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Chapter 1: Introduction

1 Introduction

A robot balancing an inverted pendulum is an impressive demonstration object that
shows how an intelligent combination of modern control algorithms, robotics, and
electronics can lead to a high-performance dynamic system. As such, it constitutes a
typical mechatronical system.

Its realization requires the design of a state-space controller, calculation of the
forward and inverse kinematics and the development of specialized signal processing
electronics, which are necessary for the measurement of the inclination angles of the
pendulum.

The goal project is controlling the balance of an inverted pendulum. The pendulum is
supported over a plate, which is joined to robot hand.

The parallel robot, which I will use in this master thesis, will be a Gantry-Tau
structure but the pendulum and its plate will be possible to use with others robots.

The lower pendulum part is an iron cone. Over the cone there is a magnetic object. On
the plate surface, two hall-sensors for magnetic field will be placed to take
measurements of pendulum angle on at x-y axis.

The TCP-robot will be moved along x-y directions.

Figure 1.1 Cross section of pendulum and sensor.

Above picture shows the pendulum structure. It can be seen:
1. Pendulum (glass fibber tube).
Permanent magnet.
Cone (steel).

2
3
4. Mounting plate (plastic).
5. Magnetic flux.

6

Hall-effect sensor and (o) inclination angle of the pendulum.
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Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

My master thesis will have three stages:

e Simulation of pendulum dynamics: I will use MATLAB' and Dymola’
software to do it.

e Control design: there are several possibilities (P, PI, PID, LQR, etc.). I will
have to study everyone and to choose the most suitable.

e Design of electronics for angle measurements: hall-sensors give in a little
signal which is in relation to magnetic flux that is in relation to pendulum
angle. I will have to amplify that signal using operational amplifiers.

This master thesis will allow me to use and to extend my knowledge I learnt in Spain
for last years about Electronics, Robotics and Automatic Control.

'MATLAB version 7.2.0.232 (R2006a) was used.

’Dymola version 6 was used.

Lund Institute of Technology 8



Chapter 2: PKMs

2 PKMs

2.1 Robotics. Historical background

Today robots are natural components in the manufacturing industry and are even
expanding to other fields. Robots are however a pretty young product compared to
other equipment used today.

The robotic history began in the late 1950’s in USA where George Devol and Joseph
Engelberger started what was to become the Unimation. Joseph Engelberger is
sometimes called "The Father of Robotics”. Unimation was the first company who
delivered robots to the American industry and General Motors was the first customer
in 1961:

Figure 2.1 First industrial robot in a factory.

The word “"Robot” comes from the Czech play “Rossums Universal Robots”,
performed in the 1920’s. The big breakthrough came 1964 when General Motors
ordered 66 Unimate robots from Unimation, to be installed in their new top modern
factory in Ohio. Even though the industry was hard to convince the public was now
very interested in the robots, and Unimate robots appear in commercials and talk
shows. Soon several other companies followed. IBM, AMF, Hughes Aircraft and
Western Electric are just some of many companies who started their own production
of robots.

In Europe the Scandinavian countries were early to adopt the new invention and
several companies in Sweden, Norway and Finland started to develop robots or
produce the Unimate robot on licence. Among the pioneers in Sweden one can

9 David Barrio Vicente



Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

mention Roland Kaufeldt, founder of Kaufeldt AB, the kitchen appliances company
Electrolux, Esab, manufacturer of welding products and Asea, electronics
manufacturer. In Norway Trallfa, manufacturer of wheelbarrows, constructed a robot
for painting which became a success story.

In 1971 Asea started to develop a robot, which would come to make ABB one of the
main players on the market. The robot, which was to be called IRB 6, had a fully
electronic control and power system, and was the first microprocessor controlled
robot. It was also an anthropomorphic robot, i.e. it imitated the human anatomy.
Using Harmonic Drives meant that it was much more compact than other robots. The
production of IRB 6 started in 1973:

Figure 2.2 IRB 6 robot.

Other countries in Europe were not so eager to follow. Europe had a high
unemployment rate and there was no need for robots since the pressure to raise
productivity was relatively low. There was however some exceptions. The German
company Kuka developed a robot used for welding, mainly sold to the European car
industry. The European car industry also started to produce robots on their own.

While Europe had a high unemployment rate and no problem to get enough labour the
situation was very much the opposite in Japan. The high economical growth in the
60’s resulted in a lack of labour. This meant that the companies were very open for
new ideas and the robots were embraced as a way to increase the production. The
industry was quick to apply the robots in the production and soon there were many

Lund Institute of Technology 10
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Japanese robot producers to compete on the growing market. In 1980 there were 150
Japanese robot producers and in 1988 nearly 70 % of the 256 000 robots in use all
over the world were installed in Japan. Some large Japanese robot manufacturers
today are Fanuc, Yaskawa and Kawasaki.

In Scandinavia Asea became the main robot producer in the mid 80’s when both
Electrolux robot production and Trallfa was incorporated. After Asea and the Swiss
company Brown Boveri merged in 1988 and formed ABB, the robot production of
Cincinnati Milicroms, Graco Robotics and Esab were also incorporated.

2.2 Parallel manipulators

Parallel kinematics manipulators (PKMs) have recently attracted a lot of interest in
the robot community. The main reason for this is some inherited properties of the
structure, mainly high stiffness and dynamical advantages.

A parallel mechanism can be defined as a closed-loop mechanism in which the end
effector (mobile platform) is connected to the base by at least two independent
kinematics chains. In other words, a parallel kinematics manipulator consists of
several kinematics chains, in contrast to the serial that only consist of one. This is a
very general definition that opens up for many different constructions, with very
different properties.

There are already some PKMs on the market like IRB 340 Flexpicker, which is based
on the Delta structure:

Figure 2.3 IRB 340 Flexpicker robot.

11 David Barrio Vicente
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Other examples of parallel structures are the Hexaglide, the Triaglide, the 14 and the
Orthoglide:

Figure 2.4 Orthoglide robot.

There is some common vocabulary that is used for parallel manipulators. The
manipulator is said to consist of a mobile platform connected to a fixed base by
several kinematics chains, called legs. If the number of legs is greater or equal to the
degrees-of-freedom (DOFs) of the mobile platform and each arm having one actuated
joint, the manipulator is called fully parallel.

2.3 Comparisons with serial structures

Same different properties of serial and parallel manipulators are workspace, payload,
accuracy and dynamical behaviour. These are general properties, more or less true for
different constructions, which give a background to raising interest in parallel robots
and the problems inherited in the structure.

e Workspace: one of the main drawbacks with parallel robots is that they
generally have a small workspace compared to the footprint of the robot.

Lund Institute of Technology 12
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e Payload: in a serial structure each actuator has to have the necessary power to
move not only the manipulated object, but also the links and actuators located
later in the kinematics chain. In a parallel structure the end-effector is directly
supported by all actuators, and the actuators can be located close to the base,
hence the payload can be much larger.

e Accuracy: in serial robots the errors from each link accumulate to a total error
at the end-effector. An error in a joint closer to the base will also have a larger
effect on the total error than an error in a joint closer to the end-effector.
Parallel structures do not have these drawbacks at all, and are therefore
remarkably rigid.

e Dynamical behaviour: the fact that the arm structure of a parallel robot can be
made much lighter since the arms do not have to carry actuators, and the fact
that errors do not accumulate, give them better dynamic performance than
serial robots.

As seen in these comparisons, there are a lot of properties of a parallel structure
that could make it interesting. The main drawback of the structure is the small
workspace.

2.4 The Tau structure

As mentioned above the definition of a parallel manipulator opens up for a wide range
of constructions. We will here study a special group of parallel manipulators based on
a mobile platform, six arms and three actuators. Depending on where the arms are
connected to the platform, how they are grouped and what kind of actuators used the
performance will be very different even within this group of manipulators. One
example of construction like this is the Orthoglide, (see before figure).

In this group one can arrange the structures according to how the arms are grouped.
The Orthoglide has a structure that would be named 2/2/2, since the arms are grouped
in pairs. If the arms are grouped as 3/2/1, 3/1/2, 2/3/1, 2/1/3, 1/3/2 or 1/2/3 the
structure is referred to as a Tau-structure. One of the advantages of the Tau-structure
is that the different configurations make it possible to get the highest stiffness in a
desired direction. For a 2/2/2 structure there is only one configuration. ABB Robotics
introduced the Tau family of parallel kinematics manipulators.

2.5 The Gantry-Tau structure

As stated before, the main drawback with parallel structures is the small workspace
compared to the footprint of the robot. The Gantry-Tau [11] is constructed to
overcome this limitation while retaining most of the parallel structures advantages.

The Gantry-Tau has a total workspace larger than for a serial gantry robot with the
same footprint. The robot has been constructed for the assembly of aeroplane
components. This is an application where very large and expensive machines are used
today and a lighter and more cost efficient manipulator could compete.

The parallel robot used in this master thesis is a Gantry-Tau structure, with 3
translational DOF, that can allow a big working area compared to the other structures:

13 David Barrio Vicente
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Figure 2.5 Gantry-Tau structure (robot on the left side).

This structure has 6 joints, in a 3-2-1 configuration, representing how many joints are
on each kinematics group of the robot.

The table robot can became a demonstration model, easier to transport than the real
size one.

The table robot consists of three parallel linear tracks, which are attached to a plate at
each end. One of the end plates has been reduced to an L-shape so that the platform
can move freely in this area. On the each track, the interface boards between tracks
and PC are attached.

The picture below shows the table robot:

Lund Institute of Technology 14
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Figure 2.6 Table robot.

The cart moves on a toothed belt, driven by a DC motor that is coupled to a gear
wheel. The tracks are about 50 cm long and fastened to the end plates with one screw

at each end, so the robot is easy to transport and assemble. The bars have a diameter
of 6 mm.
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Chapter 3: Modeling and simulation of pendulum dynamics

3 Modeling and simulation of pendulum dynamics

In this chapter I am going to explain how I have made the modeling and simulation of
the pendulum dynamics.

In order to do that, Dymola simulation software [19] will be used. This software is
based on Modelica language [23], and permits to build models easily using Drag and
Drop, and simulate them as well as other many possibilities that will be seen later.

3.1 Modeling

In Dymola, I made a modeling of physic system. I just considered the motion of the
hand robot. For it, I included:

2 prismatic actuators® (motorX and motorZ), which represent motions along X
and Z-axis. These motions will be made by the robot hand.

2 accelerators® (accelerateX and accelerateZ), which represent input signal to
every motor.

1 universal joint® (cone), which represents two DOFs of pendulum rotation.
1 body® (bar), which represents the pendulum.

1 absolute sensor’ (sensor), which is able to give me every measure I need.
These measures are: linear position and velocity of both motors, angular
position and velocity of both degrees-of-freedom of the pendulum.

2 input ports® (17 and u2), to connect input signals to system.

8 output ports’ (xI_Xs, x2 Xv, x3_Zs, x4_Zv, x5 _Aphi, x6_Aw, x7 Bphi and
x8_ Bw), to read output signals from system.

Of course, I need a reference system'’: world.

*Included in Modelica.Mechanics. MultiBody.Joints. ActuatedPrismatic.
*Included in Modelica.Mechanics. Translational. Accelerate.

*Included in Modelica.Mechanics.MultiBody.Joints.Universal.
SIncluded in Modelica.Mechanics.MultiBody.Parts. BodyBox.
"Included in Modelica.Mechanics.MultiBody.Sensors.AbsoluteSensor.
*Included in Modelica.Blocks.Interfaces.Reallnput.

*Included in Modelica.Blocks.Interfaces.RealOutput.

"Included in Modelica.Mechanics.MultiBody. World.
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This one is the completed diagram:
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Figure 3.1 Dynamic model of the system.

Now I have a system and I can see its dynamic behaviour by means of Dymola. But
that is not very useful. I already knew that the system would be unstable. For working
with the system, for instance to calculate a controller, I need a mathematical model of
it. Besides, that model must be linear. At the next step I will get a linear mathematical

model.

3.2 Linearization of the dynamic model

Dymola has a tool to get a representation of a system by means of its state-space
model. Besides, that model will be linear. It is possible to find that tool on the

Simulation sheet, inside Simulation command:

VEVEY,
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pend_Sout - pend_Bout

File Editlgimulati.:.n Plot  Animation Commands Window  Help

=101 %]

Fun Scripk. ..

o & E

J_l g & Translate
» ¥

Simulate

Conkinue

Wariables e Stop

ﬁ Setup...
Yisuali
@ Yisualize el
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Advanced | ne |

4]
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| _[=] Maodeling

W Simulation

Figure 3.2 Linearize tool in Dymola.

After executing this tool, a MATLAB file (dslin.mat) is made. This file stores all
necessary information to make a state-space'' model of the system using MATLAB

software.

"More information about state-space representation in Appendix A.
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3.3 Mathematic model

The first step to extract a mathematic model from dslin.mat file is loading it in
MATLAB: 1oad dslin 4outputs ob.mat

This command creates four variables. One of them (xuyName) contains information
about inputs, outputs and states of the system:

xuyName =

motorX.s

motorX.v

motorZz.s

motorz.v
cone.revolute a.phi
cone.revolute a.w
cone.revolute b.phi
cone.revolute b.w

u2 .
ul j mputs

x5 Aphi )
x7 Bphi
x8 Bw
X6 Aw
x1 Xs
x3 7Zs
x4 7Zv
X2 Xv

> states

> outputs

Other variable contain 4, B, C and D matrixes, that is, four matrixes to do a complete
representation of a system by means of its state-space model:

LBCD =
u} 1.0000 u} u} u} u} u] u} u] u}
u} u} u} u} u} u} u] u} u] 1.0000
u} u} u} 1.0000 u} u} u] u} u] u}
u} u} u} u} u} u} u] u} 1.0000 u}
u} u} u} u} u} 1.0000 u] u} u] u}
u} u} u} u} 29.411a u} u] u} —-2.9981 u}
u} u} u} u} u} u} u] 1.0000 u] u}
u} u} u} u} u} u} 29.4116 u} u] Z.99581
u} u} u} u} 1.0000 u} u] u} u] u}
u} u} u} u} u} u} 1.0000 u} u] u}
u} u} u} u} u} u} u] 1.0000 u] u}
u} u} u} u} u} 1.0000 u] u} u] u}
1.0000 u} u} u} u} u} u] u} u] u}
u} u} 1.0000 u} u} u} u] u} u] u}
u} u} u} 1.0000 u} u} u] u} u] u}
u} 1.0000 u} u} u} u} u] u} u] u}

Figure 3.3 ABCD variable in MATLAB.
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Next step is extracting 4, B, C and D matrixes from ABCD variable.

/

ABCD =

S

8x8

8x8

Which is very easy using MATLAB:

A=ABCD(1:8,1:8);

B=ABCD(1:8,9:10) ;
C=ABCD(9:16,1:8);
D=ABCD(9:16,9:10)

’

8x2

v
— 16x10

21
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Chapter 4: Control design

4 Control design

I checked in the before simulation that open-loop system is unstable. That means I
need to introduce a control system to stabilizer it.

There are several possibilities to do it: proportional controller, proportional integral
controller, proportional integral derivative controller, cascade controller, linear
quadratic regulator...

Designing one of them (LQR) is very easy because I have state-space model in
MATLAB. This software has a command (1qr), which give me K feedback matrix. I
only need this matrix to control and stabilizer the closed-loop system.

4.1 LQR problem

The theory of optimal control is concerned with operating a dynamic system at
minimum cost. The case where the system dynamics are described by a set of linear
differential equations and the cost is described by a quadratic functional is called the
LQ problem. One of the main results in the theory is that the solution is provided by
the linear-quadratic regulator (LQR), a feedback controller whose equations are given
below.

