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Uniqueness of the Maximum Likelihood Estimates
of the Parameters of an ARMA Model

KARL J. ASTROM, meMBER, 1EEE, AND TORSTEN SODERSTROM

Abstract—Estimation of the parameters in a mixed autoregressive
moving average process leads to a nonlinear optimization problem.
The negative logarithm of the likelihood function, suitably nor-
malized, converges to a deterministic function as the sample length
increases. The local and global extrema of this function are inves-
tigated. Conditions for the existence of a unique global and local
miniinum are given.

I. InTrRODUCTION

AXTIMUM likelihood estimation of the parameters
of an autoregressive moving average (ARMA)
process was analyzed in [2]. Conditions for consistency of
the maximum likelihood estimates are given in [2] and
asymptotic normality and asymptotic efficiency are
proven. Methods to compute the likelihood function, its
gradient and its Hessian were also given [2], as well as a
modified Newton—Raphson algorithm for maximizing the
likelihood function. The proof of consistency of the esti-
mates given in [2] depends crucially on the fact that the
absolute maximum of the likelihood function is found at
each sample length. When using any optimization al-
gorithm based on gradients, there is always the possibility
that the algorithm may converge to a local maximum.
When attempting to fit ARMA models to EEG data,
Bohlin [3] has also found cases where the likelihood func-
tion can conceivably have local maxima.

Since the value of the likelihood function for fixed
parameters is a random vaiiable, it is difficult to analyze
the possibility of local minima. It can, however, be shown
that the likelihood function, suitably normalized, will
converge to a deterministic function. The purpose of this
paper is to analyze the local and global extrema of this
limiting function. The main result is that the local and
global extrema coincide if enough parameters are used in
the fitted model. It is also shown that if the number of
parameters in the fitted model is sufficiently large and if
the orders of either the autoregression or the moving
average are correct then there is a unique local and global
maximum. However, if the orders of both the autoregres-
sive and the moving average part of the fitted model are
too high then there will be many maxima. All maxima are
on a manifold with the property that there is a common
factor in the polynomials associated with the moving
average and the autoregressive parts. If the number of
parameters i1s not sufficiently large, then the likelihood
function can have several local maxima.
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II. PRELIMINARIES

In this section a precise mathematical formulation of
the problems will be given. Some preliminary mathemati-
cal results to be used in the following section are also de-
veloped. Let {y(t), t=12-. } be a stationary Gaussian
stochastic process with rational spectral density. It follows
from the representation theorem (see, e.g., {1]) that the
process can be represented as a mixed autoregressive
moving average process, i.e.,

A*(gy®) = C*(g Ve(®)

where e(f) is a sequence of independent normal (0,1)
random variables, ¢~ denotes the backward shift operator
and the polynomials A*(z) and C*(2) are given by

A¥@) =14+ a4+ - + ayz2"
C*z) = 1+ cz+ - A+ cpem.
The representation (2.1) can be uniquely chosen so that
A*(z) and C*(z) do not have common factors and a,, as

well as ¢, are nonzero. The reciprocal polynomials A (2)
and C(z) given by

Az) = 2MA*@E™Y)

(2.1)

2.2)

C) = 2C*(z—1)  (2.3)

will also be used in the analysis.

Since the process {y(t)} is stationary, the polynomial
A(z) must have all its zeros inside the unit circle. The
polynomial C(2) can be chosen in such a way that all its
zeros are inside or on the unit circle. It will be assumed
that C(z) has no zeros on the unit cirele.

The estimation of the parameters a,---,@,,c1, ",
Cn, With the maximum likelihood method leads to the

c

problem of minimizing the function

1 X
VN(&)@ = VN<6’1J o ')dﬁu;elr' . }aﬁc> = Sz Z ez(t) (24)
2N &1
see [2]. The integers i, and 7, are given guesses or esti-
mates of n, and n,. The residual (?) is a function of the ob-
servations y(1),y(2),- - -,y(t), defined by

C¥gMe®) = A*(gMy(t) (2.5)
where
A*@) =14 e + -+ + dp 2%
C*@) = 14 & + - + énghe. (2.6)

The reciprocal polynomials A(z) and C(z) are defined
analogously to (2.3). The polynomial C(z) can always be
assumed to have all zeros inside or on the unit circle. It is
also assumed here that all zeros are inside the unit circle.
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Since only asymptotic properties will be considered, the
initial values of (2.5) are thus not important. They can,
e.g., be selected as zero. The assumption of stablhty means
that the domain of V¥ is taken as R% X H(C), where
H(C) is the subset of R such that the polynomial C(z)
has all zeros strictly inside the unit circle. With use of
(2.1) and (2.5) the residual can be written as

A*(g™) C*g™Y
C*(g™) A*(q™)
The maximum likelihood estimates of the model parame-
ters are obtained by finding the absolute minimum of V¥,
The existence of more than one local minimum may lead
to wrong estimates and cause difficulties in the computa-
tions.

