
CREATING VISUAL EFFECTS

BY SOLVING PARTIAL

DIFFERENTIAL EQUATIONS IN

REAL-TIME

KASPER ORNSTEIN MECKLENBURG

Bachelor’s thesis
2014:K4

Faculty of Engineering
Centre for Mathematical Sciences
Numerical Analysis

C
E
N

T
R

U
M

S
C

IE
N

T
IA

R
U

M
M

A
T
H

E
M

A
T
IC

A
R

U
M

Abstract

The goal of this bachelor thesis is to create visual ef-
fects by solving partial differential equations (PDEs). The
visual effects should be dependent on the input from music
and the PDEs are solved in real-time. Creating visual ef-
fects can be done in many different ways and the reason for
using PDEs is that they model natural phenomena which
is appealing to the human eye. Focus will be on studying
three different finite difference methods and one spectral
method. Fast implementations are essential and by using
multigrid techniques as well as the fast Fourier transform
this can be achieved. In order to determine which method
is suitable, we compare execution times as well as accuracy
in time and space for different initial values. The final con-
clusion is that the spectral method is superior for the heat
equation which was studied in the report.

2

Contents

1 Populärvetenskaplig sammanfattning 4

2 Introduction 5

3 Partial differential equations 5
3.1 The heat equation . 6

4 Finite difference methods 6
4.1 Spatial discretization . 6

4.1.1 Error . 7
4.2 Temporal discretization . 8

4.2.1 Stability conditions . 9
4.2.2 Error . 9

5 Multigrid methods 9
5.1 Jacobi method . 10
5.2 Recursive V-cycle . 10

5.2.1 Improvements . 11
5.3 Error . 11

6 Spectral method 12
6.1 Fourier series . 12
6.2 Derivation of the DFT . 12
6.3 Errors in the DFT . 13

6.3.1 Periodic, band-limited functions 13
6.3.2 Periodic, non-band-limited functions 14

6.4 FFT-algorithm . 15
6.5 Temporal discretization . 15

7 Implementation 16
7.1 NumPy and SciPy . 16
7.2 Explicit Euler . 17
7.3 Multigrid methods . 17
7.4 FFT . 19

8 Method comparison 20
8.1 Error in time domain . 20
8.2 Time-error efficiency . 22
8.3 Error spectral method . 22
8.4 Running time . 23

9 Application 24

10 Conclusions 27
10.1 Future work . 28

3

1 Populärvetenskaplig sammanfattning

Klubbar och nattliv förändras med tiden och p̊a senare dar har trenden g̊att mot att
man använder sig mer och mer av visuella effekter för att förhöja klubbupplevelsen. Det
vanligaste förekommande man ser p̊a klubbar är discokulor, strobes, färgade lampor,
lasrar, med mera. En del klubbar har tagit steget längre och projicerar olika färdiga
filmklipp, mönster och liknande. Det är här idén om att skapa visuella effekter genom
att lösa olika fysikaliska fenomen (partiella differential ekvationer) föddes.

När man gör beräkningar p̊a till exempel flöde, värmeväxling eller vibrationer i
realtid s̊a uppkommer väldigt iögonfallande mönster och former. Anledning till att det
är behagligt att titta p̊a beror p̊a att man modellerar naturliga rörelser som rör sig p̊a
ett tilltalade vis. För att skapa dessa effekter m̊aste tunga beräkningar utföras och det
är först p̊a senare år som datorer varit tillräckligt kraftiga för att klara av detta inom
rimliga tidsramar. Detta sätt att modellera p̊a finns inte kommersiellt, dock s̊a finns det
liknande effekter.

Winamp är ett program som spelar media, framför allt musik, och i detta finns s̊a
man kan sätta ig̊ang ett fönster som visar visuella effekter. De mönster som uppkommer
är direkt kopplade till frekvenserna i musiken och följer p̊a s̊a vis takten i l̊aten som
spelas. Det är här min idé skiljer sig fr̊an redan existerande visuella effekter. Effekterna
kommer att följa musiken men inte vara vara kopplat de till de frekvenser som finns
i ljudet. Beräkningarna kommer att börja i takt till musiken och sedan f̊a p̊ag̊a tills
dess att användaren bestämmer sig för att sedan förändra utseendet p̊a bilden. Det nya
utseendet kommer att starta i takt till musiken.

För att kunna lösa och beräkna de fysikaliska problemen s̊a behövs det specifika
metoder och det finns ett antal olika metoder man kan implementera. Ekvationen som
använts för styftet är värmeekvationen med periodiska randvillkor, den är relativt sim-
pel och behändig. De metoder som använts och jämförts är multigridmetoder, explicit
Euler och en spektralmetod. De har alla olika egenskaper och är bra p̊a olika saker.
Metoderna har även tidstegningmetoder vilka är nödvändiga för att se hur utvecklingen
sker över tid. Det är denna utveckling över tid som är de visuella effekterna. För att
kort sammanfatta metoderna:
Multigridmetoder approximerar en lösning till det rätta svaret genom att iterera flera
g̊anger och i varje iteration s̊a förbättras gissningen till dess att den kovergerar mot det
korrekt svaret. Tv̊a tidsstegningsmetoder har använts, implicit Euler och Trapezoidal
metoderna. Implicit Euler är lite snabbare medan Trapezoidal är nogrannare.
Explicit Euler är snabb och simpel. Den är dock väldigt begränsad p̊a s̊a vis att man
m̊aste ta sm̊a tidssteg vilket leder till att animationen blir väldigt l̊angsam.
Spektralmetoder bygger p̊a att transformerar fr̊an rumsplanet till frekvensplanet
genom att approximera med trigonometriska funktioner. Teorin bakom är rätt om-
fattande och det finns specialvillkor man m̊aste ta hänsyn till. För att snabba upp
tids̊atg̊angen används snabb fouriertransform. Metoden är exakt i tiden och är nogrann
i rummet.

De egenskaper metoderna besitter har jämförts däribland nogrannhet, tids̊atg̊ang
och hur lätta de är att implementera. Spektralmetoden är rätt överlägsen i flera avseen-
den s̊a som i nogrannhet och tids̊atg̊ang. För syftet av arbeter har spektralmetoden
implementerats i det slutgiltiga programmet. För att koppla ihop lösaren med takten
skrevs ett program som genererade en takt och via en lokal server som skapades p̊a
datorn kunde lösaren och takten sykroniseras. Slutresultat är ett fungerade program.

Programmet i sin helhet har potential att utvecklas till att bli mer visuellt tilltalande
och kopplas ihop till musik och inte till en taktgenerator. Syftet med kandidatarbetet
har uppn̊atts och det finns möjlighet att forsätta arbetet. Vägen innan man har ett
användarvänligt program är l̊ang men allting har en början.

4

2 Introduction

Solving partial differential equations (PDE) can be done with many different methods
all with different properties and qualities. We will be investigating how to solve ut = uxx
commonly called the heat equation in one and two dimensions. The reason for choosing
this PDE is that it is fairly simple and easy to implement. The methods we consider
include explicit Euler, implicit Euler, the Trapezoidal method and a spectral method.
Their accuracy and mainly their speed will be compared and discussed in order to find
the most suitable method. So how come we need a fast method to solve PDEs?