For a continuous-time linear system described by:
X(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)
where:
x = state vector (n-dimension)
u = control vector (r-dimension)
y = output vector (m-dimension)
A = constant coefficient matrix (nxn dimension)
B = constant coefficient matrix (nx7 dimension)
C = constant coefficient matrix (mxn dimension)
D = constant coefficient matrix (mxr dimension)

with a cost functional defined as:

J = j0°° (x" (H)Ox(t) +u” (t)Ru(t))dt

where the matrices Q and R are positive-semidefinite and positive-definite,
respectively. Note that this cost functional is thought in terms of penalizing the
control energy (measured as a quadratic form) and the time it takes the system to
reach zero-state. This functional could seem rather useless since it assumes that the
operator is driving the system to zero-state, and hence driving the output of the system
to zero. This is indeed right, however the problem of driving the output to the desired
level can be solved after the zero output one is. In fact, it can be proved that this
secondary problem can be solved in a very straightforward manner. The optimal
control problem defined with the previous functional is usually called the state
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regulator problem and its solution the linear quadratic regulator (LQR) which is no
more than a feedback matrix gain of the form:

u(t) =-R"'B" Px(t) = —Kx(1)
where K is a rxn dimension matrix and P is found by solving the Riccati equation:
A"P+PA-PBR'B'P+0=0
This problem was elegantly solved by Rudolf Kalman (1960).

Therefore, the design of the systems of optimal control consists of calculating K
matrix elements.

An advantage of using quadratic optimal control is that designed system will be
stable, except in case of system is not controllable'.

MATLAB has a command (1qr) which provides a solution Riccati equation in
continuous time and it determines the optimal feedback gain matrix (K).

4.2 Design of the LQR controller

The first step is to check if the system is controllable. If the system is not controllable,
when I connect the feedback by means of K matrix, the system may be not stable.

To check it, I have to calculate the matrix below:

CON=(B AB A°B AB A'B A°B A°B A'B)
System is controllable if and only if rank” (CON) =n = 8.
I checked using MATLAB that the system is controllable.

Before using 1gr command in MATLAB, I have to determinate Q and R matrixes.
Both matrixes must be positive-semidefinite. Then, the simplest form is identity
matrix. So:

1 00 00O0UO0O
01 00 0O0TO0O
001 0O0O0TO0O
Q:00010000 R:[IO}
000O01O0TO0O 0 1
000O0O0OT1TO0O
000O0O0OO0OT O
0000000 1

Now I can use 1qr command to obtain K matrix: K = l1qr (A,B,Q,R)

2More information about controllability in Appendix A.

PRank is the number of linearly independent rows in a matrix.
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Chapter 4: Control design

4.3 Simulation of the designed controller

After executing 1qr command in MATLAB, I have K matrix. To check if this matrix
stabilizes the system, I have to simulate. At the beginning, I will simulate in
MATLAB, and after that I will make a simulation in Dymola.

4.3.1 Simulation in MATLAB™

I will use initial command to do the simulation. This command allows to obtain
initial condition response of state-space models. Before that, I have to close the loop.
The only different matrix is 4. Closed-loop A4 matrix (Acl) is Acl = A — B*K

Results for this simulation are shown below: initial conditions are: Aphi = 10°= 0.17
rad. and Bphi = 4°= 0.07 rad.:

—AccelerateX
---AccelerateZ

3 4 5 6 7 8 9 10
Time (s)
T T T T
; j —Aphi
8 : ---Bphi
2 : |
> F
o E
5 :
O :
| I I | | I |
3 4 5 6 7 8 9 10
Time (s)

Figure 4.1 Simulation obtained in MATLAB.
I checked that results were like expected and that the response was stable.

4.3.2 Simulation in Dymola

The first step is creating a model with the system and the feedback. For it, I included a
gain matrix> (K_matrix), which represents the optimal feedback gain matrix (K). Of
course, [ included a pendulum model.

“MATLARB file can be seen in Appendix C.
BTncluded in Modelica.Blocks.Math.MatrixGain.
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I introduced values obtained from MATLAB in K matrix block

Modeling of control system is shown below:

x

A
VA \/

pendulum1

K_Matrix

Figure 4.2 Dynamic model of the controlled system.

The follow graphs show results (initial conditions are the same that before one):
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Figure 4.3 Simulation obtained in Dymola.

Results in Dymola were similar that MATLAB, like expected.
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Chapter 5: Modeling of pendulum dynamic (4 outputs)

5 Modeling of pendulum dynamic (4 outputs)

In the real system, I cannot measure eight states (position and velocity along X and Z
axis, and angle and angular velocity around two directions). So I have to do a
modeling only with states I can measure (outputs). These states are position along X
and Z-axis, and pendulum angle around two directions (four outputs).

5.1 Modeling

The new model is below:

ul

accelerateX
—
a

S
O
Sensar )(B_ZS
u2 —\‘\—g
. accelerateZ °©
x5_Aphi
world
[ |
i i i I a e
n={00,1} n={1.,00} .
x motorZ motorX XY—BphI

v

Figure 5.1 Dynamic model of the system.

This model is similar with previous model but now I have only four states like
outputs. I have removed states I cannot measure such as velocity along X and Z-axis,
and angular velocity around two directions. Hence I have held states which I can
measure such as position along X and Z-axis, and pendulum angle around two
directions.
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5.2 Linearization of the dynamic model

The next step is to execute Linearize tool in Dymola. So I obtain MATLAB file
(dslin.mat), which stores all necessary information to make a state-space model of the
system using MATLAB software.

5.3 Mathematic model

Procedure to extract a mathematic model from ds/in.mat file is similar to chapter 3.1.
The first step is loading it in MATLAB: 1oad dslin 4outputs ob.mat

This command creates four variables. One of them (xuyName) contains information
about inputs, outputs and states of the system:

xuyName =

motorX.s

motorX.v

motorZz.s

motorz.v
cone.revolute a.phi
cone.revolute a.w
cone.revolute b.phi
cone.revolute b.w

u2 .
ul f'r mputs

x5 Aphi h
x7 Bphi
<1 Xs ~ outputs

X3 Zs

> states

Like it can be seen, now there are four outputs.

Other variable contain 4, B, C and D matrixes, that is, four matrixes to do a complete
representation of a system by means of its state-space model:

ARCD =
0 L.000a0 0 1] 0 1} 0 0 0 0
0 1] 0 1] 0 0 0 0 0 1.0000
0 1] 0 1.0000 0 0 0 0 0 0
0 1] 0 1] 0 1} 0 0 1.0000 0
0 1] 0 1] 0 1.0000 0 0 0 0
0 1] 0 1] 29,4116 0 0 0 -2.99581 0
0 1] 0 1] 0 1} 0 1.0000 0 0
0 1] 0 1] 0 1} 29,4116 0 0 Z.9951
0 1] 0 1] 1.0000 0 0 0 0 0
0 1] 0 1] 0 0 1.0000 0 0 0
1.0000 1] 0 1] 0 1} 0 0 0 0
0 a Ll.00oo 1] 0 0 0 0 0 0

Figure 5.2 ABCD variable in MATLAB.
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Next step is extracting 4, B, C and D matrixes from ABCD variable.

T

A B
8x8 8x2
ABCD = K J ~ /
4 N 7 N
C D

4x8 4x2
g AN JJ
— 12x10

Which is very easy using MATLAB:

A=ABCD(1:8,1:8);
B=ABCD(1:8,9:10) ;
C=ABCD(9:12,1:8);

9: )

(
(
(
D=ABCD(9:12,9:10) ;

’
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Chapter 6: Control design: controller + observer

6 Control design: controller + observer
In order to control the system, I have to observer four states, which I cannot measure.

Designing the observer is very easy because I have state-space model in MATLAB.
This software has a command (1ge), which give me L observer gain matrix. I only
need this matrix and K matrix to control and stabilizer the closed-loop system.

6.1 State observer

A state observer is an extension to a state-space model that provides feedback to
control a system. A state observer is used on a system where direct access to the state
is not possible. If the system is observable'®, then state observers can be designed to
estimate the signals that cannot be measured. These signals are estimated with base in
the outputs measures and the control.

Two of the basic parts of a control system are the plant and the controller. The "plant"
is the black box model of the system that is to be controlled. The name originates
from systems used to control factories or "plants." The controller is the subsystem
designed to control the plant. The usual state space model for a plant can be written
as:

X(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

If this system is observable then the output, y(¢), can be used to steer the state of
another state space model. This observer system is commonly denoted with a "hat":
x(¢) and y(¢). The output of the observer system is subtracted from the output of the

plant system; multiplied by a matrix L; and added to the state equation.
3(t) = 43(0) ~ L[y(0) ~ 5(0)]+ Bi(1)
y(t) = Cx(¢t) + Du(t)

For control purposes the output of the observer system is fed back to the input of both
the observer and the plant:

u(t) = u(t) = —Kx(t)
for some matrix K.

The observer equations become:
R(1) = A%(0) - L[y(t) - $(1)] - BKZ (D)
y(t) = Cx(t) — DKx(t)
or
x(t) =[4- BK]i(t) - L[y(t) - 3(1)]
ey =[C - DK k()

®More information about observability in Appendix A.
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This is a diagram of the controlled system:

y
L N I 1/s sl C >
+
A -
PENDULUM |
K |l
» B » C

A

Figure 6.1 Control system by means of observed state feedback.

6.2 Design of the observer state

The first step is to check if the system is observable. If the system is not observable,
when I connect the feedback by means of K and L matrix, the system may be not
stable.

To check it, I have to calculate the matrix below:

C
CA
cA’
cA’
c4*
cA’
CcA°
cA’

OB =

System is controllable if and only if rank (OB) =n = 8.
I checked using MATLAB that the system is observable.

Before using 1ge command in MATLAB, I have to determinate O, R and G matrixes.
These matrixes must be positive-semidefinite. Then, the simplest form is identity
matrix. So:
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Chapter 6: Control design: controller + observer

1 0000O0TO0O 1 0000O0UO0O
01 000O0TUO0O 01 00 0O0TO0O
001 00O0TO0O 001 00O0TU 0O

Q:00010000 R:{IO}G:OOOIOOOO
000O01UO0TUO0O 0 1 000O01O0TO0O
000O0O0T1 OO0 000O0O0OT1TO0O0
0000O0TO0T1O0 000O0O0OT O
000000 O0 1 0000 0O0O0 1

Now I can use 1ge command to obtain L matrix: L = lge(2,G,C,Q,R)

6.3 Simulation of the designed controller

After executing 1ge command in MATLAB, I have L matrix. To check if this matrix
stabilizes the system, I have to simulate. At the beginning, I will simulate in
MATLAB, and after that I will make a simulation in Dymola.

6.3.1 Simulation in MATLAB"’

I will use initial command to do the simulation. This command allows to obtain initial
condition response of state-space models. Before that, I have to close the loop. The
only different matrix is 4. Closed-loop 4 matrix (4ob) is Aob = A — L*C — B*K

""MATLARB file can be seen in Appendix C.
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Results for this simulation are shown below: initial conditions are: Aphi = 10° = 0.17
rad. and Bphi = 4° = 0.07 rad.:

6 T T T T T
: |—AcelerateX
- | -—-AcelerateZ
| 1 | | | | |
3 4 5 6 7 8 9 10
Time (s)
02 T T T T -
—Aphi
---Bphi
4 | 1 I | | i 1 | i
0'050 1 2 3 4 5 6 7 8 9 10
Time (s)

Figure 6.2 Simulation obtained in MATLAB.
I checked that results were like expected and that the response was stable.

6.3.2 Simulation in Dymola

The first step is creating a model with the system and the feedback. For it, I included:
e A pendulum model'® (pend 4outpur), which represents pendulum dynamics.
o 8sums'’ (suml...sum8).
e 8 integrators® (statel ...states).
o 4 feedback® (feedbackl ...feedback4).

e 5 gain matrix** (4_Matrix, B Matrix, C_Matrix, K_Matrix, L _Matrix), which
represent matrixes of state-space model (4, B and C), feedback gain matrix (K)
and observer gain matrix (L).

"®This block was described at the paragraph 5.1.
PIncluded in Modelica.Blocks.Math.Sum.

“Included in Modelica.Blocks.Continuous. Integrator.
Included in Modelica.Blocks.Math.Feedback.
“Included in Modelica.Blocks.Math.MatrixGain.
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I introduced values obtained from MATLAB in K Matrix and L _Matrix blocks

Modeling of control system + observer is shown below:

B_hatriz

pendulurmz_1

L_hatriz

feedba...

t

feedha...

sumi stated

=

N

k=1
UM states

A
+

feedha...

t

feedba...

H

k=1
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H

k=1
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—EZH/

_q__(?_q_

r
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k=1
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S om

N

A
o=
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sUmE

e > W

S

AN

&
=
bl

sum?

N

s
o
o

sums

-

[l
=

A Matriz

K _Watrix

Figure 6.3 Dynamic model of the system + control + observer.

Previous model is similar to diagram shown in figure 6.1.
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And the follow graphs show results (initial conditions are the same that before
simulation with MATLAB):

i i i Acceleration®
E _. J — — AccelerationZ
e A L !
E 1 1 1 1 1 1
E : : : : : :
) ' } : : : : : :
= ' : : : : : : :
[rR
= : : : : : : : :
- '2 b i FE==== | ====== ===== b a===== aT==== T====- T=====
R 71 E S S
] 5 10
Time (=)
(1] T T T T T T T r
: : : : : : : | — Aphi
S s S S R k..
= : : : : : : : : .
g [ I A bmeo- bemem- e R e R e PR
% : : : : : : : : :
g 004 e e L : : ;
=] h ' ' ' ' ' ' ' .
s ST O R SN DI
02 i i i i i i i i i
] 2 4 G g 10
Time (=)

Figure 6.4 Simulation obtained in Dymola.

Now results are a little different with reference to MATLAB. Perhaps that is so
because calculates in MATLAB were made with linear system and system is not
linearized in Dymola. Nevertheless, results are correct because response is stable.
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7 Kinematics for a Gantry-Tau parallel robot

Robot kinematics is the study of the motion (kinematics) of robots. In a kinematic
analysis the position, velocity and acceleration of all the links are calculated without
considering the forces that cause this motion. The relationship between motion, and
the associated forces and torques is studied in robot dynamics.

Robot kinematics deals with aspects of redundancy, collision avoidance and
singularity avoidance. While dealing with the kinematics used in the robots we deal
each parts of the robot by assigning a frame of reference to it and hence a robot with
many parts may have many individual frames assigned to each movable parts. For
simplicity we deal with the single manipulator arm of the robot. Each frame is named
systematically with numbers, for example the immovable base part of the manipulator
is numbered 0, the first link joined to the base is numbered 1 and the next link 2 and
similarly till n for the last nth link.

Robot kinematics is mainly of the following two types: forward kinematics and
inverse kinematics. Forward kinematics is also known as direct kinematics. In
forward kinematics, the length of each link and the angle of each joint is given and we
have to calculate the position of any point in the work volume of the robot. In inverse
kinematics, the length of each link and position of the point in work volume is given
and we have to calculate the angle of each joint.

TCP
X.Y,2>

Figure 7.1 Schematic Gantry-Tau structure.
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7.1 Inverse kinematics>

The inverse kinematics solves the following problem: "given the actual end effector
pose, what are the corresponding joint positions?" The solution of the inverse problem
is not always unique: the same end effector pose can be reached in several
configurations, corresponding to distinct joint position vectors.

