 

IHC used antibody clone 16 (Leica); HER2 SISH was performed using the INFORM 

Her2 Dual ISH assay (Ventana); Ki67 IHC used antibody MIB-1 (Dako). Each set of 

slides for each biomarker, whether the original diagnostic slides or the newly stained 

slides, were scored in total by three pathologists. The diagnostic slides were scored in 

the clinical routine, counting as the first reading, and then re-evaluated independently 

by two pathologists for this study (D.G. and A.E. or J.M.); the new stains were 

evaluated independently by all three pathologists. ER, PgR, and HER2 were evaluated 

as described above. Ki67 was evaluated by estimating the percentage of positive 

nuclei within hotspot regions, with semi-quantitative percentage scores recorded as 

whole numbers from 0% to 10%, then by bins of 5 from 15% to 100%.  The cutoff for 

Ki67 was determined to be >20% high, ≤20% low, based on the internal Quality 

Assurance Program cutoff following the procedure recommended by the Swedish 

guidelines wherein one-third of cases should be high and two-thirds of cases low (see 

Introduction).  A ‘consensus score’ for each biomarker was determined using majority 

voting from all evaluations. 

For validation cohort patients, the diagnostic histopathological records for ER, PgR, 

HER2, Ki67, and NHG were retrieved from NKBC. For ER and PgR a cutoff for 

positivity of ≥1% positive cells was applied. Clinical HER2 status, positive or 

negative, was based on IHC and/or ISH analysis following standard guidelines. Ki67 

status was based on percent positive nuclei of tumor cells as recorded in the clinical 

routine, with Ki67 scores thresholded at >20% being high and ≤20% as low. 

Therapies 

All patients were treated uniformly according to common regional guidelines that in 
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turn were based on national and international guidelines during the years 2006 

through 2016. For the period 2010 onwards, HER2-positive patients herein generally 

received HER2-directed treatment with trastuzumab concomitantly with 

chemotherapy, with a total treatment period of 12 months for trastuzumab. ER-

positive cases generally were prescribed endocrine therapy (premenopausal: 5-years 

tamoxifen; postmenopausal: aromatase inhibitor alone or followed by tamoxifen for a 

total of 5-years; extended endocrine treatment was introduced for node positive 

patients during the period). Most patients with ER-negative disease received 

chemotherapy (taxane/anthracycline), and chemotherapy for ER-positive cases was 

based on risk for recurrence as estimated by tumor size, nodal status, and NHG. 

Tumor sample processing and RNA-sequencing 

Tumor specimens were macrodissected at the pathology departments and processed in 

our central laboratory with handling standards that meet or exceed the 

recommendations of the Breast International Group, as described previously1, with the 

exception that samples in the training cohort were snap-fresh-frozen instead of being 

preserved in RNAlater. In brief, nucleic acids were isolated using the AllPrep method 

and automated using QIAcube machines (Qiagen). Quality control was performed by 

NanoDrop spectrophotometry and BioAnalyzer (Agilent) analysis; all RNA was 

highly intact with RNA Integrity Number (RIN) ≥6. Starting from 1 µg total RNA, 

sequencing libraries for RNA-seq were generated using customized strand-specific 

protocols, automated for a high-throughput workflow, which have been previously 

described in detail.1,3 Sequencing clusters were generated using the Illumina cBot 

instrument, and paired-end data were generated using an Illumina HiSeq 2000 or 

NextSeq 500 instrument. Sequencing statistics are presented in Supplementary 

Table 2. 

RNA-seq gene expression measurements 

Raw sequencing read data was analyzed as previously described.1,3 To be more 

consistent with ongoing prospective RNA-seq data being generated within the SCAN-

B initiative, for this study we truncated long sequencing reads to 2x50 bp. In brief, 
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raw sequencing data was demultiplexed and filtered using Bowtie 2 against ribosomal, 

phiX174, and UCSC RepeatMasker sequences. The remaining reads were aligned 

using TopHat2 2.0.5 (training cohort) or 2.0.12 and 2.0.13 (validation cohort) to the 

GRCh37/hg19 (with b37 masked chromosome Y and hs37d5 decoy sequences; 

training cohort) or the GRCh38 (validation cohort) genome together with 80,883 

transcript annotations from the UCSC knownGenes table (downloaded September 10, 

2012, training cohort) or 104,133 transcript annotations from the UCSC knownGenes 

table (downloaded September 22, 2014, validation cohort). Cufflinks v2.1.1 (training 

cohort) or v2.2.1 (validation cohort) was used to calculate expression levels in the 

form of fragments per kilobase of exon per million mapped reads (FPKM). Isoform-

level gene expression data were collapsed on 27,979 (training cohort) or 30,865 

(validation cohort) unique gene symbols (sum of FPKM values of each matching 

transcript). 

Classifiers 

Using only the 18,802 genes contained in the NCBI RefSeq NM category (mRNA), 

the gene expression FPKM values for training samples were transformed by adding a 

constant 0.1 to each expression value and then applying log2. Single-gene classifiers 

were built for the four biomarkers that have a single corresponding underlying gene 

by determining the optimal expression threshold for the genes ESR1, PGR, ERBB2, 

and MKI67 that maximizes concordance with the respective histopathological 

consensus score within the 405 training cohort. Multi-gene classifiers for ER, PgR, 

HER2, Ki67, and NHG were built by training nearest shrunken centroid4 models – 

using pamr 1.55 driven by the caret 6.0-47 R package – on the gene expression data 

of the 5000 most varying genes across all 405 samples (Supplementary Table 3), 

using the histopathological consensus scores for the respective biomarker as labels. In 

training, support vector machines (SVM) and random forests (RF) were evaluated but 

provided no improvement (data not shown). Model parameters were determined by 

performing 10 rounds of 4-fold cross-validation. During cross-validation, the 405 

samples were randomly divided into four sub-cohorts, where classifiers trained on the 
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union of three of the sub-cohorts were used to predict the biomarker status in the 

remaining cohort. This procedure was repeated so that every sub-cohort was predicted 

by the remaining sub-cohorts exactly once, constituting one round; the result was a 

mean summary metric (balanced accuracy for biomarkers with dichotomous classes: 

ER, PgR, HER2 and Ki67; accuracy for NHG) and standard deviation (SD) for each 

round. The threshold yielding the round with the best mean summary metric within 

each biomarker (Supplementary Table 6) was used to train a prediction model using 

all 405 samples. The resulting nine classifiers were used to predict the IHC biomarker 

status of 3273 independent samples using their gene expression data normalized as 

described above. 

The biological and functional themes of each MGC signature were evaluated using 

Database for Annotation, Visualization, and Integrated Discovery v6.8 (DAVID).5  

Functional annotation clustering was performed using the Entrez identifiers for each 

MGC signature (all genes with non-zero weight) and the default DAVID settings and 

annotation categories, with the following two changes to reduce the number of 

identified clusters: ‘Classification stringency’ was increased to High, and the 

‘Enrichment Thresholds EASE’ score was decreased to 0.1.   

For representational purposes, MGC classifier scores (the output of the pamr 

discriminant function) were scaled by first calculating the delta score (positive class 

score – negative class score) for each sample, and scaling the within-class delta scores 

to have a mean of 1 and -1 for the positive class and the negative class, respectively. 

The delta score distribution was then shifted so that a delta score < 0 represents a 

negative classification.  

Statistical analysis 

All calculations were performed using R 3.2.3. Matthews correlation coefficients 

(MCC) were calculated using the generalized method by Gorodkin.6 Kappa statistics 

were determined using the irr 0.84 and psy 1.1 packages. Confidence intervals for 

kappa and MCC were calculated by bootstrapping using the boot 1.3 package and 
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10,000 bootstrap iterations. Pathology evaluations, multi-gene and single-gene 

predictions were compared using agreement statistics, MCC and Cohen's kappa, 

which were interpreted according to Viera and Garrett.7 P-values ≤0.05 were 

considered significant. 

Overall survival (OS) was used as end point for survival analysis and calculated from 

the date of diagnosis. Kaplan-Meier (KM) analysis and Cox proportional hazards 

regression were performed using the survival 2.38-3 package. Survival times were 

compared among classes using the logrank test. Multivariate Cox models included the 

variables age at diagnosis (continuous), lymph node status (positive vs negative), and 

tumor size (continuous) as covariates, as well as ER, PgR and HER2 status (all 

positive vs negative), and NHG (G1-G3), as relevant depending on the analyzed 

model (e.g., the model for the histopathologically HER2-negative group excluded 

HER2 status). Cases with missing data in any of the included variables were excluded 

from KM and Cox analysis. All models were checked for proportional hazards using 

Grambsch and Therneau’s test for non-proportionality and Schoenfeld residuals.8 

For calculation of concordance statistics, the following definitions are used: 

Balanced Accuracy  
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
 

Overall Agreement  
∑ ∑𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑓𝑜𝑟𝐶𝑙𝑎𝑠𝑠𝑋𝑁𝐶𝑙𝑎𝑠𝑠𝑒𝑠
1

∑𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 

Specific Agreement for Class X (e.g. “positive” or “negative”; “G1”, “G2”, or “G3”) 

2 ∗ ∑𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑓𝑜𝑟𝐶𝑙𝑎𝑠𝑠𝑋

∑𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑅𝑒𝑎𝑑𝑖𝑛𝑔𝑠𝑓𝑜𝑟𝐶𝑙𝑎𝑠𝑠𝑋𝑏𝑦𝑅𝑒𝑎𝑑𝑒𝑟1 + ∑𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑅𝑒𝑎𝑑𝑖𝑛𝑔𝑠𝑓𝑜𝑟𝐶𝑙𝑎𝑠𝑠𝑋𝑏𝑦𝑅𝑒𝑎𝑑𝑒𝑟2
 

 

Expected Agreement  

 

∑ (∑𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑜𝑓𝐶𝑙𝑎𝑠𝑠𝑋 ∗ ∑𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑜𝑓𝐶𝑙𝑎𝑠𝑠𝑋)𝑁𝐶𝑙𝑎𝑠𝑠𝑒𝑠
1

