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P1/PID CONTROL OF RESONANT DYNAMICS

by C C Hang and K J Astrom

Abstract

The performance of PI/PID controllers for a system with resonant (or oscillatory)
dynamics is investigated. Simplified designs to compute controller settings are
given where feasible. Possible limits of the effectiveness of Pl and PID control when
the resonant modes are almost outside or well within the servo bandwidth are
established.

1. Introduction

The proportional-integral-derivative (PID) controllers have been widely used
in the process industry owing to its simplicity and robustness [Astrom and
Hagglund, 1988]. For processes with well damped dynamics, PID or even Pl
_control is found to be adequate for most applications. A well-known and well
documented limitation of P1/PID control in process control is the presence of large
dead time [Seborg et.al, 1989]. PID controllers are also widely used for control of
mechanical systems such as motor drives, servos, disk drives, flight controtsystems
and missile boosters, for the same reason of simplicity and robustness. A possible
limitation in this case is the presence of resonant (also called oscillatory) modes
[Astrom and Wittenmark, 1990]. However, more precise knowledge about the
effectiveness of PID control of resonant dynamics is not well documented in the
literature and is usually passed on by experienced designers or reinvented by
younger ones. The inexperienced ones may even come to the wrong conclusion
that PID controllers are not applicable to resonant dynamics, based on some
attempts to use the Ziegler-Nichols type of controller tuning procedure which is
more suitable for damped dynamics. Notice also that the series form [Astrom and
Hagglund, 1988] of PID controller cannot produce complex zeros which may be

needed for good control of resonant modes.



It is clear that more extensive knowledge of the effectiveness of PID control
of resonant dynamics is useful in deciding when one should go beyond PID control
to apply the more sophisticated, higher order control methods such as pole-
placement [D’Azzo and Houpis, 1988; Wallenberg, 1987]. An attempt is made in
this report to address this subject as part of our research in knowledge-based

control [Astrom et.al, 1991].

The report is organised as follows. Section 2 describes two classes of
resonant dynamics that are investigated: one in which the resonant modes are
almost outside the servo bandwidth and one in which they are well inside. Sections
3 and 4 present design and performance evaluation of Pl and PID control for these
two classes of systems. Concluding remarks are given in Section 5.

2. Scope of Study

The parallel form of PID controller with suitable modifications for practical
implementation [Astrom and Hagglund, 1988]. It is described by:
d
Yf )

u,(t) =K, [(Byr—y)+—fedt Tag¢ (1)

where
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andy,, Y, u, and e are the setpoint, process output, control and error respectively.
The setpoint weighting factor g is assumed to be 1 unless otherwise stated.
Without loss of generality, we use N; = 10 in all the simulations. For the purpose
of analysis and design, a simplified form with g = 1 and N; = 1 is also used.

The PID controller thus has one pole at the origin of the s-plane and two

zeros which are complex when Ty > T,/4:



G(s)=%(sz+is+ 1 ) (2)

G.(s) = 2e(s+ L) (3)
S .

Two simple but important classes of resonant dynamics will be studied. They

have the following form of transfer function:

- _ o 1
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An example of a mechanical system having this type of dynamics is the
speed control of a motor driving two flexibly coupled inertia loads [Astrom and
Wittenmark, 1990; Wallenborg, 1987]. The first class of systems is one where the
resonant modes are outside or almost outside the servo (closed-loop system)
bandwidth, a typical class being « = 0.3 in egn. (4). This also means that it is
difficult for the controller to increase damping of the resonant modes. When a is
very small, the resonant modes are either negligible or are uncontrollable. Note that
the term "uncontrollable" is used in the sense that the system will filter out any high
frequency control signal designed to influence the resonant modes. When a is in
the region of 0.3, the resonant modes are no longer negligible especially when tight
control is exerted; yet they are not easily controllable as they are almost outside the
servo bandwidth. The second class is one where the resonant modes are well
inside the servo bandwidth, a typical case being @ = 3 in eqn. (4). In this case the
controller will be able to increase the damping of the resonant modes. The open-
loop step responses of the two classes of process dynamics are shown in Fig. 1
for { , = 0.3.