For the considered parallel robot the inverse kinematics problem is formulated as
follow [11]. Calculate the location of points 4, B and C along the linear tracks for a
given TCP location. Let:

A=X,
B=2X,
C=X;
TCP=[XYZ]"

Here the parameters X;, X, and X; are to be determined and can be found as the
intersection between spheres with midpoints at TCP-mp _d;, TCP-mp_d, and TCP-
mp_d; and the respective linear track.

The spherical equations can be written as follows:

(X, _X_mp_dlx)2 +(Y —Y—mp_dly)z +(Z, —Z—MP_dlz)z =112
(X, _X_mp_dzx)2 +(, _Y_mp_dZy)2 +(Z, _Z_mp_dzz)2 =122
(X3 _X_mp_d3x)2 +(Y3 _Y_mp_d3y)2 +(Z3 _Z_mp_d3z)2 :Z32

where mp_d collects offsets in cart and plate.

Then we can determine the parameters:

X, =X+mp_d, i\/ll2 - _Y_mp_dly)z -(Z, _Z_mp_dlz)2

X, =Xtmp_dy £3JZ =Y, ~Y=mp_d,,)* ~(Z,~Z~mp_d,.)’

X, =X+mp_dy £\I} (Y, ~Y—mp_d, )" ~(Z,~Z-mp_d,_)’

The sign before the root expression decides the configuration of the robot.

ZMATLAB file can be seen in Appendix D.
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7.2 Forward kinematics>*

The forward kinematics solves the following problem: "given the joint positions, what
is the corresponding end effector pose?" With Gantry-Tau structure, there are two
possibilities for each given joint positions.

For the considered parallel robot the forward kinematics problem can be formulated
as follows [11]. Calculate the location of the TCP for given 4, B and C.

Three spheres with radius 1;, 1, and 15 describe all possible location for the 7CP for A,
B and C. The intersection points between the spheres describe the location of the TCP.

The midpoints of the spheres are:
B.=lx, v z] -mp_d,
p. =[x, v, z,] -mp_d,
P.=lX, v, Z] -mp_d,
and the spherical equations are:
(X, =XV +(Y,-Y) +(z,-2) =1}
(X, - X)V+(v,-Y) +(z,-2) =1}
(X = X) + (G -Y) +(2,-2) =45

Mathematical symbolic software can solve the spherical equations, but produces a
rather extensive solution. Proficient use of simplification rules is needed in order to
simplify the solution. This problem is avoided by solving the equations in two steps.
First find the intersection between two of the spheres. The intersection is either a
circle or a point. Ignore the point case for now. The intersection between the third
sphere and one of the other forms of course also a circle. Derive the plane where this
circle is located. Secondly the intersections of this plane and the first circle describe
the possible location for the TCP.

In the solution below the intersection circle between spheres with midpoints at B and
A 1s calculated. All calculations are then done in a coordinate system with the z-axis
pointing from B to A4.

12 1
r
_>z B sl D A
BA

Figure 7.2 Intersection between two spheres.

*MATLAB file can be seen in Appendix E.
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—2
12+ ‘BA‘ L
S =
L SN
Midpoint for the circle:
—2
Y 12+ ‘CA‘ L
D=B+s, B_1,4 y Sy E—
B4 2|cd
A point on the plane:
E=C+s, %
CA
The normal vector for the plane:
N=C4

Deriving the rotation matrix:

X,-X Z —-Z
0= tan"l[—2 1], B=cos’| =2
Y, -Y,

cos(9) sin(0)

0
Rot, =| —sin(@) cos(@) 0|, Rot,=|0 cos(B) —sin(B)
0 0 1

Rot _ = Rot _Rot.

The normal vector for the plane, N, and points D and E are transformed into a
coordinate system with the z-axis pointing from B to A4:

N, =(N, N, N_)=Rot_N
D, :(xd Ya Zd):ROtxzD
E = (xe Y, z, ) =Rot _E

The spherical equations can now be written in the new coordinate system as the
intersection between a circle and a sphere:

(o, =x, Y+, =y, ) =1
Nx(xr_xe)+Ny(yr_y€)+NZ(Zr_Z€):O

zZ, =z,

where:

(‘xr yr Zr )T = ROtszCP
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There are two solutions:

_ Njx,+Nlx,-N,T,-N.T,-NS

‘xrl
Nq
- N:x,+Nx,-~N,T,-N_T,+N.S
rl =
Nq
Zn T 24
. Nlx,+N!x,-N,T,-N_T,+N,S
r2
Nq
b N:x,+Nx,-~N,T,-N_T,—N.S
r2 T
Nq
2y T 24

where:
E:xd_xe’ T2:yd_ye’ T;:Zd_z

e

N,=NN,, N_,=NN,, N_=NN,

2 2
N,=N!+N!, Q=Nyr, R=N[T,+N.T,

S =N2(r+T)r-T,)-2N,T,R+Q* - R’

And the final solutions are:

xrl ‘xr2
TCP, =Rot| y,, |, TCP,=Rot]|y,,
z z

rl r2

The configuration of the robot decides which solution is valid.

7.3 Velocity Jacobian

Reference [6] does a study about kinematics and dynamics of robot used in this paper.
From it I am going to derive some equations to get Jacobian matrix.

Thanks to the Tau-configuration, the orientation of the end-effector plate is constant
and the three DOFs of the robot are completely translational, so it is sufficient to
consider one link per link cluster. The closure equation for link i is then:

L —(AX] +AY? +AZ})=0
Where (AX,,AY,,AZ,)" is the vector along link i:
AX,=X+mp _d, —X,

AY, =Y+mp_d, -7,
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AZ, =Z+mp _d, -Z,

Relating robot geometry with linear velocity of end-effector and joint velocity of
carts:

AX, AY, AZX) (Ax, 0 0 )X,
AX, AY, AZ,|Y|=| 0 AX, 0 |X,|=AV=DQ
AX, AY, AZ ) Z 0 0 AX, )X,

Relating before equation with ¥ = JO, we can deduce:
1 AY,/AX, AZ /AX,
J'=DT'A=|1 AY,/AX, AZ,/AX,
1 AY,/AX, AZ,/AX,
(For AX, # 0, that is, not on the edge of workspace.)

The end-effector velocity can be obtained by inverting the inverse Jacobian matrix:

X X,
Y |=J| X,
7 X,

7.4 Acceleration
From [6] we can take some equations about acceleration of the parallel robot.

The end-effector acceleration is obtained by differentiating the closure equations
twice by time:

AX, AY, AZ X)) (AX, 0 0\ X)) ((X-X)+Y*+Z°

AX, AY, AZ,|Y|=| 0 AX, O |X,|-|(X-X,)+Y*+Z’
AX, AY, AZ, ) Z 0 0 AX )X, |(X-X)+Y*+2Z°
X X, (X-X)+Y*+7°
Y =J X, |-A" (X-X,) +Y>+Z°
Z X, (X-X)+Y*+77

(Vectors along links not linearly dependent for second equation.)
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8 Simulation of full system (robot + controller + pendulum)

After getting forward and inverse kinematics in MATLAB, I had to translate these
functions to Modelica language in order to make a model of the full system in
Dymola.

The included blocks in the model are:

A block®, which represents pendulum dynamics and motion of robot hand
(pendulum_4out pos).

A block?, which represents controller + observer system (ctrl_feed ob).

A block”’, which represents forward kinematics of PKM
(ForwardKinematicsPKM).

A block®, which represents inverse kinematics of PKM
(InverseKinematicsPKM).

4 integrators® (integratorl ...integrator4). In the pendulum_4out_pos block, I
changed two acceleration actuators by two position actuators because at the
robot, I will control the position instead of the acceleration.

A constant® (Z_desired), which represents desired Z-coordinate.

Modeling of control system + pendulum + robot is shown below:

.
[=
ctrl_feed_obl D—I-» >—> et zekinema ravardkinem pend_ﬂlnutjnsﬁ
[

integratarl integratar

o Vil

k=1 k=1
integratord integrator3

k=1 k=1

const

k=100

Figure 8.1 Dynamic model of the system.

*This block was described at the paragraph 5.1.
*This block was described at the paragraph 6.3.2.
*"This block was described at the paragraph 7.2.
*This block was described at the paragraph 7.1.
¥Included in Modelica.Blocks.Continuous. Integrator.

OIncluded in Modelica.Blocks.Sources.Constant.
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And the follow graphs show results (initial conditions are: Aphi = 10° = 0.17 rad. and

Bphi =4°=0.07 rad.):
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Figure 8.2 Simulation obtained in Dymola.

We can see results are correct. Response was similar to before

including the robot.

8.1 Improving simulation. Motion in Z-coordinate

response without

The aim of this step is testing how the system works if there is a motion along Z-
coordinate. For doing it, I took the dynamic model that was explained at the paragraph
5.1. I replace two acceleration actuators by two position actuators (at the robot, I will
control position instead of acceleration).

Besides, I added:

e A prismatic actuators’' (motorY), which represents motions along Y-axis
(vertical direction).

e A positioner’> (positionY), which represents input signal to motion along
vertical direction.

e A sine signal input® (motion_Z coordinate), which represents the motion
along vertical direction.
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Diagram below shows the dynamic model of the system:

ut

I positionX
s ref

bar

Sensor )(3 ZS

w e W
(+]

I positionZ
™ | x5_Aphi

=001} n=[1,00)
matorZ motorX
rnation_Z_coordinate X?_Bphl
s_ref
= < 4* >
position’Y

fregHz=0

Figure 8.3 Dynamic model of the system.

*'Included in Modelica.Mechanics. MultiBody.Joints. ActuatedPrismatic.
3Included in Modelica.Mechanics. Translational.Position.

Bncluded in Modelica.Mechanics.Blocks.Sources.Sine.
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Figure 8.5 Result of the simulation.
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You can observer how the system become stable.
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8.2 Improving simulation. Add offsets at X and Y coordinates

The aim of this step is testing how the system works if I add an offset along X and/or
Y-coordinate. For doing it, I took the dynamic model which was explained at the

paragraph 8.
Besides, I added:

o 2 feedback™ (feedbackX and feedbackZ).

e 2 constant’” (ofssetX and offsetZ), which represents input signal to motion

along vertical direction

Diagram below shows the dynamic model of the system:

feedbacks
<]
= offsets
feedback k=0
<]
integrator! integrator? - offseti
k=1 k=1 k=0
integratord integrator3
-
[)_
ctrl_feed_ob1 D_I—’ >—’ o versekinema. rvardkinem. gend_dout_pos
[}_
k=1 k=1
const
k=100

Figure 8.6 Dynamic model of the system.

3*Included in Modelica.Blocks.Math.Feedback.

3Included in Modelica.Blocks.Sources.Constant.
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Offsets I added for doing the simulation were 1 and 2.

0.17 rad. and

4°=0.07 rad.):

And the follow graphs show results (initial conditions are: Aphi = 10°

Bphi

Position

T

P T

[ =ndy)

Time (=)

(pel) snding

Time (=)

Figure 8.7 Result of the simulation.
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You can observer how the system become stable.
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9 Design of electronics for angle measurements

Hall-sensors are based in Hall effect. The Hall effect refers to the potential difference
(Hall voltage) on opposite sides of a thin sheet of conducting or semiconducting
material in the form of a 'Hall bar' (or a Van der Pauw element) through which an
electric current is flowing, created by a magnetic field applied perpendicular to the
Hall element. Edwin Hall discovered this effect in 1879.

The ratio of the voltage created to the product of the amount of current and the
magnetic field divided by the element thickness is known as the Hall coefficient and
is a characteristic of the material of which the element is composed.

However, Hall-sensors give in a little signal, which is in relation to magnetic flux that
is in relation to pendulum angle.

I will have to chose available sensor and test it. After that, perhaps I will have to
amplify that signal using operational amplifiers.

9.1 Select a suitable Hall-sensor

The first step was searching a hall-sensor in ELFA [20], which is an electronics
supplier. For doing it, [ wrote hall sensor in its searcher. I got several results:

3 ELFA -- Electronics supplier of Northern Europe - Microsoft Internet Explorer = |EI|5I
File Edt “iew Favorites Tools Help |
d=Back -~ = - @ | 7ot (Gl Favorites | Address Ig‘] http:f v elfa,seen) 'l

Hom '_ﬁl:i'iij'itZELF"ﬁ" Select language =
[FaQ] activities [Line Sit =

THE ELFA CATALOGUE =
o Welcome to ELFA

fhall sensor [l Electronics supplier of Northern Europe

Advanced product search

Help » ELFA's experience as an electronics supplier spans 60 years. The concept of

ph SSEES———— simnple ordering and fast and reliable delivery, in combination with an active
Your search produced 12 hits development of our assortment and extensive technical advise, has made
[*1 Display product images this company into one of the largest catalogue distributors of electronics in
_————————————————————————————_ Wl leu =Ty N={0]yulal-}

Yisit our resellers

e e S o e O M

Apply for customer number
0: Currentsensor 3020 A, "open loop™ 3 Terms - Freight cost - Delivery time
: Angle sensor series 9900, Hall effect 3

How to place an Do you want to be

= one of ELFA"s
Shopping cart [ - |
Help on searches » Eheckout :

Submit bug report » “Ra der

Last placed item

,_ ,_ ,_ |4 Internet

Figure 9.1 Results of the Hall-sensor search.

After checking every possibility, I took two sensors: 4 3515 [3] and KMZ 10 [4].
Besides, both sensors were available in the laboratory, so I could test their way of
working.
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Finally I selected 4 3515 Hall-sensor’® due to its characteristics of working and its
simplicity for adapting its voltage output by means of only operational amplifiers.

9.2 Behaviour of A 3515 Hall-sensor

Picture below shows set up I made to test working of the Hall-sensor:

h <
» pendulum

|

/v Hall-sensor
]

Figure 9.2 Set up for testing Hall-sensor.

After that, I followed below steps:
e [ measured length of the pendulum (4 =235 mm).
e I connected 5 V DC to the supply voltage of the Hall-sensor.
e I connected a voltmeter at its output.

e [ was taking measures while I moved pendulum with 4d =5 mm.

**More information about 4 3575 Hall-sensor in Appendix B.
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After taking every measure between —100 mm < o < +100 mm (-23° < o < +23°), I

calculated the corresponding angle o = arctg(%} and I drew a graphic with results:

472 T f
4.1 | .
3.9

1 | I | | I | 1 |
3'-?25 -20 -15 -10 -5 0 5 10 15 20 25
Alpha (degrees)

Figure 9.3 Result of Hall-sensor operating.

You can see on above picture that sensor response is nearly linear.

Now, I have to adapt that response to limits of date-acquisition system, that is, adjust
sensor output to +10 V, and 0 V when =0 V.

For doing it, I will place an amplifier stage next to Hall-sensor. Something like this:

V=12V

LM741 bt

Figure 9.4 Stage with operational amplifier.
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I used an amplifier with zero correction available in the laboratory. After adjusting
offset and gain, I obtained this result:

15 . .

10r

Qutput (V)

-10 | I | i |
Alpha (degrees)

Figure 9.5 Result of Hall-sensor operating + operational amplifier.

Results were like expected and output is almost perfect. I will be able to correct some
little deviations by means of computer.

Now, I obtain £10 V when pendulum angle is £12° as needed.
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10 Experiment 1: balancing using serial robot (IRB140)

First experiment was balancing my pendulum with IRB140 robot, which is in the
robotics laboratory.

Before doing experiment, [ simulated the system using Dymola. In order to do it, I
built a model of the manipulator + pendulum and I also obtained inverse kinematics

model from it.

10.1 IRB 140

IRB 140 is a typical industrial serial robot with six DOFs. It is the most compact
robots that ABB makes.