(∑𝑆𝑎𝑚𝑝𝑙𝑒𝑠)2
 

 

Kappa 
𝑂𝑣𝑒𝑟𝑎𝑙𝑙𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡+𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡

1–𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡
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Abstract

Breast cancer is a disease of genomic alterations, of which the
panorama of somatic mutations and how these relate to subtypes
and therapy response is incompletely understood. Within SCAN-B
(ClinicalTrials.gov: NCT02306096), a prospective study elucidating
the transcriptomic profiles for thousands of breast cancers, we
developed a RNA-seq pipeline for detection of SNVs/indels and pro-
filed a real-world cohort of 3,217 breast tumors. We describe the
mutational landscape of primary breast cancer viewed through the
transcriptome of a large population-based cohort and relate it to
patient survival. We demonstrate that RNA-seq can be used to call
mutations in genes such as PIK3CA, TP53, and ERBB2, as well as the
status of molecular pathways and mutational burden, and identify
potentially druggable mutations in 86.8% of tumors. To make this
rich dataset available for the research community, we developed
an open source web application, the SCAN-B MutationExplorer
(http://oncogenomics.bmc.lu.se/MutationExplorer). These results
add another dimension to the use of RNA-seq as a clinical tool,
where both gene expression- and mutation-based biomarkers can
be interrogated in real-time within 1 week of tumor sampling.
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Introduction

Mutations in the cancer genome, including single nucleotide variants

(SNVs) and small insertions and deletions (indels), can shed light on

cancer biology, tumor evolution and susceptibility or resistance to

therapeutic agents (The Cancer Genome Atlas, 2012; Bose et al,

2013; Robinson et al, 2013). Mutations can now even be used to

track circulating tumor DNA in the blood of patients (Garcia-Murillas

et al, 2015; Förnvik et al, 2019). In recent years, the characterization

of the mutational landscape of breast cancer has been performed

primarily on the DNA level (The Cancer Genome Atlas, 2012; Cheng

et al, 2015; Ciriello et al, 2015). Adoption of massively parallel RNA

sequencing (RNA-seq) as a clinical tool has been slower, despite

several complementary advantages over DNA-seq. In addition to

gene and isoform expression profiling and detection of de novo tran-

scripts such as fusion genes, RNA-seq can approximate classical

DNA-seq capabilities in the detection of SNVs, indels, as well as

structural variants (Ma et al, 2018) and coarse copy number

(preprint: Talevich & Shain, 2018). This makes RNA-seq an excellent

tool for biomarker development (Brueffer et al, 2018) and potential

clinical deployment (Byron et al, 2016; Cie�slik & Chinnaiyan, 2018).

For these reasons, among others, in 2010, the Sweden

Cancerome Analysis Network–Breast (SCAN-B) initiative (Clinica

lTrials.gov ID NCT02306096) selected RNA-seq as the primary

analytic tool (Saal et al, 2015; Rydén et al, 2018). SCAN-B is a

prospective real-world and population-based multicenter study with

the aim of developing, validating, and clinically implementing novel

biomarkers. To this end, SCAN-B collects tumor tissue and blood

samples from enrolled patients with a diagnosis of primary breast

cancer (BC). To date, over 15,000 patients have been enrolled, and

messenger RNA (mRNA) sequencing is performed on patient tumors

within 1 week of surgery. All patients are treated uniformly accord-

ing to the Swedish national standard of care regimen.

Expression profiling is an excellent tool to develop gene signatures

for established and novel biomarkers (Sotiriou et al, 2006; Roepman

et al, 2009; Brueffer et al, 2018), and many such signatures can be

applied to a single RNA-seq dataset. However, for the detection of

SNVs and indels from RNA-seq data, there are several challenges.
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Unlike DNA-seq, where whole-genome or targeted sequencing reads

are distributed approximately uniformly and in proportion to DNA

copy number, the abundance of reads in RNA-seq is proportional to

the expression of each gene or locus. Consequently, only variants in

expressed transcripts of sufficient level can be detected. In cancer,

this means that variants in oncogenes can likely be detected, whereas

those in tumor suppressor genes, e.g., TP53, BRCA1, or BRCA2, are

more likely to be missed. For example, mutations inducing premature

stop codons can lead to nonsense-mediated decay, causing loss of

expression and subsequently false-negative calls. The transcriptome

is also more complex and challenging than the genome. RNA struc-

tures, such as alternative splicing, add computational challenges to

alignment, and RNA editing can contribute to false-positive variant

calls. Finally, there is the lack of benchmark datasets for RNA-seq, as

are available for DNA from the Genome in a Bottle consortium and

others (Zook et al, 2016; Li et al, 2018).

The aim of this study was to optimize RNA-seq somatic mutation

calling through comparison to matched targeted DNA-seq, discern

the mutational landscape of the early breast cancer transcriptome

across a large cohort of 3,217 treatment-naı̈ve SCAN-B cases with

sufficient follow-up time, and to make the resulting vast dataset

available for exploration by the wider research community. To

demonstrate the power of the methodology and dataset, we assessed

the impact of mutations in important breast cancer driver genes and

pathways, as well as tumor mutational burden (TMB) on patient

overall survival (OS).

Results

An outline of the study design, which comprised DNA sequencing

and RNA sequencing of 275 samples from the ABiM cohort, and

RNA sequencing of 3,217 samples from the SCAN-B cohort, is

shown in Fig 1.

Variant filter performance

Mutation calling in the 275 sample ABiM cohort resulted in 3,478

somatic post-filter mutations from the matched tumor/normal

targeted capture DNA, and 1,459 variants from tumor RNA-seq in

the DNA capture regions (Table 1 and Fig EV1A). Comparing these

DNA and RNA variants resulted in 1,132 mutations that were

present both in DNA and RNA in the capture regions and whose

frequencies were generally in line with previous studies such as The

Cancer Genome Atlas (TCGA) (The Cancer Genome Atlas, 2012)

(Fig EV1B). Of the 1,459 RNA-seq variants, 884 (60.6%) were iden-

tified as somatic in DNA, 248 (17.0%) as germline in DNA, and 327

(22.4%) as unique to RNA. These RNA-unique variants are a mix of

somatic mutations missed in DNA-seq, e.g., due to regional higher

sequencing coverage in RNA-seq or tumor heterogeneity, unfiltered

RNA editing sites, or artifacts caused by PCR, sequencing, or align-

ment and variant calling.

Landscape of somatic mutations in the breast cancer
transcriptome

We applied the filters derived from the 275 sample set to the entire

RNA-seq SCAN-B 3,217 sample set, resulting in 144,593 total

variants comprised of 141,095 SNVs, 1,112 insertions, and 2,386

deletions (Table 1). The number of mutations per sample in the

SCAN-B set was lower compared to the ABiM set, likely due to the

ABiM set being sequenced to a higher depth (Table EV1). The SNVs

comprised 50,270 missense, 2,311 nonsense, 1,042 splicing, 68,819

affecting 30/50 untranslated regions (UTRs), 17,057 synonymous

mutations, as well as 1,596 mutations predicted otherwise. The

majority of indels were predicted to cause frameshifts or affect 30/50

UTRs (Table EV2). After removing synonymous mutations, the

number of mutations was reduced to 127,536 variants in the SCAN-

B set, i.e., an average of 40 mutations per tumor.

We analyzed the contribution of the six nucleotide substitution

types (C>A, C>G, C>T, T>A, T>C, and T>G) to SNVs in the ABiM

and SCAN-B sets (Fig 2A). Compared to DNA, RNA-seq-based vari-

ant calls showed a relative under-representation of C>T substitu-

tions and an over-representation of T>C substitutions.

In accordance with published studies of primary BC, the most

frequently mutated genes were the known BC drivers PIK3CA (34%

of samples), TP53 (23%), MAP3K1 (7%), CDH1 (7%), GATA3

(7%), and AKT1 (5%) (Fig 3). As reported before (Ciriello et al,

2015), disruptive alterations in CDH1 were a hallmark of lobular

carcinomas (135/386 [35.0%] of samples), while alterations in

TP53, MAP3K1, and GATA3 were more common in the ductal type.

86.8% of SCAN-B samples had at least one mutation in a gene

targeted by an approved or experimental drug, based on the Data-

base of Gene-drug Interactions (DGI).

Somatic mutations in important BC genes

We examined known driver BC genes more closely and found our

RNA-seq-based mutation calls to recapitulate known mutation rates

and hot spots, summarized in Table 2, Table EV2, and Fig 2C–F.

Associations of mutated genes and clinical and molecular biomark-

ers are summarized in Table EV3, and several examples are high-

lighted below.

PIK3CA was the most frequently mutated gene, with 1,163 non-

synonymous mutations in 1,095 patient samples (34% of patients).

As expected, and in line with previous studies (Saal et al, 2005; The

Cancer Genome Atlas, 2012; Pereira et al, 2016), the majority of

alterations were the known hot spot mutations H1047R/L, E545K,

and E542K (Table 2, Fig 2D), which lead to constitutive signaling

(Bader et al, 2006). All hot spot mutations and the vast majority of

other PIK3CA alterations were missense mutations. Mutations were

associated with lobular, ER+, PgR+, HER2�, and Luminal A (LumA)

BC (Table EV3).

TP53 is frequently disrupted by somatic SNVs; however, a few

hot spot mutations exist (Giacomelli et al, 2018). The mutation

frequency in BC is estimated to be 35.4-37% (The Cancer Genome

Atlas, 2012; Pereira et al, 2016), which we could confirm in our

DNA-seq ABiM filter-definition cohort (37%). Likely due to

nonsense-mediated decay (NMD), loss of heterozygosity, and/or

decreased mRNA transcription, in the 3,217 cases, the frequency of

TP53 mutations was lower at 23% (782 mutations in 733 samples).