More or less all clubs nowadays have a Disc-Jockey (DJ) who plays and mixes music
live to the crowd. Lights, lasers, strobes and smoke machines are some of the visual
effects in the club. Some larger clubs have huge screens where a Video-Jockey (VJ)
shows visual effect; cool patterns, funky characters etc. However these visual effects
are almost always playback, they have made them in their studio prior. This is where
solving PDEs in real-time comes into the picture.

By solving PDEs in real-time a VJ could create visual effects interactively with the
DJ and connect them to the beat to the music. The visual effects would not follow the
beat entirely as the charm with PDEs is that the solution is often not known. This could
of course be done without solving PDEs however as PDEs describe physical phenomenas
they are natural-looking and therefore appealing to the eye.

The final step of the report is to have working program that will connect a beat with
a PDE solver. The program will not have a GUI nor be user friendly however it will
give a picture of how a potential product might look like.

Briefly the structure in this report will start with theory, then computations followed
by implementations and finally the conclusions that have been drawn. In Section 3 PDEs
will be explained and the heat equation will be introduced. Section 4 demonstrates how
to discretize the problem using finite difference methods, both in spatial and temporal
domain.

Section 5 is about multigrid methods using the Jacobi method and in Section 6 the
discrete Fourier transform is derived from Fourier series. These two sections are the
theory necessary to implement the PDE solvers in Python and the code for these is in
Section 7.

When the code is written the different methods will be compared in Section 8. There
will be a continuous discussion of the results, whether or not they follow the theory. The
actual program which connects everything together will be presented and explained in
Section 9. Finally, conclusions will be drawn and further work and improvements will
be discussed in Section 10.

3 Partial differential equations

A partial differential equation (PDE) is a deterministic relationship between a multi-
variable function and it’s partial derivatives. It can describe different phenomena in
physics, i.e. flow of heat, wave propagation, etc. The main focus in this thesis will be
the heat equation, however the methods later presented in this report can be applied to
other PDEs as well.

5

3.1 The heat equation

The heat equation is a second order parabolic PDE describing how heat is distributed
over a domain as time progresses. The heat equation is defined by

∂u(t,x)

∂t
= α∆u(t,x), t > 0, x ∈ Ω,

u(0,x) = g(x).
(1)

Here, α is a constant and α ≥ 0, ∆ is the Laplace operator, g(x) ∈ C2 is the initial
condition at t = 0 and Ω is the domain of interest. u(t,x) will most often represent
the temperature distribution in Ω. In one dimension x = (x) and in two dimensions
x = (x, y). For simplicity, we consider only square domains, i.e. Ω = (0, c) in one
dimension and Ω = (0, c)2 in two dimensions where c is the domain length.
Along the boundary, ∂Ω, certain boundary conditions are required. Some common
alternatives include Dirichlet, Neumann or mixes of these. We will be using periodic
boundary conditions which in one dimension are defined as

u(t, x+ c) = u(t, x), ∀x ∈ Ω, c ∈ Z.
(2)

In practice this can be interpreted as if the solution u(t, x) wraps around the edges of
the domain.

4 Finite difference methods

Finite difference methods are used to approximate PDEs numerically. They use finite
difference quotients to approximate the derivatives. In order to approximate the solution
u(t,x) we wish to discretize the domain (0, T) × Ω with a finite number of grid points
(tn,xi,j) given by

tn = n∆t, xi = i∆x, yj = j∆y, i, j = 0, 1, ..., N − 1.

Here n is the number of time steps, ∆t is the temporal step size and ∆x = ∆y is the
distance between two nodes defined by ∆x = 1

N−1 where N is the number of spatial
nodes. We will denote the approximation to u(tn,xi,j) by uni,j .

4.1 Spatial discretization

A standard second-order central finite difference approximation to the Laplacian will be
used. In one dimension, this is given by

∆u(tn, xi) ≈
uni−1 − 2uni + uni+1

∆x2
(3)

and in two dimensions,

∆u(t,xi,j) ≈
uni−1,j + uni,j−1 − 4uni,j + uni+1,j + uni,j+1

∆x2
.

6

The discretization can also be represented in matrix form. In one dimension the matrix
is of size (N ×N) and given by

T∆xu =
1

∆x2

−2 1 0 . . . 0 1
1 −2 1 0

0
. . .

. . .
. . .

...
... 0
0 1 −2 1
1 0 . . . 0 1 −2

u0

...

un−1

. (4)

In two dimensions the matrix is (N2 ×N2),

T∆xyu =

T∆x I/∆x2 0 . . . 0 I/∆x2

I/∆x2 T∆x I/∆x2 0

0
. . .

. . .
. . .

...
... 0
0 I/h2 T∆x I/∆x2

I/∆x2 0 . . . 0 I/∆x2 T∆x

u0

...

un−1

Here I is the identity matrix and ui = (ui,0, ..., ui,n−1)T . These discretizations can also
be expressed in a compact form as the computational stencils

1

∆x2

(
1 −2 1

)
and

1

∆x2

 1
1 −4 1

1

 . (5)

These stencils are easily used to approximate the Laplacian by applying the stencil with
a convolution over the domain. The boundary conditions (2) are discretized in one
dimension by

u0 = uN and u−1 = uN−1.

In two dimensions they are given by

un0,j = unN,j = uni,0 = uni,N and un−1,j = unN−1,j = uni,−1 = uni,N−1.

4.1.1 Error

When deriving the finite difference approximation a Taylor series has been used. In the
approximation (3) some terms of higher order are left out and these terms give us the
truncation error. Below u(xi ± ∆x) is expanded around xi using a Taylor series.

u(xi + ∆x) = u(xi) + ∆x
∂u

∂x

∣∣∣∣
xi

+
∆x2

2!

∂2u

∂x2

∣∣∣∣
xi

+
∆x3

3!

∂3u

∂x3

∣∣∣∣
xi

+
∆x4

4!

∂4u

∂x4

∣∣∣∣
xi

+ ... (6)

u(xi −∆x) = u(xi)−∆x
∂u

∂x

∣∣∣∣
xi

+
∆x2

2!

∂2u

∂x2

∣∣∣∣
xi

− ∆x3

3!

∂3u

∂x3

∣∣∣∣
xi

+
∆x4

4!

∂4u

∂x4

∣∣∣∣
xi

+ ... (7)

Manipulation of (6) and (7) gives

u(xi + ∆x)− 2u(xi) + u(xi + ∆x)

∆x2
− ∂2u

∂x2

∣∣∣∣
xi

=
2∆x2

4!

∂4u

∂x4

∣∣∣∣
xi

+O(∆x3).

As the terms on the right hand side are left out in our approximation (3), this is the
truncation error and is O(∆x2). In order to verify this we will compute

||T∆xu−∆u||, (8)

7

where the norm is the L2-norm. This norm will be used here and in the following error
calculations. In one dimension the L2-norm is defined by

||u(x)||2L2 =

∫
Ω

u(x)2dx.

