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1 Introduction 
A robot balancing an inverted pendulum is an impressive demonstration object that 
shows how an intelligent combination of modern control algorithms, robotics, and 
electronics can lead to a high-performance dynamic system. As such, it constitutes a 
typical mechatronical system. 

Its realization requires the design of a state-space controller, calculation of the 
forward and inverse kinematics and the development of specialized signal processing 
electronics, which are necessary for the measurement of the inclination angles of the 
pendulum. 

The goal project is controlling the balance of an inverted pendulum. The pendulum is 
supported over a plate, which is joined to robot hand. 

The parallel robot, which I will use in this master thesis, will be a Gantry-Tau 
structure but the pendulum and its plate will be possible to use with others robots.  

The lower pendulum part is an iron cone. Over the cone there is a magnetic object. On 
the plate surface, two hall-sensors for magnetic field will be placed to take 
measurements of pendulum angle on at x-y axis. 

The TCP-robot will be moved along x-y directions. 

 

 

Figure 1.1 Cross section of pendulum and sensor. 

Above picture shows the pendulum structure. It can be seen: 

1. Pendulum (glass fibber tube). 

2. Permanent magnet. 

3. Cone (steel). 

4. Mounting plate (plastic). 

5. Magnetic flux. 

6. Hall-effect sensor and (α) inclination angle of the pendulum. 
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My master thesis will have three stages: 

• Simulation of pendulum dynamics: I will use MATLAB1 and Dymola2 
software to do it. 

• Control design: there are several possibilities (P, PI, PID, LQR, etc.). I will 
have to study everyone and to choose the most suitable. 

• Design of electronics for angle measurements: hall-sensors give in a little 
signal which is in relation to magnetic flux that is in relation to pendulum 
angle. I will have to amplify that signal using operational amplifiers. 

This master thesis will allow me to use and to extend my knowledge I learnt in Spain 
for last years about Electronics, Robotics and Automatic Control. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1MATLAB version 7.2.0.232 (R2006a) was used. 
2Dymola version 6 was used. 
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2 PKMs 
 
2.1 Robotics. Historical background 
Today robots are natural components in the manufacturing industry and are even 
expanding to other fields. Robots are however a pretty young product compared to 
other equipment used today. 

The robotic history began in the late 1950’s in USA where George Devol and Joseph 
Engelberger started what was to become the Unimation. Joseph Engelberger is 
sometimes called ”The Father of Robotics”. Unimation was the first company who 
delivered robots to the American industry and General Motors was the first customer 
in 1961: 

 

 

Figure 2.1 First industrial robot in a factory. 

The word ”Robot” comes from the Czech play ”Rossums Universal Robots”, 
performed in the 1920’s. The big breakthrough came 1964 when General Motors 
ordered 66 Unimate robots from Unimation, to be installed in their new top modern 
factory in Ohio. Even though the industry was hard to convince the public was now 
very interested in the robots, and Unimate robots appear in commercials and talk 
shows. Soon several other companies followed. IBM, AMF, Hughes Aircraft and 
Western Electric are just some of many companies who started their own production 
of robots. 

In Europe the Scandinavian countries were early to adopt the new invention and 
several companies in Sweden, Norway and Finland started to develop robots or 
produce the Unimate robot on licence. Among the pioneers in Sweden one can 
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mention Roland Kaufeldt, founder of Kaufeldt AB, the kitchen appliances company 
Electrolux, Esab, manufacturer of welding products and Asea, electronics 
manufacturer. In Norway Trallfa, manufacturer of wheelbarrows, constructed a robot 
for painting which became a success story. 

In 1971 Asea started to develop a robot, which would come to make ABB one of the 
main players on the market. The robot, which was to be called IRB 6, had a fully 
electronic control and power system, and was the first microprocessor controlled 
robot. It was also an anthropomorphic robot, i.e. it imitated the human anatomy. 
Using Harmonic Drives meant that it was much more compact than other robots. The 
production of IRB 6 started in 1973: 

 

 

Figure 2.2 IRB 6 robot. 

Other countries in Europe were not so eager to follow. Europe had a high 
unemployment rate and there was no need for robots since the pressure to raise 
productivity was relatively low. There was however some exceptions. The German 
company Kuka developed a robot used for welding, mainly sold to the European car 
industry. The European car industry also started to produce robots on their own. 

While Europe had a high unemployment rate and no problem to get enough labour the 
situation was very much the opposite in Japan. The high economical growth in the 
60’s resulted in a lack of labour. This meant that the companies were very open for 
new ideas and the robots were embraced as a way to increase the production. The 
industry was quick to apply the robots in the production and soon there were many 
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Japanese robot producers to compete on the growing market. In 1980 there were 150 
Japanese robot producers and in 1988 nearly 70 % of the 256 000 robots in use all 
over the world were installed in Japan. Some large Japanese robot manufacturers 
today are Fanuc, Yaskawa and Kawasaki. 

In Scandinavia Asea became the main robot producer in the mid 80’s when both 
Electrolux robot production and Trallfa was incorporated. After Asea and the Swiss 
company Brown Boveri merged in 1988 and formed ABB, the robot production of 
Cincinnati Milicroms, Graco Robotics and Esab were also incorporated. 

 

2.2 Parallel manipulators 
Parallel kinematics manipulators (PKMs) have recently attracted a lot of interest in 
the robot community. The main reason for this is some inherited properties of the 
structure, mainly high stiffness and dynamical advantages. 

A parallel mechanism can be defined as a closed-loop mechanism in which the end 
effector (mobile platform) is connected to the base by at least two independent 
kinematics chains. In other words, a parallel kinematics manipulator consists of 
several kinematics chains, in contrast to the serial that only consist of one. This is a 
very general definition that opens up for many different constructions, with very 
different properties. 

There are already some PKMs on the market like IRB 340 Flexpicker, which is based 
on the Delta structure: 

 

 

Figure 2.3 IRB 340 Flexpicker robot. 
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Other examples of parallel structures are the Hexaglide, the Triaglide, the I4 and the 
Orthoglide: 

 

 

Figure 2.4 Orthoglide robot. 

There is some common vocabulary that is used for parallel manipulators. The 
manipulator is said to consist of a mobile platform connected to a fixed base by 
several kinematics chains, called legs. If the number of legs is greater or equal to the 
degrees-of-freedom (DOFs) of the mobile platform and each arm having one actuated 
joint, the manipulator is called fully parallel. 

 

2.3 Comparisons with serial structures 
Same different properties of serial and parallel manipulators are workspace, payload, 
accuracy and dynamical behaviour. These are general properties, more or less true for 
different constructions, which give a background to raising interest in parallel robots 
and the problems inherited in the structure. 

• Workspace: one of the main drawbacks with parallel robots is that they 
generally have a small workspace compared to the footprint of the robot.  
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• Payload: in a serial structure each actuator has to have the necessary power to 
move not only the manipulated object, but also the links and actuators located 
later in the kinematics chain. In a parallel structure the end-effector is directly 
supported by all actuators, and the actuators can be located close to the base, 
hence the payload can be much larger. 

• Accuracy: in serial robots the errors from each link accumulate to a total error 
at the end-effector. An error in a joint closer to the base will also have a larger 
effect on the total error than an error in a joint closer to the end-effector. 
Parallel structures do not have these drawbacks at all, and are therefore 
remarkably rigid. 

• Dynamical behaviour: the fact that the arm structure of a parallel robot can be 
made much lighter since the arms do not have to carry actuators, and the fact 
that errors do not accumulate, give them better dynamic performance than 
serial robots. 

As seen in these comparisons, there are a lot of properties of a parallel structure 
that could make it interesting. The main drawback of the structure is the small 
workspace. 

 

2.4 The Tau structure 
As mentioned above the definition of a parallel manipulator opens up for a wide range 
of constructions. We will here study a special group of parallel manipulators based on 
a mobile platform, six arms and three actuators. Depending on where the arms are 
connected to the platform, how they are grouped and what kind of actuators used the 
performance will be very different even within this group of manipulators. One 
example of construction like this is the Orthoglide, (see before figure). 

In this group one can arrange the structures according to how the arms are grouped. 
The Orthoglide has a structure that would be named 2/2/2, since the arms are grouped 
in pairs. If the arms are grouped as 3/2/1, 3/1/2, 2/3/1, 2/1/3, 1/3/2 or 1/2/3 the 
structure is referred to as a Tau-structure. One of the advantages of the Tau-structure 
is that the different configurations make it possible to get the highest stiffness in a 
desired direction. For a 2/2/2 structure there is only one configuration. ABB Robotics 
introduced the Tau family of parallel kinematics manipulators. 

 

2.5 The Gantry-Tau structure 
As stated before, the main drawback with parallel structures is the small workspace 
compared to the footprint of the robot. The Gantry-Tau [11] is constructed to 
overcome this limitation while retaining most of the parallel structures advantages. 

The Gantry-Tau has a total workspace larger than for a serial gantry robot with the 
same footprint. The robot has been constructed for the assembly of aeroplane 
components. This is an application where very large and expensive machines are used 
today and a lighter and more cost efficient manipulator could compete. 

The parallel robot used in this master thesis is a Gantry-Tau structure, with 3 
translational DOF, that can allow a big working area compared to the other structures: 
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Figure 2.5 Gantry-Tau structure (robot on the left side). 

This structure has 6 joints, in a 3-2-1 configuration, representing how many joints are 
on each kinematics group of the robot. 

The table robot can became a demonstration model, easier to transport than the real 
size one. 

The table robot consists of three parallel linear tracks, which are attached to a plate at 
each end. One of the end plates has been reduced to an L-shape so that the platform 
can move freely in this area. On the each track, the interface boards between tracks 
and PC are attached. 

The picture below shows the table robot: 



Chapter 2: PKMs 

David Barrio Vicente 15

 

Figure 2.6 Table robot. 

The cart moves on a toothed belt, driven by a DC motor that is coupled to a gear 
wheel. The tracks are about 50 cm long and fastened to the end plates with one screw 
at each end, so the robot is easy to transport and assemble. The bars have a diameter 
of 6 mm. 
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3 Modeling and simulation of pendulum dynamics 
In this chapter I am going to explain how I have made the modeling and simulation of 
the pendulum dynamics. 

In order to do that, Dymola simulation software [19] will be used. This software is 
based on Modelica language [23], and permits to build models easily using Drag and 
Drop, and simulate them as well as other many possibilities that will be seen later. 