Despite underdetection by RNA-seq, the identified hot spot residues

were the same as reported in the IARC TP53 database (release R20)

(Bouaoun et al, 2016). The most often mutated amino acids we

observed were R273, R248, R175 (50, 49, and 24 mutations respec-

tively, total 123/782 [15.7%]), followed by positions Y220 (21/782
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[2.7%]), R280 (19/782 [2.4%]), and R342 (17/782 [2.2%])

(Table 2, Fig 2C). Most detected mutations are in the DNA binding

domain, and 77.6% of overall mutations are missense mutations,

likely leading to protein loss of function (LoF). As anticipated, TP53

mutations were associated with ductal, ER�, PgR�, HER2+,

hormone receptor positive (HoR+)/HER2+ (HoR+ defined as ER+

and PgR+, HoR� otherwise), HoR�/HER2+, triple-negative BC

(TNBC), and the basal-like and HER2-enriched PAM50 subtypes

(Table EV3), as reported before (The Cancer Genome Atlas, 2012).

PTEN is a crucial tumor suppressor gene and regulator of PI3K

activity, and PTEN protein expression is associated with poor

outcome (Saal et al, 2007). In our dataset, we found 124 non-synon-

ymous mutations in 116/3,217 (3.6%) samples, including hot spot

mutations in H303 and H266 of unknown significance (Fig 2E). Muta-

tions were significantly associated with HER2� disease (Table EV3).

ERBB2 (HER2) mutations have emerged as a novel biomarker

and occur by the majority in patients without ERBB2 amplification

(Bose et al, 2013), but also in ERBB2-amplified cases (Cocco et al,

2018). Evidence is mounting that recurrent ERBB2 mutations lead to

increased activation of the HER2 receptor in tumors classified as

HER2 normal (Bose et al, 2013; Wen et al, 2015; Pahuja et al,

2018). Activating ERBB2 mutations have been shown to confer ther-

apy resistance against standard of care drugs such as trastuzumab

and lapatinib (Cocco et al, 2018), but can be overcome using pan-

HER tyrosine kinase inhibitors (TKIs) such as neratinib (Bose et al,

2013; Ben-Baruch et al, 2015; Ma et al, 2017; Cocco et al, 2018).

ERBB2 mutations have also been shown to confer resistance to

endocrine therapy in the metastatic setting (Nayar et al, 2018),

where HER2-directed drugs are effective (Murray et al, 2018). We

identified 117 non-synonymous ERBB2 mutations in 103 patients

(3.2%), higher than the previously reported incidence rates of 1.6%-

2.4% (Bose et al, 2013; Wen et al, 2015; Ross et al, 2016), but lower

than in metastatic BC where rates as high as ~ 7% have been

reported (Cocco et al, 2018). Two hot spots, L755S (28/117) and

V777L (24/117) that cause constitutive HER2 signaling (Fig 2F) (Bose

et al, 2013; Wen et al, 2015), accounted for 44.4% of total ERBB2

mutations. Co-occurrence of ERBB2 mutation and amplification has

been reported before, however mainly in the metastatic setting

(Cocco et al, 2018). In our untreated, early BC cohort, we observed

ERBB2 mutation and amplification in 12 tumors, demonstrating that

co-incident ERBB2 mutation and amplification is rare but can occur in

early, treatment-naı̈ve BC. Mutation and amplification were not

mutually exclusive (P = 0.88), and interestingly ERBB2 mutations

occurred predominantly in tumors classified as PAM50 HER2-

enriched subtype (P = 0.0001). Moreover, ERBB2 mutation was

significantly associated with PgR� and lobular BC (Table EV3).

Loss of E-cadherin (CDH1) protein expression is a hallmark of

the lobular BC phenotype (Ciriello et al, 2015). With 12% of our

cohort being of lobular type, we observed 137 of total 233 CDH1

mutations in lobular BCs (58.8%, P = 1.6E-72). The mutations

were mostly comprised of nonsense mutations (37.2%) and

frameshift indels (35.4%), suggesting they contribute to CDH1

Figure 1. Study design.

Study design flow diagram for DNA-seq-informed optimization of RNA-seq variant calling.

Table 1. Number of mutations in the ABiM (DNA-seq and RNA-seq) and SCAN-B (RNA-seq) cohorts.

Cohort Source Coverage
Total
mutations SNVs Insertions Deletions

Samples with
mutations

Mutations
per sample

ABiM DNA Capture regions 3,478 3,173 50 173 274 12.7

ABiM RNA Capture regions 1,459 1,304 57 98 265 5.5

ABiM RNA Whole mRNA 16,683 15,764 235 684 275 60.7

SCAN-B RNA Whole mRNA 144,593 141,095 1,112 2,386 3,217 44.9

Sample numbers differ from total cohort sizes due to filtering resulting in samples with no remaining post-filter mutations.
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expression loss and drive the lobular phenotype. We observed one

nonsense mutation hot spot (Q23*, n = 18), and this residue was

also hit by a rare missense mutation (Q23K, n = 1). In addition to

lobular BC, CDH1 mutations were associated with ER+, HER2�,
and HoR+/ HER2� status, and the LumA subtype (Table EV3).

Other notable mutated genes in our set were MAP3K1, AKT1,

ESR1, GATA3, FOXA1, SF3B1, and CBFB. MAP3K1 is a regulator of

signaling pathways and regularly implicated in various cancer types.

Loss of MAP3K1 expression activates the PI3K/AKT/mTOR pathway

and desensitizes the tumor to PI3K inhibition (Avivar-Valderas et al,

2018), thus mutation status of this gene may affect efficacy of PI3K-

targeting drugs. We observed a high rate of frameshift indels, and

missense mutations mostly clustered in the kinase domain. Co-

mutation of MAP3K1 and PIK3CA occurred in 108 tumors (3.4%),

and inactivating (frameshift/nonsense) MAP3K1 alterations

occurred in 77 of 1,095 (7%) of PIK3CA-mutant tumors. AKT1 is a

A

C

D

E

F

B

Figure 2. Overview of non-synonymous mutations in terms of base substitution signatures, molecular subtype, and protein impact.

A Contribution of base change types to the overall SNV composition in the ABiM cohort for captured DNA regions and mRNA in the captured DNA regions, as well as
SCAN-B whole mRNA.

B Number of non-synonymous mutations per sample. Bars are colored by PAM50 subtypes Luminal A (dark blue), Luminal B (light blue), HER2-enriched (pink),
basal-like (red), Normal-like (green) and Unclassified (gray).

C–F Lollipop plots showing the location, abundance, and impact of SNVs in (C) TP53, (D) PIK3CA, (E) PTEN, and (F) ERBB2 on the respective encoded protein. Protein
change labels are shown for the most mutated amino acid positions, with residues ordered left to right by mutation frequency within each label.
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common oncogene with 156 (4.8%) mutated samples and featured

the fourth most mutated hot spot (E17K, 121 mutations) in the

SCAN-B cohort. These mutations are predictive of sensitivity to AKT

inhibitors (Hyman et al, 2017). ESR1 encodes the estrogen receptor

(ER) alpha, perhaps the most important clinical BC biomarker.

Seventy-seven tumors harbored 81 ESR1 variants, including known

endocrine treatment resistance mutations, that are discussed else-

where in detail (M. Dahlgren, AM. George, C. Brueffer, S. Gladchuk,

Y. Chen, J. Vallon-Christersson, C. Hegardt, J. Häkkinen, L. Rydén,

M. Malmberg, C. Larsson, SK. Gruvberger-Saal, A. Ehinger, N.

Loman, Å. Borg, LH. Saal, submitted). Relatedly, GATA3 and

FOXA1 are frequently mutated transcription factors that are directly

involved in modulating ER signaling, and their expression is inde-

pendently associated with beneficial survival in ER+ tumors (Hisa-

matsu et al, 2012). We identified 246 GATA3 mutations, including

known recurrent frameshift mutations (P409fs, n = 30 and D336fs,

n = 10) and the M294K/R missense mutation (n = 15), as well as

10 splice site variants. In FOXA1, we detected 146 total mutations,

including known recurrent S250F (n = 23) and F266L/C (n = 12)

missense mutations. Most mutations occurred in the forkhead DNA

binding domain. While the role of mutations in these genes has not

been thoroughly characterized, Takaku et al (2018) suggest that

GATA3 can function as either oncogene or tumor suppressor

depending on the mutations the gene accumulated, and which part

of the protein product is impacted. According to their classification,

the most frequent mutation in our cohort, the P409fs frameshift

mutation, results in an elongated protein product compared to

GATA3-wt that has favorable survival compared to mutations of the

second Zinc finger domain. In line with their involvement in ER

signaling, mutations in GATA3, FOXA1, MAP3K1, and ESR1 were

associated with ER+ and PgR+ disease. Further, GATA3, MAP3K1,

and ESR1 were associated with HoR+/ HER2�, and GATA3 and

MAP3K1 with ductal BC, while ESR1 and FOXA1 were more

common in lobular BC. All these genes were associated with the

LumA subtype, with the exception of GATA3 which was associated

to Luminal B (LumB) (Table EV3).

SF3B1 encodes a subunit of the spliceosome and mutations in

this gene have been identified as potentially interesting treatment

Histological Grade
Ki67 Status

HER2 Status
PgR Status

ER Status
Molecular Subtype

Histological Subtype

Sample n=3,217

NFIC (3%)

SF3B1 (3%)

ARHGAP35 (3%)

TRPS1 (3%)

RUNX1 (3%)

PLEC (3%)

RNF213 (3%)

ARID1A (3%)

CBFB (3%)

ERBB2 (3%)

TBX3 (4%)

KMT2C (4%)

PTEN (4%)

FOXA1 (4%)

AKT1 (5%)

GATA3 (7%)

CDH1 (7%)

MAP3K1 (7%)

TP53 (23%)

PIK3CA (34%)

30 20 10 0
% Mutant

Molecular Subtype
LumA
LumB
HER2
Basal
Normal
Unclassified

G2
G3

Alteration Type
Frameshift
Nonsense
In−frame indel
Missense
Splicing
Synonymous
UTR
Other

Negative
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ER/PgR/HER2 Status Ki67 Status Histological GradeHistological Subtype
Ductal
Lobular

Low
High

Other Not Available Not Available

G1
Translational Effect

Non-Synonymous
Synonymous

Figure 3. Overview of frequently mutated genes across 3,217 SCAN-B samples.