After discretization we get what is usually called the root-mean-square (RMS)-norm:

||{ui}N−1
0 ||2RMS = ∆x

N−1∑
i=0

u2
i .

By combining (8) and (4.1.1) we finally get an expression which lets us compute the
truncation error,

eRMS =

√√√√ 1

N

N−1∑
i=0

(T∆xu−∆u)2. (9)

The result of the error calculations for u(x) = sin(2πx), Ω = (0, 1) can be seen in Figure
1. As we can see the relationship between the error and step size in the log-log graph
has a slope of two proving that the error is of O(∆x2). When the step size decreases the
error will also decrease, however with a sufficiently small step size the error will start to
increase. When this occurs it is due to the error being dominated by round-off errors
and not by the truncation error [1, page 247].

10-4 10-3 10-2 10-1

∆x

10-2

10-1

100

101

e
rr
o
r

c∆x2

Figure 1: The log-log values of the error vs step size.

4.2 Temporal discretization

In order to see how the PDE evolves in time, time stepping methods are necessary.
Three methods with different properties will be used to evaluate the PDE at certain
times [2, page 120].
Explicit Euler,

un+1 = un + ∆tT∆xu
n.

This is the simplest of the three methods and it is a a first order approximation, meaning
that the accuracy is O(∆t).

8

Implicit Euler,
un+1 − un

∆t
= T∆x(un+1)

Just like the explicit Euler it is a first order approximation.
Trapezoidal method,

un+1 − un

∆t
=

1

2
(T∆xu

n + T∆xu
n+1).

This method is more accurate and is O(∆t2).
In the implicit Euler and the Trapezoidal method linear systems have to be solved.

Solving linear systems with e.g. Gaussian elimination demands a lot of work and in
order to cut down computational time a more efficient method is required. One method
that can be used for this purpose is the multigrid method which will be presented in
section 5.

4.2.1 Stability conditions

The methods for time stepping have different conditions they must fulfill in order to
maintain stability.
CFL-condition. When solving the Laplacian the explicit Euler method must satisfy
∆t

∆x2 < 1
2 in one dimension and ∆t

∆x2 < 1
4 in two dimensions. If the CFL-condition is

violated the computation becomes unstable and the solution will ”blow up”.
A-stability. The Trapezoidal method is A-stable which implies that the absolute sta-
bility region is the left half-plane (z ∈ C : Re(z) ≤ 0), i.e. there is no restriction on ∆t
in our case.
L-stability. In addition to having the same properties as A-stability, a L-stable method’s
region of stability can cover the right half-plane. The implicit Euler is L-stable [2, page
171].

4.2.2 Error

As mentioned earlier the explicit Euler, implicit Euler and Trapezoidal method are
O(∆t), O(∆t) respectively O(∆t2) approximations. The errors for these methods are
derived in the same way as in Section 4.1, but by doing a Taylor expansion in the time
variable instead.

5 Multigrid methods

As mentioned in Section 4.2, solving large linear systems demands lots of work and
efficient methods are necessary. Some of these methods are multigrid methods and they
exist in many different forms and variations. We will concentrate on a multigrid method
which uses the Jacobi method for relaxation and a multigrid V-cycle to calculate the
following approximation to the Laplacian in one dimension

T∆xu = f . (10)

The matrix T∆x is from (4). What the Jacobi method does is to approximate a difficult
problem with an easier one and this is called relaxation. By relaxing iteratively on
different grid sizes, called a V-cycle, a very good approximation to the problem (10)
can be made. By using fewer grid points high frequencies are reduced and this reduces
noise. The approximation to u is v and with this we can start formulating our multigrid
method.

9

5.1 Jacobi method

In order to get a picture of how good our approximation to u is we need to define the
error as the approximation subtracted from the exact solution,

e = u− v. (11)

However, as the exact solution which we wish to calculate is unknown, the error is
unknown as well. We define the residual r, by

r = f − T∆xv.

Then together with (11) another important relationship can be made:

T∆xe = r.

With these definitions the Jacobi method can start to take shape. Lets start by rewriting
(10) as

uj+1 − 2uj + uj−1

h2
= fj ⇐⇒ uj =

1

2
(uj+1 + uj−1 − h2fj). (12)

By introducing T∆x = D − L − U the notation can be kept simple. Here L and U are
strictly the lower respectively the upper triangular elements and D are the diagonal
elements. We can express (12) as

u = D−1(L+ U)u−D−1f

with RJ = D−1(L+ U).
(13)

Here RJ is the Jacobi iteration matrix. Lets replace u with v in (12), then the Jacobi
iteration can be formulated as

v
(1)
j =

1

2
(u

(0)
j+1 + u

(0)
j−1 − h

2fj).

Here v(0) is the initial guess or current approximation and v(1) is the new calculated
value [3, page 8]. Expressed with the same notation as in (13)

v(1) = RJv(0) −D−1f .

5.2 Recursive V-cycle

A way to get around solving (5.1) on a large grid is by reducing the number of grid
points. This will reduce the number of equations that need to be solved and in order to
do this we need an operator,

I2h
h vh = v2h.

Here I2h
h is a mapping operator which reduces the number of grid points by half so that

Ωh → Ω2h with Ωh being the finest grid and Ω2h the coarsest of the two. The operator
can also interpolate points which doubles the number of grid points Ih2h : Ω2h → Ωh. In
order for the reduction/interpolation to work properly the number of grid points should
be chosen as N = 2M + 1, M ∈ N. The algorithm for the recursive V-cycle follows as
[3, page 40]

vh ← V h(vh, fh)

1. Relax m times on Th∆xu
h = fh with a given initial guess vh.

10

2. If Ωh is the coarest grid then go to step 4.
Else

• f2h ← I2h
h (fh − Th∆xvh),

• v2h ← 0,

• v2h ← V 2h(v2h, f2h

3. Correct vh ← vh + Ih2hv
2h

4. Relax m times on Th∆xu
h = fh with a given initial guess vh.

The cost of each V-cycle is O(Nd) and for a second-order method the number of iter-
ations costs O(log2(N)). Combined the total cost for each cycle is O(Nd log2(N)) [4,
chap. 8].

5.2.1 Improvements

In order to give an even better approximation to (10) we can solve the error residual
equation (5.1) exactly to correct our approximation v. However this is much too costly
to do in every iterative step. When the coarsest grid is reached we solve

e = T−1
∆xr

and the cost of this depends on how rough the coarsest grid is. This error calculated
is removed from our approximation v. Another improvement which that can be made
is to filter out any high pitch noise a lowpass filter, it is applied on even grid points [4,
chap 9]. The computational stencils for a lowpass filter can have different appearances
but we will use the following in one respectively two dimensions

1

4

[
1 2 1

]
and

1

16

1 2 1
2 4 2
1 2 1

 .
5.3 Error

For every time we do the Jacobi iteration a better result is given. In order to specify
how fast the error converges we will introduce the spectral radius of a matrix as [3, page
16]

ρ(A) = max|λ(A)|.

