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Chapter 13

Dynamic Mapping of Diesel Engine
through System Identification�

Maria Henningsson��, Kent Ekholm, Petter Strandh,
Per Tunest̊al, and Rolf Johansson

Abstract. From a control design point of view, modern diesel engines are dy-
namic, nonlinear, MIMO systems. This paper presents a method to find low-
complexity black-box dynamic models suitable for model predictive control
(MPC) of NOx and soot emissions based on on-line emissions measurements.

A four-input-five-output representation of the engine is considered, with
fuel injection timing, fuel injection duration, exhaust gas recirculation (EGR)
and variable geometry turbo (VGT) valve positions as inputs, and indicated
mean effective pressure, combustion phasing, peak pressure derivative, NOx

emissions, and soot emissions as outputs. Experimental data were collected
on a six-cylinder heavy-duty engine at 30 operating points. The identification
procedure starts by identifying local linear models at each operating point.
To reduce the number of dynamic models necessary to describe the engine
dynamics, Wiener models are introduced and a clustering algorithm is pro-
posed. A resulting set of two to five dynamic models is shown to be able to
predict all outputs at all operating points with good accuracy.

13.1 Introduction

The heavy-duty engine market is dominated by compression-ignition diesel
engines, due to their high energy conversion efficiency. Traditionally, this high
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efficiency has come at the price of high levels of nitrogen oxides (NOx) and
soot particle emissions.

In the last decade, the emissions legislation has been dramatically tight-
ened which has pushed for a shift in technology, either through introducing an
aftertreatment system for NOx reduction or through in-cylinder techniques.
In the latter case, the combustion process is cooled down using a lower com-
pression ratio, high levels of exhaust gas recirculation (EGR), and suitably
chosen fuel injection timings resulting in so called Low Temperature Com-
bustion (LTC) [7].

Control is a key factor for successful LTC diesel engines. One reason is
that slow dynamics involved in e.g. EGR flow and cylinder wall temperature
play a more important role when ignition delays are prolonged. Another rea-
son is that tight requirements both in terms of emissions legislation and fuel
economy make error margins tight. Diesel engine control design is normally
based on a mix of physical mean-value models and experimental maps spec-
ifying optimal operating points in terms of emissions and fuel efficiency [1].
Feedback control uses indirect measurements such as manifold pressures and
gas flows.

New sensor technology makes additional information from the combustion
process available. Recently, NOx sensors have been introduced in produc-
tion engines giving the opportunity to adjust actuator settings according
to measured emissions instead of precalibrated maps. These developments
open up for e.g. model predictive control (MPC) that explicitly handles emis-
sion trade-off optimization based on on-line measurements of emissions. To
that purpose, low-complexity dynamic models of the engine that also include
emission formation are needed, this objective being the purpose of the work
presented in this paper. The approach has been to use black-box system
identification.

The focus has been to use direct measured information on the interesting
engine outputs instead of relying on indirect measurements combined with
models and maps. Measurements from a NOx sensor, an opacimeter, and in-
cylinder pressure sensors are therefore used. Though not all of these sensors
are used in today’s production engines, one can expect that if the benefits
are large enough, the technology will eventually be available.

Different actuators can be used to optimize emissions, e.g. EGR and vari-
able geometry turbine (VGT) valve positions [9, 8], fuel injection parame-
ters [2], variable valve actuation [15], or some combination of these [5]. In
this paper, the combined effect of the most significant diesel engine actuators
(EGR, VGT, injection timing, and injection duration) is examined. These
actuators are standard in heavy-duty diesel engines today and are all essen-
tial for optimization of engine operation. It would be desirable also to include
engine speed as an input to the model, but for practical constraints in the
laboratory setup that was not possible in this work.

The paper is organized as follows. Section 13.2 presents the experimental
equipment and Section 13.3 briefly describes the thoughts behind the choice
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of engine outputs and the experiment design. Section 13.4 describes the iden-
tification procedure, starting with local linear models that are expanded to
Wiener models. A clustering algorithm is proposed to reduce the number
of dynamic models required to describe the engine dynamics. Section 13.5
evaluates the identified models. Finally, conclusions and directions for future
work are presented in Section 13.7.