 

3.1 Modeling 
In Dymola, I made a modeling of physic system. I just considered the motion of the 
hand robot. For it, I included: 

• 2 prismatic actuators3 (motorX and motorZ), which represent motions along X 
and Z-axis. These motions will be made by the robot hand. 

• 2 accelerators4 (accelerateX and accelerateZ), which represent input signal to 
every motor. 

• 1 universal joint5 (cone), which represents two DOFs of pendulum rotation. 

• 1 body6 (bar), which represents the pendulum. 

• 1 absolute sensor7 (sensor), which is able to give me every measure I need. 
These measures are: linear position and velocity of both motors, angular 
position and velocity of both degrees-of-freedom of the pendulum. 

• 2 input ports8 (u1 and u2), to connect input signals to system. 

• 8 output ports9 (x1_Xs, x2_Xv, x3_Zs, x4_Zv, x5_Aphi, x6_Aw, x7_Bphi and 
x8_Bw), to read output signals from system. 

• Of course, I need a reference system10: world. 

 

 

 

 

 

 

 
3Included in Modelica.Mechanics.MultiBody.Joints.ActuatedPrismatic. 
4Included in Modelica.Mechanics.Translational.Accelerate. 
5Included in Modelica.Mechanics.MultiBody.Joints.Universal. 
6Included in Modelica.Mechanics.MultiBody.Parts.BodyBox. 
7Included in Modelica.Mechanics.MultiBody.Sensors.AbsoluteSensor. 
8Included in Modelica.Blocks.Interfaces.RealInput. 
9Included in Modelica.Blocks.Interfaces.RealOutput. 
10Included in Modelica.Mechanics.MultiBody.World. 
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This one is the completed diagram: 

 

 

Figure 3.1 Dynamic model of the system. 

Now I have a system and I can see its dynamic behaviour by means of Dymola. But 
that is not very useful. I already knew that the system would be unstable. For working 
with the system, for instance to calculate a controller, I need a mathematical model of 
it. Besides, that model must be linear. At the next step I will get a linear mathematical 
model. 

 

3.2 Linearization of the dynamic model 
Dymola has a tool to get a representation of a system by means of its state-space 
model. Besides, that model will be linear. It is possible to find that tool on the 
Simulation sheet, inside Simulation command: 
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Figure 3.2 Linearize tool in Dymola. 

After executing this tool, a MATLAB file (dslin.mat) is made. This file stores all 
necessary information to make a state-space11 model of the system using MATLAB 
software. 

 

 

 

 

 

 

 

 

 

 

 

 

 
11More information about state-space representation in Appendix A. 
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3.3 Mathematic model 
The first step to extract a mathematic model from dslin.mat file is loading it in 
MATLAB: load dslin_4outputs_ob.mat 

This command creates four variables. One of them (xuyName) contains information 
about inputs, outputs and states of the system: 

xuyName = 
 
motorX.s            
motorX.v            
motorZ.s            
motorZ.v            
cone.revolute_a.phi 
cone.revolute_a.w   
cone.revolute_b.phi 
cone.revolute_b.w   
u2                  
u1                  
x5_Aphi             
x7_Bphi             
x8_Bw               
x6_Aw               
x1_Xs               
x3_Zs               
x4_Zv               
x2_Xv 

 

Other variable contain A, B, C and D matrixes, that is, four matrixes to do a complete 
representation of a system by means of its state-space model: 

 

Figure 3.3 ABCD variable in MATLAB. 

states 

inputs 

outputs 
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Next step is extracting A, B, C and D matrixes from ABCD variable. 

 

 

 

 

 

ABCD =  

 

 

 

 

 

 

Which is very easy using MATLAB: 
A=ABCD(1:8,1:8); 
B=ABCD(1:8,9:10); 
C=ABCD(9:16,1:8); 
D=ABCD(9:16,9:10); 

 

 
A 

 
8x8 

 
C 

 
8x8 

 
B 

 
8x2 

 
D 

 
8x2 

16x10 
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4 Control design 
I checked in the before simulation that open-loop system is unstable. That means I 
need to introduce a control system to stabilizer it.  

There are several possibilities to do it: proportional controller, proportional integral 
controller, proportional integral derivative controller, cascade controller, linear 
quadratic regulator… 

Designing one of them (LQR) is very easy because I have state-space model in 
MATLAB. This software has a command (lqr), which give me K feedback matrix. I 
only need this matrix to control and stabilizer the closed-loop system. 

 

4.1 LQR problem 
The theory of optimal control is concerned with operating a dynamic system at 
minimum cost. The case where the system dynamics are described by a set of linear 
differential equations and the cost is described by a quadratic functional is called the 
LQ problem. One of the main results in the theory is that the solution is provided by 
the linear-quadratic regulator (LQR), a feedback controller whose equations are given 
below. 

For a continuous-time linear system described by: 

)()()(
)()()(
tDutCxty
tButAxtx

+=
+=&

 

where: 

 x = state vector (n-dimension) 

 u = control vector (r-dimension) 

 y = output vector (m-dimension) 

 A = constant coefficient matrix (nxn dimension) 

 B = constant coefficient matrix (nxr dimension) 

 C = constant coefficient matrix (mxn dimension) 

 D = constant coefficient matrix (mxr dimension) 

with a cost functional defined as: 

dttRututQxtxJ TT ))()()()((
0∫
∞

+=  

where the matrices Q and R are positive-semidefinite and positive-definite, 
respectively. Note that this cost functional is thought in terms of penalizing the 
control energy (measured as a quadratic form) and the time it takes the system to 
reach zero-state. This functional could seem rather useless since it assumes that the 
operator is driving the system to zero-state, and hence driving the output of the system 
to zero. This is indeed right, however the problem of driving the output to the desired 
level can be solved after the zero output one is. In fact, it can be proved that this 
secondary problem can be solved in a very straightforward manner. The optimal 
control problem defined with the previous functional is usually called the state 
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regulator problem and its solution the linear quadratic regulator (LQR) which is no 
more than a feedback matrix gain of the form: 

)()()( 1 tKxtPxBRtu T −=−= −  

where K is a rxn dimension matrix and P is found by solving the Riccati equation: 

01 =+−+ − QPBPBRPAPA TT  

This problem was elegantly solved by Rudolf Kalman (1960). 

Therefore, the design of the systems of optimal control consists of calculating K 
matrix elements. 

An advantage of using quadratic optimal control is that designed system will be 
stable, except in case of system is not controllable12. 

MATLAB has a command (lqr) which provides a solution Riccati equation in 
continuous time and it determines the optimal feedback gain matrix (K). 

 

4.2 Design of the LQR controller 
The first step is to check if the system is controllable. If the system is not controllable, 
when I connect the feedback by means of K matrix, the system may be not stable. 

To check it, I have to calculate the matrix below: 

)( 765432 BABABABABABAABBCON =  

System is controllable if and only if rank13 (CON) = n = 8. 

I checked using MATLAB that the system is controllable. 

Before using lqr command in MATLAB, I have to determinate Q and R matrixes. 
Both matrixes must be positive-semidefinite. Then, the simplest form is identity 
matrix. So: 

































=

10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001

Q  







=

10
01

R  

Now I can use lqr command to obtain K matrix: K = lqr(A,B,Q,R) 

 

 
12More information about controllability in Appendix A. 
13Rank is the number of linearly independent rows in a matrix. 
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4.3 Simulation of the designed controller 
After executing lqr command in MATLAB, I have K matrix. To check if this matrix 
stabilizes the system, I have to simulate. At the beginning, I will simulate in 
MATLAB, and after that I will make a simulation in Dymola. 

 

4.3.1 Simulation in MATLAB14 

I will use initial command to do the simulation. This command allows to obtain 
initial condition response of state-space models. Before that, I have to close the loop. 
The only different matrix is A. Closed-loop A matrix (Acl) is Acl = A – B*K 

Results for this simulation are shown below: initial conditions are: Aphi = 10º = 0.17 
rad. and Bphi = 4º = 0.07 rad.: 

Figure 4.1 Simulation obtained in MATLAB. 

 

I checked that results were like expected and that the response was stable. 

 

4.3.2 Simulation in Dymola 

The first step is creating a model with the system and the feedback. For it, I included a 
gain matrix15 (K_matrix), which represents the optimal feedback gain matrix (K). Of 
course, I included a pendulum model. 

 

 

 

 
14MATLAB file can be seen in Appendix C. 
15Included in Modelica.Blocks.Math.MatrixGain. 
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I introduced values obtained from MATLAB in K_matrix block 

Modeling of control system is shown below: 

 

 

Figure 4.2 Dynamic model of the controlled system. 

 

The follow graphs show results (initial conditions are the same that before one): 

 

 
Figure 4.3 Simulation obtained in Dymola. 

 

Results in Dymola were similar that MATLAB, like expected. 
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5 Modeling of pendulum dynamic (4 outputs) 
In the real system, I cannot measure eight states (position and velocity along X and Z 
axis, and angle and angular velocity around two directions). So I have to do a 
modeling only with states I can measure (outputs). These states are position along X 
and Z-axis, and pendulum angle around two directions (four outputs). 

 

5.1 Modeling 
The new model is below: 

 

 

Figure 5.1 Dynamic model of the system. 

This model is similar with previous model but now I have only four states like 
outputs. I have removed states I cannot measure such as velocity along X and Z-axis, 
and angular velocity around two directions. Hence I have held states which I can 
measure such as position along X and Z-axis, and pendulum angle around two 
directions. 
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5.2 Linearization of the dynamic model 
The next step is to execute Linearize tool in Dymola. So I obtain MATLAB file 
(dslin.mat), which stores all necessary information to make a state-space model of the 
system using MATLAB software. 

 

5.3 Mathematic model 
Procedure to extract a mathematic model from dslin.mat file is similar to chapter 3.1. 

The first step is loading it in MATLAB: load dslin_4outputs_ob.mat 

This command creates four variables. One of them (xuyName) contains information 
about inputs, outputs and states of the system: 

xuyName = 
 
motorX.s            
motorX.v            
motorZ.s            
motorZ.v            
cone.revolute_a.phi 
cone.revolute_a.w   
cone.revolute_b.phi 
cone.revolute_b.w   
u2                  
u1                  
x5_Aphi             
x7_Bphi             
x1_Xs               
x3_Zs               

 

Like it can be seen, now there are four outputs. 