Here λ(A) denotes the eigenvalues of the matrix A. If A is a symmetric matrix the
spectral radius of A is its 2-norm. The error after m iteration sweeps can be written as

e(m) = Rme(0).

If we take the vector and matrix norm we can write

||e(m)|| = ||R||m||e(0)||

and this converges for all initial guesses for

lim
m→∞

Rm = 0 if and only if ρ(R) < 1.

This error from the V-cycle will be much smaller than the spatial error derived in Section
4.1 [4, chap. 8].

11

6 Spectral method

An additional way to solve PDEs in an efficient way other than multigrid methods is by
using spectral methods which are based on expressing the solution as a Fourier series.
We will start by deriving the discrete Fourier transform from the Fourier series and then
a fast Fourier transform algorithm will be used to compute it.

6.1 Fourier series

The basic idea behind the Fourier series is to express a function as a sum of simpler
functions. The Fourier series uses cosine and sine functions as its basis functions, often
expressed with exponential functions. The A-periodic function f is associated with the
Fourier series

f(x) ∼
∞∑

k=−∞

cke
−i2πkx
A (14)

where ck are the Fourier coefficients, k represents the frequency and A the spatial grid
length. It is the Fourier coefficients that need to be calculated in order to satisfy the
equality above. To find these coefficients we use the essential orthogonality properties
of the exponential functions. Lets observe the following integral∫ A

2

−A
2

e
i2πjx
A e

−i2πkx
A dx =

[
A
ei2π(j−k)x/A

i2π(j − k)

]A
2

−A
2

= Aδj−k

where δ is the ordinary Kronecker delta and j and k are any integers. Let us assume
that we can write (14) as the stronger statement,

f(x) =

∞∑
j=−∞

cje
−i2πjx
A .

Multiply both sides by 1
Ae

−i2πkx
A and integrate over −A2 ≤ x ≤

A
2 :

1

A

∫ A
2

−A
2

f(x)e
−i2πkx
A dx =

1

A

∫ A
2

−A
2

∞∑
j=−∞

cje
−i2π(j−k)x

A dx

=

∞∑
j=−∞

cj
1

A

∫ A
2

−A
2

e
−i2π(j−k)x

A dx

Due to the orthogonality properties, the only terms remaining are when k = j. This
leaves us with the final expression for the Fourier coefficients

ck =
1

A

∫ A
2

−A
2

f(x)e
i2πkx
A dx.

6.2 Derivation of the DFT

Now that the Fourier series and its orthogonality properties have been expressed we
can continue with the derivation of the discrete Fourier transform approximation of the
Fourier coefficients. First we need to introduce a finite grid with N + 1 equally spaced
points similar to that of Section 4. However we choose the interval [−A2 , A2] which

12

will make more sense as we wish to approximate (6.1). We approximate the Fourier

coefficients by applying the trapezoidal rule with g(x) = f(x)e
−i2πkx
A [5, page 39]

ck =
1

A

∫ A
2

−A
2

g(x)dx ≈ 1

A

∆x

2

g
(
−A
2

)
+ 2

N
2 −1∑

n=−N2 +1

g(xn) + g

(
A

2

) . (15)

As we assumed in (2), it follows that g
(−A

2

)
= g

(
A
2

)
. By observing that 2πkxn/A =

2πnk/N and writing f(xn) = fn we can rewrite (15) as our final approximation for the
Fourier coefficients

ck ≈
1

N

N
2∑

n=−N2 +1

fn e
−i2πkn
N =: Fk

and with k = −N/2 + 1, ..., N/2. Thus, we define the DFT of the sequence {fn} by
D{fn}k = Fk.
In order to be able to transform back from the frequency domain to the spatial domain
we need to define the inverse discrete Fourier transform, i.e. find the mapping D−1

satisfying
D−1{D{fn}k}n = fn.

But by a simple calculation, one confirms that

fn =

N
2∑

k=−N2 +1

Fk e
i2πkn
N .

The DFT in two dimensions is derived similarly as in one dimension. With the notation
fm,n = f(xn, ym) and wba = ei2π

b
a we can write the DFT in two dimensions as

Fj,k =
1

MN

M
2∑

m=−M2 +1

N
2∑

n=−N2 +1

fm,nω
−mj
M ω−nkN

fm,n =

M
2∑

j=−M2 +1

N
2∑

k=−N2 +1

Fj,kω
mj
M ωnkN

The derivation of the DFT in one and two dimensions is complete and we can now
consider the error of the approximation.

6.3 Errors in the DFT

This topic is quite more abstract compared to the finite difference method in Section 4.
The error when using the discrete Fourier transform depends on the sampling rate which
is connected to the properties of the input function. The Fourier transform approximates
functions as sines and cosines so if a function is built up of these the approximation can
be exact. However if the function is unsmooth, has high frequencies or discontinuities
the error becomes more complex to calculate. We will now consider two cases a bit more
carefully.

6.3.1 Periodic, band-limited functions

According to the Nyquist sampling theorem [5, page 183] there must be at least two
samples per period or else a phenomena called aliasing will occur [5, page 185]. What

13

happens is that if a certain frequency is sampled at a unsatisfactory rate the frequency
will be perceived as a lower frequency than it actually is. If the function fulfills the
Nyquist sampling rate criterion the function is said to be band-limited and if the function
is also periodic we can state that Fk = ck, i.e. it is no longer an approximation as in
(6.2). We have an exact solution with no error if and only if the sample rate is sufficient
so that all frequencies are taken in account and the input is periodic.

6.3.2 Periodic, non-band-limited functions

If the sample rate isn’t sufficient (aliasing) frequencies that are greater than N/2 will
go unnoticed. We will introduce the discrete Poisson summation formula as

Fk = ck +

∞∑
j=1

(ck+jN + ck−jN), k = −N
2

+ 1, ...,
N

2
. (16)

These unsampled frequencies will be the DFT error and we will start to express the
error by rewriting (16) as

Fk − ck =

∞∑
j=1

(ck+jN + ck−jN), k = −N
2

+ 1...
N

2
. (17)

In order to express the error will use the theorem of rate of decay of Fourier coefficients
[5, page 188]. This states that if f has p continuous derivatives, then

|ck| ≤
C

|k|p+1
(18)

where C is a constant independent of k. This is a way to measure the smoothness of a
function, the smoother it is the smaller the error will be. By combining (17) and (18)
we thus get

|Fk − ck| ≤
∞∑
j=1

C

|k + jN |p+1
+

C

|k − jN |p+1

≤ C

Np+1

∞∑
j=1

1

|j + k
N |p+1

+
1

|j − k
N |p+1

,

k = −N
2

+ 1, ...,
N

2
.

This series converges for p ≥ 1 so the error can be written as

|Fk − ck| ≤ C ′/Np+1. (19)

The larger we choose N the less the error will be as higher frequencies are taken in
account and if the function is smooth the error decreases exponentially.