13.2 Experimental Equipment

The experiments were conducted on a six-cylinder turbo-charged heavy-duty
diesel engine with a displaced volume of VD = 12e-3[m3]. The compression
ratio of the engine was reduced to rc = 14.1 to facilitate low-temperature
combustion. The engine was equipped with unit injectors for diesel where
fuel injection timings could be set individually for each cylinder, with a low-
pressure exhaust gas recirculation (EGR) loop where the EGR rate could be
adjusted by a valve in the exhaust pipe, and with a variable geometry turbo
(VGT) where the turbocharging also could be adjusted by a valve.

All cylinders were equipped with piezo-electrical, water-cooled pressure
transducers of type Kistler 7061B [12], with cylinder pressure data sampled
every 0.2 crank angle degrees using a Microstar DAP 5400a/627 data acqui-
sition board [13]. The control system was based on a standard PC running
Linux enabling cycle-to-cycle control. Fuel injection timings were updated
every engine cycle, and the setpoints for the valve positions were updated
with a frequency of 10 Hz.

The pressure measurements p as a function of crank angle θ from the
in-cylinder pressure sensors were used to compute indicated mean effective
pressure yIMEP, combustion phasing α50, and maximum pressure derivative
dp. The indicated mean effective pressure is defined as

yIMEP =
1
VD

∫
pdV, (13.1)

where the integral is taken over an engine cycle, and the maximum pressure
derivative as

dp = max
θ

dp

dθ
(13.2)

From the cylinder pressure p, the heat release rate dQ is computed using the
relation

dQ

dθ
=

γ

γ − 1
p(θ)

dV

dθ
+

1
γ − 1

V (θ)
dp

dθ
(13.3)

for the apparent heat release rate based on a fixed ratio of specific heats [3].
From the heat release rate, α50 is defined as the crank angle degree where 50
% of the heat has been released,
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Q(α50)
maxθ Q(θ)

= 0.5 (13.4)

Emissions of NOx were measured using a Siemens VDO / NGK Smart NOx
Sensor [14]. Soot emissions were measured using an opacimeter from SwRI
measuring the percentage of light absorbed by the exhausts in the exhaust
pipe.

13.3 Experiment Design

Four control variables act as inputs to the model:

• the crank angle of start of fuel injection uSOI

• the fuel injection duration measured in crank angle degrees uFD

• the position of the EGR valve uEGR

• the position of the VGT vanes uVGT

such that
u =

(
uSOI uFD uEGR uVGT

)T
. (13.5)

For the main part of the work, five model outputs were considered; the
net indicated mean effective pressure yIMEP, the crank angle degree of 50 %
fuel burnt α50, the peak cylinder pressure derivative over the cycle dp, the
nitrogen oxide concentration yNOx and the opacity of the exhausts yop giving
a measure of soot concentration

y =
(
yIMEP α50 dp yNOx yop

)T
. (13.6)

The first three output variables were cylinder-individual. The last two out-
puts, yNOx and yop were common to all cylinders. These five outputs were
chosen because they are all required in the model predictive control setup for
which the model is intended to be used. The planned control design setup is
to minimize yop and yNOx, to let yIMEP follow a reference, to keep α50 at a
setpoint corresponding to maximum brake torque, and to limit dp to avoid
combustion modes that may damage the engine.

Many alternative measured outputs could be considered. By including
more measured outputs in the model, prediction of the original outputs to
be used for control could be expected to improve when more information is
available for prediction. An extended set of outputs was thus also considered,
where intake manifold pressure pin and ignition delay αID were added to the
output vector,

yext =
(
yIMEP αID dp yNOx yop pin α50

)T
. (13.7)

The ignition delay was defined as αID = α10 − uSOI, the time measured in
crank angle degrees from start of injection until 10 % of fuel was burnt.
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The study is limited to low and medium load operating points, where the
possible impact of low temperature combustion is the greatest and where
the associated slow dynamics are most dominant. A fixed engine speed of
1200 rpm was chosen, the study could easily be expanded to multiple en-
gine speeds using the same methodology. Three different loads were chosen,
corresponding to yIMEP = {4 bar, 7 bar, 10 bar}. At each load three different
values of start of injection uSOI were chosen, and at each such value four
points in the uEGR-uVGT plane were determined. A few initial steady-state
maps were used to define suitable operating points in terms of emissions
and brake efficiency. At each operating point suitable amplitudes for pseudo-
random binary sequence (PRBS) signals were determined. The switching fre-
quency of the PRBS signal was adjusted to the dynamic characteristics of
each of the inputs (more frequent switching for the fuel injection variables
uSOI and uFD, and less frequent for the gas flow variables uSOI and uVGT).
In total, 30 operating points were defined: 6 at load yIMEP = 4 bar, 12 at
load yIMEP = 7 bar, and 12 and yIMEP = 10 bar. At yIMEP = 4 bar, it was
concluded that keeping the VGT valve fully open at uVGT = 100 was optimal
in terms of emissions and fuel economy, so there was no need for excitation
of that input. An overview of the operating points is given in Table 13.1.