Its most important technical data are:

e Handing capacity: 5 kg.

e Number of axis: 6.

e Working range of axis movement:

O

@)

O

Axis 1: 360°.
Axis 2: 200°.
Axis 3: 280°.
Axis 4: Unlimited (400° default).
Axis 5: 240°.
Axis 6: Unlimited (800° default).

Picture below show the robot structure:

Figure 10.1 IRB 140.
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10.2 Modeling of robot + pendulum

In Dymola, I made a modeling of physic system, that is, a model of robot +
pendulum. For it, I included:

e 6 rotational actuators®” (J1 ... J6), which represent motions of every joint.

e 6 positioners™ (positionl ... position6), which represent input signal to every
joint.

e 6 links® (linkl ... link6), which represent links of the robot.

e 1 universal joint™ (cone), which represents two DOFs of the pendulum
rotation.

e 1body* (pendulum), which represents the pendulum.

e 1 absolute sensor*” (sensor), which is able to give me every measure I need.
These measures are: X and Y TCP-coordinates and angular position of both
DOFs of the pendulum.

e 6 input ports™ (u! ... u6), to connect input signals to system.

e 6 output ports** (xI _Xs, x3 Zs, x5 _Aphi and x7 Bphi), to read output signals
from system.

45
e Of course, I need a reference system™: world.

*"Included in Modelica.Mechanics.MultiBody.Joints.ActuatedRevolute.
*Included in Modelica.Mechanics.Rotational. Position.

*Included in Modelica.Mechanics.MultiBody.Parts.BodyShape.
“Included in Modelica.Mechanics.MultiBody.Joints. Universal.
Included in Modelica.Mechanics.MultiBody.Parts.BodyBox.
*“Included in Modelica.Mechanics. MultiBody.Sensors. AbsoluteSensor.
“Included in Modelica.Blocks.Interfaces.Reallnput.

“Included in Modelica.Blocks.Interfaces.RealOutput.

“Included in Modelica.Mechanics.MultiBody. World.
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This one is the completed diagram:
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Figure 10.2 Dynamic model of the system.

10.3 Inverse kinematics of a serial robot

Unlike simulation of parallel robot, at this experiment I have built a modelling of the
robot, so I do not need to derive forward kinematics model.

The inverse kinematics solves the following problem: "given the actual end effector
pose, what are the corresponding joint positions?" The solution of the inverse problem
is not always unique: the same end effector pose can be reached in several
configurations, corresponding to distinct joint position vectors.

Although the general problem of inverse kinematics is quite difficult, it turns out that
for manipulators having six joints, with the last three joints intersecting at a point, it is
possible to decouple the inverse kinematics problem into two simpler problems, know
respectively, as inverse position kinematics, and inverse orientation kinematics. To
put it another way, for a six-DOF manipulator with a spherical wrist, the inverse
kinematics problem may be separated into two simpler problems, namely first finding
the position or the intersection of the wrist axes, hereafter called the wrist centre, and
then finding the orientation of the wrist.
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The IRB140 has exactly six DOFs and its last three joints axes intersect at a point o.
We express follow equations as two sets of equations representing the rotational and
positional equations:

Rg(‘]1>---aQ6) =R

dé) (g)5-qs)=d

where d and R are the given position and orientation of the tool frame.

Tool centre point is defined so:

n)( ax px

TCP R d _|n o, a, p,
0 1 n, o, a, p,

0O 0 O 1

Now assumption of a spherical wrist means that the axes z4, zs and z; intersect at o and
hence the origins o, and o5 assigned by the D-H convention will always be at the wrist
centre o. Often o3 will be at o as well but this is not necessary for our subsequent
development. The important point for this assumption for the inverse kinematics is
that motion of the final three links about these axes will not change the position of o.
The position of the wrist centre is thus a function of only the first three joint variables.
Since the origin of the tool frame o5 is simply a translation by a distance ds along the
zs axis from o, the vector og in the frame opxgyozy are just:

0, —0 =—d Ra

Let p. denote the vector from the origin of the base frame to the wrist centre. Thus in
order to have the end-effector of the robot at the point d with the orientation of the
end-effector given by R = (7), it is necessary and sufficient that the wrist centre o be
located at the point:

p, =d—dRa

and that the orientation of the frame opxgypzp with respect to the base be given by R. If
the components of the end-effector position d are denoted d., d,, d. and the
components of the wrist centre p,, are denoted by p.,, p,w, p-w then the relationship is:
pxw dx - d6ax
Py | = dy —d6ay
p zw dz - d6az
Using before equation we may find the values of the first three joint variables. This
determines the orientation transformation Rg , which depends only on these first three

joint variables. We can now determine the orientation of the end-effector relative to
the frame o03x;y;3z; from the expression:

R=RR!
as:

Ry =(R))™'R
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The final three joints angles are then found as a set of Euler angles corresponding to
R; . Note that the right hand side of before equation is completely known since R is

given and R, can be calculated once the first three joint variables are known.

The idea of kinematics decoupling is illustrated in figure below:

Figure 10.3 Kinematics decoupling.

10.4 Inverse kinematics of IRB140

I will divide the problem in two parts: at the beginning I will find ¢;, ¢, and ¢3, which
will give me the position of WCP, and after that I will find g4, g5 and g5, which will
give me the orientation of 7CP.

10.4.1 Find qi, 42 and qs3

I will use a geometric approach to find the variables ¢;, ¢, and g3, corresponding to
wrist centre point (p,,).

Consider the manipulator shown in figure below, which represent the three first joints
of the IRB140:
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20 + 22
I

/ 1]
/// / y
V4 // | / Pxw
S ————————————=
/
| S
x0

Figure 10.4 Elbow manipulator.

With the components of p,, denoted by p.., pyw, p-w, the project p,, onto the xgyy plane
as shown in figure below:

x0

Figure 10.5 Projection of the wrist centre onto x,-y, plane.
We see from this projection that:

91 = tan_l (ﬂj =a tan(pyw’ pxw)

where atan(py.,px) denote the two argument arctangent function.

Note that a valid second solution for 6; is:
6, =n+atan(p,,p,)=atan(-p, .—p.)

To find the angles 8, and 63, given 6;, we consider the plane formed by the second
and third links as shown in figure below:
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al a2

ol

B

X

Figure 10.6 Projecting onto the plane formed by links 2 and 3.

Since the motion of links two and three is planar, the solution can be found as I
explain following.

Using the Law of Cosines we see that the angle 6; is given by:
P +st—a; —d;
2a,d,

cosd, =

If I consider offset which is introduced by Denavit-Hartenberg parameters d; and a;:

(P +a,c056) +(p,, +a,sin(@)) +(P, —d, )} —a’ —d?
2a,d,

cosd, = =D

We could now determine 65 as:
cos(8,)=D = 6, =cos™ (D)
However, a better way to find 6; is to notice that if:
cos’(6,) +sin’(0,) =1 => D* +sin?(8,) = 1 = sin(d,) = +v1- D*
And, hence, 6; can be found by:

sin(0,) *+1-D°
= =
cos(6;) D

+J1_n2
0, =tan”' (%} = atan(+V1—-D?,D)

tan(0,) =

The advantage of this latter approach is that both the elbow-up and elbow-down
solutions are recovered by choosing the positive and negative signs respectively.

Similary 6; is given as:

0, = atan(s,r)— atan(a’4 sin(0;), a, +d, cos(0, )) =
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02 =a tan(pzw - dl s \/(pxw + al COS(QI ))2 + (pyw + al Sln(gl ))2 j -

-a tan(d4 sin(6,), a,+d,cos(6, ))

10.4.2 Find q4, 45 and qe

In the previous paragraph I used a geometric approach to solve the inverse position
problem. This gives the values of the first three joint variables corresponding to a
given position of the wrist origin. The inverse orientation problem is now one on
finding the values of the final three joint variables corresponding to a given
orientation with respect to the frame o;x;ysz;. For a spherical wrist this can be
interpreted as the problem of finding a set of Euler angles corresponding to a given
rotation matrix R as I pointed out in paragraph 10.3.

Equations to calculate ¢4, g5 and g, are:
R=RR} = R =(R))"'R
where:

) R;’ 1s a matrix 3x3, which is a function of 8,, 05 and 6s.

e R, can be obtained from @;, 6, and 05 and Denavit-Hartenberg transformation
matrixes A,, A’ and A;:

T3_R3 dg _AI*AZ*AS RS_RI*RZ*R3
0o = 0 TR 2 OF 0o = &N T Y 2

e R is the rotation matrix of TCP:

R d
TCP =

(R))'R is a matrix 3x3 (as RY). So, I have 9 equations and 9 unknown quantities to
find 04, 95 and 96-

Following with the calculations, I obtain:
ccc,-s,s, -ccs,-S,C, C,S;
e R)=R;}*R)*R!=|S,C,C,+C,S, -S,C,S,+C,C, S,S,

-S5,C, S.S, C;
b, b, b,
e (R))'R=B=|b, b, b,
b, b, by,
Therefore 9 equations are:
e b,=C,C.C,-8,S (Equation 1)
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* b, =-CC8—-8,C

* by =C,Ss

e b, =5,C,C,+C,S,

e b, =-5,C8,+C,C,

e b,=85,5; (Equation 6)
o b, =-S5,C (Equation 7)
o b, =85 (Equation &)
o b,=C; (Equation 9)
From equation 3y 6 1 find 0,
s = C“SS} by _5i_tane,) =
b,, = 8,8, b, C,
From equation 7y 8 1 find 65:
by = _SSCG} b __Se __tange,)
by, =88, b, C

From equation 3 y 91 find 65:

b =C,S;
by, = C;

|

b
—+£ =C, tan(0;) =
b33

(Equation 2)
(Equation 3)
(Equation 4)

(Equation 5)

tan(6;) =

0, =atan2(b,;,b,;)

= 0, =atan2(b;,,~b;,)

b13

by;C,

= 05 =atan2(b,,b,,C,)
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11 Experiment 2: checking behaviour of angle measurement
system

Second experiment was checking behaviour of the actual angle measurement system.
For doing it, I did the same assemble that I described in part 9.2 of this report.

I checked both sensors (a sensor measures angle at X-direction and other one
measures angle at Y-direction).

Results of both sensors were similar. These graphs show results of one of them:

3.45 | I | | i
-15 -10 -5 0 5 10 15

Alpha (degrees)

Qutput (V)

-10 i i i i i
-15 -10 -5 0 5 10 15

Alpha (degrees)

Figure 11.1 Result of Hall-sensor operating without amplifier (upper graph) and with amplifier (lower
graph).

Results were not like expected due to a non-linearity, which appears around the up-
position of the pendulum. This non-linearity did not appear when I tested the sensor
with other plate and other pendulum, that is, not with the final plate and pendulum.

So, I think this non-linearity can be caused by a non-symmetry of the pendulum
structure and for a hard system to get the measurements since it was done completely
at hand.
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12 Conclusion and future work

This master thesis allows me using and extending my knowledge in three big areas of
engineering like are Automatic Control, Robotics and Electronic.

Dymola is very powerful software, which is able to realize modeling and simulation
of a system.

Modeling is made very simple. It is indispensable to know no Newton’s laws or
solving long equations. Simply it is necessary to drag and drop the different available
blocks.

Simulations are very convincing. They are not limited at a representation over
coordinates axes, but you can see a 3D representation of the system dynamics. This is
a good way to get an idea about motions that are produced by the pendulum.

Dymola's interface is easy and very intuitive. Besides, it allows to obtain a
mathematical model of the system by a simple click of the mouse. This mathematical
model is prepared to be manipulated by MATLAB, which is the software most used
in engineering.

Dymola uses a high-level language called Modelica. I had never worked with this
language, but it was not difficult because I knew C and MATLAB languages, which
both are very similar.

I chose a linear-quadratic regulator (LQR) for controlling the system. It gave excellent
results at the different simulations that I realized. Its design was very simple since
Dymola provided me a mathematical model of the system (at state-space
representation) and the calculation of feedback matrix K with MATLAB was
immediate.

Robot used in this master thesis was a parallel kinematic manipulator. So, I have
learnt more things about this kind of robot whose use is increasing on the industry.

The sensing problem of measuring the inclination angle of the pendulum was solved
by using a contactless measuring setup based on Hall-effect sensors and a permanent
magnet inside the pendulum. Sensors were stuck below the plate where the pendulum
is supported.

Signal amplification was solved using two operational amplifiers in cascade for every
sensor. Regulating gain and offset, I could adapt the signal to a suitable magnitude in
order to the data acquisition card of the robot reads correctly that signal.

With respect to the future work, the most important thing would be checking if the
control system designed in this master thesis works correctly in the actual robot and
the pendulum is stabilized around the up position. It could be tested first in the table
robot and after in the “big robot”.

On the other hand, the set-up (plate + pendulum) can also be used in the other serial
robots of the Robotics Laboratory, that is IRB 2400 and IRB 140. In this case, I would
recommend doing before some simulations using Dymola software.
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Appendix A: State space

A State space

In control engineering, a state space representation is a mathematical model of a
physical system as a set of input, output and state variables related by first-order
differential equations. To abstract from the number of inputs, outputs and states, the
variables are expressed as vectors and the differential and algebraic equations are
written in matrix form.

The state space representation (also known as the "time-domain approach") provides a
convenient and compact way to model and analyse systems with multiple inputs and
outputs. With p inputs and g outputs, we would otherwise have to write down gxp
Laplace transforms to encode all the information about a system.

Unlike the frequency domain approach, the use of the state space representation is not
limited to systems with linear components and zero initial conditions. "State space"
refers to the space whose axes are the state variables. The state of the system can be
represented as a vector within that space.

A.1 State variables

The internal state variables are the smallest possible subset of system variables that
can represent the entire state of the system at any given time.

State variables must be linearly independent; a state variable cannot be a linear
combination of other state variables. The minimum number of state variables required
to represent a given system, z, is usually equal to the order of the system's defining
differential equation.

If the system is represented in transfer function form, the minimum number of state
variables is equal to the transfer function's denominator after it has been reduced to a
proper fraction. In electronic systems, the number of state variables is the same as the
number of energy storage elements in the circuit (capacitors and inductors).

v | =
. J
L}
e

ur———. B

A

Figure A.1 Typical state space model.

A.2 Linear systems

The most general state space representation of a linear system with p inputs, g outputs
and 7 state variables is written in the following form:

(1) = A()x(t) + B(t)u(t)
¥(8) = C(@)x(2) + D(#)u(?)

67 David Barrio Vicente



Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

where:
xt)eR"; y@)eR?; u@)eR’

dim[A()]=nxn;  dim[B()]=nxp; dim[C()]=qxn; dim[D()]=gxp; *(t) = %
x(-) 1s called the "state vector", y(-) is called the "output vector", u(-) is called the
"input (or control) vector", A() is the "state matrix", B() is the "input matrix", C(-) is
the "output matrix", and D(-) is the "feedthrough (or feedforward) matrix".

For simplicity, D(-) is often chosen to be the zero matrix, i.e. the system is chosen not
to have direct feedthrough.

Notice that in this general formulation all matrixes are supposed time-variant, i.e.
some or all their elements can depend from time. The time variable ¢ can be a
"continuous" one (i.e. £ € R) or a discrete one (i.e. ¢ € Z): in the latter case the time
variable is usually indicated as k.