Since the values of V¥ for fixed 4 and ¢ is a random
variable, it is in general very difficult to analyze the exis-
tence of possible local minima. It follows from ergodic
theory, see [4], that V¥ under the given assumptions con-
verges with probability one to the function V, defined by

2V (4,6 = ]}rim 2VN(4,8) = Ee()

1 A*(@)C*(2) A*(z1)C*(z—)de
A*@)C*(2) A*(0)C0*() 2
where the integration path is the unit circle.

Using the reciprocal polynomials the function V(4,¢) is
easily rewritten as

e(t) =

e(t). @.7)

T om 28)

o 1 Axex  AC L de
2V (4,¢) = o f e (2 ) (z) 2k (2.9)
where the integer k is given by
k= n,+ fic — fia — e (2.10)

Note that since V is defined as the limit of V¥, V is only
defined in the subset R% X H(C), although the integral
representation (2.9) has sense for all C(2) without zeros
on the unit cirele.

The residual () is in fact an estimate of e(¢) and a per-
fect model satisfies

C¥g™ _
A*g™)

C*g™
A*(q™Y)

(2.11)

which requires that the integers #, and #, are chosen so
that

fa 2 Ma Re 2 e (2.12)

The conditions (2.12) will appear later on in the analysis.

III. GroBAL MINIMA

The global minima of the loss function V (2.8) will now
be analyzed. Since the set H(C) is open, the minimum may
conceivably not exist. The function V will, however, be-
come infinite on the boundary of H(C) and no difficulties
arise.
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Theorem 1: Consider the mapping V:R% X H(C) - R
defined by (2.8), then

2V(4e) > (3.1)
where equality is obtained if and only if
A*@)C*(z) = A*@)C*(). o (3.2

Proof: Consider the following inequality

1 A*C* A*C’* dz

where the integration path is the unit circle. The integral
is nonnegative because the integrand is nonnegative.
Expanding the left-hand side of (3.3)

L—L—IL+1,30 (3.4)

where
L= %%()j—%( ) Eoor@s @)
I = 2im j:g: 0% =1 (3.6)
he gt T e 37)
ek o5

The integral I equals 1 because 2 = 0 is the only pole of
the integrand and its residue in 2 = 0 is 1. Inserting (3.5)—
(3.8) in (3.4), (3.1) is obtained. Moreover, equality in
(3.1) is obtained if and only if the left-hand side of (3.3)
is zero. This is the case when integrand vanishes, i.e.,
when (3.2) is satisfied.

Remark: By equating the coeflicients at equal powers
of z1in (3.2) a system of linear equations for the parameters
of the polynomials A(z) and C(z) is obtained. Since there
are fi, + 7. variables and max(n, + 7,7, + n,) equations,
we find that the equations have a solution only if the
number of unknowns is greater than or equal to the num-
ber of parameters, i.e.,

e + Re 2 max(n, + Ag,fta + 1)
or rewritten

min(f, — —n) 2 0 (3.9
which is nothing but (2.12). Equation (3.2) thus has a
solution only if A, 2 n., and A, > n. Since the poly-
nomials 4(2) and C'(z) have no common factors, we find
that A(z) must be a factor of A(2) and C(2) a factor of
C(2).

To analyze the consequences of (3.2) two different cases
will be separated.

Case 1: If min(d, —

Ny T

Ng,fie — M) = 0, then (3.2) has a
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unique solution which is given by
A*(z) = A*@2), C*(2) = C*(2). (3.10)

Case 2: If min(f, — ngRe — n,) > 0, then there are
infinitely many solutions of (3.2). They can be represented
by

A*(z) = A*(2)D*(2) C*(2) = C*(z)D*(z) (3.11)
where
D*@) = 14+ die + -+ + d,z2".
The integer ng equals min(f. — n,%, — n,), and the

coeflicients dy, - - -,d,, are arbitrary.

