

Data-driven stability analysis and enforcement for Loewner Data-Driven Control

Kergus, Pauline

2020

Document Version: Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA): Kergus, P. (2020). Data-driven stability analysis and enforcement for Loewner Data-Driven Control. Poster session presented at IPAM Workshop on "Intersections between Learning, Control and Optimization", Los Angeles, California, United States.

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study

- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

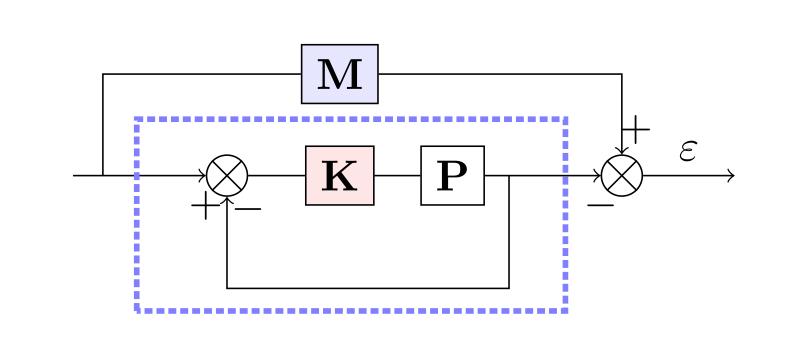
LUND UNIVERSITY

PO Box 117 221 00 Lund +46 46-222 00 00

Data-driven stability analysis and enforcement for Loewner Data-Driven Control

PAULINE KERGUS LUND UNIVERSITY DEPARTMENT OF AUTOMATIC CONTROL

LOEWNER DATA-DRIVEN CONTROL: GENERAL FORMULATION



• Frequency-domain data from the

plant **P**: $\{\omega_i, \Phi_i\}, i = 1 \dots N$.

Reference model M.

Input data

Proposed methodology

1. Computation of the ideal controller **K*** frequency-response:

$$\mathbf{K}^{\star}(\imath\omega_{i}) = \Phi_{i}^{-1}\mathbf{M}(\imath\omega_{i})(I - \mathbf{M}(\imath\omega_{i}))^{-1}.$$

2. Interpolation and reduction of the ideal controller **K*** through the Loewner framework.

A simple example

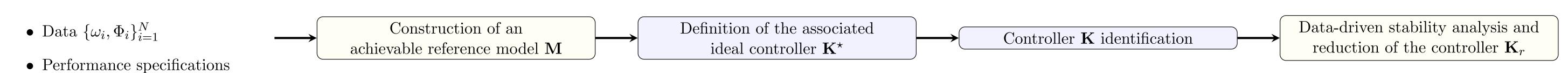
$$\mathbf{P}(s) = \frac{0.03616(s - 140.5)(s - 40)^3}{(s^2 + 1.071s + 157.9)(s^2 + 3.172s + 1936)} \quad \mathbf{M}(s) = \frac{1}{0.01s^2 + 0.25s + 1}$$

$$\mathbf{K}^{\star}(s) = k \frac{(s^2 + 1.071s + 157.9)(s^2 + 3.172s + 1936)}{s(s+10)(s-140.5)(s-40)^3}$$

 \rightarrow The reference model should be achievable by the plant.

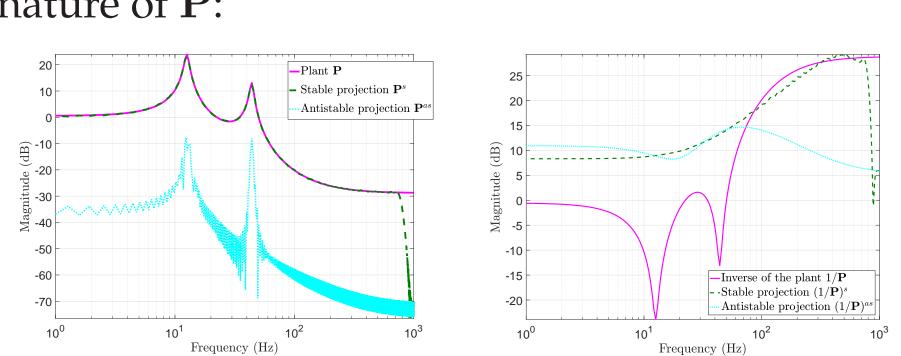
$$\begin{cases} \mathbf{y}_{z_i}^T \mathbf{P}(z_i) = 0 \\ \mathbf{y}_{p_i} \mathbf{P}(p_j) = \infty \end{cases} \Rightarrow \begin{cases} \mathbf{y}_{z_i}^T \mathbf{M}(z_i) = 0 \\ \mathbf{M}(p_j) \mathbf{y}_{p_i} = \mathbf{y}_{p_i} \end{cases}.$$

 \rightarrow A data-driven closed-loop stability analysis is needed.