13.4 Identification Procedure

Data of length 2800 engine cycles were collected at each operating point.
The sample period was one engine cycle. Constant offsets were removed.
From each data set, two separate data sets each of length 1300 engine cycles
were taken for identification and validation. To avoid any cross-correlation
between the identification and validation data, they were separated by 200
engine cycles. It was concluded that offsets differed between the cylinders
whereas the dynamics were similar, so models were only identified for cylinder
5 which was determined to be representative for all six cylinders. The outputs
were scaled to obtain the same order of magnitude.

The identification procedure is divided into two parts. First, linear mod-
els are identified separately for each operating point. Then, the number of
models needed are reduced by introducing Wiener models and performing a
clustering algorithm.

13.4.1 Identification of Local Linear Models

Linear state space models for each operating point of the form

xk+1 = Axk +Buk +Kwk

yk = Cxk +Duk + wk

(13.8)
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Table 13.1 Operating points

Op. yIMEP uSOI uFD uEGR uVGT speed
point (bar) (CAD) (CAD) (%) (%) (rpm)

1 4 −5 5.8 10 100 1200
2 4 −12 5.8 10 100 1200
3 4 −20 5.8 10 100 1200
4 4 −5 5.8 13 100 1200
5 4 −12 5.8 13 100 1200
6 4 −20 5.8 13 100 1200

7 7 −5 7.1 53 33.5 1200
8 7 −10 7.1 53 33.5 1200
9 7 −15 7.5 53 33.5 1200
10 7 −5 7.1 56 40 1200
11 7 −10 7.3 56 40 1200
12 7 −15 7.5 56 40 1200
13 7 −5 7.2 50 23 1200
14 7 −10 7.4 50 23 1200
15 7 −15 7.6 50 23 1200
16 7 −5 7.3 56 28 1200
17 7 −10 7.4 56 28 1200
18 7 −15 7.5 56 28 1200

19 10 −9 10.4 76 29 1200
20 10 −13 10.8 76 29 1200
21 10 −17 10.7 76 29 1200
22 10 −5 10.5 82 29 1200
23 10 −10 10.6 82 29 1200
24 10 −15 10.8 82 29 1200
25 10 −5 10.6 82 40 1200
26 10 −10 10.6 82 40 1200
27 10 −15 10.8 82 40 1200
28 10 −5 10.5 90 40 1200
29 10 −10 10.6 90 40 1200
30 10 −15 10.9 90 40 1200

where xk ∈ Rn, uk ∈ Rr, and yk ∈ Rm were identifed using the n4sid algo-
rithm of the System Identification Toolbox in Matlab. As validation criterion,
variance accounted for (VAF) was used [4]. For output i, VAF is defined as

V AF (i) = 100
(

1 − var(yi − ŷi)
var(yi)

)
(13.9)

where yi is the measured output in the validation data, and ŷi is the predicted
output of the model. The VAF gives the percentage of the variance of the
output that is described by the model.
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Models of orders n = 2 to n = 12 were identified at each operating point.
The mean VAF over the five outputs as a function of model order for 20-step
prediction is shown in Figure 13.1.
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100
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F
[%

]

model order

Fig. 13.1 VAF as a function of model order for the 30 operating points.

Low model orders, n < 5, lead to poor prediction. At some operating
points, low-order models even lead to negative VAF (not included in Fig-
ure 13.1 for the sake of clarity) corresponding to a higher variance in the
prediction error than in the measured outputs. Increasing the model order
beyond n = 7 can give a small improvement in VAF, but not sufficient to
motivate the greater computational burden of such large models for control
design. From Figure 13.1, it can be concluded that model order n = 7 is
suitable to describe the data. There is a large spread in VAF between the
operating points for a fixed model order. This spread is mainly caused by
different excitation of the outputs compared to the noise level at different
operating points.