In order to relate the error in the Fourier coefficients to the spatial domain Parseval’s
theorem will be used. For the DFT it states

N−1∑
n=0

|xn|2 =
1

N

N−1∑
k=0

|Xk|2

with D{xn}k = Xk and together with (4.1.1) and (19) we can formulate

||D−1{D{xnu}} − u||2RMS =
1

N

N−1∑
k=0

|Fk − ck|2

≤ C/N2p+2.

14

6.4 FFT-algorithm

The DFT can be computed in a straightforward but expensive manner. However it
can easily be speeded up by avoiding calculation of numbers more than once. This is
what the fast Fourier transform does and it is important to understand that it only is
an efficient algorithm to compute the DFT. It uses symmetries in the calculated terms
and the efficiency is highest when N is a power of two, i.e. N = 2M , M ∈ N [6]. The
conventional way to solve the DFT is O(N2) while the FFT is O(N log2N) [5, page
384], a vast improvement.
There a few different ways approach the FFT; the splitting method, index expansions,
matrix factorizations, prime factor and convolution models. We will concentrate on the
splitting method as this is the most straightforward approach. The method has two
parts; the reordering stage and the combine stage. In the reordering stage the different
frequencies are ordered in a certain way to avoid them being calculated twice. In (15)
we had n = −N2 + 1, ..., N2 but for simplicity we will choose n = 0, 1, ..., N − 1 and the
notation from (6.2) which gives

Xk =

N−1∑
n=0

xnω
−nk
N .

We now split the sequence xn by letting yn = x2n and zn = x2n+1 and get

Xk =

N
2 −1∑
n=0

ynω
−2nk
N + znω

−(2n+1)k
N

=

N
2 −1∑
n=0

ynω
−2nk
N + ω−kN

N
2 −1∑
n=0

znω
−(2n+1)k
N .

(20)

By splitting Xn into two DFTs with the length of N/2 the symmetries can start to take
shape. By introducing

Yk =

N
2 −1∑
n=0

ynω
−2nk
N and Zk =

N
2 −1∑
n=0

znω
−(2n+1)k
N

we can write (20) as

Xk = Yk + ω−kN Zk and Xk+N
2

= Yk − ω−kN Zk.

Computing Yk and Zk costs 2
(
N
2

)2
= N2

2 and evaluating the sums is only O(N). Yk and
Zk are in turn splitted and their sub-sequences as well, and so forth until the sequence is
of length 1, i.e. it is not a series any longer. When this happens the computational cost
will become O(N log2N) per dimension. The FFT makes a huge difference especially
when applied in multiple dimensions.

6.5 Temporal discretization

In Section 4 time stepping methods were introduced and we will now derive the time
stepping method for the DFT. Lets assume that the Fourier coefficients are time depen-
dent α(t) we can then formulate

u(x, t) =

N∑
α(t) ei2πkx.

15

By using this formulation in the heat equation (1) we can write

d

dt
u(x, t) =

d2

dx2

(
N∑
α(t) ei2πkx

)
,

which has the solution

u(x, t) = e−4π2k2t
N∑
Fk e

i2πkx.

7 Implementation

We have now gone through all the theory necessary for explicit Euler, implicit Euler,
Trapezoidal method and the DFT. Python will be our tool used to write the PDE-solvers
and perform the necessary calculations. Python is a object-oriented, general-purpose,
high-level programming language with a large standard library which include SciPy
(Scientific Python) and NumPy (Numerical Python). These will be used to perform the
necessary calculations. Python also allows us to visualize these calculations with the
package matlibplot. In addition to this Python has some packages allowing the PDE
solvers to interact with a potential Video-Jockey program (more on this in Section 9).

7.1 NumPy and SciPy

NumPy and SciPy [7] enables the user to perform calculations fast and efficiently, it is
quite similar to the environment in MATLAB. Gregory von Winckel has a website on
NumPy and SciPy where he shows how it is possible to implement solvers for different
ODEs and PDEs [8]. Inspiration and ideas has been taken from his website. Below fol-
lows a short description on some of the methods from these packages used to implement
the PDE solvers.

• numpy.fft.fft
This function computes the n-point one-dimensional DFT using the fast Fourier
transform. In two dimensions ones uses numpy.fft.fft2. The inverse DFTs are
numpy.fft.ifft and numpy.fft.ifft2 respectively.

• numpy.fft.fftshift
This is used after numpy.fft.fft has been applied and places the zero-frequency
to the center of the spectrum. The reason why it is used is that the output
from numpy.fft.fft does not arrange the frequencies as desired. Its inverse is
numpy.fft.iffshift.

• scipy.sparse
This is a two dimensional sparse matrix package which contains a few different
formats for different purposes. As T∆x more or less is tridiagonal it will be created
as a sparse matrix to speed up different arithmetic operations.

• numpy.linalg.solve
Computes the exact solution of Ax = b. A must be of full rank, i.e. all rows must
be linearly independent, since otherwise A is not invertible.

• numpy.roll
This method shifts a vector k = 0,±1,±2, ... steps, e.g. [u0, u1, ..., uN−2, uN−1]→
[u1, u2, ..., uN−1, u0].

16

7.2 Explicit Euler

The code for the explicit Euler method is quite straightforward and the only change
possible is how to implement T∆x. Here the vector has been shifted using numpy.roll.
Normal matrix multiplication with T∆x or convolution using computational stencils 5
are other alternatives. It also has a practical CFL function which allows the user to see
whether or not the CFL condition is violated.

class ExEuHeat1D_test(object):

"""

Solves the heat equation, dU/dt = d**2U/dx**2, using explicit Euler.

Inputs:

- initial condition, a twice differentiable periodic function

- dt, size of the time step.

"""

def __init__(self, initial, dt):

self.u = initial

self.dt = dt

self.n = len(self.u)

self.dx = 1/self.n

def time_step(self):

""" Takes a step dt in time by shifting

the current vector one step up/down. """

self.u = self.u + self.dt/self.dx**2*(1*np.roll(self.u,-1)

- 2*self.u + 1*np.roll(self.u,1))

def get_CFL(self):

""" Returns the CFL condition. For stability dt/dx**2 <= 1/2."""

return self.dt/self.dx**2

7.3 Multigrid methods

The only difference between the implicit Euler and Trapezoidal methods is how the time
stepping is done. Their common class is instantiated by:

class FMGVHeat1D_test(object):

"""

Solves the heat equation, dU/dt = d**2U/dx**2, using implicit

time stepping methods (implicit Euler or Trapezoidal).

Inputs:

- initial condition, a twice differentiable periodic function

- dt, size of the time step.