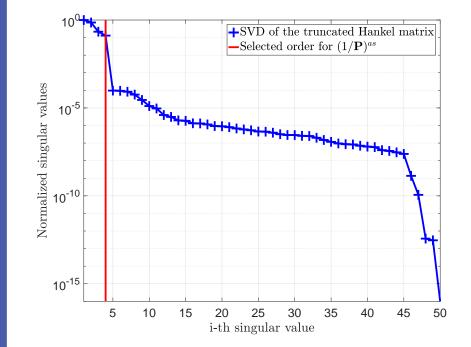


CHOICE OF THE REFERENCE MODEL

1) Projection of the available data to determine the nature of **P**:

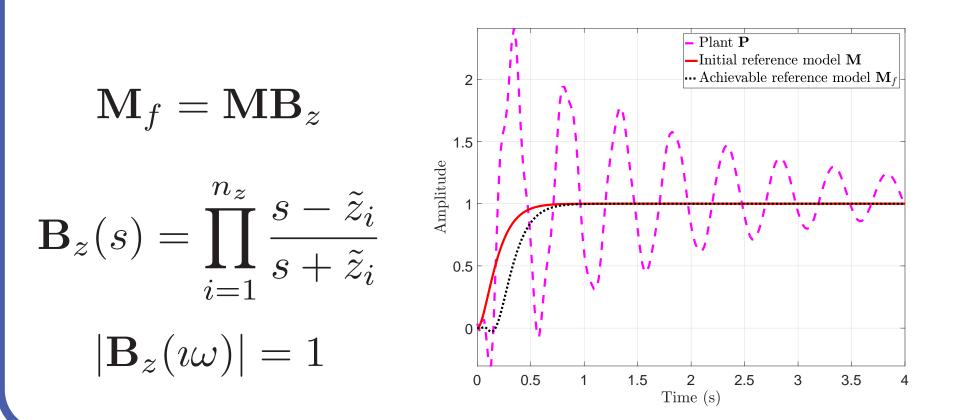


- \rightarrow The system is stable but Non-Minimum Phase (NMP).
- 2) Principal Hankel Components technique to determine the number of NMP zeros and obtain an estimate of the instabilities.



True z_i	Estimated \tilde{z}_i
140.5	140.58
40	41.3+2 <i>i</i>
40	41.3+2 <i>i</i>
40	37.4

3) Construction of an achievable reference model \mathbf{M}_f .



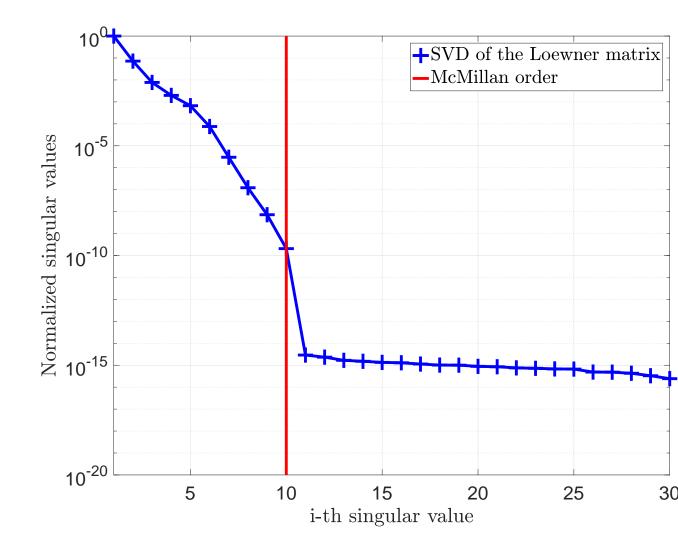
CONTROLLER IDENTIFICATION

The objective is to obtain a rational model $\mathbf{K} = (E, A, B, C, D)$ such that:

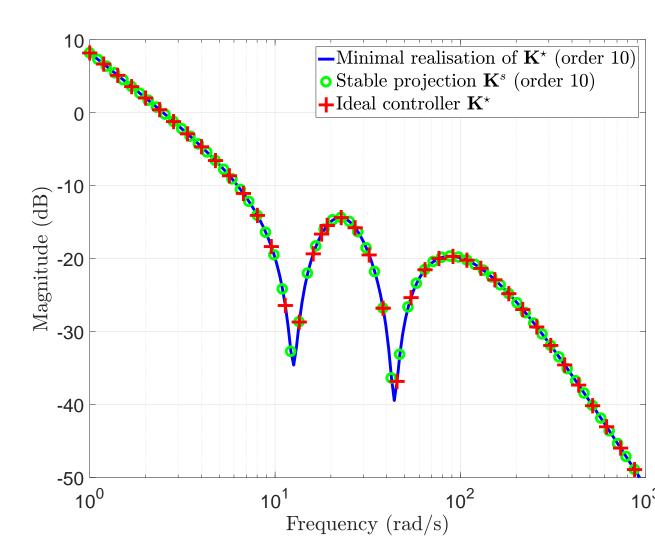
$$\forall i = 1 \dots N, \mathbf{K}(\imath \omega_i) = \mathbf{K}^*(\imath \omega_i).$$