Other variable contain A, B, C and D matrixes, that is, four matrixes to do a complete 
representation of a system by means of its state-space model: 

 

Figure 5.2 ABCD variable in MATLAB. 

 

states 

inputs 

outputs 
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Next step is extracting A, B, C and D matrixes from ABCD variable. 

 

 

 

 

 

 

ABCD =  

 

 

 

 

 

Which is very easy using MATLAB: 
A=ABCD(1:8,1:8); 
B=ABCD(1:8,9:10); 
C=ABCD(9:12,1:8); 
D=ABCD(9:12,9:10); 
 
 

 

 
A 

 
8x8 

C 
 

4x8 

 
B 

 
8x2 

D 
 

4x2 
12x10 
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6 Control design: controller + observer 
In order to control the system, I have to observer four states, which I cannot measure.  

Designing the observer is very easy because I have state-space model in MATLAB. 
This software has a command (lqe), which give me L observer gain matrix. I only 
need this matrix and K matrix to control and stabilizer the closed-loop system. 

 

6.1 State observer 
A state observer is an extension to a state-space model that provides feedback to 
control a system. A state observer is used on a system where direct access to the state 
is not possible. If the system is observable16, then state observers can be designed to 
estimate the signals that cannot be measured. These signals are estimated with base in 
the outputs measures and the control. 

Two of the basic parts of a control system are the plant and the controller. The "plant" 
is the black box model of the system that is to be controlled. The name originates 
from systems used to control factories or "plants." The controller is the subsystem 
designed to control the plant. The usual state space model for a plant can be written 
as: 

)()()(
)()()(
tDutCxty
tButAxtx

+=
+=&

 

If this system is observable then the output, y(t), can be used to steer the state of 
another state space model. This observer system is commonly denoted with a "hat": 

)(ˆ tx  and )(ˆ ty . The output of the observer system is subtracted from the output of the 
plant system; multiplied by a matrix L; and added to the state equation. 

[ ] )(ˆ)(ˆ)()(ˆ)(ˆ tuBtytyLtxAtx +−−=&  

)(ˆ)(ˆ)(ˆ tuDtxCty +=  

For control purposes the output of the observer system is fed back to the input of both 
the observer and the plant: 

)(ˆ)()(ˆ txKtutu −==  

for some matrix K. 

The observer equations become: 

[ ] )(ˆ)(ˆ)()(ˆ)(ˆ txBKtytyLtxAtx −−−=&  

)(ˆ)(ˆ)(ˆ txDKtxCty −=  

or 

[ ] [ ])(ˆ)()(ˆ)(ˆ tytyLtxBKAtx −−−=&  

[ ] )(ˆ)(ˆ txDKCty −=  

 
16More information about observability in Appendix A. 
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This is a diagram of the controlled system: 

 

 
 

Figure 6.1 Control system by means of observed state feedback. 

 

6.2 Design of the observer state 
The first step is to check if the system is observable. If the system is not observable, 
when I connect the feedback by means of K and L matrix, the system may be not 
stable. 
To check it, I have to calculate the matrix below: 

































=

7

6

5

4

3

2

CA
CA
CA
CA
CA
CA
CA
C

OB  

 

System is controllable if and only if rank (OB) = n = 8. 

I checked using MATLAB that the system is observable. 

Before using lqe command in MATLAB, I have to determinate Q, R and G matrixes. 
These matrixes must be positive-semidefinite. Then, the simplest form is identity 
matrix. So: 

 

A 

-K

A 

L 

1/s

C B + 

+ 

+ 

+ 

+ 

+ 
B C - + 

u y x 1/s

x~

y~

PENDULUM
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































=

10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001

Q  







=

10
01

R  

































=

10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001

G  

 

Now I can use lqe command to obtain L matrix: L = lqe(A,G,C,Q,R) 
 

6.3 Simulation of the designed controller 
After executing lqe command in MATLAB, I have L matrix. To check if this matrix 
stabilizes the system, I have to simulate. At the beginning, I will simulate in 
MATLAB, and after that I will make a simulation in Dymola. 

 

6.3.1 Simulation in MATLAB17 

I will use initial command to do the simulation. This command allows to obtain initial 
condition response of state-space models. Before that, I have to close the loop. The 
only different matrix is A. Closed-loop A matrix (Aob) is Aob = A – L*C – B*K 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
17MATLAB file can be seen in Appendix C. 
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Results for this simulation are shown below: initial conditions are: Aphi = 10º = 0.17 
rad. and Bphi = 4º = 0.07 rad.: 

Figure 6.2 Simulation obtained in MATLAB. 

 

I checked that results were like expected and that the response was stable. 

 

6.3.2 Simulation in Dymola 
The first step is creating a model with the system and the feedback. For it, I included: 

• A pendulum model18 (pend_4output), which represents pendulum dynamics. 

• 8 sums19 (sum1…sum8). 

• 8 integrators20 (state1…state8). 

• 4 feedback21 (feedback1…feedback4). 

• 5 gain matrix22 (A_Matrix, B_Matrix, C_Matrix, K_Matrix, L_Matrix), which 
represent matrixes of state-space model (A, B and C), feedback gain matrix (K) 
and observer gain matrix (L). 

 
18This block was described at the paragraph 5.1. 
19Included in Modelica.Blocks.Math.Sum. 
20Included in Modelica.Blocks.Continuous.Integrator. 
21Included in Modelica.Blocks.Math.Feedback. 
22Included in Modelica.Blocks.Math.MatrixGain. 
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I introduced values obtained from MATLAB in K_Matrix and L_Matrix blocks 

Modeling of control system + observer is shown below: 
 

 
 

Figure 6.3 Dynamic model of the system + control + observer. 

 

Previous model is similar to diagram shown in figure 6.1. 
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And the follow graphs show results (initial conditions are the same that before 
simulation with MATLAB): 

 

 
Figure 6.4 Simulation obtained in Dymola. 

 

Now results are a little different with reference to MATLAB. Perhaps that is so 
because calculates in MATLAB were made with linear system and system is not 
linearized in Dymola. Nevertheless, results are correct because response is stable. 
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7 Kinematics for a Gantry-Tau parallel robot 
Robot kinematics is the study of the motion (kinematics) of robots. In a kinematic 
analysis the position, velocity and acceleration of all the links are calculated without 
considering the forces that cause this motion. The relationship between motion, and 
the associated forces and torques is studied in robot dynamics. 

Robot kinematics deals with aspects of redundancy, collision avoidance and 
singularity avoidance. While dealing with the kinematics used in the robots we deal 
each parts of the robot by assigning a frame of reference to it and hence a robot with 
many parts may have many individual frames assigned to each movable parts. For 
simplicity we deal with the single manipulator arm of the robot. Each frame is named 
systematically with numbers, for example the immovable base part of the manipulator 
is numbered 0, the first link joined to the base is numbered 1 and the next link 2 and 
similarly till n for the last nth link. 

Robot kinematics is mainly of the following two types: forward kinematics and 
inverse kinematics. Forward kinematics is also known as direct kinematics. In 
forward kinematics, the length of each link and the angle of each joint is given and we 
have to calculate the position of any point in the work volume of the robot. In inverse 
kinematics, the length of each link and position of the point in work volume is given 
and we have to calculate the angle of each joint. 

 

 
Figure 7.1 Schematic Gantry-Tau structure. 
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7.1 Inverse kinematics23 
The inverse kinematics solves the following problem: "given the actual end effector 
pose, what are the corresponding joint positions?" The solution of the inverse problem 
is not always unique: the same end effector pose can be reached in several 
configurations, corresponding to distinct joint position vectors. 

For the considered parallel robot the inverse kinematics problem is formulated as 
follow [11]. Calculate the location of points A, B and C along the linear tracks for a 
given TCP location. Let: 

A = X1 

B = X2 

C = X3 

TCP = [X Y Z]T 

Here the parameters X1, X2 and X3 are to be determined and can be found as the 
intersection between spheres with midpoints at TCP-mp_d1, TCP-mp_d2 and TCP-
mp_d3 and the respective linear track. 

The spherical equations can be written as follows: 
2

1
2

11
2

11
2

11 )_()_()_( ldmpZZdmpYYdmpXX zyx =−−+−−+−−  

2
2

2
22

2
22

2
22 )_()_()_( ldmpZZdmpYYdmpXX zyx =−−+−−+−−  

2
3

2
33

2
33

2
33 )_()_()_( ldmpZZdmpYYdmpXX zyx =−−+−−+−−  

where mp_d collects offsets in cart and plate. 

Then we can determine the parameters: 
2

11
2

11
2

111 )_()_(_ zyx dmpZZdmpYYldmpXX −−−−−−±+=  

2
22

2
22

2
222 )_()_(_ zyx dmpZZdmpYYldmpXX −−−−−−±+=  

2
33

2
33

2
333 )_()_(_ zyx dmpZZdmpYYldmpXX −−−−−−±+=  

The sign before the root expression decides the configuration of the robot. 

 

 

 

 

 

 

 

 
23MATLAB file can be seen in Appendix D. 



Chapter 7: Kinematics for a Gantry-Tau parallel robot 

David Barrio Vicente 39

7.2 Forward kinematics24 
The forward kinematics solves the following problem: "given the joint positions, what 
is the corresponding end effector pose?" With Gantry-Tau structure, there are two 
possibilities for each given joint positions. 

For the considered parallel robot the forward kinematics problem can be formulated 
as follows [11]. Calculate the location of the TCP for given A, B and C. 

Three spheres with radius l1, l2 and l3 describe all possible location for the TCP for A, 
B and C. The intersection points between the spheres describe the location of the TCP. 

The midpoints of the spheres are: 

[ ] 11111 _ dmpZYXP T
c −=  

[ ] 22222 _ dmpZYXP T
c −=  

[ ] 33333 _ dmpZYXP T
c −=  

and the spherical equations are: 

( ) ( ) ( ) 2
1

2
1

2
1

2
1 lZZYYXX =−+−+−  

( ) ( ) ( ) 2
2

2
2

2
2

2
2 lZZYYXX =−+−+−  

( ) ( ) ( ) 2
3

2
3

2
3

2
3 lZZYYXX =−+−+−  

Mathematical symbolic software can solve the spherical equations, but produces a 
rather extensive solution. Proficient use of simplification rules is needed in order to 
simplify the solution. This problem is avoided by solving the equations in two steps. 
First find the intersection between two of the spheres. The intersection is either a 
circle or a point. Ignore the point case for now. The intersection between the third 
sphere and one of the other forms of course also a circle. Derive the plane where this 
circle is located. Secondly the intersections of this plane and the first circle describe 
the possible location for the TCP. 