Figure 13.2 shows how VAF varies with prediction horizon for the five
outputs for operating point 1.

13.4.2 Identification of Models for Extended Output
Set

Models were also identified for the extended set of outputs in Eq. (13.7) and
validated in terms of prediction of the original five outputs. Figure 13.3 shows
the result for operating point 1. For low orders, the VAF for these models
are significantly lower than for the original output set. This outcome could
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Fig. 13.2 VAF for different prediction horizons for the five outputs.

be expected, since with additional outputs the models need to incorporate
additional dynamics particulary the slow intake manifold pressure evolution.
At higher model orders, the VAF is similar for the original and the extended
output set. It was thus concluded that there was not much to be gained
from including the extra two outputs in the models and Kalman filter. In the
following, only the original output set is considered.

13.4.3 Reducing the Number of Models

The purpose of the identification scheme is to find appropriate models for
model-based control design. Since the process is clearly nonlinear, the con-
troller must be based on more than one linear model leading to additional
complexities of gain-scheduling and model-switching. With the computa-
tional resources available today, a feasible controller with cycle-to-cycle con-
trol in real-time cannot be based on 30 local linear models. Moreover, the
models identified here are for a single engine speed and low-to-medium loads
only. Expanding the mapping to cover the entire load-speed range of the
engine, more models would have to be added.
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Fig. 13.3 VAF for 20-step prediction of models obtained for operating point 1
with the original and extended sets of outputs.

It is therefore of interest to see how close in behavior the models are to one
another, i.e., if the same model could be used for more than one operating
point. To that purpose, cross validation of all identified models to validation
data at all operating points was performed. Figure 13.4 shows the resulting
VAF for 20-step predictions.

It can be seen that, in general, the best model for data from an operating
point is the model identified at that operating point, as would be expected.
Some combinations of models and operating points give good predictions,
others do not. Note that models identified at low load (operating points 1
to 6) cannot be used at higher loads since these models do not contain the
uVGT input, as described in Section 13.3.

Here, two steps are taken to find a limited number of dynamic models de-
scribing the data at all operating points. First, Wiener models are introduced
to compensate for different gains at different operating points. A clustering
algorithm is then applied to group the operating points and find a suitable
model for each group.

13.4.3.1 Wiener Models

A powerful extension of linear models are the Wiener and Hammerstein model
classes [4]. A Wiener model is a linear dynamic model in series with a static
nonlinearity on the output, see Figure 13.5. A Hammerstein model is the
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Fig. 13.4 Mean VAF for cross validation of the models identified at the 30 oper-
ating points with validation data at all operating points. Values on the diagonal
are high, corresponding to good fit between model and data at the same operating
point.

equivalent with the nonlinearity on the input. The static nonlinearity f(·)
adds a large flexibility to the linear dynamic model at a moderate cost. If
the nonlinearity can be inverted, control design can be based entirely on
linear techniques. Here, we choose to use Wiener models rather than Ham-
merstein models because we have a 4-input-5-output system, which gives one
more degree of freedom when transforming the output rather than the input.
Previously, models of the form

H(z) f(·)
u ȳ y

Fig. 13.5 A Wiener model consisting of a linear model H(z) with a static nonlin-
earity on the output f(·).

xk+1 = Aixk +Biuk +Kiwk

yk = Cixk +Diuk + wk,

where xk ∈ Rn, uk ∈ Rr, yk ∈ Rm, were identified for operating points
i = 1, · · · , 30. A Wiener model extends this representation to
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xk+1 = Aixk +Biuk +Kiwk

ȳk = Cixk +Diuk + wk

yk = f i(ȳk)

Consider the dynamic model Mi(Ai, Bi, Ci, Di,Ki) to be given from the
previous identification procedure. We now wish to find a representation of
the nonlinearities f i(·) to let model i better fit data at another operating
point j. This can be done through a local linearization of f i(·) at operating
point j,

M ij =
∂f i

∂ȳ

∣∣∣∣
op point=j

(13.10)

From the set of local linearizations M ij and the offsets removed at each op-
erating point, approximations of the nonlinearities f i(·) can be reconstructed
as e.g. piecewise linear functions.