 \rightarrow Use of the Loewner pencil $[\mathbb{L}, \mathbb{L}_{\sigma}]$

1. Embedded order reduction

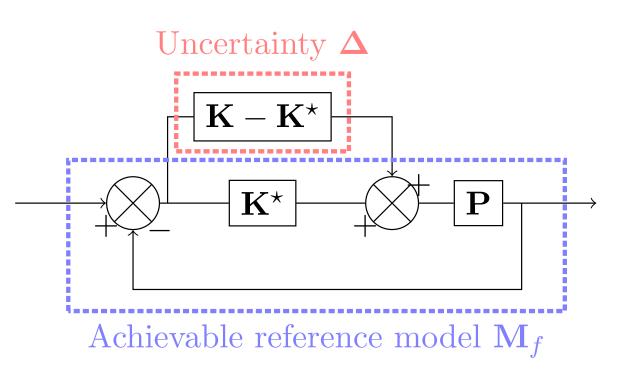


2. Stability of the identified model **K**



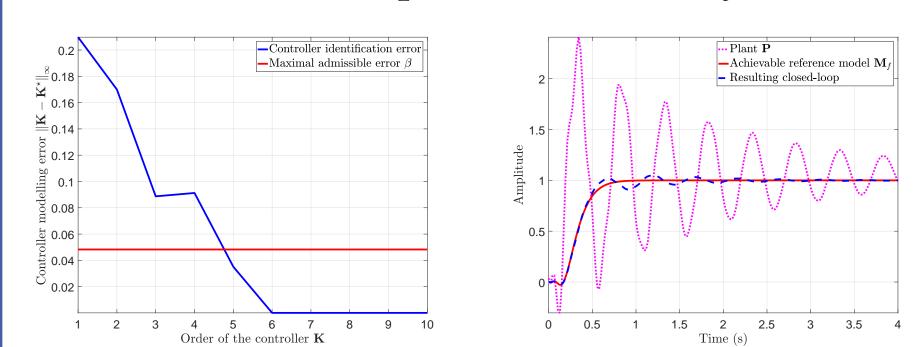
Proposed choice of $\mathbf{M} \to \mathsf{no}$ more compensation of instabilities in the open-loop!

CONTROLLER REDUCTION

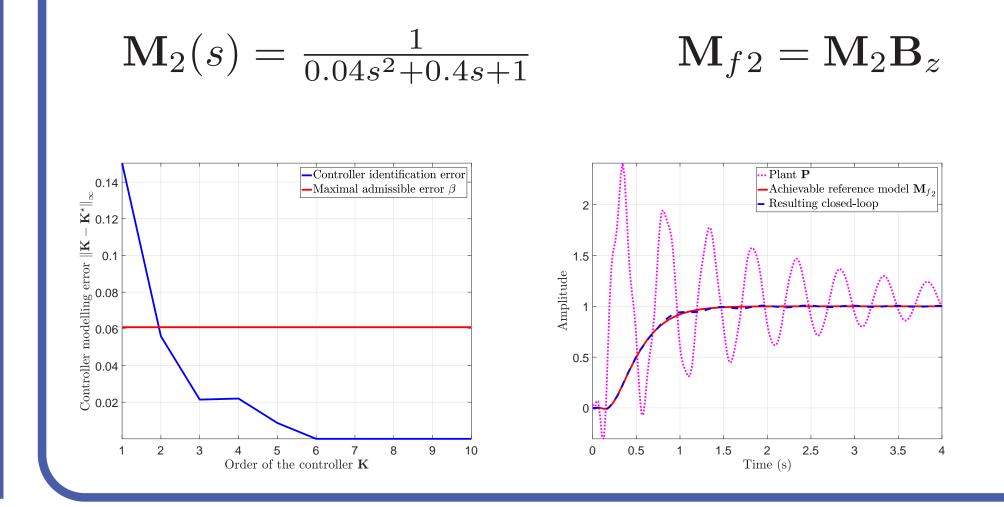


The resulting closed-loop is well-posed and internally stable for all stable Δ such that $\|\Delta\|_{\infty} \leq \beta$ if and only if $\|(1 - \mathbf{M}_f)\mathbf{P}\|_{\infty} < \frac{1}{\beta}$.

ightarrow Limiting the controller modelling error allows to ensure closed-loop internal stability!