The damping factor {,, of the resonant poles is chosen to be 0.3 in the major
part of this investigation. It is expected that the control performance will improve
when {, is increased and deterioriate when ¢, is decreased. The extreme case of
¢, = 0 will be studied briefly to further explore the possible limits of PI/PID control.
In all the simulations, step changes in the load introduced at the process input will
be used to assess the controller performance in addition to setpoint responses.

3. Resonant Dynamics Outside The Servo Bandwidth

The control of the process of eqn. (4) with @ = 0.3 and {, = 0.3 is studied
first. Fig. 1 shows that the resonant modes are just noticeable in the open step
response. As the resonant modes should not be unduely excited in this case, an

approximate analytical design will be developed.

3.1 Pl Control

The transfer function of the Pl controller in eqn. (3) has a zero at s = -1/T,.
It is tempting to simply use it to cancel the process pole at s = -a. This is
not advisible as the load response will be sluggish [Shinskey, 1988; Astrom
and Hagglund, 1988]. For the purpose of comparison, we shall however
examine the following controller based on pole-zero cancellation:

Controller (P1,) : k., =1; T, =3.3.

The simulation results of Fig. 2 confirm that the load response is indeed
sluggish. The setpoint response also has a large undershoot due to the
large integral time resultant from this design.

It is known from design experience that for a good compromise between
settling time and load attenuation, the controller zero on the s-plane should
be placed two to three times away from the major process pole. Neglecting
the presence of the resonant poles for the moment, we shall choose the



controller zero at s = -3a. Thus,

T,= L -1.1.
3

1

Notice that this value is much lower than that obtained by cancelling the

process pole. We then have

G,(5)G,(s) = “f( g 3d, (5)

which gives a closed-loop characteristic equation of :

s + a(l + K,)s + 3a?K, =0 (6)

Comparing with a standard second order system of s? + 2w, s + w2 =

0, we obtain:

K2+ (2-120*) K_+1=0 (7)

For positive values of k,, we need {> 0.58. At this value of {, we obtain the
analytical solution of k, = 1. If we instead choose a { of 0.707, we obtain
k. = 0.27 or 3.73. 'faking into account the presence of the resonant modes
which should not be unduely excited, a compromised value of the controller

gain of 0.5 will be chosen. We thus have:
Controller (PL,) : k, = 0.5; T, = 1.1.

The actual root loci and time responses are shown in Fig. 2 and 3. Notice
that the damping of the resonant poles will also decrease with increasing
gain. However, it is evident from Fig. 2 that the performance is superior to
the design based on pole-zero cancellation in both setpoint and load
responses.



3.2 PID Control

We shall not pursue the design based on cancelling the real or complex
poles owing to its poorer performance [Astrom and Hagglund, 1988]. If we
wish to have fast control with sufficient attenuation of the resonant modes,
we have learnt from experience that the zeros of the PID controller in eqgn.
(2) should be chosen to be complex and placed some distance away from
the process poles on the s-plane. A guideline is that their real parts should
be about equal to the real parts of the process poles in order to place the
root loci asymptotes near the imaginary axis; their imaginary parts should be
about half of those of the resonant poles for this class of system. Note that
the choice of such complex zeros is quite frequently made by experienced
designers [Horowitz, 1963] or synthesized by the pole-placement design
[D’Azzo and Houpis, 1988]. We shall thus proceed with a choice of
controller zeros at s = -0.5 + j 0.5, giving T, = 2, Ty = 1 and a root locus
plot as shown in Fig. 4. Following the simplified design procedure of Section
3.1, we obtain the characteristic equation:

s? + as + aK T, (s* + s + 0.5)=0 (8)

which will have positive values of k, for { > 0.65, at which k, = 2.5. The
gain will vary greatly around this region as indicated by the root loci of this
design as shown in Fig. 4. A choice of { = 0.707, for instance, gives K, =
0.75. From the shape of the root loci originated from the resonant poles, we
observe that a medium gain is a good compromise between speed and
damping. We shall therefore propose two controllers, one with a more
conservative controller gain of 1.25 and one with a larger gain of 2.5 which
may be acceptable if a larger load attenuation is needed at the expense of
more oscillatory response. We thus have:

Controller (PID,) : k, = 1.25; T, =2; Ty = 1.



Controller (PID,) : k. = 25; T, =2; Ty = 1.