In the solution below the intersection circle between spheres with midpoints at B and 
A is calculated. All calculations are then done in a coordinate system with the z-axis 
pointing from B to A. 

 
Figure 7.2 Intersection between two spheres. 

 

 
24MATLAB file can be seen in Appendix E. 
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BA

lBAl
s

2

2
1

2
2
2

1

−+
=

,    
2
1

2
2 slr −=  

Midpoint for the circle: 

BA

BAsBD 1+= ,    
CA

lCAl
s

2

2
1

2
2
3

2

−+
=  

A point on the plane: 

CA

CAsCE 2+=  

The normal vector for the plane: 

CAN =  

Deriving the rotation matrix: 









−
−

= −

21

121tan
YY
XX

θ ,    















−

= −

BA

ZZ 211cosβ  

( ) ( )
( ) ( )
















−=

100
0cossin
0sincos

θθ
θθ

zRot ,    ( ) ( )
( ) ( ) 















−=

ββ
ββ

cossin0
sincos0

001

xRot  

zxxz RotRotRot =  

The normal vector for the plane, N, and points D and E are transformed into a 
coordinate system with the z-axis pointing from B to A: 

( ) NRotNNNN xzzyx ==1  

( ) DRotzyxD xzddd ==1  

( ) ERotzyxE xzeee ==1  

The spherical equations can now be written in the new coordinate system as the 
intersection between a circle and a sphere: 

( ) ( ) 222 ryyxx drdr =−+−  

( ) ( ) ( ) 0=−+−+− erzeryerx zzNyyNxxN  

dr zz =  

where: 

( ) TCPRotzyx xz
T

rrr =  
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There are two solutions: 

q

yxzxyexdy
r N

SNTNTNxNxN
x

−−−+
= 32

22

1  

q

xyzxydxey
r N

SNTNTNxNxN
y

+−−+
= 31

22

1  

dr zz =1  

q

yxzxyexdy
r N

SNTNTNxNxN
x

+−−+
= 32

22

2  

q

xyzxydxey
r N

SNTNTNxNxN
y

−−−+
= 31

22

2  

dr zz =2  

where: 

ed xxT −=1 ,    ed yyT −=2 ,    ed zzT −=3  

yxxy NNN = ,    zyyz NNN = ,    zxxz NNN =  

22
yxq NNN += ,    rNQ y= ,    32 TNTNR zy +=  

22
111

2 2))(( RQRTNTrTrNS xx −+−−+=  

And the final solutions are: 
















= −

1

1

1
1

1

r

r

r

xz

z
y
x

RotTCP ,    















= −

2

2

2
1

2

r

r

r

xz

z
y
x

RotTCP  

The configuration of the robot decides which solution is valid. 

 
7.3 Velocity Jacobian 
Reference [6] does a study about kinematics and dynamics of robot used in this paper. 
From it I am going to derive some equations to get Jacobian matrix. 

Thanks to the Tau-configuration, the orientation of the end-effector plate is constant 
and the three DOFs of the robot are completely translational, so it is sufficient to 
consider one link per link cluster. The closure equation for link i is then: 

0)( 2222 =∆+∆+∆− iiii ZYXL  
Where T

iii ZYX ),,( ∆∆∆  is the vector along link i: 

iixi XdmpXX −+=∆ _  

iiyi YdmpYY −+=∆ _  
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iizi ZdmpZZ −+=∆ _  
Relating robot geometry with linear velocity of end-effector and joint velocity of 
carts: 
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Relating before equation with QJV &= , we can deduce: 



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(For 0≠∆ iX , that is, not on the edge of workspace.) 

The end-effector velocity can be obtained by inverting the inverse Jacobian matrix: 
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7.4 Acceleration 
From [6] we can take some equations about acceleration of the parallel robot. 

The end-effector acceleration is obtained by differentiating the closure equations 
twice by time: 
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(Vectors along links not linearly dependent for second equation.) 
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8 Simulation of full system (robot + controller + pendulum) 
After getting forward and inverse kinematics in MATLAB, I had to translate these 
functions to Modelica language in order to make a model of the full system in 
Dymola. 

The included blocks in the model are: 

• A block25, which represents pendulum dynamics and motion of robot hand 
(pendulum_4out_pos). 

• A block26, which represents controller + observer system (ctrl_feed_ob). 

• A block27, which represents forward kinematics of PKM 
(ForwardKinematicsPKM). 

• A block28, which represents inverse kinematics of PKM 
(InverseKinematicsPKM). 

• 4 integrators29 (integrator1…integrator4). In the pendulum_4out_pos block, I 
changed two acceleration actuators by two position actuators because at the 
robot, I will control the position instead of the acceleration. 

• A constant30 (Z_desired), which represents desired Z-coordinate. 
Modeling of control system + pendulum + robot is shown below: 

 

Figure 8.1 Dynamic model of the system. 

 
25This block was described at the paragraph 5.1. 
26This block was described at the paragraph 6.3.2. 
27This block was described at the paragraph 7.2. 
28This block was described at the paragraph 7.1. 
29Included in Modelica.Blocks.Continuous.Integrator. 
30Included in Modelica.Blocks.Sources.Constant. 
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And the follow graphs show results (initial conditions are: Aphi = 10º = 0.17 rad. and 
Bphi = 4º = 0.07 rad.): 

 

 

 

Figure 8.2 Simulation obtained in Dymola. 

 

We can see results are correct. Response was similar to before response without 
including the robot. 

 

8.1 Improving simulation. Motion in Z-coordinate 
The aim of this step is testing how the system works if there is a motion along Z-
coordinate. For doing it, I took the dynamic model that was explained at the paragraph 
5.1. I replace two acceleration actuators by two position actuators (at the robot, I will 
control position instead of acceleration). 

Besides, I added: 

• A prismatic actuators31 (motorY), which represents motions along Y-axis 
(vertical direction).  

• A positioner32 (positionY), which represents input signal to motion along 
vertical direction. 

• A sine signal input33 (motion_Z_coordinate), which represents the motion 
along vertical direction. 
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Diagram below shows the dynamic model of the system: 

 

 
 

Figure 8.3 Dynamic model of the system. 

 

 

 

 
 

31Included in Modelica.Mechanics.MultiBody.Joints.ActuatedPrismatic. 
32Included in Modelica.Mechanics.Translational.Position. 
33Included in Modelica.Mechanics.Blocks.Sources.Sine. 
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The input for motion along vertical direction was a sine signal like this (amplitude = 
0.4 m, frequency = 0.3 Hz): 

 
Figure 8.4 Input for motion along Z-coordinate. 

 

And the follow graphs show results (initial conditions are: Aphi = 10º = 0.17 rad. and 
Bphi = 4º = 0.07 rad.): 

 

 

 

Figure 8.5 Result of the simulation. 

 

You can observer how the system become stable. 
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8.2 Improving simulation. Add offsets at X and Y coordinates 
The aim of this step is testing how the system works if I add an offset along X and/or 
Y-coordinate. For doing it, I took the dynamic model which was explained at the 
paragraph 8. 

Besides, I added: 

• 2 feedback34 (feedbackX and feedbackZ). 

• 2 constant35 (ofssetX and offsetZ), which represents input signal to motion 
along vertical direction 

Diagram below shows the dynamic model of the system: 

 

 
 

Figure 8.6 Dynamic model of the system. 

 

 
34Included in Modelica.Blocks.Math.Feedback. 
35Included in Modelica.Blocks.Sources.Constant. 
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Offsets I added for doing the simulation were 1 and 2. 

And the follow graphs show results (initial conditions are: Aphi = 10º = 0.17 rad. and 
Bphi = 4º = 0.07 rad.): 

 

 

 

Figure 8.7 Result of the simulation. 

 

You can observer how the system become stable. 
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9 Design of electronics for angle measurements 
Hall-sensors are based in Hall effect. The Hall effect refers to the potential difference 
(Hall voltage) on opposite sides of a thin sheet of conducting or semiconducting 
material in the form of a 'Hall bar' (or a Van der Pauw element) through which an 
electric current is flowing, created by a magnetic field applied perpendicular to the 
Hall element. Edwin Hall discovered this effect in 1879. 

The ratio of the voltage created to the product of the amount of current and the 
magnetic field divided by the element thickness is known as the Hall coefficient and 
is a characteristic of the material of which the element is composed. 
However, Hall-sensors give in a little signal, which is in relation to magnetic flux that 
is in relation to pendulum angle.  

I will have to chose available sensor and test it. After that, perhaps I will have to 
amplify that signal using operational amplifiers. 

 

9.1 Select a suitable Hall-sensor 
The first step was searching a hall-sensor in ELFA [20], which is an electronics 
supplier. For doing it, I wrote hall sensor in its searcher. I got several results: 

 

 
 

Figure 9.1 Results of the Hall-sensor search. 

 

After checking every possibility, I took two sensors: A 3515 [3] and KMZ 10 [4]. 
Besides, both sensors were available in the laboratory, so I could test their way of 
working. 
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Finally I selected A 3515 Hall-sensor36 due to its characteristics of working and its 
simplicity for adapting its voltage output by means of only operational amplifiers. 

 

9.2 Behaviour of A 3515 Hall-sensor 
Picture below shows set up I made to test working of the Hall-sensor: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 9.2 Set up for testing Hall-sensor. 

 

After that, I followed below steps: 

• I measured length of the pendulum (h = 235 mm). 

• I connected 5 V DC to the supply voltage of the Hall-sensor. 

• I connected a voltmeter at its output. 

• I was taking measures while I moved pendulum with ∆d = 5 mm. 
 

 
36More information about A 3515 Hall-sensor in Appendix B. 
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Chapter 9: Design of electronics for angle measurements 

David Barrio Vicente 51

After taking every measure between –100 mm < α < +100 mm (–23° < α < +23°), I 

calculated the corresponding angle 





=

h
darctgα  and I drew a graphic with results: 

 
Figure 9.3 Result of Hall-sensor operating. 