IV. Locar ExTREMA

Having characterized the global minima of the loss
function, the local extrema will now be analyzed, i.e., the
points where the gradient of the loss function will vanish.
It follows from (2.9) that the components of the gradient
of V are given by

av 1 AC c* .
= i J4+E—1
aa, A0 @ s ) &H T,
] = 1" aﬁa
oV 1 AC A*C* )
05, - " om Y a0 @ grgrox @D F T

=1 f. (41)

The conditions for the gradient to vanish will now be in-
vestigated. Conceivably the gradient may vanish for
parameter values such that A(z) and C(z) have common
factors. For this purpose assume that they have exactly
71, common factors. Note that the value of #, depends on
the considered point in R% X H (). Introduce the poly-
nomlals A*(z), C*(z), and D*(2) of degrees f1, = A, — #1g,

fte = f, — 714, and 7, respectively, through

A*(z) = A*(2)D*(2)

C*@z) = C*(z)D*(z) (4.2)
where '
D*@) = 1+ diz + -+ + dag™,

(D*@E) =1 if 7y = 0)

and the other two polynomials have a similar structure.

Note that by the construction A*(z) and C*(z) do not

have common factors. The reciprocal polynomials A(z)

and C(z), defined in analogy with (2.3), will also be utilized.
Put

16) = 46 @ i

A*(*C*

It then follows from (4.1) that the conditions for the gradi-
ent to vanish can be written as

e § e -

() 5. (4.3)
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A*(z)f(z)z’ = J=1 . (4.4)

2 w

Furthermore introduce

;=5 }( f(Z)z’ — (4.5)
and (4.4) can be written as
(1 - s, 7
0
0 .. N Fy
1 -+ &a, ’
1o . a = 0. (4.6)
0 h ' 0 Ffihp—ny
_ la s, |

The matrix is a (fi, + A;) X (. + A, — 7,) matrix. Since
A(z) and C(z) do not have common factors, it follows from
the theory of resultants, see e.g., [6], that the matrix has
rank (R, 4+ A, — 74). Thus, it is concluded

Fi= 0, 7/= 1,"‘,(ﬁa+’fbc“‘ﬁd). (47)
To proceed the following result is needed.
Lemma 1: Consider the funetion
9(2)
f@) = ——— (4.8)

where g is analytic inside and on the unit circle, the num-
bers u; are distinet and ¢; > 1. Assume that

1
f f@)2 ‘3 = J=1-m  (49)
where the integration path is the unit circle and
!
izl

Then f is analytic inside the unit circle. |
A proof of the lemnma is given in the Appendix.
Considering the form of the function f (4.3), where the

integer k is defined by (2.10), it is clear that the cases & > 0

and k& £ 0 should be discussed separately. Observing that

Zk = zmax(O,k)/zmax(O,—k)

both cases can be treated simultaneously.
The function f(z) is now rewritten as follows:

ACC*

1) = gegne

(2) - gmax®B). (4.11)

AC‘(Z) . zmax(o, —k)"

Note that the poles of f(z) are precisely the zeros of
AC(2) - z=>x(®.=®_ The number of them is

Ng + g -+ maX(O,—na - ﬁc + ﬁa + nc)

= max(Ne + fefle + 1) — #g.  (4.12)
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Furthermore identify

*

ACC
g(z) = W (z) - gmax(0,k) (4.13)
which clearly is analytic inside and on the unit circle.

In order to apply the lemma the condition (4.10) must

be satisfied, which requires that
e + fie — fg 2 mMax(ng + fg,fla + M) — 7g
which can be rewritten as
min(fi, — Na,fl; — n;) 2 0 (4.14)

which is nothing but (2.12).

Application of Lemma 1 thus implies that f is analytic
inside the unit circle. Thus the zeros of AC(z)-zmex©.—b
must be matched by zeros of the numerator. Since C*(z)
has all its zeros outside the unit circle, it is found that
AC(2)-zm==0.~® must be a factor of AC(z)em=x®», The
degree of the last polynomial is

i + Mo + max(0,k) = -max(ﬁ,z + ng,ne + Ag) — fg  (4.15)

which is to be compared with (4.12). Thus, the two poly-
nomials have the same degree. Moreover, the values of
the leading coéfficients are both one. This implies that the
polynomials are identical, i.e.,

AC(z)-2mx0.~0 = AC(z)-2mex0®  (4,16)

or rewritten with the reciprocal polynomials after multi-
plication with D(z)

A*(@)C*(2) = A*()C*(2). (4.17)

Applying Theorem 1 it is found that the local and global
minimum points of the loss function coincide or more pre-
cisely :

Theorem 2: Consider the loss function V: R X H(C) —
R defined by (2.7). Let #i, 2 nq, . 2 n,. Then the gradient
of V will vanish if and only if

A*()C*@) = A*(2)C*(2). O

Thus, it has been shown that the conditions (2.12) are
sufficient for all local extrema to be global minima. The
conditions A, 2 7, and %, > 7, can not be removed as
shown by the following example.