Waterfall plot of the 20most frequently mutated genes (rows) across 3,217 SCAN-B samples (columns). Genes are ranked from top to bottom bymutation frequency. Samples
are sorted by histological subtype and alteration occurrence. Mutations are colored by predicted functional impact.
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targets after having been observed in myelodysplastic syndromes

and chronic lymphocytic leukemia. We identified 81 SF3B1 muta-

tions in 79 tumors, 60 of which were K700E hot spot mutations that

deregulate splicing and result in differential splicing patterns in BC

(Maguire et al, 2015). Alterations in this gene are associated with

ER+ disease (Maguire et al, 2015) and affect alternative splicing

patterns (Alsafadi et al, 2016). The cohort frequency of 1.9% K700E

mutations matches up with previously reported 1.8% in an unse-

lected breast cancer cohort (Maguire et al, 2015). We could not con-

firm the reported prevalence of SF3B1 mutations in ER+ tumors in

the total ER+ group (P = 0.052), but in the ER+/ HER2� subgroup

(68/79 mutated tumors ER+/ HER2�, P = 0.021), as well as the

association with non-ductal, and non-lobular subtypes (P = 0.0033).

Additionally, SF3B1 mutations were associated with LumB tumors

(P = 0.0006) (Table EV3).

CBFB is a transcriptional co-activator of RUNX2, an expression

regulator of several genes involved in metastatic processes such as

cell migration. Increased CBFB expression has been identified as

essential for cell invasion in BC (Mendoza-Villanueva et al, 2010).

Recurrent CBFB mutations have recently been reported in ER+/

HER2� disease; however, the significance of these mutations is

unknown (Griffith et al, 2018). We could confirm this finding show-

ing 107 mutations (3.3% cohort frequency), 95 of which were in

ER+/ HER2� samples (4% of ER+/ HER2� samples, P = 0.0005).

We also found them to be associated with the LumA subtype

(Table EV3); however, we did not observe the splice site mutation

described by Griffith et al (2018), perhaps due to degradation of the

spliced mRNA by NMD.

Mutations in molecular pathways

We were interested whether the mutational data, when consid-

ered from the perspective of mutated pathways, could reveal new

biological correlates. To test this, we mapped mutation status to

important BC pathways as defined in the Reactome database

(Fabregat et al, 2018; Jassal et al, 2020). We called a pathway

mutated when at least one of the member genes had a non-

synonymous mutation and clustered samples by pathway muta-

tion status using Euclidean distance and Ward linkage. Notable

Table 2. The most occurring non-synonymous mutations in the genes
PIK3CA, AKT1, SF3B1, GATA3, ERBB2, TP53, FOXA1, and CDH1 in 3,217
SCAN-B samples.

Gene AA change
Number of
mutations

Mut. samples
(%)

Mut. in
gene (%)

PIK3CA H1047R 483 15 41.5

E545K 212 6.6 18.2

E542K 142 4.4 12.2

H1047L 77 2.4 6.6

N345K 49 1.5 4.2

E726K 26 0.8 2.2

C420R 20 0.6 1.7

E453K 13 0.4 1.1

G1049R 11 0.3 0.9

E545A 10 0.3 0.9

Q546K 10 0.3 0.9

M1043I 8 0.2 0.7

Other 102 3.2 8.8

AKT1 E17K 121 3.8 76.1

Other 38 1.2 23.9

SF3B1 K700E 60 1.9 74.1

Other 21 0.7 25.9

GATA3 P409fs 30 0.9 12.2

M294K 14 0.4 5.7

D336fs 10 0.3 4.1

D332fs 10 0.3 4.1

Other 182 5.7 74

ERBB2 L755S 28 0.9 23.9

V777L 24 0.7 20.5

D769Y 9 0.3 7.7

Other 56 1.7 47.9

TP53 R273C 25 0.8 3.2

R248Q 25 0.8 3.2

R175H 24 0.7 3.5

R248W 22 0.7 3.1

R273H 19 0.6 2.4

Y220C 17 0.5 2.2

F134L 14 0.4 1.8

E285K 13 0.4 1.7

R213* 12 0.4 1.5

R282W 12 0.4 1.5

R306* 10 0.3 1.3

Y163C 10 0.3 1.3

L194R 9 0.3 1.2

R342* 9 0.3 1.2

E286K 8 0.2 1

G245S 8 0.2 1

H179R 8 0.2 1

Table 2 (continued)

Gene AA change
Number of
mutations

Mut. samples
(%)

Mut. in
gene (%)

Q331* 8 0.2 1

Other 529 16.4 65.1

FOXA1 S250F 23 0.7 15.8

F266L 11 0.3 7.5

Other 112 3.5 76.7

CDH1 Q23* 18 0.6 7.7

I650fs 8 0.2 3.4

P127fs 8 0.2 3.4

Other 199 6.2 85.4

Shown are the total number of mutations, the frequency of the mutations in
the SCAN-B cohort (Mut. samples), and the frequency of a particular
mutation within all mutations in the gene (Mut. in gene).

6 of 21 EMBO Molecular Medicine 12: e12118 | 2020 ª The Authors

EMBO Molecular Medicine Christian Brueffer et al



clusters that emerged were co-mutated hedgehog signaling, p53-

independent DNA repair, and hypoxia response pathways, as well

as a cluster of NOTCH1/2/3 signaling mutated tumors, both in

mostly basal-like and HER2-enriched tumors. Both clusters are

linked in their relation to cancer stem cell development (Habib &

O’Shaughnessy, 2016; Locatelli & Curigliano, 2017), which, in

addition to the NOTCH and Hedgehog pathways themselves, has

emerged as a novel treatment target, particularly in TNBC.

Another co-mutation cluster was made up of PI3K/AKT, MET,

RET, EGFR, ERBB2, and ERBB4 signaling pathways that occurred

in a subset of Luminal A and B tumors (Fig 4; see Table EV4 for

Reactome pathway IDs). Activation of these pathways is involved

in the development of ER+ BC through proliferation-inducing

signaling, or endocrine therapy resistance, e.g., via activating

ERBB2 mutations (Nayar et al, 2018).

Tumor mutational burden

Tumor mutational burden is increasingly of interest due to its

association to neoantigen burden and response to immunothera-

pies. We used the median number of non-synonymous mutations

per transcriptome megabase (rnaMB), 0.082 mutations/rnaMB, to

stratify all SCAN-B samples into TMB-high and TMB-low groups.

Samples with HER2-enriched and basal-like PAM50 subtypes were

enriched in the top 10% of samples with the highest TMB

compared to the lowest 90% (P = 2.2E-16, Fig 2B), supporting

previous results and indicating that immunotherapy may have

higher activity in these two PAM50 subtypes (The Cancer Genome

Atlas, 2012).

Mutational landscape and patient outcomes

Next, we were interested in the association between mutations in

important BC genes and patient outcome under various treatments.

Below we show the results for TP53, PIK3CA, ERBB2, and PTEN

with OS of SCAN-B patients in clinical biomarker and treatment

groups (Figs 5 and EV2), as well as selected pathways (Figs 6 and

EV3). Specific treatments stratified by clinical biomarker and treat-

ment groups are detailed in Table EV4. The web tool SCAN-B Muta-

tionExplorer may be used to query any gene(s) and pathway(s) of

interest.

In line with expectations, TP53 mutation predicted poor survival

in untreated patients (hazard ratio [HR] 2.39, 95% CI [1.5–3.79],

P = 0.00014), patients treated with endocrine- and chemotherapy

(HR: 1.83 [1.09–3.05], P = 0.02), as well as the HoR+/HER2�

biomarker subgroup (HR: 1.43 [1.06–1.94], P = 0.019). After adjust-

ing for important covariates in multivariable (MV) Cox analyses,

TP53 mutations remained a significant stratifier among patients

receiving endocrine- and chemotherapy.

In early-stage breast cancer, PIK3CA mutations have been associ-

ated with slightly better 5-year OS than PIK3CA-wt tumors in

univariable analysis, but not when correcting for clinicopathological

and treatment variables (Zardavas et al, 2018). In our hands, we

saw a similar univariable effect in patients who did not receive

systemic treatment (HR: 0.54 [0.32–0.91], P = 0.018), but not when

adjusting for covariates. Additionally, PIK3CA mutations in

HER2 � any treated patients became significant in multivariable

analysis.

ERBB2 mutations were indicators of poor prognosis in endo-

crine therapy only (HR: 1.85 [1.08–3.18], P = 0.023) and endo-

crine- and chemotherapy-treated (HR: 3.49 [1.4–8.72], P = 0.0042)

patients, as well as in the HoR+/HER2� subgroup (HR: 1.96

[1.14–3.35], P = 0.013). After multivariable adjustment, they

remained a significant predictor in the endocrine-only-treated

patient subgroup.

PTEN mutations alone were associated with poor survival in the

patient group not receiving systemic treatment (HR: 2.56 [1.03–

6.33], P = 0.036), but not in any of the other treatment or clinical

biomarker groups (Fig 5 and EV2). While loss of PTEN protein

expression or non-functional PTEN protein can be caused by SNVs

and indels, it can also be caused by other mechanisms such as large

structural variants (Saal et al, 2008) and promoter methylation

(Zhang et al, 2013) that have not been investigated in this study. To

account for this, we defined a new subgroup PTEN-MutExp, where a

status of “low” identifies cases with either PTEN mutation or gene

expression in the lower quartile within the cohort, and “normal”

otherwise. The PTEN-MutExp low group, incorporating gene expres-

sion, showed improved stratification in the no systemic treatment

group (HR: 1.88 [1.2–2.95], P = 0.0053), and significantly lower OS

in patients receiving only endocrine treatment (HR: 1.63 [1.26–

2.12], P = 0.00021), as well as HoR+/HER2� patients (HR: 1.54

[1.2–1.99], P = 0.00076). Most of the prognostic value is provided

by the gene expression, however mutation data improved stratifi-

cation (Fig EV4). After multivariable adjustment, PTEN mutations

in the no systemic-treated subgroup, as well as the PTEN-MutExp

“low” group in HoR+/HER2� and HoR+/HER2+ patients, remained

significant.