 

You can see on above picture that sensor response is nearly linear.  
Now, I have to adapt that response to limits of date-acquisition system, that is, adjust 
sensor output to ±10 V, and 0 V when α = 0 V. 
For doing it, I will place an amplifier stage next to Hall-sensor. Something like this: 

 

 
 

Figure 9.4 Stage with operational amplifier. 
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I used an amplifier with zero correction available in the laboratory. After adjusting 
offset and gain, I obtained this result: 

 
Figure 9.5 Result of Hall-sensor operating + operational amplifier. 

 

Results were like expected and output is almost perfect. I will be able to correct some 
little deviations by means of computer. 

Now, I obtain ±10 V when pendulum angle is ±12° as needed. 
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10 Experiment 1: balancing using serial robot (IRB140) 
First experiment was balancing my pendulum with IRB140 robot, which is in the 
robotics laboratory. 

Before doing experiment, I simulated the system using Dymola. In order to do it, I 
built a model of the manipulator + pendulum and I also obtained inverse kinematics 
model from it. 

 

10.1 IRB 140 
IRB 140 is a typical industrial serial robot with six DOFs. It is the most compact 
robots that ABB makes. 

Its most important technical data are: 

• Handing capacity: 5 kg. 

• Number of axis: 6. 

• Working range of axis movement: 

o Axis 1: 360°. 

o Axis 2: 200°. 

o Axis 3: 280°. 

o Axis 4: Unlimited (400° default). 

o Axis 5: 240°. 

o Axis 6: Unlimited (800° default). 

 

Picture below show the robot structure: 

 

 
 

Figure 10.1 IRB 140. 
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10.2 Modeling of robot + pendulum 
In Dymola, I made a modeling of physic system, that is, a model of robot + 
pendulum. For it, I included: 

• 6 rotational actuators37 (J1 … J6), which represent motions of every joint. 

• 6 positioners38 (position1 … position6), which represent input signal to every 
joint. 

• 6 links39 (link1 … link6), which represent links of the robot. 

• 1 universal joint40 (cone), which represents two DOFs of the pendulum 
rotation. 

• 1 body41 (pendulum), which represents the pendulum. 

• 1 absolute sensor42 (sensor), which is able to give me every measure I need. 
These measures are: X and Y TCP-coordinates and angular position of both 
DOFs of the pendulum. 

• 6 input ports43 (u1 … u6), to connect input signals to system. 

• 6 output ports44 (x1_Xs, x3_Zs, x5_Aphi and x7_Bphi), to read output signals 
from system. 

• Of course, I need a reference system45: world. 
 

 

 

 

 

 

 

 

 

 

 
37Included in Modelica.Mechanics.MultiBody.Joints.ActuatedRevolute. 
38Included in Modelica.Mechanics.Rotational.Position. 
39Included in Modelica.Mechanics.MultiBody.Parts.BodyShape. 
40Included in Modelica.Mechanics.MultiBody.Joints.Universal. 
41Included in Modelica.Mechanics.MultiBody.Parts.BodyBox. 
42Included in Modelica.Mechanics.MultiBody.Sensors.AbsoluteSensor. 
43Included in Modelica.Blocks.Interfaces.RealInput. 
44Included in Modelica.Blocks.Interfaces.RealOutput. 
45Included in Modelica.Mechanics.MultiBody.World. 
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This one is the completed diagram: 

 

 

Figure 10.2 Dynamic model of the system. 

 
10.3 Inverse kinematics of a serial robot 
Unlike simulation of parallel robot, at this experiment I have built a modelling of the 
robot, so I do not need to derive forward kinematics model. 

The inverse kinematics solves the following problem: "given the actual end effector 
pose, what are the corresponding joint positions?" The solution of the inverse problem 
is not always unique: the same end effector pose can be reached in several 
configurations, corresponding to distinct joint position vectors. 

Although the general problem of inverse kinematics is quite difficult, it turns out that 
for manipulators having six joints, with the last three joints intersecting at a point, it is 
possible to decouple the inverse kinematics problem into two simpler problems, know 
respectively, as inverse position kinematics, and inverse orientation kinematics. To 
put it another way, for a six-DOF manipulator with a spherical wrist, the inverse 
kinematics problem may be separated into two simpler problems, namely first finding 
the position or the intersection of the wrist axes, hereafter called the wrist centre, and 
then finding the orientation of the wrist. 
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The IRB140 has exactly six DOFs and its last three joints axes intersect at a point o. 
We express follow equations as two sets of equations representing the rotational and 
positional equations: 

RqqR =),...,( 61
0
6  

dqqd =),...,( 61
0
6  

where d and R are the given position and orientation of the tool frame. 

Tool centre point is defined so: 
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Now assumption of a spherical wrist means that the axes z4, z5 and z6 intersect at o and 
hence the origins o4 and o5 assigned by the D-H convention will always be at the wrist 
centre o. Often o3 will be at o as well but this is not necessary for our subsequent 
development. The important point for this assumption for the inverse kinematics is 
that motion of the final three links about these axes will not change the position of o. 
The position of the wrist centre is thus a function of only the first three joint variables. 
Since the origin of the tool frame o6 is simply a translation by a distance d6 along the 
z5 axis from o, the vector o6 in the frame o0x0y0z0 are just: 

Radoo 66 −=−  

Let pc denote the vector from the origin of the base frame to the wrist centre. Thus in 
order to have the end-effector of the robot at the point d with the orientation of the 
end-effector given by R = (rij), it is necessary and sufficient that the wrist centre o be 
located at the point: 

Raddpw 6−=  

and that the orientation of the frame o0x0y0z0 with respect to the base be given by R. If 
the components of the end-effector position d are denoted dx, dy, dz and the 
components of the wrist centre pw are denoted by pxw, pyw, pzw then the relationship is: 
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Using before equation we may find the values of the first three joint variables. This 
determines the orientation transformation 3

0R , which depends only on these first three 
joint variables. We can now determine the orientation of the end-effector relative to 
the frame o3x3y3z3 from the expression: 

6
3

3
0 RRR =  

as: 

RRR 13
0

6
3 )( −=  
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The final three joints angles are then found as a set of Euler angles corresponding to 
6
3R . Note that the right hand side of before equation is completely known since R is 

given and 3
0R  can be calculated once the first three joint variables are known. 

The idea of kinematics decoupling is illustrated in figure below: 

 

 

Figure 10.3 Kinematics decoupling. 

 

10.4 Inverse kinematics of IRB140 
I will divide the problem in two parts: at the beginning I will find q1, q2 and q3, which 
will give me the position of WCP, and after that I will find q4, q5 and q6, which will 
give me the orientation of TCP. 

10.4.1 Find q1, q2 and q3
 

I will use a geometric approach to find the variables q1, q2 and q3, corresponding to 
wrist centre point (pw). 

Consider the manipulator shown in figure below, which represent the three first joints 
of the IRB140: 
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Figure 10.4 Elbow manipulator. 

With the components of pw denoted by pxw, pyw, pzw, the project pw onto the x0y0 plane 
as shown in figure below: 

 

 

Figure 10.5 Projection of the wrist centre onto x0-y0 plane. 

We see from this projection that: 

),tan(tan 1
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p
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
= −θ  

where atan(pyw,pxw) denote the two argument arctangent function. 

Note that a valid second solution for θ1 is: 

),tan(),tan(1 xwywxwyw ppappa −−=+= πθ  

To find the angles θ2 and θ3, given θ1, we consider the plane formed by the second 
and third links as shown in figure below: 
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Figure 10.6 Projecting onto the plane formed by links 2 and 3. 

Since the motion of links two and three is planar, the solution can be found as I 
explain following. 

Using the Law of Cosines we see that the angle θ3 is given by: 
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If I consider offset which is introduced by Denavit-Hartenberg parameters d1 and a1: 
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We could now determine θ3 as: 
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However, a better way to find θ3 is to notice that if: 
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And, hence, θ3 can be found by: 
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The advantage of this latter approach is that both the elbow-up and elbow-down 
solutions are recovered by choosing the positive and negative signs respectively. 

Similary θ2 is given as: 
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
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10.4.2 Find q4, q5 and q6
 

In the previous paragraph I used a geometric approach to solve the inverse position 
problem. This gives the values of the first three joint variables corresponding to a 
given position of the wrist origin. The inverse orientation problem is now one on 
finding the values of the final three joint variables corresponding to a given 
orientation with respect to the frame o3x3y3z3. For a spherical wrist this can be 
interpreted as the problem of finding a set of Euler angles corresponding to a given 
rotation matrix R as I pointed out in paragraph 10.3. 

Equations to calculate q4, q5 and q6 are: 

RRRRRR 13
0

6
3

6
3

3
0 )( −=⇒=  

where: 

• 6
3R  is a matrix 3x3, which is a function of θ4, θ5 and θ6. 

• 3
0R  can be obtained from θ1, θ2 and θ3 and Denavit-Hartenberg transformation 
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• R is the rotation matrix of TCP: 
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RR 13
0 )( −  is a matrix 3x3 (as 6

3R ). So, I have 9 equations and 9 unknown quantities to 
find θ4, θ5 and θ6. 

Following with the calculations, I obtain: 
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Therefore 9 equations are: 

• 6465411 SSCCCb −=   (Equation 1) 
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• 6465412 CSSCCb −−=  (Equation 2) 

• 5413 SCb =    (Equation 3) 

• 6465421 SCCCSb +=   (Equation 4) 

• 6465422 CCSCSb +−=  (Equation 5) 

• 5423 SSb =    (Equation 6) 

• 6531 CSb −=    (Equation 7) 

• 6532 SSb =    (Equation 8) 

• 533 Cb =    (Equation 9) 

From equation 3 y 6 I find θ4: 
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From equation 7 y 8 I find θ6: 
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From equation 3 y 9 I find θ6: 
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11 Experiment 2: checking behaviour of angle measurement 
system 
Second experiment was checking behaviour of the actual angle measurement system. 
For doing it, I did the same assemble that I described in part 9.2 of this report. 

I checked both sensors (a sensor measures angle at X-direction and other one 
measures angle at Y-direction).  

Results of both sensors were similar. These graphs show results of one of them: 

 

Figure 11.1 Result of Hall-sensor operating without amplifier (upper graph) and with amplifier (lower 
graph). 

Results were not like expected due to a non-linearity, which appears around the up-
position of the pendulum. This non-linearity did not appear when I tested the sensor 
with other plate and other pendulum, that is, not with the final plate and pendulum. 