"""

def __init__(self, u, dt):

self.dt = dt

self.u = u

self.v = np.zeros(self.u.shape)

self.n = len(self.u)

self.A = self.get_matrix(33)

The recursive vycle using Jacobi iteration.

def vcycle(self, v, f):

17

" recursively decreases the grid and solves exactly "

n = len(f)

dx = 1/n

d = 2/dx**2

if n < 34:

the bottom of the recursion

return self.solver(f, n)

else:

rc = self.residual(v, f, n, dx)

v = v + rc/d

rc = self.residual(v, f, n, dx)

creates the coarse grid

rc = self.restrict(rc)

recursive call

ec = self.FMGV(np.zeros(np.shape(rc)), rc)

vector back to ordinary size

ef = self.prolong(ec)

removes the error

v = v - ef

rf = self.residual(v, f, n, dx)

v = v + rf/d

return v

The vcycle calls upon the residual. For the implicit Euler method:

def residual(self, v, f, n, dx):

" Calculates the residual, r = Tv - f. "

Tdx = self.get_matrix(n)

T = np.eye(n) - self.dt*Tdx

Tv = np.dot(T, v)

return Tv - f

and for the Trapezoidal method:

def residual(self, v, f, n):

" Calculates the residual, r = Tv - f. "

Tdx = self.get_matrix(n)

T = np.eye(n)-self.dt/2*Tdx

Tv = np.dot(T, v)

return Tv - f

Restrict removes half the interior grid points leaving the boundaries untouched.

def restrict(self, ef):

" Halves number of grid points. "

return ef[0::2]

Prolong interpolates and uses numpy.roll to approximate the new grid points.

def prolong(self, ec):

" Interpolates making: n --> 2*n - 1. "

ef = np.zeros(len(ec)*2 - 1)

ef[0::2] = ec

efdown = np.roll(ef,1)

efup = np.roll(ef,-1)

return ef + (efdown + efup)/2

18

In the bottom of the recursion solve is called upon. The implicit Euler and Trapezoidal
method differ and for the implicit Euler method the code is

def solver(self, f, n):

Tv = np.eye(n) - self.dt * self.A

return np.linalg.solve(Tv, f)

and for the Trapezoidal it is

def solver(self, f, n):

T = np.eye(n)/2 - self.dt / 2 * self.A

return np.linalg.solve(T, f)

The Trapezoidal method uses a different input f than the implicit Euler. So instead of
sending the initial values the Trapezoidal method calculates f as:

def time_step(self):

" takes a trapeziodal timestep "

f = self.u + (self.dt/self.dx**2 * (1*np.roll(self.u,-1)

- 2*self.u + 1*np.roll(self.u,1)))/2

self.u = self.vcycle(self.v, f)

The implicit Euler method only needs to call upon the vcycle to make a time step.

7.4 FFT

The solver first transforms the values from the spatial ux to the frequency domain uk
and saves both vectors. uk is shifted to get the frequencies right place and shifted
back before being transformed back to the spatial domain. For every time step uk is
multiplied by the derivative constant from (6.5) and the vectors are updated.

class FFTHeat1D_test(object):

"""

Solves the 1D heat equation, dU/dt = d**2U/dx**2, using FFT.

Inputs:

- initial condition, a twice differentiable periodic function

- dt, size of the time step.

"""

def __init__(self, u, dt):

self.ux = u

self.uk = self.compute_to_k(u)

self.n = len(self.uk)

self.dt = dt

self.e = self.get_derivConst()

def get_derivConst(self):

kVec = np.arange(-self.n/2,self.n/2)

derivConst = -(2*np.pi*kVec)**2*self.dt

return np.exp(derivConst)

def compute_to_k(self, u):

" Converts vector from spatial to frequency domain. "

u = np.fft.fft(u)

return np.fft.fftshift(u)

19

def compute_to_x(self, uk):

" Converts vector from frequency to spatial domain. "

uk = np.fft.ifftshift(uk)

return np.fft.ifft(uk)

def time_step(self):

" Takes a step dt in time using FFT. "

self.uk = self.e * self.uk

self.ux = np.real(self.compute_to_x(self.uk))

8 Method comparison

We have now come to the point where it is time to actually test our theory and the
implementation of our different methods. First the error in the time domain will be
tested and later the execution time. It is the execution time which is most essential but
not to forget stability. If the time it takes for one step in time exceeds 1

25 = 0.04s the
animation might look slow and choppy. If it is faster it will look smooth as the human
eye cannot distinguish more than about 25 frames per second.

As our initial values for the heat equation we will use g(x) = sin(2πx), g(x) =

10(x4 − 2x3 + x2) and g(x) = e−30(x− 1
2)2 . Plotted they look like:

0.0 0.2 0.4 0.6 0.8 1.0
−1.0

−0.5

0.0

0.5

1.0

(a) Trigonometric function,
sin(2πx)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) Polynomial function,
10(x4 − 2x3 + x2)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(c) Exponential function,

e−30(x− 1
2
)2

Figure 2: Initial values g(x) used in our comparison. Ω ∈ (0, 1).

The reason for choosing these values is that they all fulfill periodic boundary condi-
tions and have different properties. sin(2πx) is a trigonometric function and is C2. The
polynomial function 10(x4 − 2x3 + x2) is multiplied by 10 to increase the amplitude. It

is periodic and C2. e−30(x− 1
2)2 also known as the Gaussian-spike contains all frequencies

and satisfies g(x) ∈ C2.

8.1 Error in time domain

In order to check the accuracy of our solution we will use the RMS-norm (9). The exact
solution to the values seen in Figure 2a is

u(x, t) = e−4π2t sin(2πx).

The error will be calculated by taking time steps until tend = 0.05 has been reached. This
will be done with varying sizes of ∆t giving different errors depending on the method
used. The two other initial values in Figure 2b & 2c lack exact solutions. Instead ∆t
will be chosen at least 23 times smaller than the smallest ∆t evaluated. By doing this
we can approximate it as the exact answer and use it to find an approximate error.

20

10-6 10-5

∆t

10-7

10-6

10-5

10-4

e
rr
o
r

Explicit Euler
c ·∆t

(a) As we can see the error in the Explicit
Euler doesn’t follow the intended line. This
is due to a mix of errors in the temporal
and spatial domain.

10-5 10-4 10-3 10-2 10-1

∆t

10-17

10-16

10-15

10-14

e
rr
o
r

(b) The error from the FFT is ∼ 10−14

which is due to round-off errors and can be
disregarded. The size of ∆t is irrelevant
and the solution is exact in both time and
space.

10-4 10-3 10-2 10-1

∆t

10-7

10-6

10-5

10-4

10-3

10-2

10-1

e
rr
o
r

Trapezoidal rule

c∆t2

(c) The first error-points in the Trapezoidal
method follows the curve with slope of two
and then the spatial error becomes larger,
i.e. it does not matter if we make ∆t
smaller.

10-5 10-4 10-3 10-2 10-1

∆t

10-4

10-3

10-2

10-1

e
rr
o
r

Implicit Euler
c∆t

(d) The error from the Implicit Euler
method correctly follows the curve with a
slope of one.

Figure 3: The error is plotted against ∆t until tend = 0.05 for g(x) = sin(2πx). N =
28 + 1 for the multigrid methods and N = 28 for the FFT and Explicit Euler methods.

In Figure 3 the results from the calculations show the error plotted against ∆t. As
we can see in Figure 3b the FFT error can be disregarded and instead the number of
grid points (sampling rate) will be investigated further in Section 8.3.