We now wish to find the matrices M ij to optimize the fit between model
i and identification data j. To make the representation simpler and to avoid
over-parameterization of the model, the matrices M ij are constrained to be
diagonal, M ij = diag(mij

1 , · · ·mij
m), such that the nonlinearity f i(·) is decou-

pled into m scalar nonlinearities, one for each output.
Denote by ˆ̄Yij ∈ RN×m the data series of predicted outputs at operating

point j using model i with the nominal gain matrix M ij = I. It then holds
for the output data series of Wiener model Ŷij

Ŷij = ˆ̄YijM
ijT

(13.11)

The optimal gains mij
k , k = 1, · · · ,m, can now be found by solving the convex

optimization problems

min
Mij diagonal

||Yj − ˆ̄YijM
ijT

||2F (13.12)

where Yj is the measured output data series at operating point j.
The cross validation was redone with an optimized scaling matrix M ij for

each pair of model and data operating points i and j. The resulting VAF can
be seen in Figure 13.6. Notice the large improvement in VAF when matching
models to different operating points compared to Figure 13.4.

13.4.3.2 Model Clustering

From Figure 13.6, we can see that some of the linear models with adapted
gains well describes data at many operating points. We define by V the VAF
matrix illustrated in Figure 13.6, where element vij corresponds to the mean
VAF over the five outputs when using Wiener model i for a 20-step prediction
of validation data at operating point j. The matrix V can be used to group
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Fig. 13.7 Dendrogram of operating point clustering.

operating points to a limited number of models. A hierarchical agglomerative
clustering algorithm is used to that respect [6].

The algorithm is based on the relative VAF loss matrix ΔV , where the
elements are given by

Δvij = vjj − vij , (13.13)

and a clustering matrix C initialized as

C = ΔV (13.14)
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The element Δvij is a measure of how much VAF that is lost by removing
model j and using model i instead for that operating point. The hierarchical
clustering algorithm successively merges two of the existing clusters at each
step until only one cluster remains. At each step, the algorithm first finds the
minimum element of C, corresponding to the smallest VAF loss, and merges
models in cluster j into the cluster for model i. A new column is added
to C representing the new cluster. The distance to other models for the
newly formed cluster is defined as the worst-case distance over the included
operating points to the model. The details of the algorithm are described in
Algorithm 2.

Algorithm 2. Clustering algorithm based on the relative VAF loss matrix
ΔV and the clustering matrix C.
1: Let K = number of operating points.
2: Initialize C = ΔV .
3: Set diag(C) =∞ to mark that a cluster cannot merge with itself.
4: for k = K + 1 to 2K − 1 do
5: Find indices i, j of minimum element of C
6: Merge cluster i and j into new cluster k, assign cluster i model to cluster k.
7: Add a column to matrix C corresponding to cluster k, let c�k =

max(Δv�s1 , · · · , Δv�sL), where s1 to sL are the operating points previously
assigned to clusters i and j, now to cluster k.

8: Set c�k to ∞ for models that have previously been removed.
9: Remove clusters i and j by letting c�i =∞, c�j =∞.

10: Remove cluster j model by letting cmodel(j)� =∞.
11: end for

13.5 Identification Results

The result of the clustering procedure can be illustrated in a dendrogram,
see Figure 13.7. The dendrogram shows the merges of operating points into
clusters as a tree structure, starting at the bottom where every operating
point is in its own cluster. On the y-axis, the loss of VAF is shown for each
merge. It can be seen that a few models may be removed at no loss at all,
which means that a model identified at a different operating point proved to
be marginally better than the corresponding model in some cases. This result
is likely due to the choice of prediction horizon in the computation of VAF.
A large number of models may be removed at a moderate cost; if a loss of
5 % is accepted only six clusters remain, if 10 % can be accepted only four
clusters are needed.

It can be noted that the clusters are not randomly assembled. With only
two clusters remaining, one consists of the low load operating points 1 to 6,
and the other to the medium and high load operating points 7 to 30. The
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medium-to-high load cluster is further divided at a lower level into one cluster
for medium load operating points 7 to 18 and one for high load operating
points 19 to 30.

If we settle for five clusters, corresponding to a VAF loss of 7.5%, the
worst-case fit between model and operating point will occur for operating
point 3 which has been assigned to model 5. Figure 13.8 shows the measured
output validation data at operating point 3, the 20 step prediction using
model 3, and the 20 step prediction using model 5 with the adapted Wiener
gain for operating point 3. It can be concluded that prediction of all outputs
is very good using model 3, and only slightly worse using the adapted model
5. It can be expected that model 5 with the adapted Wiener gain is accurate
enough to be used for control design.