Their performance is shown in Fig. 5. For the second controller, the larger
attenuation of load effect is achieved with the higher gain but this is
accompanied by an unacceptably oscillatory setpoint response. Fortunately,
this may be reduced substantially by the use of the setpoint weighting factor
B [Astrom and Hagglund, 1988; Hang et.al, 1990]. With a choice of 8 = 0.2,
the setpoint response is improved as shown in Fig. 5.

3.3 The Extreme Case of Cp =0

From the shapes of the root loci shown in Fig. 3 and 4, it is evident that both
Pl and PID controllers will be effective for {, > 0.3. For {, < 0.3, their
effectiveness will deterioriate since the root loci from the resonant poles will
move towards the right-half of the s-plane. The closed loop system may be
unstable when ¢, very close to or equal to zero.

A possible solution for the case of Pl control is to use a negative gain and
negative integral time, thus providing a negative proportional action but a
positive integral action. The controller zero is then placed on the right-half
plane; again this type of controller zero is sometimes synthesized by the
pole-placement controller [D’Azzo and Houpis, 1988], and has been
suggested long ago [Evans, 1950]. A choice of T; = -4 gives the root loci
as shown in Fig. 6. Note that a larger T, (remembering that T; is negative)
may lead to instability while a smaller T, may lead to sluggish response. The
approximate design similauj to that of Section 3.1 will give a K, of -0.4. We

thus have:
Controller (Pl;) : K, = -0.4; T, = -4.

The setpoint and load responses of Fig. 7 show that the performance of this
controller is reasonable considering the difficult situation. Note the vast



improvement in setpoint response by using 8 = 0.

A slightly improved control in damping may be achieved using a PID
controller with all negative settings (giving negative proportional action but
positive integral and derivative actions). We do not recommend it as the

improvement is only marginal.

3.4 Summary

When the resonant modes are almost outside the servo bandwith, a typical
case being @ = 0.3 in egn. (4), we have explored the effectiveness of Pl and

PID control.

An approximate analytical design procedure has been developed to achieve
reasonably fast control response without undue excitation of the resonant
rmodes. In the case of {, > 0.3, PID control offers improvement over Pl
control. Setpoint weighting has been found effective in improving the
setpoint response when the PID controller is tuned for a tight load response.
For convenience of comparison, their performances are shown together in
Fig. 8. This advantage will diminish as {, gets smaller. In the extreme case
of {, = 0, only a PI /PID controller with negative settings is able to provide
stable control of the systém. This is an area where a more sophisticated,

higher order controller should be considered [Astrom and Wittenmark, 1990].
4. Resonant Dynamics Inside The Servo Bandwidth

The process of eqn. (4) with @ = 3 and {, = 0.3 is studied in this section.
As the resonant modes are well within the servo bandwidth, the controller has to
ensure sufficient damping of the resultant oscillations. An approximate design

procedure will also be developed.



41 Pl Control

As a PI controller does not provide good damping action owing to the net
phase lag it contributes, the focus of the controller design is on how to
reduce the resonance effect without over-reduction of response speed. We

have

(14 S
](S+a)(52+2cps+1 (9)

6,(8) G () = [Kel&* 1/T)
S

If we choose T, sufficiently Iérge, e.g. T, = 2 or larger to reduce the net
phase lag, we may for the moment neglect the effect of (s + 1/T,))/s and
hence obtain the following characteristic equation as though only a

proportional control is used:

s3 + (cc+2Cp)sz+(1'+2Cpa)s+(1+KC)a=O (10)

It is straight forward to obtain the stability condition:

K, < (1+26p/a) (1+2al,) -1

For {, = 0.3 and a = 3, K, should therefore be smaller than 2.36. From the
root loci shown in Fig. 9, it is evident that we should choose a smaller gain
in order to have acceptable damping. Choosing a gain margin of 4, we thus

have:

Controller (Pl,) : K, = 0.6; T, = 2.



The performance of this design is demonstrated in Fig. 10. It has been
found that not much may be gained by fine tuning this controller and its
performance is indeed worse than in the case of & = 0.3. A PI controller is
thus not very effective in controlling the process.