The Explicit Eulers CFL conditions are 1
2 ≤

∆t
∆x2 . So as ∆t decreases the error will

become a mix between the spatial and temporal approximations which can be seen in
Figure 3a. No further investigation will be made regarding the error in the time domain
as we will get the same result.

More interesting are Figures 3d & 3c. To recall the implicit Euler is O(∆t) and the
Trapezoidal method is O(∆t2). This difference is noticed as the curve in Figure 3c bends
off at a much earlier stage, i.e. the temporal error becomes smaller than the domain
error at a earlier stage.

Lets continue and plot g(x) = 10(x4 − 2x3 + x2) and g(x) = e−30(x−1/2)2 with the
implicit Euler and Trapezoidal methods.

The plots in Figures 4 & 5 look like anticipated as they follow the curves slope. It
is now clear that the implicit Euler is O(∆t) and Trapezoidal method is O(∆t2).

21

10-5 10-4 10-3 10-2 10-1

∆t

10-5

10-4

10-3

10-2

10-1

e
rr
o
r

Implicit Euler
c∆t

(a) The error from the implicit Euler fol-
lows the intended slope.

10-5 10-4 10-3 10-2 10-1

∆t

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

e
rr
o
r

Trapezoidal rule

c∆t2

(b) The error from the Trapezoidal method
behaves like expected.

Figure 4: The implicit Euler and Trapezoidal methods error plotted against ∆t until
tend = 0.05 for g(x) = 10(x4 − 2x3 + x2) with N = 28 + 1. They behave like expected.

10-5 10-4 10-3 10-2 10-1

∆t

10-5

10-4

10-3

10-2

10-1

e
rr
o
r

Implicit Euler
c∆t

(a) The implicit Euler follows the curve
with a slope of one.

10-5 10-4 10-3 10-2 10-1

∆t

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

e
rr
o
r

Trapezoidal rule

c∆t2

(b) The Trapezoidal methods error behaves
like predicted.

Figure 5: The implicit Euler and Trapezoidal methods error plotted against ∆t until
tend = 0.05 for g(x) = e−30(x−1/2)2 with N = 28 + 1. The result is satisfying.

8.2 Time-error efficiency

In order to compare the different methods and find an optimal ∆t where the error and
time elapsed are minimal an efficiency plot will be made. The error will be plotted
against the time elapsed to reach tend = 0.05 with varying ∆t.

As the FFT is exact in time there is no reason to investigate this specific scenario.
The Trapezoidal method is the best of the three finite difference methods and it can be
compared to the FFT. If we look at the running time in Figure 9b and at N = 28 + 1 its
≤ 10−2 seconds. Besides, the number of steps until tend is reached can be chosen freely.

8.3 Error spectral method

We shall now investigate how the number of grid points/frequencies taken in account
affects the error. For the finite methods this is already well-known from Section 4.

In Figure 8 we see two plots with different slopes. We will connect this to the theorem
in Section 6.3. The function 10(x4 − 2x3 + x2) has two continuous derivatives and

e−30(x− 1
2)2 has none. By using (19) and realizing that p = 3 respectively p = 1 the error

can be approximated. For the polynomial the error will be eRMS = C/Np+1 = C/N4

22

0.4 0.5 0.6 0.7 0.8 0.9 1.0
time, s

10-7

10-6

10-5

e
rr
o
r

(a) At circa 0.85 seconds the explicit Euler
has its optimal ratio between time elapsed
and error.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
time, s

10-6

10-5

10-4

10-3

e
rr
o
r

(b) Already at 0.2 seconds the Trapezoidal
method reaches its optimal relation.

Figure 6: Time efficiency plots for the explicit Euler and Trapezoid method for N =
28 + 1. The Trapezoidal method reaches its maximum at a lower error four times faster
than the explicit Euler.

0 1 2 3 4 5 6 7
time, s

10-4

10-3

10-2

e
rr
o
r

Figure 7: The implicit Euler is of O(∆t) and does not reaches any kind of maxima
relation between time and error. N = 28 + 1.

and for the Gaussian-spike eRMS = C/Np+1 = C/N2. As the slope is 4 respectively 2
this error approximation seems to be adequate.

8.4 Running time

The final step of the investigation of the methods is their execution time. It is important
to remember that the solvers are written as objects in Python an due to this they might
act a bit unexpectedly, especially in Figure 11 it is noticeable.

All the methods in Figures 9 & 10 act like predicted. In Figure 9a the first points
are a bit off however as N increases the remaining points follow the curve. The fastest
method is the explicit Euler followed by the FFT, then the implicit Euler and finally
the Trapezoidal method in Figure 10. This is also to expect as more work is done in the
multigrid methods.

As we can see in Figure 11 the FFT and explicit Euler act like predicted, with the
exception of the first few points. The multigrid methods in Figure 12 have a lot of
methods calls in a recursive manner and this could be why they behave differently of
what we expected. However as N increases the points seem to converge to the slope.
The cause of this is perhaps that the method calls will matter less compared to the time

23

101 102 103 104 105

N

10-17

10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

e
rr
o
r

FFT

c ·1/N4

(a) The error decreases rapidly for the ini-
tal function x4 − 2x3 + x2. It follows the
curve’s slope of 4 until only round-off errors
start affecting.

101 102 103 104 105

N

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

e
rr
o
r

FFT

c ·1/N2

(b) The error with g(x) = e−30(x− 1
2
)2 is

plotted against N . It follows the curve
which has a slope of 2.

Figure 8: The fast Fourier transform has been applied on 10(x4−2x3+x2) and e−30(x− 1
2)2

for varying N .

104 105 106 107

N

10-4

10-3

10-2

10-1

ti
m
e
,
s

Explicit Euler
cN

(a) The explicit Euler is fast and follows
the predicted slope with the exception of
the first points.

104 105 106 107

N

10-3

10-2

10-1

100

101

ti
m
e
,
s

FFT
cNlogN

(b) The FFT is quite fast and acts like pre-
dicted.

Figure 9: The explicit Euler and FFT methods showing the execution time for one step
in time in one dimension.

the actual calculations take to perform. The explicit Euler is still the fastest method,
about 10 times faster than the FFT. Its not visible in Figure 12 but the implicit Euler
is slightly faster than the Trapezoidal.

9 Application

The PDE solvers have been tested and we are ready to put them in use. There are
some components needed in order to make everything work together as a prototype VJ
software. First, a server is created and it opens up a server locally on the computer. A
”beat-generator” connects to the server and generates a beat in a for-loop. The beat
generator code is simple and therefore left out.

class Server(asyncore.dispatcher):

def __init__(self, host, port):

asyncore.dispatcher.__init__(self)

24

104 105 106 107

N

10-3

10-2

10-1

100

101

102
ti
m
e
,
s

Trapezoidal rule
cNlogN

(a) The Trapezoidal method acts like ex-
pected.

104 105 106 107

N

10-3

10-2

10-1

100

101

102

ti
m
e
,
s

Implicit Euler
cNlogN

(b) The implicit Euler acts as predicted.

Figure 10: The multigrid methods showing the execution time for one step in time in
one dimension.