Depending from the assumptions taken, the state-space model representation can
assume the following forms:

System type State-space model

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t)+ Du(t)

Continuous time-invariant

(1) = A(t)x(t) + B(t)u(t)
y(@) = C@O)x(t) + D(t)u(t)

Continuous time-variant

x(k +1) = Ax(k) + Bu(k)
y(t) = Cx(k)+ Du(k)

Discrete time-invariant

x(k +1) = A(k)x(k) + B(k)u(k)
(k) = C(k)x(k) + D(k)u(k)

Discrete time-variant

Laplace domain of continuous sX(s) = AX(s) + BU(s)
time-invariant Y(s)=CX(s)+DU(s)

Z-domain of discrete zX(z) = AX(2)+ BU(2)
time-invariant Y(z) = CX(2)+ DU(2)

The stability of a time-invariant state-space model can easiest be determined by

looking at the system's transfer function in factored form. It will then look something
like this:

(s=z)(s=z,)(s—z;)

G(s)=k
(s=p)s—p))(s—p)s—p,)
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The denominator of the transfer function is equal to the characteristic polynomial
found by taking the determinant of:

Ms)=|sI—A|

The roots of this polynomial (the eigenvalues) give in the poles in the system's
transfer function. These poles can be used to analyse whether the system is
asymptotically stable or marginally stable.

An alternative approach to determining stability, which does not involve calculating
eigenvalues, is to analyse the system's Lyapunov stability. The zeros found in the
numerator of G(s) can similarly be used to determine whether the system is minimum
phase.

The system may still be input-output stable even though it is not internally stable.
This may be the case if unstable poles are canceled out by zeros.

A.2.1 Controllability and observability

A continuous time-invariant state-space model is controllable if and only if:
rank(B AB .. A"'B)=n

A continuous time-invariant state-space model is observable if and only if:

C

CA
rank =n

c4™

A.2.2 Transfer function

The "transfer function" of a continuous time-invariant state-space model can be
derived in the following way

x(t) = Ax(t) + Bu(t)
which after the Laplace transform give in:
sX(s)=AX(s)+ BU(s)
(sI—A)X(s)=BU(s)
X(s)=(sI — A" BU(s)
this is substituted for X(s)in the output equation:
Y(s)=CX(s)+DU(s)
Y(s)=C((s] — A" BU(s))+ DU(s)
which results in the final transfer function:
Y(s)=G(s)U(s)
G(s)=C(s[-A)"'B+D

69 David Barrio Vicente



Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Clearly G(s) must have g by p dimensionality, and thus has a total of gp elements. So
for every input there are ¢ transfer functions with one for each output. This is why the
state-space representation can easily be the preferred choice for multiple-input,
multiple-output (MIMO) systems.

A.2.3 Canonical realizations

Any given transfer function which is strictly proper can easily be transferred into
state-space by the following approach:

Given a transfer function, expand it to reveal all coefficients in both the numerator
and denominator. This should result in the following form:
ns’ +n,s> +nys+n,

G(s) =
(<) st+ds’+dyst +ds+d,

The coefficients can now be inserted directly into the state-space model by the
following approach:

—d, -d, -d, -d, 1
o= LY Y Lo+ Yo

o 1 0 0 0

o 0 1 0 0

y(t):[nl n, n, n4]x(t)

This state-space realization is called controllable canonical form because the resulting
model is guaranteed to be controllable.

The transfer function coefficients can also be used to construct another type of
canonical form:

“d, 1.0 0 ",
so="% 010 ™ o
~d, 0 0 1 ,
~d, 0.0 0 7,

y0=[1 0 0 0@

This state-space realization is called observable canonical form because the resulting
model is guaranteed to be observable.

A.2.4 Proper transfer functions

Transfer functions, which are only proper (and not strictly proper), can also be
realised quite easily. The trick here is to separate the transfer function into two parts: a
strictly proper part and a constant.

G(s) = Gy (5) + G(0)

The strictly proper transfer function can then be transformed into a canonical state
space realization using techniques shown above. The state space realization of the
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constant is trivially y(z) = G(o)u(t). Together we then get a state space realization
with matrices A, B and C determined by the strictly proper part, and matrix D
determined by the constant.

Here is an example to clear things up a bit:

S2+3S+3_ s+2

GS: =
) sP4+3s5+3  sP+25+1

+1

which gives in the following controllable realization:

. -2 -1 1
x(t) = { Lo }c(t) + {O}u(t)

@y =[1 2l +[th(n)

Notice how the output also depends directly on the input. This is due to the G(o0)
constant in the transfer function.

A.2.5 Feedback

A common method for feedback is to multiply the output by a matrix K and setting
this as the input to the system: u(¢) = Ky(¢). Since the values of K are unrestricted the

values can easily be negated for negative feedback. The presence of a negative sign
(the common notation) is merely a notational one and its absence has no impact on the
end results.

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t)+ Du(t)
becomes:
x(t) = Ax(t) + BKy(t)
y(t) = Cx(¢) + DKy (1)
solving the output equation for y(t) and substituting in the state equation results in:
x(t) = (A+ BK(I — DK) ™ C)x(t)
y(t)=(I - DK)™ Cx(t)

The advantage of this is that the eigenvalues of 4 can be controlled by setting K
appropriately through eigendecomposition of (A+BK(I —DK)'C). This assumes

that the open-loop system is controllable or that the unstable eigenvalues of 4 can be
made stable through appropriate choice of K.
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One fairly common simplification to this system is removing D and setting C to
identity, which reduces the equations to:

(1) = (A + BK)x(t)
(1) = x(¢)

This reduces the necessary eigendecomposition to just A + BK.

o ]

ko

Figure A.2 Typical state space model with feedback.

A.2.6 Feedback with set point (reference) input
In addition to feedback, an input, r(¢), can be added such that:

u(t)y=—-Ky(t)+r(t)
x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)
becomes:
X(t) = Ax(t) — BKu(t) + Br(t)
y(t) = Cx(¢t) — DKy(t) + Dr(t)
solving the output equation for y(z) and substituting in the state equation results in:
%(t) = (A— BK(I + DK) ' C)x(¢t)+ B(I — K(I + DK) ™' D)r(t)
y(t)=(I + DK)™' Cx(t)+ (I + DK) ™ Dr(t)

One fairly common simplification to this system is removing D, which reduces the
equations to:

(1) = (A — BKC)x(t) + Br(t)
(1) = Cx(2)
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Figure A.3 State feedback with set point.

A.3 Non-linear systems

The more general form of a state space model can be written as two functions:
x(t) = f(t,x(2),u(?))
y(2) = h(t, x(2),u(t))

The first is the state equation and the latter is the output equation.

If the function f(-,-,-) is a linear combination of states and inputs then the equations
can be written in matrix notation like above.

The u(t) argument to the functions can be dropped if the system is unforced (i.e., it
has no inputs).
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B A4 3515 Hall-sensor

The A3515 (and A3516) are sensitive, temperature-stable linear Hall-effect sensors
with greatly improved offset characteristics. Ratiometric, linear Hall-effect sensors
provide a voltage output that is proportional to the applied magnetic field and have a
quiescent output voltage that is approximately 50% of the supply voltage. These
magnetic sensors are ideal for use in linear and rotary position sensing systems in the
harsh environments of automotive and industrial applications over extended
temperatures to -40° C and +150° C. The 43515 features an output sensitivity of 5
mV/G while the 435176 has an output sensitivity of 2.5 mV/G.

Each BiCMOS monolithic circuit integrates a Hall element, improved temperature-
compensating circuitry to reduce the intrinsic sensitivity drift of the Hall element, a
small-signal high-gain amplifier, and a rail-to-rail low-impedance output stage.

A proprietary dynamic offset cancellation technique, with an internal high-frequency
clock, reduces the residual offset voltage, which is normally caused by device
overmolding, temperature dependencies, and thermal stress. This technique produces
devices that have an extremely stable quiescent output voltage, are immune to
mechanical stress, and have precise recoverability after temperature cycling. Many
problems normally associated with low-level analog signals are minimized by having
the Hall element and amplifier in a single chip. Output precision is obtained by
internal gain and offset trim adjustments during the manufacturing process.

These devices are supplied in a 3-pin mini-SIP “U” package or a 3-pin ultra-mini-SIP
“UA” package.

B.1 Features and absolute maximum ratings
These are the main features:

e Temperature-stable quiescent output voltage.

e Precise recoverability after temperature cycling.

e Output voltage proportional to applied magnetic field.

e Ratiometric rail-to-rail output.

e Improved sensitivity.

e 4.5V to5.5V operation.

e Immune to mechanical stress.

e Small package size.

e Solid-state reliability.

And some of its absolute maximum ratings are:
e Supply voltage, Vcc: 8.0 V.
e Output voltage, Vo: 8.0 V.
e Output sink current, Io: 10 mA.
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Magnetic flux density, B: unlimited.

Operating temperature range (depend type), Ta:
o Suffix E— -40° C to +85° C.
o Suffix L— -40° C to +150° C.

Storage temperature range, Ts: -65° C to +170° C.

B.2 Characteristics definitions

I am going to explain the most important characteristics of these Hall-sensors:

Quiescent voltage output: in the quiescent state (no magnetic field), the
output is ideally equal to one-half of the supply voltage over the operating
voltage and temperature range (Vog = Vcc/2). Due to internal component
tolerances and thermal considerations, there is a tolerance on the quiescent
voltage output and on the quiescent voltage output as a function of supply
voltage and ambient temperature. For purposes of specification, the quiescent
voltage output as a function of temperature is defined as:
AV VOQ(TA) - VOQ(25°C)

OQ(AT) —

Sens soc

This calculation gives in the device’s equivalent accuracy, over the operating
temperature range, in gauss.

Sensitivity: the presence of a south-pole magnetic field perpendicular to the
package face (the branded surface) will increase the output voltage from its
quiescent value toward the supply voltage rail by an amount proportional to
the magnetic field applied. Conversely, the application of a north pole will
decrease the output voltage from its quiescent value. This proportionality is
specified as the sensitivity of the device and is defined as:

VO(SOOG) - VO(—SOOG)

1000G

The stability of sensitivity as a function of temperature is defined as:

Sens =

Sens ... — Sens
TA 25°C
) 279 % 100%

ASens ) = S
ens ysoc

Ratiometry: the A3515xU, A3515xUA, A3516xU, and A3516xUA feature a
ratiometric output. The quiescent voltage output and sensitivity are
proportional to the supply voltage (ratiometric).

The per cent ratiometric change in the quiescent voltage output is defined as:

AV _ VOQ(VCC)/VOQ(SV) % 100%

oewn Vee /SV

and the per cent ratiometric change in sensitivity is defined as:
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Sens ycc, | Sens sy,

x100%
Vee |5V

ASens ) =

e Linearity and symmetry: the on-chip output stage is designed to provide a
linear output to within 500 mV of either rail with a supply voltage of 5 V. This
is equivalent to approximately +800 gauss of ambient field. Although
application of stronger magnetic fields will not damage these devices, it will
force the output into a non-linear region. Linearity in per cent is measured and

defined as:
V -V
Lin+ =—268%9 % 100%
2(V0(250G) - VOQ
V -V
Lin— = 0(-500G) 0Q x100%
2(VO(—zso(;> - VOQ
and output symmetry as:
V -V
Sym =—2809D 9% . 100%
VOQ - VO(—SOOG)

B.3 Applications information

Calibrated linear Hall devices, which can be used to determine the actual flux density
presented to the sensor in a particular application, are available.

For safe, reliable operation, the output should not be pulled above the supply voltage
or pulled below the device ground.

For optimum performance, a 0.1 mF capacitor between the supply and ground, and a
100 pF capacitor between the output and ground, should be added.

The ratiometric feature is especially valuable when these devices are used with an
analog-to-digital converter. A/D converters typically derive their LSB step size by
ratioing off a reference voltage line. If the reference voltage varies, the LSB will vary
proportionally. This is a major error source in many sensing systems. The 43575xU,
A3515xUA, A3516xU, and A3516xUA can eliminate this source of error by their
ratiometric operation. Because their gain and offsets are proportional to the supply
voltage, if they are powered from the A/D reference voltage, the sensor output voltage
will track changes in the LSB value.

These devices can withstand infrequent temperature excursions, beyond the Absolute
Maximum Ratings, to Ta = 170°C provided the junction temperature, Tj, does not
exceed 200° C.
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C MATLAB code for calculating LQR controller and
simulating

o)

% Clear variables and command window and close windows
clear all;

clc;

close all;

o)

% Load file with mathematical model got with Dymola
load dslin 4outputs ob.mat % 8 states, 4 outputs (Xs, Zs, Aphi and
Bphi)

% Show 8 states, 2 inputs and 4 outputs

xuyName

% Initial condition

Aphi=10; % [degrees]

Bphi=4; % [degrees]

Aphi rad=Aphi* (pi/180); % [rad]

Bphi rad=Bphi* (pi/180); % [rad]

x0=[0 0 0 0 Aphi rad O Bphi rad 0];

% Size of (ABCD): 12x10

A=ABCD(1:8,1:8); % 8x8
B=ABCD(1:8,9:10); % 8x2
C=ABCD(9:12,1:8); % 4x8
D=ABCD(9:12,9:10); % 4x2

o)

% Check i1if system is controllable
CON=[B A*B (A"2)*B (A"3)*B (A"4)*B (A"5)*B (A"6)*B (A"7)*B];
if rank (CON)==length (A)
disp('System is controllable')
else
disp('System is not controllable')
end

% LQR CONTROL DESIGN KA KA KRR A AR AR A A AR A AR AR A AR A AR A AR A AR A A A A A kA A kA Ak Ak k%

[

R=eye(2); % Identity matrix 2x2 (R matrix must be square with as many
columns as B)

Q=eye(8); % Identity matrix 8x8 (A and Q matrixes must be the same
size)

K = 1gr(A,B,Q,R) % Calculate and show optimal gain matrix

% Closed loop matrix
Acl=A-B*K;

Bcl=B;

Ccl=C;

Dcl=D;

% Simulation closed loop
sysCL=ss (Acl,Bcl,Ccl,Dcl);
T=0:0.01:10; % Simulation time vector

[Y,T,X]=initial (sysCL,x0,T); % Response of state-space models with
initial condition

Y(:,1:2)=Y(:,1:2)*180/pi; % Outputs (angles) in degrees

U=-K*X'; % Control law
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o)

% Graphs

figure

subplot (211);

plot(T,U(1,:));

hold on;

plot(T,U(2,:),'r");

title('Pendulum + feedback matrix K');
legend ('AccelerateX', "AceclerateZ');
%$legend ('AccelerateX', "AceclerateY');

xlabel ('Time (s)'");
ylabel ('Inputs (m/s"2)");
grid on;

subplot (212);
plot(T,Y(:,1));
hold on;
plot(T,Y(:,2),'r");
legend ('Aphi', 'Bphi');
%legend ('Alphal', 'Alpha2');
xlabel ('Time (s)');
$ylabel ('Outputs (rad)');
ylabel ('Outputs (degrees)');
grid on;
% Check i1if system is observable
OB=[C; C*A; C*(A"2); C*(A"3); C*(A™4); C*(A"5); C*(A"6); C*(A"T)]1;
if rank (OB)==length (A)

disp('System is observable')
else

disp('System is not observable')
end

% DESIGN CONTROL WITH STATE OBSERVER IR b d b b b b b b b b b b b b A b d b b b b b b b b b b b b
G=eye(8); % Identity matrix 8x8 (A and G matrixes must have the same
number of rows)

Q=eye(8); % Identity matrix 8x8 (Q must be square with as many
columns as G)

R=eye(4); % Identity matrix 4x4 (R matrix must be square with as many
rows as C)

L=1ge (A,G,C,Q,R) % Calculate and show observer gain matrix

% Closed loop matrix

Aob=A-L*C-B*K;

Bob=B;

Cob=C;

Dob=D;

% Simulation closed loop with observer

sysOB=ss (Aob, Bob, Cob, Dob) ;

[Y,T,X]=initial (sysOB,x0,T); % Response of state-space models with
initial condition