Example: Let the process be given by

y(@) + eyt — 2) = e(t), a#0

and let A, = 0 and %, = 1. Clearly (2.12) is not fulfilled.
V is a function of ¢ only. It can be calculated to satisfy
1 — act
2V(e) = . (418
@ 1 — )l — (I — a)é — '] (4.18)
It is easy to see that V/(0) = 0 V"(0) = (1 — 2«a)/
(1 — o?), and thus, ¢ = 0 is a local maximum point if « >
0.5. Since limp; V() = o, there exist (at least) two
local minimum points.
Summing up the analysis, the following conclusions can
be made. If A, 2> 7, and 7, = n,, or fi, = N, and A, 2> N,
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then there will be a unique global and local minimum.
If A, > ne and A, > n,, there will be many global and local
minima. All minima are characterized by (3.11), which
means that all models correspond to processes with the
same spectral density. If i, < 1, or i, < n, there may be
several local minima.

APPENDIX
Proor oF LEmma 1

Consider first the case when all ¢; equals 1. Equation
(4.9) can be written as
1 z de L g(z)
9() e _ 5 O

- SN A A res —

= - ;
27 H (¢ — w) z k=1z=u H (2 — u)
=1 =1
1
'zj—l = 2 h’kukj—ly J = 1;' M (Al)
k=1

where
hy = — g(ux) _

i 7k

(A.2)

Equations (A.1) can be written in matrix formulation as

1 U | hy
U Uy .

= 0, (A.3)
u™ w™ ] L

The matrix is a vanderMonde matrix. Since {u are dis-
tinet, its rank is 1 if m > I Hence, i, = Ofork =1 -+ I,
which from (A.2) implies that g(u) = Ofork =1 .-+ L
Thus, the poles of fin w; --- u, are cancelled and f is in
fact analytic inside the unit circle.

In order to treat the general case proceed as follows.
The formula (A.1) will be generalized to

0= -2—1— _l____g(z) #\dz
K2 I_Il (z _ ui)ti
! g()

I

1™

I 3
w
1

t=1
! 1 g(2) .
— D(tk“l) '21—1
kz:l t — D! ; i
1—11 (& — uy)
:bi;h z=1uk
l 1 tp—1 i
B kzl m ZO (&, — DY [ o
b= B - =
1y g(2)
pE—1=9 .
I_Il (2 — w)
:;L z=tk

j=1,---m. (A4)
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In matrix formulation these equations become
dy
Ud =

[Uy - - (A.5)

where the block matrix U, (1 € k < 0) isam X #, matrix
given by

1 0 0
z 1
U}; = ) . (AG)
"t D] L DOV,

The vector di(1 < k < 1) has #; components and is given by

1 D=9 9()
. g Z
G = DIt — H! 10 @ — w)

1=1
75k

dk.i =

z=up

LSS h (A7)

The matrix U is a generalization of the vanderMonde
matrix. It follows from [5] that the assumption (4.10) im-
plies that rank U equals ) %, Thus, it is concluded from
(A.5) that d = 0, or

g(z)

D(}M—J’) : — 0,
H (z — u)"
l’l;l% Z=UL
1€7<6,1<ELL (A8)
This relation can be written as
e NG
ZO tr, — DD [9(2) omu
iy 1
Lpte—i=» ; . =0,
H (Z it ui)h
2;7\1 Z=uf,
1< 1<ELL (A9

Consider first (A.9) for j = ¢. Then D©@[g(2)],_,, = 0 is
easily derived. Consider then (A.9) for j = #, — 1, which
in a similar way implies D®[g(2)],.—,, = 0. By repeating
the discussion it can be concluded that

Dv[g(z)]z=uk = 0, 0< vt — 1,1 <k <L (A].O)

Equation (A.10) implies that the polynomial Hli:l(z —
u;)" divides the function ¢(z). This means that all poles of
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the function f inside the unit circle are cancelled. With this
observation the proof of the lemma is finished. O
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