13.6 Discussion

In general, it can be concluded that prediction based on the identified local
linear models was very good for all five outputs. Standard system identifi-
cation algorithms were used to fit dynamical black-box model of moderate
order to four-input-five-output data sets. Considering the complexity of the
task, the results are surprisingly good. Furthermore, the Wiener modeling
combined with the clustering algorithm reduces the number of dynamic mod-
els needed to an acceptable level while keeping the predictive ability of the
remaining models high. The results are a promising start for model based
control design that uses direct emissions measurements.

Alternative approaches to the Wiener gain approximation and clustering
procedures could be taken. For larger freedom in fitting data and models
at different operating points, non-diagonal Wiener gain matrices could be
considered. Whereas no detailed analysis of non-diagonal structure vs. cluster
complexity was done, we would expect that the increase of coefficients to
estimate would deteriorate statistical properties and thus require more data.
Other clustering techniques might also be considered, such as the Tagaki-
Sugeno model structure [11].

The choice of measured variables to be included as model outputs is not
evident. From the purpose of the study, it is clear that yIMEP, yNOx, and
yop need to be included. Besides reduced emissions, an important goal of
diesel engine control is to minimize fuel consumption. In the test engine,
fuel consumption measurements were slow and inexact, so they were not a
viable choice of output. Since combustion phasing α50 is one important factor
in determining the efficiency of the engine, it was included as an output to
allow for some influence over brake efficiency in the control design. To limit
audible noise and avoid damage to the engine, it is necessary to limit the
peak pressure derivatives over the cycle dp, which was thus included as an
output.
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Fig. 13.8 Measured output of validation data at operating point 3 (gray solid line),
20-step ahead predicted output of local linear model identified at the same operating
point (dashed line), 20-step ahead predicted output using model assigned through
clustering algorithm (black solid line). The clustering algorithm was specified to
set the level of accepted VAF loss at 7.5 %, yielding 5 dynamic models for the 30
operating points. Data are provided in scaled, arbitrary units.

Identification using the extended output vectors did not show any bene-
fits by including intake manifold pressure and ignition delay as outputs to
the models. These quantities are common in research on diesel engine com-
bustion and intuitively one would expect that using information from these
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additional measurements would result in better prediction. It is likely that the
information could be of use if some other model structure were considered.

A common issue in system identification of control-oriented models of diesel
engines is to handle the MIMO and nonlinear nature of the process. As more
actuators are added to provide new degrees of freedom for optimizing emis-
sions and fuel consumption, the experiment design and control design tasks
suffer from the curse of dimensionality. The same is true for the approach
suggested here. Expanding the study to cover the entire speed-load range
of the engine and possibly also other inputs such as a second fuel injec-
tion would substantially increase the number of operating points required for
identification.

Thus, new developments in actuator technology make the control design
task harder. However, we could expect that this will to a certain extent be
counteracted by new developments in sensor technology. With added on-
line measurements of the important outputs, such as NOx, the requirements
on off-line calibration could be substantially reduced. A fine grid of pre-
calibrated static maps could be replaced by a coarse grid of dynamic models.
If done right, the total experimental effort required for developing the engine
controller need not increase.

Physical modeling could be advocated in order to reduce experimental ef-
forts. The results presented here could give some insights into the necessary
structure of a physical model to be used for the purpose of on-line control of
emissions. The authors are not aware of a practical physical model of moder-
ate order with the chosen set of inputs and outputs. It would be interesting
to pursue work in that direction, and to see a discussion of what physical
quantities that best represent the 7 states needed for prediction.

A number of approaches to model MIMO, nonlinear dynamics of the diesel
engine presented in the literature use neural networks [2, 10, 8]. In contrast
to these works, the procedure presented here produces models on state-space
form including noise models that fits directly into the framework of common
control design methodologies such as MPC and LQG. State-space models are
convenient for MIMO processes since they provide a compact representation
of the response in all inputs and outputs and only one order needs to be
chosen for all inputs and outputs.

13.7 Conclusions

A method to model diesel engine dynamics over a range of operating points
using system identification was presented. The model captures the influence of
the most significant actuators on a set of important engine outputs. Notably,
the model can predict measured emissions very well. For future work, it will
be of interest to see what can be achieved using direct closed-loop control
of measured emissions instead of indirect control through other measured
variables which has been the dominant approach hitherto.
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