Abstracting from mutations in individual genes, we investigated

the effect of mutated pathways on OS in patient subgroups stratified

by treatment (Fig 6) and clinical subgroup (Fig EV3). Mutated WNT

(Fig 6A, HR: 2.14 [1.18–3.89], P = 0.01), Hedgehog (Fig 6B, HR:

1.68 [1.06–2.68], P = 0.026), and NOTCH2 (Fig 6C, HR: 2.31 [1.27–

4.2], P = 0.0047) pathways, as well as the p53-independent DNA

damage repair pathway (Fig 6D, HR: 2.03 [1.3–3.17], P = 0.0015)

were associated with worse survival in patients not receiving

systemic treatment. Additionally, NOTCH2 signaling (Fig 6C, HR:

1.65 [1.19–2.3], P = 0.0026) was associated with worse OS in

patients receiving only endocrine treatment, and TGFb signaling

(Fig 6E, HR: 1.79 [1.08–2.96], P = 0.021) with worse OS in patients

treated with endocrine- and chemotherapy. Further, WNT signaling

was associated with worse OS in HoR+/HER2+ (HR: 2.57 [1.04–

6.33], P = 0.034) and TNBC patients (HR: 2.5 [1.27–4.91],

P = 0.0061; Fig EV3). In multivariable analysis, WNT pathway

mutations in HoR+/HER2+ and TNBC patients, NOTCH2 pathway

mutations in endocrine-only-treated patients, and TGFb pathway

mutations in endocrine + chemo � any treated patients remained

significant stratifiers.

Given its importance as an emerging biomarker for response to

immune checkpoint therapy (Goodman et al, 2017), we investigated

whether TMB could also provide response information with respect

to conventional treatment regimens (Fig 7). When stratified into

TMB-high and TMB-low by the SCAN-B cohort median TMB per

rnaMB, low TMB was favorable to OS independent of treatment

across the cohort (HR, 1.54 [1.28–1.86], P = 0.0000033), as well as

in patients not systemically treated (HR: 2.53, [1.58–4.05],

P = 0.000066), treated with endocrine therapy only (HR: 1.55 [1.22–
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1.98], P = 0.00036), endocrine � any therapy (HR: 1.4 [1.12–1.74],

P = 0.0028), and chemotherapy � any therapy (HR: 1.66 [1.12–

2.47], P = 0.011). High TMB is typically associated with improved

survival in TNBC, possibly due to increased neoantigen load

enabling a stronger immune response. However, we observed no

such effect in TNBC patients within the SCAN-B cohort (P = 0.34,

Fig EV5). Mutational load was a significant survival stratifier across

the Nottingham Histological Grade (NHG) grading scheme (G1, HR:

0.38 [0.16–0.9], P = 0.022; G2, HR: 1.46 [1.1–1.94], P = 0.0078; G3,

HR: 1.53 [1.13–2.07], P = 0.0055), and within the ER+ (HR: 1.41

[1.15–1.74], P = 0.00097), PgR+ (HR: 1.28 [1.02–1.59], P = 0.031),

HER2� (HR: 1.53 [1.25–1.86], P = 0.000024), and Ki67-high (HR:

1.76 [1.17–2.65], P = 0.0064) patient subgroups (Fig EV5). Interest-

ingly, LumB patients with high TMB showed worse survival (HR:

1.58 [1.13–2.21], P = 0.0064), whereas TMB was not a significant

stratifier for any other molecular subtype (Fig EV5). LumB tumors

were also the only subgroup where TMB remained a significant

stratifier in multivariable analysis.

SCAN-B MutationExplorer

To enable public exploration and re-use of our rich mutational dataset,

we developed the web-based application SCAN-B MutationExplorer

(available at http://oncogenomics.bmc.lu.se/MutationExplorer; Fig 8).

Figure 4. Binary heatmap of mutation status of important breast cancer pathways in 3,217 samples.

Binary heatmap of mutation status of important BC pathways in 3,217 samples. Samples with wild-type (wt) pathway status (defined as all member genes being wt) are
colored blue, those with mutated pathways (at least one member gene mutated) are colored red. Samples and pathways were clustered using Euclidean distance andWard
linkage. Reactome IDs for the pathways can be found in Table EV4.
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1.0
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Time after diagnosis (years)
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0.0
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1.0

wt
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logrank P=0.53

HR, 0.79 (0.37 to 1.66)

MV$ HR, 0.74 (0.3 to 1.79)
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Time after diagnosis (years)

0 1 2 3 4 5 6 7 8 9

0.0
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0 1 2 3 4 5 6 7 8 9

0.0
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mut 223 223 221 213 207 174 123 67 19
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No. at risk
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Time after diagnosis (years)
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0.0

0.2

0.4

0.6

0.8

1.0

wt
mut

logrank P=0.0042

HR, 3.49 (1.4 to 8.72)

MV$ HR, 1.94 (0.69 to 5.48)

No. at risk
wt 890 890 884 866 848 714 487 253 95
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Time after diagnosis (years)
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0.0
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HR, 0.72 (0.29 to 1.76)

MV¤ HR, 0.15 (0.02 to 0.89)
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low 90 89 87 87 86 70 52 31 13
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With this interactive application, a user can filter the 3,217 SCAN-B

samples based on combinations of clinicopathological and molecular

markers (histological type, ER, PgR, HER2, Ki67, NHG, and PAM50

subtype), treatments (endocrine, chemotherapy, HER2 treatment), and

mutations based on mutation type (e.g., nonsense or missense) and

COSMIC occurrence. From the filtered data, the user can create muta-

tional landscape waterfall plots and conduct survival analysis using

KM analysis and log-rank tests based on mutations in single genes,

pathways as defined in the Reactome database or custom, as well as

TMB, either using the absolute number of mutations, or mutations per

expressed MB of genome, using a user-defined threshold. Mutations

can also be plotted from a protein point of view using user-defined

occurrence cutoffs for showing and annotating mutations. Plots in

PDF format as well as the mutation set underlying the currently active

plot in tab-separated values (TSV) format can be downloaded for

further analysis. The application is based on R Shiny and the source

code is available under the BSD 2-clause open source license at http://

github.com/cbrueffer/MutationExplorer.

Discussion

Tumor somatic mutation status is a crucial piece of information for

the future of precision medicine to guide treatment selection and

give insight into tumor evolution. Analysis of DNA is the gold stan-

dard for detecting SNVs, indels, and larger structural variants.

However, many interesting tumor properties are only accessible on

the transcriptome level and cannot be interrogated using DNA; most

prominently gene expression at the isoform and gene level, as well

as de novo transcripts originating from gene fusions. The SCAN-B

initiative (Saal et al, 2015) decided early on to perform RNA-seq on

the tumors of all enrolled patients. Based on this, we have devel-

oped, refined, and benchmarked gene expression signatures (Bruef-

fer et al, 2018; Dihge et al, 2019; Lundgren et al, 2019; Søkilde

et al, 2019; Vallon-Christersson et al, 2019), and detected recurring

fusions affecting miRNAs (Persson et al, 2017). Herein, we

described the development of a pipeline for detection of somatic

SNVs and indels based on RNA-seq, adding another layer to infor-

mation that can now be obtained from a single sequencing analysis

within 1 week of surgery (Saal et al, 2015).

To date, several approaches for RNA-seq mutation calling,

mostly in combination with matched DNA, have been developed

(Horvath et al, 2013; Piskol et al, 2013; Radenbaugh et al, 2014;

Wilkerson et al, 2014; Guo et al, 2017; Siegel et al, 2018); however,

calling from RNA-seq alone, particularly from tumor-only samples,

is still a challenge. With the advance of targeted and whole exome

sequencing into the clinics, and efforts such as TCGA, MSK-Impact,

and others, variant calling from DNA-seq has improved in recent

years, although discordance between detection pipelines still exists

(Hofmann et al, 2017; Ellrott et al, 2018; Shi et al, 2018). Part of

this improvement is the availability of validation resources such as

the Genome in a Bottle datasets (Zook et al, 2016). With clinical

interest in RNA-seq only recently picking up, e.g., as shown by two

recent review articles (Byron et al, 2016; Cie�slik & Chinnaiyan,

2018), comparably well-characterized RNA-seq datasets for valida-

tion do not yet exist to our knowledge.

The strategy for mutation calling herein was to perform initial

variant calling with low requirements on coverage and base quality

to increase sensitivity while allowing false positives. To increase

specificity, we then applied stringent post hoc filtering that can be

easily amended as further annotation data become available, or as

existing sources receive updates. The advantage of this two-step

strategy is the possibility to accommodate different research and

clinical questions in the future that may have different filtering

needs.

Two major contributors of false-positive mutation calls are germ-

line SNPs/indels and RNA editing. Common approaches for dealing

with germline events are calling mutations from matched tumor/

normal samples, or filtering SNPs present in databases such as

dbSNP. The latter is problematic, since some dbSNP entries with a

low variant allele frequency (VAF) may be legitimate somatic muta-

tions. On the other hand, filtering on the dbSNP “common” flag (at

least 1% VAF in any of the 1,000 genomes populations) can lead to

many low-VAF germline SNPs remaining. We tried to address this

issue by combining the dbSNP and COSMIC databases, and only fil-

tering variants present in dbSNP if they were not present in

COSMIC. We filtered out known RNA editing sites using publicly

available databases; however, there is still an overabundance of

T>C substitutions in our RNA-based calls compared to DNA-based

calls, suggesting many unknown editing sites and insufficient filter-

ing (Fig 2B). Approaches have been developed to identify RNA edit-

ing sites using DNA/RNA-trained machine learning models (Sun

et al, 2016) or RNA-seq data alone (Ramaswami et al, 2013), which

may provide ways to improve filtering in the future by creating a

SCAN-B RNA editing database.