So, I think this non-linearity can be caused by a non-symmetry of the pendulum 
structure and for a hard system to get the measurements since it was done completely 
at hand. 

 



Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator 

Lund Institute of Technology 64

 

 



Chapter 12: Conclusion and future work 

David Barrio Vicente 65

12 Conclusion and future work 
This master thesis allows me using and extending my knowledge in three big areas of 
engineering like are Automatic Control, Robotics and Electronic. 

Dymola is very powerful software, which is able to realize modeling and simulation 
of a system. 

Modeling is made very simple. It is indispensable to know no Newton’s laws or 
solving long equations. Simply it is necessary to drag and drop the different available 
blocks. 

Simulations are very convincing. They are not limited at a representation over 
coordinates axes, but you can see a 3D representation of the system dynamics. This is 
a good way to get an idea about motions that are produced by the pendulum. 

Dymola's interface is easy and very intuitive. Besides, it allows to obtain a 
mathematical model of the system by a simple click of the mouse. This mathematical 
model is prepared to be manipulated by MATLAB, which is the software most used 
in engineering. 

Dymola uses a high-level language called Modelica. I had never worked with this 
language, but it was not difficult because I knew C and MATLAB languages, which 
both are very similar. 

I chose a linear-quadratic regulator (LQR) for controlling the system. It gave excellent 
results at the different simulations that I realized. Its design was very simple since 
Dymola provided me a mathematical model of the system (at state-space 
representation) and the calculation of feedback matrix K with MATLAB was 
immediate. 

Robot used in this master thesis was a parallel kinematic manipulator. So, I have 
learnt more things about this kind of robot whose use is increasing on the industry. 

The sensing problem of measuring the inclination angle of the pendulum was solved 
by using a contactless measuring setup based on Hall-effect sensors and a permanent 
magnet inside the pendulum. Sensors were stuck below the plate where the pendulum 
is supported. 

Signal amplification was solved using two operational amplifiers in cascade for every 
sensor. Regulating gain and offset, I could adapt the signal to a suitable magnitude in 
order to the data acquisition card of the robot reads correctly that signal. 

With respect to the future work, the most important thing would be checking if the 
control system designed in this master thesis works correctly in the actual robot and 
the pendulum is stabilized around the up position. It could be tested first in the table 
robot and after in the “big robot”. 

On the other hand, the set-up (plate + pendulum) can also be used in the other serial 
robots of the Robotics Laboratory, that is IRB 2400 and IRB 140. In this case, I would 
recommend doing before some simulations using Dymola software. 
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A State space 
In control engineering, a state space representation is a mathematical model of a 
physical system as a set of input, output and state variables related by first-order 
differential equations. To abstract from the number of inputs, outputs and states, the 
variables are expressed as vectors and the differential and algebraic equations are 
written in matrix form. 

The state space representation (also known as the "time-domain approach") provides a 
convenient and compact way to model and analyse systems with multiple inputs and 
outputs. With p inputs and q outputs, we would otherwise have to write down qxp 
Laplace transforms to encode all the information about a system. 

Unlike the frequency domain approach, the use of the state space representation is not 
limited to systems with linear components and zero initial conditions. "State space" 
refers to the space whose axes are the state variables. The state of the system can be 
represented as a vector within that space. 

 

A.1 State variables 
The internal state variables are the smallest possible subset of system variables that 
can represent the entire state of the system at any given time. 

State variables must be linearly independent; a state variable cannot be a linear 
combination of other state variables. The minimum number of state variables required 
to represent a given system, n, is usually equal to the order of the system's defining 
differential equation. 

If the system is represented in transfer function form, the minimum number of state 
variables is equal to the transfer function's denominator after it has been reduced to a 
proper fraction. In electronic systems, the number of state variables is the same as the 
number of energy storage elements in the circuit (capacitors and inductors). 
 

 
Figure A.1 Typical state space model. 

 

A.2 Linear systems 
The most general state space representation of a linear system with p inputs, q outputs 
and n state variables is written in the following form: 

)()()()()( tutBtxtAtx +=&  

)()()()()( tutDtxtCty +=  
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where: 

pqn tutytx ℜ∈ℜ∈ℜ∈ )(;)(;)(  

[ ] [ ] [ ] [ ]
dt

tdxtxqxpDqxnCnxpBnxnA )()(;)(dim;)(dim;)(dim;)(dim ==⋅=⋅=⋅=⋅ &  

x(⋅) is called the "state vector", y(⋅) is called the "output vector", u(⋅) is called the 
"input (or control) vector", A(⋅) is the "state matrix", B(⋅) is the "input matrix", C(⋅) is 
the "output matrix", and D(⋅) is the "feedthrough (or feedforward) matrix". 

For simplicity, D(⋅) is often chosen to be the zero matrix, i.e. the system is chosen not 
to have direct feedthrough. 

Notice that in this general formulation all matrixes are supposed time-variant, i.e. 
some or all their elements can depend from time. The time variable t can be a 
"continuous" one (i.e. ℜ∈t ) or a discrete one (i.e. Ζ∈t ): in the latter case the time 
variable is usually indicated as k. 

Depending from the assumptions taken, the state-space model representation can 
assume the following forms: 

System type State-space model 

Continuous time-invariant 
)()()( tButAxtx +=&  

)()()( tDutCxty +=  

Continuous time-variant 
)()()()()( tutBtxtAtx +=&  

)()()()()( tutDtxtCty +=  

Discrete time-invariant 
)()()1( kBukAxkx +=+  

)()()( kDukCxty +=  

Discrete time-variant 
)()()()()1( kukBkxkAkx +=+  

)()()()()( kukDkxkCky +=  

Laplace domain of continuous 
time-invariant 

)()()( sBUsAXssX +=  

)()()( sDUsCXsY +=  

Z-domain of discrete 
time-invariant 

)()()( zBUzAXzzX +=  

)()()( zDUzCXzY +=  

The stability of a time-invariant state-space model can easiest be determined by 
looking at the system's transfer function in factored form. It will then look something 
like this: 
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The denominator of the transfer function is equal to the characteristic polynomial 
found by taking the determinant of: 

λ(s) = | sI − A |  
The roots of this polynomial (the eigenvalues) give in the poles in the system's 
transfer function. These poles can be used to analyse whether the system is 
asymptotically stable or marginally stable. 

An alternative approach to determining stability, which does not involve calculating 
eigenvalues, is to analyse the system's Lyapunov stability. The zeros found in the 
numerator of G(s) can similarly be used to determine whether the system is minimum 
phase. 

The system may still be input-output stable even though it is not internally stable. 
This may be the case if unstable poles are canceled out by zeros. 

 

A.2.1 Controllability and observability 
A continuous time-invariant state-space model is controllable if and only if: 

nBAABBrank n =− )...( 1  

A continuous time-invariant state-space model is observable if and only if: 
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A.2.2 Transfer function 
The "transfer function" of a continuous time-invariant state-space model can be 
derived in the following way 

)()()( tButAxtx +=&  

which after the Laplace transform give in: 
)()()( sBUsAXssX +=  

)()()( sBUsXAsI =−  

)()()( 1 sBUAsIsX −−=  

this is substituted for X(s)in the output equation: 
)()()( sDUsCXsY +=  

)())()(()( 1 sDUsBUAsICsY +−= −  

which results in the final transfer function: 
)()()( sUsGsY =  

DBAsICsG +−= −1)()(  
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Clearly G(s) must have q by p dimensionality, and thus has a total of qp elements. So 
for every input there are q transfer functions with one for each output. This is why the 
state-space representation can easily be the preferred choice for multiple-input, 
multiple-output (MIMO) systems. 

 

A.2.3 Canonical realizations 
Any given transfer function which is strictly proper can easily be transferred into 
state-space by the following approach: 

Given a transfer function, expand it to reveal all coefficients in both the numerator 
and denominator. This should result in the following form: 
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The coefficients can now be inserted directly into the state-space model by the 
following approach: 
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This state-space realization is called controllable canonical form because the resulting 
model is guaranteed to be controllable. 

The transfer function coefficients can also be used to construct another type of 
canonical form: 
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This state-space realization is called observable canonical form because the resulting 
model is guaranteed to be observable. 

 

A.2.4 Proper transfer functions 
Transfer functions, which are only proper (and not strictly proper), can also be 
realised quite easily. The trick here is to separate the transfer function into two parts: a 
strictly proper part and a constant. 

)()()( ∞+= GsGsG SP  

The strictly proper transfer function can then be transformed into a canonical state 
space realization using techniques shown above. The state space realization of the 
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constant is trivially )()()( tuGty ∞= . Together we then get a state space realization 
with matrices A, B and C determined by the strictly proper part, and matrix D 
determined by the constant. 

Here is an example to clear things up a bit: 
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++

=
ss

s
ss
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which gives in the following controllable realization: 
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[ ] [ ] )(1)(21)( tutxty +=  

Notice how the output also depends directly on the input. This is due to the )(∞G  
constant in the transfer function. 

 

A.2.5 Feedback 

A common method for feedback is to multiply the output by a matrix K and setting 
this as the input to the system: )()( tKytu = . Since the values of K are unrestricted the 
values can easily be negated for negative feedback. The presence of a negative sign 
(the common notation) is merely a notational one and its absence has no impact on the 
end results. 

)()()( tButAxtx +=&  

)()()( tDutCxty +=  

becomes: 
)()()( tBKytAxtx +=&  

)()()( tDKytCxty +=  

solving the output equation for y(t) and substituting in the state equation results in: 

)())(()( 1 txCDKIBKAtx −−+=&  

)()()( 1 tCxDKIty −−=  

The advantage of this is that the eigenvalues of A can be controlled by setting K 
appropriately through eigendecomposition of ))(( 1CDKIBKA −−+ . This assumes 
that the open-loop system is controllable or that the unstable eigenvalues of A can be 
made stable through appropriate choice of K. 
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One fairly common simplification to this system is removing D and setting C to 
identity, which reduces the equations to: 

)()()( txBKAtx +=&  

)()( txty =  

This reduces the necessary eigendecomposition to just A + BK. 

 
Figure A.2 Typical state space model with feedback. 