Y(:,1:2)=Y(:,1:2)*180/pi; % Outputs (angles) in degrees

% Graphs

figure

subplot (211);

plot(T,U(1,:));

hold on;

plot (T,U(2,:),'r");

title('Pendulum + feedback matrix K + observer matrix L');

Lund Institute of Technology 80



Appendix C: MATLAB code for calculating LOR controller and simulating

%$legend ('AccelerateX', "AceclerateZ');
legend ('AccelerateX', 'AccelerateY');
xlabel ('Time (s)'");

ylabel ('Inputs (m/s”2)");

grid on;

subplot (212);
plot(T,Y(:,1));

hold on;

plot(T,¥(:,2),'c");

%legend ('Aphi', 'Bphi');
legend ('Alphal', "Alpha2');
xlabel ('Time (s)');

sylabel ('Outputs (rad)');
ylabel ('Outputs (degrees)');
grid on;
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D MATLAB code for calculating inverse kinematics for

PKM

o

INVERSE KINEMATICS

o\°

Reference system: WORLD

oe

INPUT ARGUMENTS
TCP -> 3x1 -> TCP

o

[TCPx; TCPy; TCPz] -> Tool Centre Point

% Pl -> 3x1 -> P1 = [Plx; Ply; Plz] -> Position of cart 1
% P2 -> 3x1 -> P2 = [P2x; P2y; P2z] -> Position of cart 2
% P3 -> 3x1 -> P3 = [P3x; P3y; P3z] -> Position of cart 3
$ L -> 1x3 -> L = [L1 L2 L3] -> Lengths of the links 1,2 and 3

o

mp D -> 3x3 -> % Offset on the plate

o

OUTPUT ARGUMENTS

X1 -> 1x1 -> Position of cart 1 in X-direction
X2 -> 1x1 -> Position of cart 2 in Y-direction
X3 -> 1x1 -> Position of cart 3 in Z-direction

o oP

o

function [X1, X2, X3] = robot2(TICP,P1l,P2,P3,L,mp D)
% Length every link

Ll = L(l); % 1x1

L2 = L(2);

L3 L(3);

% Offset on the plate
mp dl = mp D(:,1); % 3x1
mp d2 = mp D(:,2);

mp_d3 mp D(:,3);

% Coordinates of the carts
Y1 = P1(2); % 1x1

Z1 = P1(3);
Y2 = P2(2);
Z2 = P2(3);
Y3 = P3(2);
Z3 = P3(3);

% Coordinates of the TCP
X=TCP(1l); % 1x1

Y=TCP (2) ;
Z=TCP (3) ;

rl = L1*2 - (Y1-Y-mp d1(2))"2 - (Z1-Z-mp_d1(3))"2;
r2 = L2%2 - (Y2-Y-mp_d2(2))"2 - (Z2-Z-mp_d2(3))"2;
r3 = L3"2 - (Y3-Y-mp d3(2))"2 - (Z3-Z-mp d3(3))"2;

% Test if there is solution and calculate it
if (rl<0 | r2<0 | r3<0)

error ('No solution')

return;
else % Two possible solutions

X11 = X + mp d1(1) + sqrt(rl);

X21 = X + mp _d2(1) + sqgrt(r2);

X31 = X + mp _d3(1) + sgrt(r3);
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X1 = X 4+ mp dl(l) - sqrt(rl);
X2 X + mp d2(1) - sqgrt(r2);
X3 = X + mp d3(1) - sqrt(r3);

o©
—~—

o)

% Draw solutions

figure ()

A = [Y2;722];B=[Y3;723];C=[Y1;21];
% A 'blue star' show every cart position;
plot3(X2,A(1),A(2),'b*", X3,B(1),B(2),'b*', X1,C(1),C(2),'"'b*")
hold on

plot3(X21,A(1),A(2),"'b*", X31,B(1),B(2),'b*", X11,C(1),C(2),"'b*")
hold on

% A 'blue square' show TCP position
plot3(TCP(1l),TCP(2),TCP(3), "'b square')

% One possibility

plot3([X21 TCP(1)],[A(1l) TCP(2)],[A(2) TCP(3)],'g','Linewidth',?2)
plot3([X31 TCP(1)],[B(l) TCP(2)],[B(2) TCP(3)],'g', ' 'Linewidth',2)
plot3([X11 TCP(1)],[C(l) TCP(2)],[C(2) TCP(3)],'g',' 'Linewidth',2)
% Other possibility

plot3([X2 TCP(1)],[A(1l) TCP(2)],[A(2) TCP(3)],'r', 'Linewidth',2)
plot3 ([X3 TCP(1)],[B(l) TCP(2)],[B(2) TCP(3)],'r', 'Linewidth',2)
plot3 ([X1 TCP(1)],[C(1l) TCP(2)],[C(2) TCP(3)],'r', 'Linewidth',2)
% Show origin

plot3 ([0 4]1,[0 0],[0 0],'k"', 'Linewidth', 3)

plot3 ([0 41,([2 2],[0 0],'k", ' 'Linewidth', 3)

plot3 ([0 4]1,[1 1]1,[2 2],'k', 'Linewidth', 3)

grid on

xlabel ('X Axis'")
ylabel ('Y Axis')
zlabel ('Z Axis'")

o
—

end
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E MATLAB code for calculating forward kinematics for
PKM

oe

DIRECT KINEMATICS

o\°

Reference system: WORLD

o

INPUT ARGUMENTS

% Pl -> 3x1 -> Pl = [Plx; Ply; Plz] -> Position of cart 1
% P2 -> 3xl1 -> P2 = [P2x; P2y; P2z] -> Position of cart 2
% P3 -> 3x1 -> P3 = [P3x; P3y; P3z] -> Position of cart 3
$ L -> 1x3 -> L = [L1 L2 L3] -> Lengths of the links 1,2 and 3

o

mp D -> 3x3 -> % Offset on the plate

o

OUTPUT ARGUMENTS
TCP1 -> 3x1 -> TCP1 [TCP1lx; TCPly; TPClz] -> Tool centre point 1
TCP2 -> 3x1 -> TCP2 = [TCP2x; TCP2y; TPC2z] -> Tool centre point 2

o\

o\

function [TCP1,TCP2] = robot(Pl, P2, P3, L, mp D)

% Length every link
L1 = L(l); % 1x1

L2 L(2);

L3 L(3);

% Offset on the plate
mp dl1 = mp D(:,1); 5 3x1
mp d2 = mp D(:,2);

mp d3 = mp D(:,3);

% Centre of spheres

Plc = P1 - mp dl; % 3x1
P2c = P2 - mp_d2;

P3c P3 - mp d3;

% Distance between spheres
P12 = Plc - P2c; % 3x1

% Intersection of two spheres, assume solution is a circle (not a

point)
sl = (L2"2+norm(P12)72-L1"2)/ (2*norm(P12)); % 1x1
s2 = (L3"2+norm(P13)"2-L172)/ (2*norm(P13)) ;

oo

Radio of the intersection circle
= sqrt(L2"2-s172); % 1x1

[}

o

Center of the circle
= P2c + sl*Pl2/norm(P12); % 3x1

@)

o\°

A point on the plane
= P3c + s2*P13/norm(P13); % 3x1

=

oe

Normal vector of the plane
= P13; % 3x1

=

[)

% Rotation matrixes
theta = atan2 ((P2c(1l)-Plc(1
beta = acos ((Plc(3)-P2c(3))

)), (P1lc(2)-P2c(2))); % 1x1
/ (norm (P12))) ;
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Rotz = [cos(theta) sin(theta) 0; -sin(theta) cos(theta) 0; 0 0 1]; %
3x3
Rotx = [1 0 0; 0 cos(beta) -sin(beta); 0 sin(beta) cos(beta)];

Rotxz = Rotx*Rotz; % 3x3

% The normal vector for the plane and points D and E are transformed
into a

% coordinate system with the z-axis pointing from P2 to PIl.
N1 = Rotxz*N; % 3x1

Nx = N1(1);

Ny = N1(2);

Nz = N1(3);

D1 = Rotxz*D; % 3x1
xd = D1(1);
yd = D1(2);
zd = D1(3);

El = Rotxz*E; % 3x1

xe = E1(1);

ye = E1(2);

ze = E1(3);

% Intermediate parameters to calculate TCP
Tl = xd - xe;

T2 = yd - ye;

T3 = zd - ze;

Nxy = Nx*Ny;

Nyz = Ny*Nz;

Nxz = Nx*Nz;
Ng = Nx"2 + Ny"2;
Q = Ny*r;

R = Ny*T2 + Nz*T3;

1if Nx*"2* (r+T1l)* (r-T1l) - 2*Nx*T1*R + Q"2 -R™"2 < O

error ('No solution');

return;
else

S = sgrt(Nx"2* (r+T1l)* (r-Tl) - 2*Nx*T1*R + Q"2 -R"2);
end

[

% One possibility
xrl = (Ny"2*xd+Nx"2*xe-Nxy*T2-Nxz*T3-Ny*S3) /Ng;
yrl (Ny"2*ye+Nx"2*yd-Nxy*T1-Nyz*T3+Nx*S) /Ng;

[

% Other possibility
xr2 = (Ny 2*xd+Nx"2*xe-Nxy*T2-Nxz*T3+Ny*S3) /Ng;
yr2 (Ny"2*ye+Nx"2*yd-Nxy*T1-Nyz*T3-Nx*S) /Ng;

zr = zd;
% Solutions

TCP1l = inv (Rotxz) *[xrl ; yrl ; zr]; % 3x1
TCP2 = inv (Rotxz) *[xr2 ; yr2 ; zr];
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F Modelica code for the final simulation

The program below belongs to final simulation:

model robot
ar

ForwardHinematicsPEM forwardHinematicsPEM a;
InverseHinenaticsPEM inverseKinematicsPEM a;

ctrl feed ob ctrl feed obl 3;

Modelica.Blocks. Contimaous. Integrator integratorZ d;
Modelica.Blocks. Contimaous. Integrator integratorl d;
Modelica.Blocks. Contimaous. Integrator integratord d;
Modelica. Blocks. Contimaous. Integrator integratord 4;
pend 4out_pos pend dout_posl 97
Modelica.Blocks. Sources. Constant const (k=100 8;
Modelica.Blocks_ Math. Feedback feedbackX 3:
Modelica.Blocks. Sources. Constant offserX{k=0) a;
Modelica.Blocks_ Math.  Feedback feedbackZ 4:;
Modelica.Blocks. Sources. Constant offsecZ{k=0) a:

equation
contect (integratorl.y, integratorZ. u) 9;
contect (integratord .y, integrator3.u) 9;
connect (pend dout_posl_ x7_Bphi, ctrl feed obl. Bphi) o;
connect (pend dout_posl xE_Aphi, ctrl feed obl. Aphi) d;
connect (otrl feed obl_ outk, integratorl_u) o
connect (otrl feed obl_outZ, integratord. u) o
contect (integratorZ. vy, inwverseFinematicsPEM. X)) 8;
contect (integratord .y, inwverseFinematicsPEM.Y) 8;
contect (ihverseKinenaticsPEM X1, forwardHEinematricsPEM. ¥1) a:
contect (ihverseKinenaticsPEM Xz, forwardHinematicsPEM. ¥Z) a:
contect (ihverseKinenaticsPEM X3, forwardHinematricsPEM. ¥3) d:;
connect (forvardBinematicsPEM. X, pend dout_posl.ul) o;
connect (forvardEinematicsPEM.Y, pend dout_posl.uz) o)
contiect (const v, inwverseKinematicsPEM. Z2) a:
contect (offsetX vy, feedback¥ uz) 8;
connect (pend dout_posl. xl Xs, feedbackX_ ul) o;
connect (feadbacki vy, ctrl feed obl.Xs) 4:
contect (offsetZ vy, feedbackZ_ uz) 8;
connect (pend dout_posl x3 _Z=, feedbackZ. ul) o;
connect (feadbackE v, ctrl feed obl.Zs) 4:

end robot;

Now, I am going to show the code of the four bocks (forwardKinematicsPKM,
inverseKinematicsPKM, ctrl _feed obl and pend 4out posl), which are contained
inside this program.
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F.1 ForwardKinematicsPKM

block ForwardEinematicsPEM
"Join-coordinates from TCP-coordinates of PEM (stepl)”

i

Modelica. Blocks. Inter faces. BealInput X1 "Join 1" 9;
Modelica Blocks. Interfaces.  BealInput X2 "Join Z" 9
Modelica Blocks. Interfaces.  BealInput X3 "Join 3" 38;

Modelica Blocks. Interfaces. BealOutput Plx "Cartl, H-coordinate";

Flfamnotation (extent=[-140_%0; -1Z0,110]);

Modelica Blocks. Interfaces. Beallutput Ply "Cartl, Y-coordinhate";

Slfamnotation (extent=[-140_70; -1Z0,201);

Modelica Blocks. Interfaces. Beallutput Plz "Cartl, EZ-coordinhate";

Slfamnotation (extent=[-140_50; -12Z0,701);

Modelica Blocks. Inter faces. BealOutput PEx "Cartz, H-coordinate";

Fifannotation (extent=[-140,10; -1Z0,30]1);

Modelica.Blocks. Inter faces. Bealfutput PEy "Cartz, T-coordinhate";

Fifannotation {(extent=[-140,-10; -1Zz0,10]);

Modelica Blocks. Interfaces_ Bealfutput PEz "Cartz, Z-coordinate";

Ffifannotation (extent=[-140,-30; -1z20,-10]11);

Modelica Blocks. Interfaces_ BealfOutput P3x "Cartd, H-coordinhate";

Fiannotation {(extent=[-140,-70; -1Z0,-E0]1);

Modelica Blocks. Interfaces. BealOutput P33y "Cartid, ¥-coordinate";

Slfanmnotation (extent=[-140_,-%0; -1z0,-70]1);

Modelica Blocks. Interfaces. Beallutput P33z "Cartd, EZ-coordinhate";

Flfamnotation (extent=[-140,-110; -120,-201);

Modelica Blocks. Interfaces. Beallutput Plcx "Centre
Fifannotation {(extent=[-120,%0; -100,110]);
Modelica Blocks. Inter faces. BealOutput Pleoy "Centre
Fifannotation (extent=[-120,70; -100,20]1);
Modelica Blocks. Inter faces. BealOutput Plcoz "Centre
Fifannotation (extent=[-1zZ0,50; -100,701);
Modelica Blocks. Inter faces.  Bealfutput PEZcx "Centre
Ffiannotation f(extent=[-1Z0,10; -100,301);
Modelica Blocks. Interfaces. Beallutput PEZcy "Centre
Fiannotation {(extent=[-1Z0,-10; -100,10]);
Modelica Blocks. Interfaces. Beallutput PEcz "Centre
Slfamnotation (extent=[-1Z0,-20; -100,-10]1);
Modelica Blocks. Interfaces. Beallutput P3cx "Centre
Slfamnotation (extent=[-12Z0,-70; -100,-50]1);
Modelica Blocks. Interfaces. Beallutput P3cy "Centre
Fifannotation (extent=[-12Z0,-920; -100,-70]1);
Modelica Blocks. Inter faces. BealOutput P3cz "Centre
Fifannotation (extent=[-1Z0,-110; -100,-30]1);

Modelica Blocks. Interfaces.  Bealfutput PlZx
"Distance between spheres 1 and £, ¥-coordinate";
Ffifanhotation (extent=[-100,&50; -80_.701);

Modelica Blocks. Interfaces. Beallutput PlZy
"Distance between spheres 1 and 2, YT-coordinate";
Slfamnotation (extent=[-100,30; -280,.501);