The overall landscape of somatic mutations in our study looked

similar to that reported previously from DNA (The Cancer Genome

Atlas, 2012; Pereira et al, 2016), with the two most frequently

mutated genes PIK3CA (34% of samples) and TP53 (23%), followed

by other known drivers MAP3K1 (7%), CDH1 (7%), GATA3 (7%),

and AKT1 (5%) (Fig 2). While mutation frequencies in oncogenes

such as PIK3CA are generally in line with previous reports, frequen-

cies in tumor suppressor genes were generally lower in RNA-seq

than would be expected from our study population. For example,

◀ Figure 5. Impact of gene mutations on overall survival across treatment groups.

A–E Overall survival (OS) of patients with tumors containing mutations in the genes (A) TP53, (B) PIK3CA, (C) ERBB2, and (D) PTEN. (E) OS by PTEN-MutExp genotype
(“low” defined as PTEN mutation or PTEN expression in the lower quartile across the cohort, “normal” otherwise) stratified by groups receiving no systemic
treatment (n = 336), endocrine therapy only (Endo only; n = 1,579), endocrine- and chemotherapy (Endo + Chemo � any; n = 914), as well as HER2 treatment
with any other treatment or none (HER2 � any; n = 348). Specific treatments in these groups are detailed in Table EV5. In each Kaplan–Meier plot, wild-type (wt)
and normal cases are plotted in blue, mutated (mut) and low cases are plotted in red, the log-rank P value is given, and the hazard ratio (HR) for mutation/low is
given with a 95% CI and after univariable and multivariable (MV) Cox regression adjustment. Covariables included in the MV analysis were age at diagnosis, lymph
node status, tumor size, and the variables denoted by the following symbols: ¶, ER, PgR, HER2, and NHG; ¤, ER, PgR, and NHG; $, HER2 and NHG. ER, estrogen
receptor; HER2, human epidermal growth factor receptor 2; NHG, Nottingham histological grade; PgR, progesterone receptor.
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No Systemic Treatment Endo only Endo+Chemo±any HER2±any

Time after diagnosis (years)
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0.0

0.2

0.4

0.6

0.8

1.0

wt
mut

logrank P=0.01

HR, 2.14 (1.18 to 3.89)

MV¶ HR, 1.58 (0.7 to 3.56)

No. at risk
wt 300 293 283 276 261 223 146 91 36
mut 36 35 29 26 25 17 11 8 2

Time after diagnosis (years)

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

wt
mut

logrank P=0.026

HR, 1.68 (1.06 to 2.68)

MV¶ HR, 1.05 (0.57 to 1.92)

No. at risk
wt 244 241 230 225 218 181 124 75 29
mut 92 87 82 77 68 59 33 24 9

Time after diagnosis (years)

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

wt
mut

logrank P=0.0047

HR, 2.31 (1.27 to 4.2)

MV¶ HR, 2.06 (0.94 to 4.52)

No. at risk
wt 304 297 284 275 264 223 145 93 36
mut 32 31 28 27 22 17 12 6 2

Time after diagnosis (years)

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

wt
mut

logrank P=0.0015

HR, 2.03 (1.3 to 3.17)

MV¶ HR, 0.9 (0.45 to 1.79)

No. at risk
wt 221 218 211 206 196 167 110 64 26
mut 115 110 101 96 90 73 47 35 12

Time after diagnosis (years)

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

wt
mut

logrank P=0.16

HR, 1.4 (0.87 to 2.24)

MV¶ HR, 1.21 (0.65 to 2.25)

No. at risk
wt 243 237 227 222 211 178 117 72 30
mut 93 91 85 80 75 62 40 27 8

Time after diagnosis (years)

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

wt
mut

logrank P=0.72

HR, 0.92 (0.6 to 1.42)

MV$ HR, 0.88 (0.56 to 1.38)

No. at risk
wt 1,429 1,418 1,383 1,345 1,302 1,112 850 537 213
mut 150 149 147 146 141 116 90 54 20

Time after diagnosis (years)

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

wt
mut

logrank P=0.21

HR, 1.18 (0.91 to 1.53)

MV$ HR, 1.17 (0.88 to 1.54)

No. at risk
wt 1,117 1,109 1,086 1,060 1,023 879 664 413 164
mut 462 458 444 431 420 349 276 178 69

Time after diagnosis (years)

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

wt
mut

logrank P=0.0026

HR, 1.65 (1.19 to 2.3)

MV$ HR, 1.49 (1.05 to 2.12)

No. at risk
wt 1,406 1,397 1,367 1,332 1,288 1,107 849 526 205
mut 173 170 163 159 155 121 91 65 28

Time after diagnosis (years)

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

wt
mut

logrank P=0.05

HR, 1.31 (1 to 1.73)

MV$ HR, 1.02 (0.76 to 1.38)

No. at risk
wt 1,223 1,215 1,187 1,159 1,122 952 732 453 172
mut 356 352 343 332 321 276 208 138 61

Time after diagnosis (years)

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

wt
mut

logrank P=0.76

HR, 0.96 (0.72 to 1.27)

MV$ HR, 0.87 (0.64 to 1.17)

No. at risk
wt 1,170 1,160 1,131 1,101 1,062 910 696 440 174
mut 409 407 399 390 381 318 244 151 59

Time after diagnosis (years)

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

wt
mut

logrank P=0.49

HR, 1.32 (0.6 to 2.89)

MV$ HR, 1.17 (0.46 to 2.94)

No. at risk
wt 831 831 826 808 792 671 453 240 90
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Time after diagnosis (years)

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

wt
mut

logrank P=0.49

HR, 1.2 (0.71 to 2.01)

MV$ HR, 1.29 (0.74 to 2.25)

No. at risk
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Time after diagnosis (years)
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0.0

0.2

0.4

0.6

0.8

1.0

wt
mut

logrank P=0.69

HR, 1.16 (0.55 to 2.44)
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No. at risk
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Time after diagnosis (years)
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0.0
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0.4

0.6

0.8

1.0

wt
mut

logrank P=0.13
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mut
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mut
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MV¤ HR, 0.66 (0.14 to 3.1)
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mut 42 42 41 41 40 32 25 9 2
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No. at risk
wt 243 242 240 232 228 188 137 80 39
mut 105 105 101 100 99 87 61 37 11

A

B

C

D

E

Figure 6.
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our TP53 RNA-seq somatic mutation frequency of 23% (reference:

36%, cBioPortal.org) suggests we may be missing a significant frac-

tion of TP53 mutations present in DNA. Similar trends can be seen

in PTEN (observed: 3.6%, reference: 4.6%), BRCA1 (observed:

0.2%, reference: 1.6%), and BRCA2 (observed: 0.03%, reference:

2.2%). This is not surprising since only mutations in sufficiently

highly expressed genomic regions can be detected by RNA-seq and

loss of expression of tumor suppressor genes is a hallmark of onco-

genesis. Furthermore, truncated mRNAs caused by nonsense muta-

tions are typically removed by nonsense-mediated decay before they

can be captured for sequencing. Thus, our findings do not reflect

the true mutational spectrum of tumor suppressor genes. Despite

these limitations, we could identify a putative mutation in at least

one gene targeted by an existing drug in the majority of patient

tumors (86.8%), demonstrating that it should be feasible to match

most patients to targeted treatments using RNA-seq analyses.

One of the major oncogenic pathways in breast cancer is PI3K/

AKT/mTOR, which is frequently upregulated by activating muta-

tions in PIK3CA, MAP3K1, and AKT1, or inactivating mutations in

PTEN, leading to increased growth signaling. This pathway is being

targeted by multiple drugs, such as alpelisib (Novartis) (Juric et al,

2018) in HoR+/HER2� PIK3CA mutant tumors in combination with

fulvestrant (André et al, 2019), and the AKT1 inhibitor AZD5363

(AstraZeneca) (Hyman et al, 2017). The strength of RNA-seq in

mutation profiling lies within oncogenes, and we demonstrate that

alterations in drug targets such as PIK3CA and AKT, as well as genes

potentially modulating drug efficacy, such as MAP3K1, can be

detected. Eventually, RNA-seq may be used as companion diagnos-

tic for oncogene-targeting drugs such as these. While we also

detected mutations in PTEN, these only showed significant prognos-

tic power when combined with low gene expression in the PTEN-

MutExp low group, suggesting either SNVs and indels are a minor

mechanism of PTEN loss in early BC compared to structural rear-

rangements (Saal et al, 2008), and other means of PTEN expression

loss. Taken together, we detected mutations in multiple PI3K/AKT/

mTOR signaling nodes that lead to increased pathway activation

and have emerging clinical utility in luminal BC, e.g., through

combination with EGFR inhibition as demonstrated in basal-like BC

(She et al, 2016).

Loss of p53 activity, either through LoF mutations, dominant-

negative mutations, or low expression, is a major contributor to

tumorigenesis. While RNA-seq generally underdetects TP53 muta-

tions, the identified hot spot residues remain the same as reported

in the IARC TP53 database. Clinically these mutations could already

be actionable, as TP53 mutations are a sign of DNA damage repair

deficiency and may be prognostic for sensitivity to PARP inhibition

(Holstege et al, 2010; Severson et al, 2015). Patients with TP53-

mutant tumors had significantly worse OS in the patient subgroups

treated only with endocrine therapy, or no systemic treatment at all

(Fig 5), and HoR+/HER2� patients (Fig EV2), suggesting that TP53

mutations identify a subgroup of patients that are spared

chemotherapy or systemic therapy overall by appearing low risk,

but are in fact high-risk patients that should be treated accordingly.