4.2 PID Control

The PID controller has a net phase lead which may by used to damp the
resonant modes. A guideline is that the real parts of the controller zeros
should be small so that the asymptotes for the root loci will be located to the
left side of the resonant poles; yet to obtain a high controller gain we should
place the controller zeros to the left of the resonant poles. We thus choose
the controller zeros at s = -0.8 + j 0.6 which give T, = 1.6 and T, = 0.625,
and the root loci are shown in Fig. 11. Neglecting for a moment the effect
of the resonant poles, we have the following characteristic equation:

s? +as + K(s? +1.6s5 +1)=0 (11)

where K = K.T,. With o = 3 and comparing with the standard second order

system, we have:

(2.56 - 402)K% + (3.2a¢ - 4{>)K + 02?2 =0 (12)

With this choice of controller zeros, we already know the constraint { > 0.8.
The gain is infinite at this value of {. A convenient point to obtain a practical
gain is at { = 1, which gives a K of 5.11 and hence a K, of 8.18. From the
shapes of the root loci as shown in Fig. 11, we expect that the influence of
the resonant poles will reduce at higher gains. But a high controller gain will
be limited by the pole of the derivative filter (pole at T4/N;) which has been
neglected in the analysis. A compromise is needed and a choice of K, = 5

10



gives:
Controller (PID,) : K, =5; T, = 1.6, Ty = 0.625; g = 0.2.

The performance of this controller as shown in Fig. 12 is excellent. The role
of the setpoint weighting factor g in improving the setpoint response is also

evident.
4.3 The Extreme Case of Cp =0

From the shapes of the root loci shown in Fig. 9 and 11, it is clear that the
Pl and PID controllers will be effective when { > 0.3. For a smaller value of
{,» the effectiveness of the Pl controller will deterioriate quite rapidly as the
roots from the resonant poles move towards the right-half of the. s-plane.
Unlike the earlier case of « = 0.3, even the use of negative gain and
negative integral time will not be able to produce a reasonable control
performance. The shape of the root loci for PID control, however, indicates
a good possibility of stable control if the controller zeros are placed
sufficiently close to the imaginary axis. For the extreme case of {, = 0 while
a = 3, we choose the the controller zeros at (-0.4 + j 0.6) resuilting in the
root loci asymptotes at s = -1.1. The root loci are shown in Fig. 13.
Following the same approximate design procedure of Section 4.2, we obtain
K.=25andg =02:

Controller (PID,) : K, = 2.5; T, = 1.54; T4 = 1.25; g = 0.2

The setpoint and load responses of Fig. 14 demonstrate the reasonably

good performance of this controller.
4.4  Summary

When the resonant modes are well inside the servo bandwidth, a typical

case being « = 3 in egn. (4) as studied above, Pl control is found to be

11



quite inadequate for high performance as the controller does not provide a
net phase lead required for good damping. PID control in this case offers
a drastic improvement. A comparison of their performance as shown in Fig.
15 clearly demonstrates the great advantage of PID over PI control. In the
extreme case of {, = 0, good performance can still be achieved by a PID
controller with positive settings. An approximate analytical design procedure
has also been developed to design Pl and PID controllers for this class of

resonant dynamics.

5. Concluding Remarks

We have studied the effectiveness of PI/PID control for two major classes of
resonant dynamics. In the first class where the resonant dynamics are almost
outside the servo bandwidth, P! control may be sufficient while PID control may be
used to improve load attenuation at the expense of reduced damping. In the
second class where the resonant dynamics are well inside the system bandwidth,
the performance of the PI controller may be inadequate and a great improvement
in both speed of response and damping will be provided by a PID controller.

Approximate analytical design procedures have been developed to compute
reasonable settings of the controllers. There was no intention to provide-optimal
solutions and the root loci plots being shown were only used to substantiate the
design choices. The application of setpoint weighting to improve the setpoint
responses at high controller gains required for good load rejection is shown to be
an useful option to. the designers.

There remain other topics not being studied in this report. For instance, the
presence of anti-resonance zeros [Wallenborg, 1987] will make the control problem
more complex but its stabilising effect should assist the controller. The sensitivity
of the designs to process parameter uncertainties and the auto- and self-tuning
features for PI/PID control of resonant dynamics are also important topics to be

investigated.

12
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