Modelica Blocks. Interfaces. Beallutput PLlZz
"Iistance between spheres 1 and 2, Z-coordinate";
Slfamnotation {(extent=[-100,10; -20,.301);

of

of

of

of

of

of

of

of

of

spherel,

spherel,

spherel,

spherez,

sphere?,

spheres,

sphere3,

sphere3,

sphered,

H-coordinate";

¥T-coordinate";

Z-coordinate" ;

¥—coordinate";

T-coordinate"

Z-coordinate" ;

H-coordinate";

T-coordinate" ;

Z-coordinate" ;
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Modelica.Blocks. Inter faces. BPeallutput P1l3x
"Diistance between spheres 1 and 2, H-coordinate";
Sfanmotation (extent=[-100,-30; -20,-10]);

Modelica.Blocks. Inter faces. Beallutput P13y
"Iristance hetween spheres 1 and 3, T-coordinate";
S fanmotation (extent=[-100,-50; -280,-30]);

Modelica.Blocks. Inter faces . Beallutput P13z
"Iristance hetween spheres 1 and 3, Z-coordinate";
Sfannotation (extent=[-100,-70; -80,-501);

Modelica.Blocks. Inter faces. Beallutput =1
"Intersection between spheres 1 and 2";
FSifarmmotation (extent=[-80,30; -&0,50]11);
Modelica.Blocks. Interfaces. Beallutput =2
"Intersection between spheres 1 and 3";
Flfammotation f(extent=[-20,-50; -&0,-320]);

Modelica . Blocks. Interfaces Beallutput r "Radio of the intersection circle";
Fifannotation f(extent=[-80,-20; -&0,-701);

Modelica.Elocks. Inter faces. Beallutput Dx "Centre of the circle, X-coordinate";
Sfannotation (extent=[-&0,%0; -40,110]);

Modelica.Elocks. Inter faces. Beallutput Dy "Centre of the circle, T-coordinate";
Sfannotation (extent=[-&0_,70; —-40,90]1);

Modelica.Elocks. Inter faces. Beallutput Dz "Centre of the circle, E-coordinate";
Sfannotation (extent=[-&0_,50; —-40,70]1);

Modelica.Blocks. Inter faces. Beallutput Ex "A point on the plane, X-coordinate";
Sfanmotation (extent=[-&0,10; —-40,30]1);

Modelica.Blocks. Inter faces. Beallutput Ey "A point on the plane, T-coordinate";
Sfanmotation (extent=[-&0,-10; -40,10]);

Modelica.Blocks. Inter faces. Beallutput Ez "A point on the plane, E-coocrdinate";
Sfanmotation (extent=[-&0,-30; -40,-10]1);

Modelica.Blocks. Inter faces. Beallutput Nx
"Normal wector of the plane, H-coordinate";
Sfanmotation (extent=[-&0,-70; —-40,-E5071);

Modelica.Blocks. Inter faces. Beallutput Ny
"Normal wector of the plane, Y-coordinate";
Sfanmotation (extent=[-&0,-90; -40,-701);

Modelica.Blocks. Inter faces. Beallutput Nz
"Normal wector of the plane, E-coordinate”;
Sfanmotation (extent=[-&0,-110; -40,-30]);

Modelica.Blocks. Inter faces Beallutput theta

"Parameter used for rotation matrixes"; Jlannotation (extent=[-40,-E0; -zZ0,-30]);
Modelica Elocks. Inter faces. RBeallutput betairedeclare type SignalType = Real)
"Parameter used for rotatioh matrixes"; Sfannotation (extent=[-40,30; -z0,.501);
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Modelica Blocks. Interfaces. Beallutput Botzll
Sifannotation (extent=[-Z0,%0; 0,110]1);
Modelica.Blocks. Interfaces. RBeallutput RBotzlE
Sifannotation (extent=[-E0,70; 0,30]1);
Modelica.Blocks. Interfaces. Peallutput Rotzl3
Sifanmotation lextent=[-Z0,&50; 0,701} ;
Modelica Blocks. Interfaces. Beallutput BotzZl
Sifannotation (extent=[-Z0,10; 0,301} ;
Modelica Blocks. Interfaces. Beallutput BotzzZE
Sifannotation (extent=[-Z0,-10; 0,101} ;
Modelica.Blocks. Interfaces. RBeallutput RBotzzZ3
Sifannotation (extent=[-E0,-30; 0,-10]);
Modelica.Blocks. Interfaces. Reallutput Rotz3l
Sifanmotation (extent=[-Z0,-70; 0O,-50]1;
Modelica Blocks. Interfaces. Beallutput Botz3Z
Sifannotation (extent=[-Z0,-90; 0,-70]1;
Modelica Blocks. Interfaces. Beallutput Botz33
Sfannotation (extent=[-Z0,-110; O,-20]1);

Modelica.Blocks. Interfaces. Beallutput Rotxll
Sifannotation lextent=[0_.90; 20,1101} ;
Modelica Blocks. Interfaces. Beallutput BotxlZ
Sifannotation (extent=[0_.70; Z0,.90]);
Modelica Blocks. Interfaces. Beallutput Botxl3
Sfannotation (extent=[0_.50; Z0_.70]);
Modelica.Blocks. Interfaces. RBeallutput Botxzl
Sifannotation (extent=[0,10; 20,30]);
Modelica.Blocks. Interfaces. Beallutput RotxZz
Sifanmotation lextent=[0,-10; 20,101} ;
Modelica Blocks.Interfaces. Beallutput BotbxZ3
Sifannotation (extent=[0,-30; Z0,-101);
Modelica Blocks. Interfaces. Beallutput Botx3l
Sfannotation (extent=[0,-70; Z0,-501);
Modelica.Blocks. Interfaces. Reallutput RBotx3E
Sifannotation (extent=[0,-20; Z0,-701);
Modelica.Blocks. Interfaces. Peallutput Rotx33
Sifanmotation (extent=[0,-110; Z0,-90]1;

Modelica Blocks. Interfaces. Beallutput Botxzll
Sifannotation (extent=[Z0,20; 40,1101} ;
Modelica . Blocks. Interfaces. Reallutput RBotxz=l:z
Sifannotation (extent=[Z0,70; 40,30]1);
Modelica.Blocks. Inter faces. Beallutput Rotxzl3
Sifanmotation lextent=[Z0,50; 40,701} ;
Modelica Blocks. Interfaces. Beallutput Botx=Zl
Sifannotation (extent=[Z0,10; 40,301} ;
Modelica Blocks. Interfaces. Beallutput BotxzZz
Sifannotation (extent=[Z0,-10; 40,101} ;
Modelica.Blocks. Interfaces. Reallutput RBotx=E3d
Sifannotation (extent=[Z0,-30; 40,-10]);
Modelica.Blocks. Inter faces. Beallutput Rotxz3l
Sifanmotation lextent=[Z0,-70; 40,-50]1;
Modelica Blocks. Interfaces. Beallutput Botbx=3Z
Sifannotation (extent=[Z0,-90; 40, -70]1;
Modelica Blocks. Interfaces. Beallutput Botxz33d
Sfannotation (extent=[Z0,-110; 40,-20]1);

"Botation matrix

"RBotation matrix

"Botation matrix

"Botation matrix

"Botation matrix

"RBotation matrix

"Botation matrix

"Botation matrix

"Botation matrix

"Botation matrix

"Botation matrix

"Botation matrix

"RBotation matrix

"Botation matrix

"Botation matrix

"Botation matrix

"RBotation matrix

"Botation matrix

"Botation

"Botation

"Botation

"Botation

"Botation

"Botation

"Botation

"Botation

"Botation

matrix

matrix

matrix

matrix

matrix

matrix

matrix

matrix

matrix

Lund Institute of Technology 90



Appendix F: Modelica code for the final simulation

Modelica . Blocks. Interfaces. BealOutput Nlx

"Transformed normal wector, H-coordinate";:

Flannotation l(extent=[40,90; &0,110]1) ;

Modelica Blocks. Interfaces. BealOutput Nly

"Transformed normal wector, T-coordinate";

Flannotation (extent=[40,70; &0,30]1);
Modelica Blocks. Interfaces. Beallutput Nlz
"Transformed normal wector,
Flannotation (extent=[40,50; &0,70]1);
Modelica Blocks. Interfaces. Beallutput Dlx
lextent=[40,10; &0,30]1);
Modelica Blocks. Interfaces. Beallutput Dly
Flannotation (extent=[40,-10; 50,101} ;
Modelica.Blocks. Interfaces. Beallutput Dlz
(extent=[40,-30; &0,-10];

Flannotation

Slannotation

Modelica Blocks. Interfaces. Beallutput Elx
(extent=[40,-70; &0,-E0]);
Modelica Blocks. Interfaces. Beallutput Ely
lextent=[40,-20; &0,-70]);
Modelica Blocks. Interfaces. Beallutput Elz
(extent=[40,-110; &0, ,-20])

Flannotation

Flannotation

Flannotation

Modelica.Blocks. Inter faces. Beallutput T1
Flanmotation l(extent=[&0,80; 20,1001} ;
Modelica Blocks. Interfaces. BeallOutput T2
Flannotation (extent=[&0,&0; 30,30]1);
Modelica Blocks. Interfaces. BeallOutput T3
lextent=[&0,40; 20,&0]1);
Modelica. Blocks. Interfaces. BealOutput Nxy
lextent=[E0,20; 20,401} ;
Modelica Blocks. Interfaces. BealOutput Nyz
(extent=[e0,0; 20,20]);
Modelica Blocks. Interfaces. Beallutput Nxz
(extent=[&0,-Z0; 80,071 ;
Modelica Blocks. Interfaces. BealOutput Nog
Flannotation (extent=[&0,-40; 20,-20]);
Modelica Blocks. Interfaces. BealOutput 0
lextent=[&0,-60; 20,-40]);

Flannotation

Flfannotation

Flannotation

Flannotation

Flfannotation

Z-coordinate" ;

"Transformed

"Trans formed

"Trans formed

"Transformed

"Trans formed

"Transformed

r

"Intermediate

"Intermediate

Intermediate

point I, XH-coordinate";
point I, T-coordinate";
point I, Z-coordinate";
point E, H-coordinate";
point E, T-coordinate";
point E, Z-coordinate”;

parametear";

parameter" ;

parameter" ;

"Intermediate parameter";

"Intermediate parameter";

"Intermediate parameter";

"Intermediate

parameter" ;

"Intermediate parameter";

Modelica Blocks. Interfaces. Beallutput B "Intermediate parameter";

Flannotation (extent=[&0,-20; EB0,-50]);
Modelica Blocks. Interfaces. Beallutput =

Flannotation (extent=[&0,-100; 80,-30]1)
Modelica Blocks. Interfaces. BealOutput xr
lextent=[20,10; 100,20];);
Modelica . Blocks. Interfaces. BealOutput vr
lextent=[20,-10; 100,10]);
Modelica Blocks. Interfaces. Beallutput =r
fextent=[80,-30; 100,-10])

Flfannotation

Flannotation

Flannotation

Modelica.Blocks. Interfaces. Beallutput DetRotxz

Flannotation (extent=[100_,90; 120,110])

-

"Intermediate

"Intermediate

"Intermediate

-

r

"Necessary to calculate

"Intermediate parameter";

parameter" ;

parameter" ;

parameter" ;

RBotxz=";
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Modelica Blocks. Interfaces. Beallutput AdjBotzxzzll
"Necessary to calculate Rotxz inwverse matbrix";
Sifannotation (extent=[100,&50; 1lz0,70]1);

Modelica Blocks. Interfaces. RBeallutput AdjRotx=ll
"Necessary to calculate Botbtxz inverse matriz";
Sifanmotation (extent=[100,30; 1z0_5071);

Modelica Blocks. Interfaces. Beallutput A4djBotx=l3
"Necessary to calculate Rotxz inwverse matrix";
Sifannotation (extent=[100,10; 1z0,3071);

Modelica Blocks. Interfaces. Beallutput AdjRotxz=gl
"Necessary to calculate Rotxz inwverse matrix";
Sifannotation (extent=[100,-10; 120,10];);

Modelica.Blocks. Inter faces. Peallutput AdjRotx=zZZ
"Necessary to calculate Rotxz inwverse matrix";
Sifannotation (extent=[100,-30; 120,-101);

Modelica Blocks. Interfaces. Beallutput AdjBotxzzzZ3
"Necessary to calculate Rotxz inwverse matbrix";
Sfannotation (extent=[100,-50; 1z20,-3201);

Modelica Blocks. Interfaces. RBeallutput 2djBotx=3l
"Necessary to calculate Botbtxz inverse matriz";
Sifanmotation (extent=[100,-70; 120,-E01);

Modelica Blocks. Interfaces. Beallutput AdjBotx=3Z
"Necessary to calculate Rotxz inwverse matrix";
Sifannotation (extent=[100,-90; 1z0,-701);

Modelica Blocks. Interfaces. Beallutput AdjBotxz=3d
"Necessary to calculate Rotxz inwverse matrix";
Sifannotation (extent=[100,-110; 1EZ0,-20]1);

Modelica Blocks. Interfaces. Beallutput InwBotxzll
"Necessary to calculate Rotxz inwverse matrix";
Sifannotation (extent=[1Z0,70; 140, 90711 ;

Modelica Blocks. Interfaces. Beallutput InwvBotxzll
"Necessary to calculate Rotxz inwverse matrix";
Sifannotation (extent=[1EZ0,&50; 140, 70]1);

Modelica.Blocks. Inter faces. Peallutput InvRotxzzl3
"Necessary to calculate Rotxz inwverse matrix";
Sianmotation (extent=[1Z0,30; 140_5071);

Modelica Blocks. Interfaces. Beallutput InwBotxzZl
"Necessary to calculate Rotxz inwverse matrix";
Sifannotation (extent=[1Z0,10; 140, 30]1);

Modelica.Blocks. Interfaces. RBealluatput InvBotxzZlZ
"Necessary to calculate Rotxz inwverse matrix";
Sifannotation lextent=[1Z0,-10; 140,10]1);

Modelica Blocks. Interfaces. Beallutput InwBotbx=Z3
"Necessary to calculate Rotxz inwverse matrix";
Sifannotation (extent=[1Z0,-30; 140,-10]1);

Modelica Blocks. Interfaces. Beallutput InwBotxz3l
"Necessary to calculate Rotxz inwverse matrix";
Sifannotation (extent=[1E0,-L50; 140,-320]1);

Modelica.Blocks. Inter faces. Beallutput InvRotxz=3Z
"Necessary to calculate Rotxz inwverse matrix";
Sifanmotation (extent=[1Z0,-70; 140,-E01);

Modelica Blocks. Interfaces. Beallutput InwBotbxz33
"Necessary to calculate Rotxz inwverse matrix";
Sfannotation (extent=[1Z0,-90; 140,-701);
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Modelica Blocks. Interfaces. Beallutput X "X-coordinate TCP" 8;

Modelica Blocks. Interfaces. Beallutput T "YT-coordinate TCP" 8;

Modelica Blocks. Interfaces. Beallutput £ "Z-coordinate TCP" 3;

FiLength of links
parameter Real L1 = 400;

parameter Real LE = 3200;

parameter Beal L3 = 3200;

FfOff=set global origin to 9g=0 on track - offset TCP frame origin to joint

parameter Beal Hloffset

parameter
parameter

parameter
parameter
parametear

parameter
parametar
parametear

o

Beal Yloffset = Zg0;
Beal Eloffset = 270;

Beal HZoffset = 0;
Beal Yzoffset = 0;
Beal EZzoffset = 370;

Beal Hioffset = 0;
Beal Yiocffset = Zg0;
Peal Z3ocff=set = 100;

Ff0ff=set on the plate

parameter Deal mp dl[2,1] = [-Xloeffset;0:0];
parameter Deal mp dZ[3,1] = [-XKEZoffset;0:0];
prarameter Eeal mp dZ[3,1] = [-XK3offset;0:0];
equation