Endocrine treatment is the most important first-line treatment in

BC. Resistance to these treatments leads to disease progression and

recurrence and has been studied extensively. Drivers for endocrine

resistance include activating mutations in ESR1 and ERBB2 which

have been studied mostly in the metastatic setting. We show that

mutations in these genes already occur in early, untreated BC, with

177 (5.5%) of patients in our population-based cohort having a

mutation in either gene. We further demonstrate that patients with

these mutations that received only endocrine treatment have infe-

rior OS, suggesting drug resistance. Detecting these patients early

could open up additional treatment options that have shown effi-

cacy in the metastatic setting, such as selective estrogen receptor

degraders (SERDs) in ESR1-mutated tumors, or TKIs such as nera-

tinib in ERBB2-mutated BC.

The role of alternative splicing in tumorigenesis has recently

garnered increased attention, and the extend of isoform switching in

several cancer types, including BC, has been characterized (Vitting-

Seerup & Sandelin, 2017). Mutations such as the SF3B1 K700E hot

spot mutation deregulate splicing and result in differential splicing

patterns in BC (Maguire et al, 2015). The clinical effect of these

mutations is unclear, and we did not detect significant survival strat-

ification in important biomarker or treatment groups. However, the

fact that mutations in splicing-related genes can be detected from

RNA-seq make this method attractive for research and possible clini-

cal use, as they can be correlated with expression originating from

the same sequencing experiment.

Individual mutations, particularly in infrequently mutated genes,

affect a smaller number of molecular pathways to achieve the classi-

cal hallmarks of cancer such as sustained proliferative signaling.

Mutation status of several individual pathways was associated with

reduced OS in different treatment subgroups. In patients not system-

ically treated or only treated with endocrine therapy WNT,

NOTCH2, p53-independent DNA repair pathway mutation status,

and Hedgehog signaling mutation status may identify patients diag-

nosed as low risk who may benefit from more adjuvant treatment

(Fig 6). While these stratification profiles were visible in treatment

subgroups, they mostly did not yield significant results in clinical

biomarker subgroups (Fig EV3). This may indicate that current risk

stratification in histopathological biomarker subgroups is inade-

quate and should take molecular information into account—some-

thing we and others have also shown on the level of gene

◀ Figure 6. Impact of pathway mutations on overall survival across treatment groups.

A–E Overall survival of patients with tumors containing mutations in pathways (A) WNT signaling, (B) Hedgehog signaling, (C) NOTCH2 signaling, (D) p53 independent
DNA damage repair, (E) TGFb signaling, stratified by groups receiving no systemic treatment (n = 336), endocrine therapy only (Endo only; n = 1,579), endocrine-
and chemotherapy (Endo + Chemo � any; n = 914), as well as HER2 treatment with any other treatment or none (HER2 � any; n = 348). Specific treatments in
these groups are detailed in Table EV4. In each Kaplan–Meier plot, wild-type (wt) cases are plotted in blue, mutated (mut) cases are plotted in red, the log-rank P
value is given, and the hazard ratio (HR) for mutation is given with a 95% CI and after univariable and multivariable (MV) Cox regression adjustment. Covariables
included in the MV analysis were age at diagnosis, lymph node status, tumor size, and the variables denoted by the following symbols: ¶, ER, PgR, HER2, and NHG;
¤, ER, PgR, and NHG; $, HER2 and NHG. See Table EV3 for Reactome pathway IDs. ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; NHG,
Nottingham histological grade; PgR, progesterone receptor.
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expression (Brueffer et al, 2018). Identifying the mutation status of

pathways and pathway clusters may aid in future clinical trials and

treatment, e.g., by aiding selection of treatments that exploit

synthetic lethality (Weidle et al, 2011).
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High TMB has been identified as a predictive biomarker for

response to immune checkpoint therapy in diverse solid tumors

(Goodman et al, 2017; Lauss et al, 2017; Hellmann et al, 2018;

Thomas et al, 2018; Zacharakis et al, 2018). Using RNA-seq to

assess mutational burden may be a useful capability for clinical

trials and eventual clinical implementation in BC (Schmid et al,

2018). Questions remain however, as TMB is influenced by many

biological and technical factors such as ploidy, tumor heterogeneity

and clonality (Conroy et al, 2019), sample tumor cell content,

sequencing depth, and variant filtering. Which cutoff to use for

stratifying patients into TMB groups is also still emerging (Panda

et al, 2017; Schmid et al, 2018), and specifically has not been

addressed to our knowledge in RNA-seq data. Due to this, and to

account for different expression profiles per tumor, we decided to

use the median number of non-synonymous mutations per MB of

transcriptome across the cohort to stratify patients into TMB-high

and TMB-low groups and use it to study OS in different

conventional treatment and biomarker subgroups. In several of

these groups, high TMB was significantly associated with worse

survival, confirming previous reports (Xu et al, 2018), however

interestingly not in TNBC. These tumors typically show higher TMB

than other clinical BC subtypes, likely because many of them have

impaired DNA damage repair mechanisms. Shah and colleagues

(Shah et al, 2012) showed that only ~ 36% of mutations in TNBCs

are expressed; we speculate that due to this, we may underestimate

TMB in several of our TMB-low patients. Additionally, RNA-seq

underdetects truncating mutations such as frameshift indels that are

a major source of neoantigens. Immune checkpoint therapy is a

particularly attractive treatment approach in patients with TNBC

and basal-like tumors for which currently no targeted therapy exists.

For these patients, determination of TMB using DNA-seq may be a

better option than relying on RNA-seq.

Large-scale projects such as TCGA and SCAN-B generate vast

amounts of data, but bioinformatics skills are required to make

◀ Figure 7. Impact of tumor mutational burden on overall survival across treatment groups.

Overall survival stratified by tumor mutational burden (TMB) across treatment groups in 3,217 patients. Samples were classified as TMB-high if the amount of non-
synonymous mutations per expressed MB (rnaMB) was ≥ the median number of non-synonymous mutations per rnaMB across the whole SCAN-B cohort (0.082 mutations
per rnaMB) and TMB-low otherwise. In each Kaplan–Meier plot, TMB-low cases are plotted in blue, TMB-high cases are plotted in red, the log-rank P value is given, and the
hazard ratio (HR) for TMB high is given with a 95% CI and after univariable and multivariable (MV) Cox regression adjustment. Covariables included in the MV analysis were
age at diagnosis, lymph node status, tumor size, and the variables denoted by the following symbols: ¶, ER, PgR, HER2, and NHG; ¤, ER, PgR, and NHG; $, HER2 and NHG; #,
NHG. ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; HoR, hormone receptor; NHG, Nottingham histological grade; PgR, progesterone receptor;
TMB, tumor mutational burden; TNBC, triple-negative breast cancer.

Figure 8. The SCAN-B MutationExplorer.

The SCAN-BMutationExplorer web-based application for interactive exploration of mutations, and their association with clinicopathological subgroups and overall survival.
As an example, generation of the image used in Fig 2 is shown.
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efficient use of them. Web portals such as cBioPortal (Cerami

et al, 2012) have emerged to make these huge datasets explorable

without specialized skills. In this spirit, we developed the open

source web application SCAN-B MutationExplorer to make our

mutation dataset easily accessible for other researchers. We hope

that SCAN-B MutationExplorer will aid knowledge generation and

the development of better BC biomarkers in the future. The open

source nature of the portal allows developers to adopt the code

for their own purposes, and we welcome contributions of any

kind.

Limitations

The mutation calling we have performed herein tries to achieve

sensitive variant calling by using lenient parameters, and heavy

filtering of the resulting variants based on stringent quality

factors, annotations, and curated databases. This approach has

several limitations. While our 275 patient cohort for filter devel-

opment had matched tumor and normal DNA sequencing data,

the SCAN-B cohort only consisted of tumor RNA-seq data. This

made accounting for PCR and sequencing artifacts more challeng-

ing. Further while many germline events can be filtered by

comparing to general databases such as dbSNP, and population-

specific ones such as SweGen, these databases are incomplete,

and it is thus not possible to remove all germline events this

way. As these databases improve, our filters can be upgraded to

increase performance. Herein, we also applied filters developed in

a matched DNA/RNA set of targeted capture sequencing of 1,697

genes and 1,047 miRNAs (275 sample ABiM cohort) to whole

mRNA-seq (3,217 sample SCAN-B cohort). This assumes the tran-

scriptional characteristics of the captured regions are representa-

tive for the whole mRNA.

Conclusion

In summary, we present a tumor-only RNA-seq variant calling strat-

egy and resulting mutation dataset from a large population-based

early breast cancer cohort. Although variant calling from RNA-seq

data is limited to expressed regions of the genome, mutations in

important BC genes such as PIK3CA, TP53, and ERBB2, as well as

pathways can be reliably detected, which may be used to inform

clinical trials and eventual reporting to the clinic. Mutations in

TP53, PIK3CA, ERBB2, and PTEN provided prognostic information

in several treatment and biomarker patient subgroups, demonstrat-

ing the utility of the dataset for research. We make this dataset

available for analysis and download via the open source web appli-

cation SCAN-B MutationExplorer, accessible at http://oncogenomic

s.bmc.lu.se/MutationExplorer.

Materials and Methods

Patients

The study was approved by the Regional Ethics Review Board of

Lund at Lund University (diary numbers 2007/155, 2009/658, 2009/

659, 2010/383, 2012/58, 2013/459). We analyzed data from two

previously described cohorts. For 273 patients, including two

patients with bilateral disease (thus 275 tumors), enrolled in the All

Breast Cancer in Malmö (ABiM) study from 2007 to 2009, matched

snap-frozen primary breast tumor tissue and blood samples were

collected as previously described (Winter et al, 2016). A cohort of

3,273 SCAN-B primary breast tumors described previously (Brueffer

et al, 2018) was reduced to 3,217 samples following additional qual-

ity controls. All patients provided informed consent, and the study

conforms to the WMA Declaration of Helsinki and the Department

of Health and Human Services Belmont Report. Tissue collection,

preservation in RNAlater, sequencing, expression estimation, and

molecular subtyping using the PAM50 gene list were performed as

previously reported (Saal et al, 2015; Brueffer et al, 2018). Clinical

records were retrieved from the Swedish National Cancer Registry

(NKBC). Estrogen receptor (ER) and progesterone receptor (PgR)

status was categorized using an immunohistochemical staining

cutoff of 1%. Patients in the SCAN-B cohort had median

74.5 months follow-up, and patient demographics for both cohorts

are detailed in Table 3.