 

 

A.2.6 Feedback with set point (reference) input 
In addition to feedback, an input, r(t), can be added such that: 

)()()( trtKytu +−=  

)()()( tButAxtx +=&  

)()()( tDutCxty +=  

becomes: 
)()()()( tBrtBKutAxtx +−=&  

)()()()( tDrtDKytCxty +−=  

solving the output equation for y(t) and substituting in the state equation results in: 

)())(()())(()( 11 trDDKIKIBtxCDKIBKAtx −− +−++−=&  

)()()()()( 11 tDrDKItCxDKIty −− +++=  

One fairly common simplification to this system is removing D, which reduces the 
equations to: 

)()()()( tBrtxBKCAtx +−=&  

)()( tCxty =  
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Figure A.3 State feedback with set point. 

 

A.3 Non-linear systems 
The more general form of a state space model can be written as two functions: 

))(),(,()( tutxtftx =&  

))(),(,()( tutxthty =  

The first is the state equation and the latter is the output equation. 

If the function f(·,·,·) is a linear combination of states and inputs then the equations 
can be written in matrix notation like above. 

The u(t) argument to the functions can be dropped if the system is unforced (i.e., it 
has no inputs). 
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B A 3515 Hall-sensor 
The A3515 (and A3516) are sensitive, temperature-stable linear Hall-effect sensors 
with greatly improved offset characteristics. Ratiometric, linear Hall-effect sensors 
provide a voltage output that is proportional to the applied magnetic field and have a 
quiescent output voltage that is approximately 50% of the supply voltage. These 
magnetic sensors are ideal for use in linear and rotary position sensing systems in the 
harsh environments of automotive and industrial applications over extended 
temperatures to -40° C and +150° C. The A3515 features an output sensitivity of 5 
mV/G while the A3516 has an output sensitivity of 2.5 mV/G. 
Each BiCMOS monolithic circuit integrates a Hall element, improved temperature-
compensating circuitry to reduce the intrinsic sensitivity drift of the Hall element, a 
small-signal high-gain amplifier, and a rail-to-rail low-impedance output stage. 

A proprietary dynamic offset cancellation technique, with an internal high-frequency 
clock, reduces the residual offset voltage, which is normally caused by device 
overmolding, temperature dependencies, and thermal stress. This technique produces 
devices that have an extremely stable quiescent output voltage, are immune to 
mechanical stress, and have precise recoverability after temperature cycling. Many 
problems normally associated with low-level analog signals are minimized by having 
the Hall element and amplifier in a single chip. Output precision is obtained by 
internal gain and offset trim adjustments during the manufacturing process. 

These devices are supplied in a 3-pin mini-SIP “U” package or a 3-pin ultra-mini-SIP 
“UA” package. 

 

B.1 Features and absolute maximum ratings 
These are the main features: 

• Temperature-stable quiescent output voltage. 

• Precise recoverability after temperature cycling. 

• Output voltage proportional to applied magnetic field. 

• Ratiometric rail-to-rail output. 

• Improved sensitivity. 

• 4.5 V to 5.5 V operation. 

• Immune to mechanical stress. 

• Small package size. 

• Solid-state reliability. 

 

And some of its absolute maximum ratings are: 

• Supply voltage, VCC: 8.0 V. 

• Output voltage, VO: 8.0 V. 

• Output sink current, IO: 10 mA. 
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• Magnetic flux density, B: unlimited. 

• Operating temperature range (depend type), TA: 

o Suffix E–: -40° C to +85° C. 

o Suffix L–: -40° C to +150° C. 

• Storage temperature range, TS: -65° C to +170° C. 
 

B.2 Characteristics definitions 
I am going to explain the most important characteristics of these Hall-sensors: 

• Quiescent voltage output: in the quiescent state (no magnetic field), the 
output is ideally equal to one-half of the supply voltage over the operating 
voltage and temperature range (VOQ ≈ VCC/2). Due to internal component 
tolerances and thermal considerations, there is a tolerance on the quiescent 
voltage output and on the quiescent voltage output as a function of supply 
voltage and ambient temperature. For purposes of specification, the quiescent 
voltage output as a function of temperature is defined as: 
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This calculation gives in the device’s equivalent accuracy, over the operating 
temperature range, in gauss. 

• Sensitivity: the presence of a south-pole magnetic field perpendicular to the 
package face (the branded surface) will increase the output voltage from its 
quiescent value toward the supply voltage rail by an amount proportional to 
the magnetic field applied. Conversely, the application of a north pole will 
decrease the output voltage from its quiescent value. This proportionality is 
specified as the sensitivity of the device and is defined as: 
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The stability of sensitivity as a function of temperature is defined as: 
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• Ratiometry: the A3515xU, A3515xUA, A3516xU, and A3516xUA feature a 
ratiometric output. The quiescent voltage output and sensitivity are 
proportional to the supply voltage (ratiometric). 

The per cent ratiometric change in the quiescent voltage output is defined as: 
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and the per cent ratiometric change in sensitivity is defined as: 
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• Linearity and symmetry: the on-chip output stage is designed to provide a 
linear output to within 500 mV of either rail with a supply voltage of 5 V. This 
is equivalent to approximately ±800 gauss of ambient field. Although 
application of stronger magnetic fields will not damage these devices, it will 
force the output into a non-linear region. Linearity in per cent is measured and 
defined as: 
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and output symmetry as: 
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B.3 Applications information 
Calibrated linear Hall devices, which can be used to determine the actual flux density 
presented to the sensor in a particular application, are available. 

For safe, reliable operation, the output should not be pulled above the supply voltage 
or pulled below the device ground. 

For optimum performance, a 0.1 mF capacitor between the supply and ground, and a 
100 pF capacitor between the output and ground, should be added. 

The ratiometric feature is especially valuable when these devices are used with an 
analog-to-digital converter. A/D converters typically derive their LSB step size by 
ratioing off a reference voltage line. If the reference voltage varies, the LSB will vary 
proportionally. This is a major error source in many sensing systems. The A3515xU, 
A3515xUA, A3516xU, and A3516xUA can eliminate this source of error by their 
ratiometric operation. Because their gain and offsets are proportional to the supply 
voltage, if they are powered from the A/D reference voltage, the sensor output voltage 
will track changes in the LSB value. 

These devices can withstand infrequent temperature excursions, beyond the Absolute 
Maximum Ratings, to TA = 170°C provided the junction temperature, TJ, does not 
exceed 200° C. 
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C MATLAB code for calculating LQR controller and 
simulating 
 
 
% Clear variables and command window and close windows 
clear all; 
clc; 
close all; 
  
% Load file with mathematical model got with Dymola 
load dslin_4outputs_ob.mat % 8 states, 4 outputs (Xs, Zs, Aphi and 
Bphi) 
  
% Show 8 states, 2 inputs and 4 outputs 
xuyName 
  
% Initial condition 
Aphi=10; % [degrees] 
Bphi=4; % [degrees] 
Aphi_rad=Aphi*(pi/180); % [rad] 
Bphi_rad=Bphi*(pi/180); % [rad] 
x0=[0 0 0 0 Aphi_rad 0 Bphi_rad 0]; 
  
% Size of (ABCD): 12x10 
A=ABCD(1:8,1:8);   % 8x8 
B=ABCD(1:8,9:10);  % 8x2 
C=ABCD(9:12,1:8);  % 4x8 
D=ABCD(9:12,9:10); % 4x2 
  
% Check if system is controllable 
CON=[B A*B (A^2)*B (A^3)*B (A^4)*B (A^5)*B (A^6)*B (A^7)*B]; 
if rank(CON)==length(A) 
    disp('System is controllable') 
else 
    disp('System is not controllable') 
end 
  
% LQR CONTROL DESIGN ************************************************ 
R=eye(2); % Identity matrix 2x2 (R matrix must be square with as many 
columns as B) 
Q=eye(8); % Identity matrix 8x8 (A and Q matrixes must be the same 
size) 
K = lqr(A,B,Q,R) % Calculate and show optimal gain matrix 
  
% Closed loop matrix 
Acl=A-B*K; 
Bcl=B; 
Ccl=C; 
Dcl=D; 
  
% Simulation closed loop 
sysCL=ss(Acl,Bcl,Ccl,Dcl); 
T=0:0.01:10; % Simulation time vector 
  
[Y,T,X]=initial(sysCL,x0,T); % Response of state-space models with 
initial condition 
Y(:,1:2)=Y(:,1:2)*180/pi;    % Outputs (angles) in degrees 
  
U=-K*X'; % Control law 
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% Graphs 
figure 
subplot(211); 
plot(T,U(1,:)); 
hold on; 
plot(T,U(2,:),'r'); 
title('Pendulum + feedback matrix K'); 
legend('AccelerateX','AceclerateZ'); 
%legend('AccelerateX','AceclerateY'); 
xlabel('Time (s)'); 
ylabel('Inputs (m/s^2)'); 
grid on; 
  
subplot(212); 
plot(T,Y(:,1)); 
hold on; 
plot(T,Y(:,2),'r'); 
legend('Aphi','Bphi'); 
%legend('Alpha1','Alpha2'); 
xlabel('Time (s)'); 
%ylabel('Outputs (rad)'); 
ylabel('Outputs (degrees)'); 
grid on; 
  
% Check if system is observable 
OB=[C; C*A; C*(A^2); C*(A^3); C*(A^4); C*(A^5); C*(A^6); C*(A^7)]; 
if rank(OB)==length(A) 
    disp('System is observable') 
else 
    disp('System is not observable') 
end 
  
% DESIGN CONTROL WITH STATE OBSERVER ******************************** 
G=eye(8); % Identity matrix 8x8 (A and G matrixes must have the same 
number of rows) 
Q=eye(8); % Identity matrix 8x8 (Q must be square with as many 
columns as G) 
R=eye(4); % Identity matrix 4x4 (R matrix must be square with as many 
rows as C) 
L=lqe(A,G,C,Q,R) % Calculate and show observer gain matrix 
  
% Closed loop matrix 
Aob=A-L*C-B*K; 
Bob=B; 
Cob=C; 
Dob=D; 
  
% Simulation closed loop with observer 
sysOB=ss(Aob,Bob,Cob,Dob); 
  
[Y,T,X]=initial(sysOB,x0,T); % Response of state-space models with 
initial condition 
Y(:,1:2)=Y(:,1:2)*180/pi;    % Outputs (angles) in degrees 
  