101 102 103 104

N2

10-4

10-3

10-2

10-1

100

101

ti
m
e
,
s

Explicit Euler

cN2

(a) The explicit Euler acts like predicted
with the exception of the first points.

101 102 103 104

N2

10-4

10-3

10-2

10-1

100

101

ti
m
e
,
s

FFT

cN2 logN

(b) The FFT follows the predicted slope.

Figure 11: The explicit Euler and FFT methods showing the execution time for one
step in time in two dimensions.

101 102 103 104

N2

10-1

100

101

102

103

104

ti
m
e
,
s

Trapezoidal rule

cN2 logN

(a) The Trapezoidal method does not act
like predicted.

101 102 103 104

N2

10-1

100

101

102

103

104

ti
m
e
,
s

Implicit Euler

cN2 logN

(b) The implicit Euler does not follow the
intended slope.

Figure 12: The methods showing the execution time for one step in time in two dimen-
sions.

25

self.beatprotocolhandler = None

self.create_socket(socket.AF_INET, socket.SOCK_STREAM)

self.set_reuse_addr()

self.bind((host, port))

self.listen(10)

def set_protocol_handler(self, beatprotocolhandler):

self.beatprotocolhandler = beatprotocolhandler

""" activates ConnectionHandler """

def handle_accept(self):

socket, address = self.accept()

ConnectionHandler(socket, self.beatprotocolhandler)

def run(self):

asyncore.loop()

The beat recieved contains information with settings on which initial values to use and
how often it is to be updated. The data sent to ”Server” either has ”beat” or both
”beat” and ”config” which updates the variables in ”BeatProtocolHandler”.

class ConnectionHandler(asynchat.async_chat):

def __init__(self, socket, beatprotocolhandler):

asynchat.async_chat.__init__(self, socket)

self.beatprotocolhandler = beatprotocolhandler

self.set_terminator(’\n’)

self.data = []

def collect_incoming_data(self, data):

""" listens after beat and config """

self.data.append(data)

def found_terminator(self):

msg = ’’.join(self.data)

self.data = []

info = None

try:

info = json.loads(msg, encoding=’UTF-8’)

except Exception, errtxt:

print errtxt

return

if info.has_key("config"):

self.beatprotocolhandler.update_config(info["config"])

if info.has_key("beat"):

self.beatprotocolhandler.update_beat(info["beat"])

The final large puzzle piece in the code is the ”BeatProtocolHandler”. It constantly
runs the PDE solver’s time stepping method and updates the beat count. When the
beat count has reached the desired number of beats (”frequency”) it updates the initial
values. When doing this the thread is locked which prevents the program from trying
to access the PDE solver simultaneously.

26

class BeatProtocolHandler(threading.Thread):

def __init__(self):

super(BeatProtocolHandler, self).__init__()

self.count = 0

self.mutex = threading.Lock()

self.PDESolver = SolverFactory.create({})

def update_config(self, config):

with self.mutex:

self.PDESolver = SolverFactory.create(config)

def update_beat(self, beat):

with self.mutex:

self.count += 1

if self.count % int(self.PDESolver.frequency) ==0:

self.count = 0

self.PDESolver.add_initial()

def run(self):

initial = self.PDESolver.get_u()

xgrid = np.linspace(0, 1, len(initial))

fig, ax = plt.subplots()

points, = ax.plot(xgrid, initial, marker=’o’, linestyle=’-’)

plt.axis([0, 1, -1, 1])

while True:

self.PDESolver.time_step()

u = self.PDESolver.get_u()

points.set_data(xgrid, np.real(u))

plt.pause(0.05)

Some smaller simple programs have been left out but when all put together the program
works. When running, the program shows the heat equation being solved in real-time.

10 Conclusions

We have investigated four different methods to compute PDEs and they all have different
qualities. The optimal size of a grid would be N = 1024×1024 which is close to standard
resolution on a screen. The explicit Euler and FFT methods have an execution time
of around 0.1 seconds at this resolution, Figures 11a & 11b. The implicit Euler and
Trapezoidal are too slow at 1 second, Figures 12b & 12a. The maximum time should
not exceed 0.04 seconds.

The FFT method is the most efficient solver for our purpose. It is easy to implement,
fast and exact in time. However, as it is implemented now it requires periodic boundary
conditions. There are other ways to implement it, i.e. for Dirichlet and Neumann
boundary conditions [5, page 238] but we will not look further into this in this report.

There are some ways to increase the speed. One would be to perform the calcula-
tions at fewer grid points and instead interpolate to achieve the desired grid size when
plotting. Another is to write more efficient code and though it is convenient to have
the PDE solvers as objects for the purpose of creating a VJ-program it slows down the
computations quite a lot.

27

With all consideration, the main goal has been reached in the report which was to
show that it is possible to create visual effects dependent of music by solving PDEs in
real-time.

10.1 Future work

A lot more work is needed to create a fully functioning VJ-program but this lies a bit
outside of numerical analysis. A good way to visualize the calculations would be by us-
ing Open Graphics Library (OpenGL). There is a package to Python called PyOpenGL
which would allow the user to create nice visualisations. Cython (an extension to C)
could speed up the calculations as it lies closer to the C code that performs the calcu-
lations. Finally a Graphics User Interface (GUI) should be created so that the program
would become user-friendly and accessible to the public. So, there is much more that
could be done but everything starts somewhere.

References

[1] Timothy Sauer. Numerical Analysis. 75 Arlington Street, Suite 300, Boston, MA
02116: Pearson Education, 2006.

[2] Randall J. LeVeque. Finite Difference Methods for Ordinary and Partial Differen-
tial Equations - Steady-State and Time-Dependent Problems. 3600 University City
Science Center, Philadelphia, PA 19104-2688: Society for Industrial and Applied
Mathematics, 2007.

[3] Steve F. McCormick William L. Briggs Van Emden Henson. A Multigrid Tutorial
second edition. 3600 University City Science Center, Philadelphia, PA 19104-2688:
Society for Industrial and Applied Mathematics, 2000.

[4] Gustaf Söderlind. Introductions to Multigrid chap 7,8 & 9. 2013. url: http://www.
maths.lth.se/na/courses/FMNN15/.

[5] Van Emden Henson William L. Briggs. The DFT. An Owner’s Manual for the
Discrete Fourier Transform. 3600 University City Science Center, Philadelphia, PA
19104-2688: Society for Industrial and Applied Mathematics, 1995.

[6] The Scipy community. Mar. 26, 2014. url: http : / / docs . scipy . org / doc /

numpy/reference/generated/numpy.fft.fft.html#numpy.fft.fft (visited
on 05/12/2014).

[7] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific
tools for Python. 2001–. url: http://www.scipy.org/.

[8] Gregory von Winckel. url: www.scientificpython.com (visited on 10/2013).

28

Bachelor’s Theses in Mathematical Sciences 2014:K4

ISSN 1654-6229

LUTFNA-4001-2014

Numerical Analysis

Centre for Mathematical Sciences

Lund University

Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/