Library preparation and sequencing

For the 275 sample ABiM cohort, tumor and normal DNA was

sequenced using a custom targeted capture panel of 1,697 genes and

1,047 miRNAs as described (Winter et al, 2016). For the same

tumors, RNA-seq was performed as described (Brueffer et al, 2018)

(a subset of the 405 sample cohort therein). In short, strand-specific

dUTP libraries were prepared and sequenced on an Illumina HiSeq

2000 sequencer to an average of 50 million 101 bp reads per sample

(Parkhomchuk et al, 2009; Saal et al, 2015).

For the 3,217 sample SCAN-B cohort, RNA-seq data were gener-

ated as previously described (Brueffer et al, 2018). In short, strand-

specific dUTP mRNA-seq libraries were prepared (Parkhomchuk

et al, 2009; Saal et al, 2015), and an average 38 million 75 bp reads

were sequenced on an Illumina HiSeq 2000 or NextSeq 500 instru-

ment (Table EV1).

Sequence data processing

For tumor and normal DNA, reads were aligned to the GRCh37

reference genome using Novoalign 2.07.18 (Novocraft Technologies,

Malaysia). Using a modified version of the variant workflow of the

bcbio-nextgen NGS framework (https://github.com/bcbio/bcbio-ne

xtgen, modified version https://github.com/cbrueffer/bcbio-nextge

n/tree/v1.0.2-scanb-calling) utilizing Bioconda for software

management (Grüning et al, 2018), duplicate reads were marked

using biobambam v2.0.62 (Tischler & Leonard, 2014) and variants

were called from paired tumor/normal samples using VarDict-Java

1.5.0 (Lai et al, 2016) (with default options except -f 0.02 -N

${SAMPLE} -b ${BAM_FILE} -c 1 -S 2 -E 3 -g 4 -Q 10 -r 2 -q 20),

which internally performs local realignment around indels. Variant

coordinates were converted to the GRCh38 reference genome using

CrossMap 2.5 (Zhao et al, 2014). Raw RNA-seq reads were trimmed

and filtered as described previously (Brueffer et al, 2018) and then

processed using the modified bcbio-nextgen 1.0.2 variant workflow.

Reads were aligned to a version of the GRCh38.p8 reference genome

that included alternative sequences and decoys and was patched

with dbSNP Build 147 common SNPs, and the GENCODE 25 tran-

scriptome model using HISAT2 2.0.5 (Kim et al, 2015) (with default
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Table 3. Patient demographics and clinicopathological variables in the ABiM and SCAN-B cohorts.

ABiM cohort (275 Samples) SCAN-B cohort (3,217 Samples)

Patient count Percent (%) Patient count Percent (%)

Age (years)

<50 64 23.3 597 18.6

≥50 211 76.7 2,620 81.4

Tumor size (mm)

≤20 145 52.7 2,080 64.7

21–50 120 43.6 1,018 31.6

>50 6 2.2 77 2.4

Missing 3 1.1 42 1.3

Positive lymph nodes (number)

0 151 54.9 1,974 61.4

1–3 60 21.8 851 26.5

≥4 44 16.0 290 9.0

Missing 20 7.3 102 3.2

Histological type

Ductal 215 78.2 2,602 80.9

Lobular 23 8.4 386 12.0

Other 28 10.2 229 7.1

Missing 9 3.3 0 0.0

ER status (1% cutoff)

Positive 223 81.1 2,786 86.6

Negative 48 17.5 233 7.2

Missing 4 1.5 198 6.2

PgR status (1% cutoff)

Positive 204 74.2 2,509 78.0

Negative 64 23.3 379 11.8

Missing 7 2.5 329 10.2

HER2 status

Positive 44 16.0 414 12.9

Negative 197 71.6 2,651 82.4

Missing 34 12.4 152 4.7

Nottingham histological grade

Grade 1 31 11.3 483 15.0

Grade 2 97 35.3 1,509 46.9

Grade 3 146 53.1 1,161 36.1

Missing 1 0.4 64 2.0

Ki67 status

High 109 39.6 887 27.6

Low 153 55.6 627 19.5

Missing 13 4.7 1,703 52.9

Molecular subtype

Luminal A 109 39.6 1,545 48.0

Luminal B 83 30.2 899 27.9

HER2-enriched 30 10.9 279 8.7

Basal-like 35 12.7 318 9.9
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options except --rna-strandness RF --rg-id ${ID_NAME} --rg PL:illu-

mina --rg PU:${UNIT} --rg SM:${SAMPLE}). BAM index files were

generated using Sambamba 0.6.6 (Faust & Hall, 2014), and duplicate

reads were marked using SAMBLASTER 0.1.24 (Tarasov et al,

2015). Variants were called using VarDict-Java 1.5.0 with default

options except -f 0.02 -N ${SAMPLE} -b ${BAM_FILE} -c 1 -S 2 -E 3

-g 4 -Q 10 -r 2 -q 20 callable_bed, where callable_bed was a sample-

specific BED file containing all regions of depth ≥ 4.

All variants were annotated using a Snakemake (Köster &

Rahmann, 2012) workflow around vcfanno 0.3.1 (Pedersen et al,

2016) and the data sources dbSNP v151 (Sherry et al, 2001),

Genome Aggregation Database (gnomAD) (Karczewski et al, 2020),

Catalogue of Somatic Mutations in Cancer (COSMIC) v87 (Forbes

et al, 2015; Sondka et al, 2018), CIViC (Griffith et al, 2017), MyCan-

cerGenome (release March 2016, http://www.mycancergenome.

org), SweGen version 20171025 (Ameur et al, 2017), the Danish

Genome Project population reference (Maretty et al, 2017), RNA

editing databases (Kiran & Baranov, 2010; Ramaswami & Li, 2014;

Sun et al, 2016; Picardi et al, 2017), UCSC low complexity regions,

IntOGen breast cancer driver gene status (Gonzalez-Perez et al,

2013) (accessed 2018-08-02), and the drug gene interaction database

(DGIdb) v3.0.2 (Cotto et al, 2017). We used SnpEff v4.3.1t (with

default parameters except hg38 -t -canon) (Cingolani et al, 2012b)

to predict functional variant impact on canonical transcripts as

defined by SnpEff.

To filter out recurrent artifacts introduced during library prepara-

tion or sequencing, we constructed a panel of “normal” tissues

consisting of all variants enumerated from RNA-seq analysis of adja-

cent non-tumoral breast tissues sampled from 10 SCAN-B patients.

Gene expression data in fragments per kilobase of transcript per

million mapped reads (FPKM) for the ABiM and SCAN-B cohorts

were generated as previously reported and is available from the

NCBI Gene Expression Omnibus, accession GSE81540 (Brueffer

et al, 2018).

Variant filtering

The strategy we applied for developing DNA-seq-informed filters is

outlined in Fig 1. Due to the lenient settings used for sensitive initial

variant calling, we developed and applied rigid filters to reduce

false-positive calls resulting from either sequencing or PCR artifacts,

RNA editing, or germline variants. To this end, variants called from

275 matched tumor/normal targeted capture DNA datasets were fil-

tered, among other parameters, for low complexity regions, SNP

status (dbSNP “common”, SweGen and COSMIC SNPs, high

gnomAD allele frequency), allele frequency ≥ 0.05, depth ≥ 8,

homopolymer environments, and RNA editing sites. Using the

resulting DNA variants as reference, we developed filters for the 275

sample RNA-seq variants by permuting values of the sequencing,

variant calling, and annotation variables, and for each permutation

calculating the concordance to the DNA mutations. Following these

“negative” filters, we applied a range of “positive” filters to rescue

filtered variants, e.g., to retain a variant if it is present in the curated

MyCancerGenome database of clinically important mutations.

Finally, we selected the combination of “negative” and “positive”

filter settings with the best balance of sensitivity and specificity.

Using SnpSift (Cingolani et al, 2012a), we applied the filters to

RNA-seq mutation calls from the 3,217 patient cohort. A complete

list of final filter variables and values for both the tumor/normal

DNA variant calls, as well as the RNA-seq variant calls can be found

in Table EV6.

Data analysis

All analyses were performed using R 3.5.1. Waterfall, heatmap,

and lollipop plots were made using the GenVisR 1.14.2 (Skidmore

et al, 2016), pheatmap 1.0.12, and RTrackLayer 1.42.1 packages.

Substitution signatures were analyzed using the MutationalPat-

terns 1.8.0 package (Blokzijl et al, 2018). Survival analysis was

conducted using OS as endpoint. Overall survival was analyzed

using the Kaplan–Meier (KM) method, two-sided log-rank tests,

and Cox models, all implemented in the survival 2.44-1.1 pack-

age. Multivariable Cox models included the variables age at diag-

nosis, lymph node status, and tumor size as covariables, as well

as ER, PgR, HER2, and NHG as relevant. All models were

checked for proportional hazards using Grambsch and Therneau’s

test for non-proportionality and Schoenfeld residuals (Grambsch

and Therneau, 1994). Associations were tested using one-tailed

and two-tailed Fisher’s exact test. P-values < 0.05 were

considered significant. The web application SCAN-B Muta-

tionExplorer was written in R using the Shiny, GenVisR, and

SurvMiner packages.

Data availability

The datasets produced and used in this study are available in the

following databases:

• Clinical data and mutation calls: http://oncogenomics.bmc.lu.se/

MutationExplorer

• Gene expression data: NCBI Gene Expression Omnibus GSE81540

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81540;

Brueffer et al, 2018).

Raw patient sequencing data cannot be provided due to Swedish

data protection laws.

Expanded View for this article is available online.

Table 3 (continued)

ABiM cohort (275 Samples) SCAN-B cohort (3,217 Samples)

Patient count Percent (%) Patient count Percent (%)

Normal-like 13 4.7 112 3.5

Unclassified 5 1.8 64 2.0
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