→ Conservatism of the small-gain theorem and importance of the choice of the initial specifications



STRUCTURED LDDC DESIGN

General structuration of the controller:

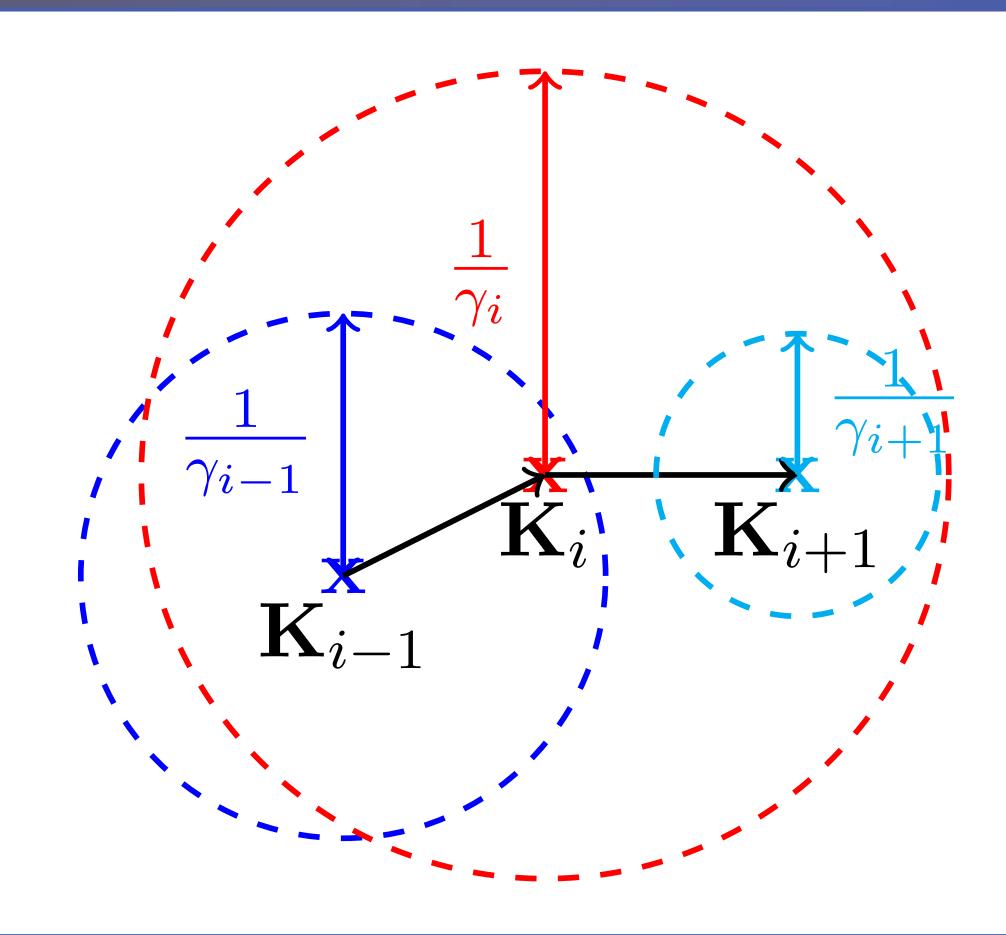
$$\mathbf{K}(s,\theta) = \frac{1}{D(s,\theta)} N(s,\theta)$$

At iteration k, problem \mathcal{P}_k is solved:

$$\min_{\theta_k} \|\mathbf{M}(\imath \omega_i) - \mathbf{H}(\theta_k, \imath \omega_i)\|_F^2$$
s.t.
$$\|\mathbf{K}(\theta_k) - \mathbf{K}(\theta_{k-1})\|_{\infty} < \frac{1}{\beta_{k-1}}$$

$$P\theta < 0$$

where
$$\mathbf{H}(\theta_k, \imath \omega_i) = (I + \Phi_i \mathbf{K}(\theta_k, \imath \omega_i))^{-1} \Phi_i \mathbf{K}(\theta_k, \imath \omega_i)$$



REFERENCES

- 1. Kergus, P., Olivi, M., Poussot-Vassal, C., Demourant, F. (2019). From reference model selection to controller validation: Application to Loewner Data-Driven Control. IEEE L-CSS.
- 2. Cooman, A., Seyfert, F., Olivi, M., Chevillard, S., Baratchart, L. (2017). *Model-free closed-loop stability analysis: A linear functional approach*. IEEE TMTT.
- 3. Cooman, A., Seyfert, F., Amari, S. (2018). *Estimating unstable poles in simulations of microwave circuits*. IEEE IMS.
- 4. Van Heusden, K., Karimi, A., Bonvin, D. (2009). *Data-driven controller validation*. IFAC Symposium on System Identification.