% Graphs 
figure 
subplot(211); 
plot(T,U(1,:)); 
hold on; 
plot(T,U(2,:),'r'); 
title('Pendulum + feedback matrix K + observer matrix L'); 
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%legend('AccelerateX','AceclerateZ'); 
legend('AccelerateX','AccelerateY'); 
xlabel('Time (s)'); 
ylabel('Inputs (m/s^2)'); 
grid on; 
  
subplot(212); 
plot(T,Y(:,1)); 
hold on; 
plot(T,Y(:,2),'r'); 
%legend('Aphi','Bphi'); 
legend('Alpha1','Alpha2'); 
xlabel('Time (s)'); 
%ylabel('Outputs (rad)'); 
ylabel('Outputs (degrees)'); 
grid on; 
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D MATLAB code for calculating inverse kinematics for 
PKM 
 
 
% INVERSE KINEMATICS 
  
% Reference system: WORLD 
  
% INPUT ARGUMENTS 
% TCP -> 3x1 -> TCP = [TCPx; TCPy; TCPz] -> Tool Centre Point 
% P1 -> 3x1 -> P1 = [P1x; P1y; P1z] -> Position of cart 1 
% P2 -> 3x1 -> P2 = [P2x; P2y; P2z] -> Position of cart 2 
% P3 -> 3x1 -> P3 = [P3x; P3y; P3z] -> Position of cart 3 
% L -> 1x3 -> L = [L1 L2 L3] -> Lengths of the links 1,2 and 3 
% mp_D -> 3x3 -> % Offset on the plate 
  
% OUTPUT ARGUMENTS 
% X1 -> 1x1 -> Position of cart 1 in X-direction 
% X2 -> 1x1 -> Position of cart 2 in Y-direction 
% X3 -> 1x1 -> Position of cart 3 in Z-direction 
  
function [X1, X2, X3] = robot2(TCP,P1,P2,P3,L,mp_D) 
  
% Length every link 
L1 = L(1); % 1x1 
L2 = L(2); 
L3 = L(3); 
  
% Offset on the plate 
mp_d1 = mp_D(:,1); % 3x1 
mp_d2 = mp_D(:,2); 
mp_d3 = mp_D(:,3); 
  
% Coordinates of the carts 
Y1 = P1(2); % 1x1 
Z1 = P1(3); 
Y2 = P2(2); 
Z2 = P2(3); 
Y3 = P3(2); 
Z3 = P3(3); 
  
% Coordinates of the TCP 
X=TCP(1); % 1x1 
Y=TCP(2); 
Z=TCP(3); 
  
r1 = L1^2 - (Y1-Y-mp_d1(2))^2 - (Z1-Z-mp_d1(3))^2; 
r2 = L2^2 - (Y2-Y-mp_d2(2))^2 - (Z2-Z-mp_d2(3))^2; 
r3 = L3^2 - (Y3-Y-mp_d3(2))^2 - (Z3-Z-mp_d3(3))^2; 
  
% Test if there is solution and calculate it 
if (r1<0 | r2<0 | r3<0) 
    error('No solution') 
    return; 
else % Two possible solutions 
    X11 = X + mp_d1(1) + sqrt(r1); 
    X21 = X + mp_d2(1) + sqrt(r2); 
    X31 = X + mp_d3(1) + sqrt(r3); 
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    X1 = X + mp_d1(1) - sqrt(r1); 
    X2 = X + mp_d2(1) - sqrt(r2); 
    X3 = X + mp_d3(1) - sqrt(r3); 
%{   
    % Draw solutions 
    figure() 
    A = [Y2;Z2];B=[Y3;Z3];C=[Y1;Z1]; 
     
    % A 'blue star' show every cart position; 
    plot3(X2,A(1),A(2),'b*', X3,B(1),B(2),'b*', X1,C(1),C(2),'b*') 
    hold on 
    plot3(X21,A(1),A(2),'b*', X31,B(1),B(2),'b*', X11,C(1),C(2),'b*') 
    hold on 
  
    % A 'blue square' show TCP position 
    plot3(TCP(1),TCP(2),TCP(3),'b square') 
     
    % One possibility 
    plot3([X21 TCP(1)],[A(1) TCP(2)],[A(2) TCP(3)],'g','Linewidth',2) 
    plot3([X31 TCP(1)],[B(1) TCP(2)],[B(2) TCP(3)],'g','Linewidth',2) 
    plot3([X11 TCP(1)],[C(1) TCP(2)],[C(2) TCP(3)],'g','Linewidth',2) 
     
    % Other possibility 
    plot3([X2 TCP(1)],[A(1) TCP(2)],[A(2) TCP(3)],'r','Linewidth',2) 
    plot3([X3 TCP(1)],[B(1) TCP(2)],[B(2) TCP(3)],'r','Linewidth',2) 
    plot3([X1 TCP(1)],[C(1) TCP(2)],[C(2) TCP(3)],'r','Linewidth',2) 
     
    % Show origin 
    plot3([0 4],[0 0],[0 0],'k','Linewidth',3) 
    plot3([0 4],[2 2],[0 0],'k','Linewidth',3) 
    plot3([0 4],[1 1],[2 2],'k','Linewidth',3) 
     
    grid on 
    xlabel('X Axis') 
    ylabel('Y Axis') 
    zlabel('Z Axis')   
%} 
end 
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E MATLAB code for calculating forward kinematics for 
PKM 
 
% DIRECT KINEMATICS 
  
% Reference system: WORLD 
  
% INPUT ARGUMENTS 
% P1 -> 3x1 -> P1 = [P1x; P1y; P1z] -> Position of cart 1 
% P2 -> 3x1 -> P2 = [P2x; P2y; P2z] -> Position of cart 2 
% P3 -> 3x1 -> P3 = [P3x; P3y; P3z] -> Position of cart 3 
% L -> 1x3 -> L = [L1 L2 L3] -> Lengths of the links 1,2 and 3 
% mp_D -> 3x3 -> % Offset on the plate 
  
% OUTPUT ARGUMENTS 
% TCP1 -> 3x1 -> TCP1 = [TCP1x; TCP1y; TPC1z] -> Tool centre point 1 
% TCP2 -> 3x1 -> TCP2 = [TCP2x; TCP2y; TPC2z] -> Tool centre point 2 
  
function [TCP1,TCP2] = robot(P1, P2, P3, L, mp_D) 
  
% Length every link 
L1 = L(1); % 1x1 
L2 = L(2); 
L3 = L(3); 
  
% Offset on the plate 
mp_d1 = mp_D(:,1); % 3x1 
mp_d2 = mp_D(:,2); 
mp_d3 = mp_D(:,3); 
  
% Centre of spheres 
P1c = P1 - mp_d1; % 3x1 
P2c = P2 - mp_d2; 
P3c = P3 - mp_d3; 
  
% Distance between spheres 
P12 = P1c - P2c; % 3x1 
P13 = P1c - P3c; 
  
% Intersection of two spheres, assume solution is a circle (not a 
point) 
s1 = (L2^2+norm(P12)^2-L1^2)/(2*norm(P12)); % 1x1 
s2 = (L3^2+norm(P13)^2-L1^2)/(2*norm(P13)); 
  
% Radio of the intersection circle 
r = sqrt(L2^2-s1^2); % 1x1 
  
% Center of the circle 
D = P2c + s1*P12/norm(P12); % 3x1 
  
% A point on the plane 
E = P3c + s2*P13/norm(P13); % 3x1 
  
% Normal vector of the plane 
N = P13; % 3x1 
  
% Rotation matrixes 
theta = atan2((P2c(1)-P1c(1)),(P1c(2)-P2c(2))); % 1x1 
beta = acos((P1c(3)-P2c(3))/(norm(P12))); 
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Rotz = [cos(theta) sin(theta) 0; -sin(theta) cos(theta) 0; 0 0 1]; % 
3x3 
Rotx = [1 0 0; 0 cos(beta) -sin(beta); 0 sin(beta) cos(beta)]; 
  
Rotxz = Rotx*Rotz; % 3x3 
  
% The normal vector for the plane and points D and E are transformed 
into a  
% coordinate system with the z-axis pointing from P2 to P1. 
N1 = Rotxz*N; % 3x1 
Nx = N1(1); 
Ny = N1(2);  
Nz = N1(3); 
  
D1 = Rotxz*D; % 3x1 
xd = D1(1); 
yd = D1(2);  
zd = D1(3); 
  
E1 = Rotxz*E; % 3x1 
xe = E1(1); 
ye = E1(2);  
ze = E1(3); 
  
% Intermediate parameters to calculate TCP 
T1 = xd - xe; 
T2 = yd - ye; 
T3 = zd - ze; 
Nxy = Nx*Ny; 
Nyz = Ny*Nz; 
Nxz = Nx*Nz; 
Nq = Nx^2 + Ny^2; 
Q = Ny*r; 
R = Ny*T2 + Nz*T3; 
  
if Nx^2*(r+T1)*(r-T1) - 2*Nx*T1*R + Q^2 -R^2 < 0 
    error('No solution'); 
    return; 
else 
    S =  sqrt(Nx^2*(r+T1)*(r-T1) - 2*Nx*T1*R + Q^2 -R^2); 
end 
  
% One possibility 
xr1 = (Ny^2*xd+Nx^2*xe-Nxy*T2-Nxz*T3-Ny*S)/Nq; 
yr1 = (Ny^2*ye+Nx^2*yd-Nxy*T1-Nyz*T3+Nx*S)/Nq; 
  
% Other possibility 
xr2 = (Ny^2*xd+Nx^2*xe-Nxy*T2-Nxz*T3+Ny*S)/Nq; 
yr2 = (Ny^2*ye+Nx^2*yd-Nxy*T1-Nyz*T3-Nx*S)/Nq; 
  
zr = zd; 
  
% Solutions 
TCP1 = inv(Rotxz)*[xr1 ; yr1 ; zr]; % 3x1 
TCP2 = inv(Rotxz)*[xr2 ; yr2 ; zr]; 
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F Modelica code for the final simulation 
 
The program below belongs to final simulation: 

 

 
 

Now, I am going to show the code of the four bocks (forwardKinematicsPKM, 
inverseKinematicsPKM, ctrl_feed_ob1 and pend_4out_pos1), which are contained 
inside this program.  
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F.1 ForwardKinematicsPKM 
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F.2 ForwardKinematicsPKM 
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F.3 ctrl_feed_ob 
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F.4 pend_4out_pos 
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