FfPosition of the carts

Plx = ¥1;

Ply = Tloff=set:
Plz = Zloff=set;

PEx = WE;

PEvwy = TeZoffset;
Pzz = ZZoff=set;

P3x = ¥H3;

P3y = T3off=set;
P3z = Z3offset;

FifCentre of spheres

Plcx = Plx
Pleoy = Ply
Plecz = Plz=
PZox = PEx
PZoy = PEv
PZcz = PEz

PZcocx = P3x

PIocy = Pay
P3cz = P33z
FiDhistance
PlZx =

Fley

wp dl[1,1]1;
wp dl[z,11;
wp_d1[3,1];

wp_dZ[1,1]1;
wp_dZ[2,1]1;
wp_dZ[3,1]1;

wp d3[1,1];
wp d3[z2,1];
mp_d3[3,1];

hetween spheres

Plex - PZcx;
Pley — PEcy:

PlZz = Plc= - PEc=:
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Pl3ax Pleox - P3cx;
Play Ploy - P3oy:
P13z = Plez - P3cE;

frfIntersection of two spheres, assume
sl = (LE™EZ + PlEx"~E + Pliv~E + Pliz"Z
s£ = (L3™Z + P1l3x"~E + Pl3v¥~E + Pl3z"Z

AfRadio of the intersection circle
r = sgqro(LETE - =s17E) -

AdéCentre of the circle

solution is a circle (not a point)

- L1*
- L1*

Lx = Pzex + s1*PlEx f =sqgre(Plix"2 + PlEwy":z
Dy = PZoy + s1*PlZvy f soqre(PlEx"E + PlEvy"™E
Dz = PZecz + s1*Pliz f soqreo(PlEx"E + PLlEvy"™E

FrA point on the plane

Ex = P3ecx + sE*Pl3x f soqre(Pl3x"~E + Play"™E
Evv = P3cy + s2*P1l3v f =sort (Pl3x~2 + Play"Z
Ez = P3cz + s2*Pl3z f =soqrt (Pl3x"2 + Pl3ay"E

AiNormal wector of the plane
Nx = Plax:
Nv = Plaw:
Nz = Plaz;

frRotation matrixes

theta = Modelica. Math_ atanf{(PEcx - Plcx),

beta = Modelica Math.acos((Plcz - PZcE)

Botzll = cositheta);
RBotzlZ = =sinitheta);
Botzla = 0O;
RBotzzl = -=zinitheta);
RBotzZZ = cositheta);
Botzza = 0;
Botz3l = 0O;
Rotz3Z = 0;
RBotz33 = 1;

RBotxll = 1;
Rotxlz = 0;
Botxl3 = 0

Botxzl = 0O;

RBotxzZ = cosibeta);

RBotxz3 = -=zini(beta);
Botx3l = 0;

Rotx3Z2 = =sinibeta);

Rotx33 = cosibetal);

r

2 F (E%=sgqre (PlZx~z + Plzy™z + Plzz"2)):
2 F (E%=sgqre (Pl3x~Z + Pl3ay™z + Pl3z"2)):

+ PlE=z"Z);
+ PlE=z"Z);
+ PlE=z"Z);

+ Pla="zh;
+ Pl3=z"Z) ;
+ Pl3="E);

(Ploy — PEcyl);

F sgre(PlEx™Z2 + Plivy~2 + PlEz"EZ))»;
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Appendix F: Modelica code for the final simulation

FAiparameter Real Potx=[32,3] = Botx*Rot=;
Botxzll = PBotxll*Rotzll + RotxlZ*Rotz=Zl
BotxzlZ = Botxll*Rotzli 4+ RotxlzZ*Rotz=Z:z
Botxzl3d = Potxll*Rotzl? 4+ PRotxlzZ*RotzZ3
BotxzZl = PotxZl*Rotzll + RotxZEZ*Rotz=Zl
DotxzzZ = PotxZl*Botzli + RotxzZz*Rotzz:Z
Dotx=23 = PobxZl*Rotzl? + PotxZZ*Rot=Z3
Botxz3l = Pobx3l*Rotzll + Rotx3EZ*Rotz=Zl
Botxz3f = Rotx3l*Rotzl? + Rotx3EZ*Rotb=rlZ
Dotx=33 = Pobx3l*Rotzl? 4+ PRotx3Z*Rot=Z3

F 4 The normal wector for

Aifocoordinate system with the z-axis pointing from P2 to PL.

MNlx = Rotx
Nl Rotx
Nlz = Rotx

[Dlx = Rotx
[ly = Rotx
Dl=z = Rotx

Elx = Rotx
Elvy = BRotx
El=z = Rotx

+ + + + + + + + +

Botxl3*RBot=31;
RBotxl3*Rot=3Z;
Botxl3*RBot=33;
Botx23*RBot=31;
BotxZ3*Rot=3z;
Dotx23*Rot=33;
Botx33*Rot=31;
Botx33*Rot=3Z;
Dotx33*Rot=33;

the plane and points D and E are transformed into a

z11*Nx + Botxzli*Ny + Rotxzli*Nz=;
=zZ1*Nx + BotxzZZ*Ny + Rotx=Z3*N=:
=z31*Nx + Botxz3E*MNy + Botxz33*N=;

=z11*Dx + BotxzlZ*Dy + Botxz=zl3*D=;
z21*Dx + PBotxzZE*Dy + BotxzZ3*D=;
£31*Dx + Botcxz3Z*Dyv + Rotxz33*DE;

=z11*Ex + PotxzlEZ*Ey + Rotxzl3*E=;
z£1*Ex + BotxzZZ*Evy + RBotxzZ3*E=;
=31*Ex + Potxs3E*Ey + Rotx=33*E=;

FAfIntermediate parameters to calculate TCP

Tl = Dlx -
TZ = Dly -
T3 = Dlz -

Elx;
Elv:
Elz;

Mz = Nlx*Nlvy;
MNyz = Nly*Nl=;
Nxz = Nlx*Nl=;

Mo = Nlx™E
0 = Hly*r;
D = Nly*TE

5 = sgqro(Mlxz"2* (r+TLl)*{x-T1l)

+ MNlv*2;:

+ HNlz*T3Z;

- E*N1x*T1*E + Q"2 -R™Z);

FiéIntermediate parameters to calculate TCPR

xr = (Nly*2*D1lx + Mlx"E*Elx - MNxy*TZ - Nx=*T3 - Nly*5) / MNg:;
vr = (Nly"Z2*Ely + Nlx“2*Dly - Mxvy*Tl - Ny=*T3 + Nlx*5) 7 Ng:
zr = Dl=;

AifIntermediate parameters to calculate Botxz inwerse matrix

DetPotxz =

AdjPotx=ll
AdjRotxelZ
AdjRotx=1l3
AdjRotx=Zl
AAjRotxEZZ
AdjRotx=z3
AdjRotx=3l
AAJRotxE3ZE
AdjRotx=33

Dotxzll*PotxsZE*Rotxs32 4+ RotxmliZ*RotxsZ3*Rotxz=3]l + Potbxsl3*RotxsiZl*Rotx=3:
- (Botxzl3*BotbxzEZ2*Rotxs3]l + RBotxzlZ*Rotx=2]1*Rotxz33 + Rotxzll*Rotx=if3*Robx=3E)

= BotxsZZ*PBotxz33 - RBotxsZ3*Rotx=ii;
= BotxzZl*Potxz33 - RBotxsEZ3*Rotxzil;
= BotxzZ]l*PBotxz3Z - RotxsZEZ*Rotxzil;
= BotxzlZ*PBotxz33 - RBotxsl3*Rotx=iZ;
= Botxzll*Potxz33 - Rotxzl3i*Rocxzil;
= Botxzll*Potxz3Z - RotxzlE*Rotxzil;
= BotxzlZ*PBotxzE3 - Rotxsl3*RotxziE;
= Botxzll*Potxzid - Rotxsl3i*Rocxzil;
= Botxzll*PotxziE - RotxzlEZ*Rotxzil;
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InvBotxzll = AdjRotxzll F DetBotxz;

InvRBotxzlZz = -a2djBotxzEl f DetRotx=;
InvRotxzld = AdjRotxz3l / DetPotxz;
InwBotxzfl = -AdjBotxzlZz f DetPRoktx=;
InwvBotxzZZ = AdjRotx=ZZ 7 DetPotxz;
InvBotxzsf3 = -adjBotxz3z f DetPRotxe;
InvBotxz3l = AdjRotx=zl3 F DetBotxz;
InvBotxz3Z = -adjBotx=E3 f DetRotx=;

InvBotxz32 = AdjRotxz=33 F DetBotxz;

fATCE

¥ = InvBotxzll*xr + InvBotxzlZz*yr + InvRotx=l3*=zr;
T = InvBotxzZl*xr + InvBotxzZz*yr + InvRotx=Z3*=zr;
2 = InvBotxz3l*xr + InvBotxe3z*yr + InvRotx=33+=r;

end ForwardHinematicsPEI;
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Appendix F: Modelica code for the final simulation

F.2 ForwardKinematicsPKM

block InwerseFinematicsPEM

"Join-coordinates from TCP-coordinates

gz

Modelica Blocks. Interfaces. BealInput

Modelica Blocks. Interfaces. BealInput T

Modelica Blocks. Interfaces. BealInput Z

Modelica Blocks. Interfaces.

S fannotation

of PEM istepl)"

"H-coordinhate TCP"
"¥-coordinhate TCP"
"Z-coordinhate TCP"

PeallOutput rl "Cartl";
lextent=[0_70; 20,.90]);

Modelica . Blocks. Interfaces. RBeallutput rZ "Carti";

Fiammotation

lextent=[0,-10;

£0,10])¢

Modelica.Blocks. Inter faces. Beallutput r3 "Cart3";

S fannotation

Modelica Blocks. Interfaces
Modelica Blocks. Interfaces

lextent=[0,-90;

Z0,-701);

_BealOutput X1 "Join 1"
_BealOutput Xz "Join 2"

Modelica Blocks. Interfaces. Beallutput X3 "Join 3"

FlfLength of links
parameter Beal L1
parameter Real LZ
parameter Real L3

400;
300;
300;

Ff0ff=set global origin to
parameter Beal Hloffset

parameter Beal Tloffset =
parameter Beal Eloffset =

parameter Real Hioffset =
parameter Real YZoffset =
parameter Real EZoffset =

parameter Beal Hioffset =
parameter Beal YTiocoffset =
parameter Beal EZ3doffset =

FA0ff=zet on the plate

prarameter Real mp dl[3,1]
parameter Real mp d2[3,1]
prarameter Real mp d3[3,1]

FSPosition of the carts

parameter Beal P1[3,1]

parameter Beal PZ[3,1]

parameter Real PI[3,1]

g=0 on track - offset TCP
o;

ZE0;

370;

[-Hloff=set 0;0];
[-XZoff=set;0;0];
[-X3offset;0;0];

[165; Tloffset;
[20&; Tzoffset;
[220; Taiocffset;

#fCoordinates of the carts

parameter Beal Y1

PLIZ,11;

parameter Beal Z1 = P1[3,1]:
parameter Beal Yz = P2[z,.1]:
parameter Beal EZz = P2[3,1]:
parameter Beal Y3 = P3[z2,.1];
parameter Real E3 = P3[3,1]1:

2loff=set] ;
2Zoff=set] ;
23off=zet];

frame origin to joint
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equation

FiIntermediate calculation

rl = L1*& - iT1-T-mp d1l[Z,11)"Z - (El-Z2-mp_dl[3,111"Z;
rz = L2*E - ITE-T-mp dz2[Z,11)"Z - (EZ2-2-mp_dE[3,111°2;
r3 = L3"& - iT3-T-wp d3[Z,11)"E - (E3-Z2-mp_d3[3,111"2;

FfPosition of the carts

¥l = X + mp_dl[1,1] - sgrtirly;
HZ o+ mp dE[1,1] - sgrolr);
X2 =K+ wp d3[1,1] - =sgrtlr3);

end InverseHinematicsPEI;
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Appendix F: Modelica code for the final simulation

F.3 ctrl_feed ob

wmodel ctbrl feed ohb
a:

Hodelica.Blocks. Hath MatrixGain K Hatrix(E=[-0,-0,1.0000000000000L,
2. 1118162954473 26, 7801623624159, 5 0348354539765, 0. 0000000000000Z
O_ooooooooooooon; 1,2 1118169544251, 0,0, -0_00000000000001,-0,-26_ 7T8016E362E2415E,
-L.034839254839763]) d;
Modelica. Elocks. Math. Feedback
Modelica Elocks . Math. Feedback
Modelica_Elocks_ Math. Feedback feedback3 d;
Modelica.Elocks.Math. Feedback feedbackd o,
Modelica EBlocks Math Matrix(ain C_Matrixz(E=[0 0,0, 0,1 0. 0,.0; 0,0, 0,0 0.0,1,0;

feedhackl
feedhack?

a:
a;

l,0,0,0,0,0,0,0;
Modelica . Elocks. Contimaous.
Modelica.Blocks. Contimaouis.
Modelica.Blocks. Contimaouis.
Modelica Elaocks. Contimaous.

Hodelica.Blocks . HMath MatrixGain L _Matrix(E=[0,0,1.73z050807565888,0;
0,0,0,1 73Z0L080756888;

0,0,

l,0,0,0,0,01) 3;

Integrator statel
Integrator stated
Integrator stateb
Integrator state?

0,0,0,1; 10.994

8:

a;

=M

=M

0,0,1,0;
05623746637,0,0,0;

L2 B40Z3065E53886,0,0,0;

o]y a8+
Modelica.Blocks . Math MatrixGain B _Matrix(E=[0,0; 0,1; 0,0;

0; 0,0; 0,Z.99812617114304]1) B;
Modelica . BElocks. Continuous . Integrator

0,10.89405623746628,0,0; 0,58, 84022065252891,0,

l,0; 0,0; -2.99B81Z617114304,
statef

stated

dr;
a;
a;
Modelica . Elocks. Contimaous. Integrator statef d;
Modelica_ EBElocks Math MatrixGain A_HatrixiH=[D,l,
a,a,0,1,0,0,0,0; 0,0,0,0,0,0,0,0; 0,0,0,0
29.411£17738591218,0,0,0; 0,0,0,0,0,0,0,1;
o1h 8-
Modelica . Elocks.
Modelica . Elocks.
Modelica.Blocks.
Modelica.Blocks.
Modelica . Elaocks.
Modelica Elocks.
Modelica Elocks.
Modelica . Elocks.
Modelica . Elocks.
Modelica.Blocks.
Modelica.Blocks.
Modelica . Elaocks.
Modelica Elocks.
Modelica Elocks.

Modelica Elocks. Contimaous . Integrator

Modelica Elocks. Contimaous . Integrator stated
o,0,0; 0,0,0,0,0,0,0,0;
o; o,0,0,0,

0,0,0,22.41161773821318,

L

rmrte-r

0,0,0
0,1,0
0,0,0

=

Math. Sum
Math. Sum
Math. Sum
Math. Sum
Math. Sum
Math._ Sum
Math._ Sum
Math. Sum

suml (nin=3)
sumZ (nin=3)
sum2 (nin=323)
sumd (nin=32)
sumb (nin=3)
sumb (nin=3)

sum7 (nin=31

o oo o ononono
LT

"

sums (nin=32)
Interfaces

e
in

- RealInput d:
2s d;
BealInput Aphi 87

_RealInput Bphi 8:

Interfaces. Peal Input
Interfaces.
Interfaces
Interfaces . Beallutput outX d-;

Interfaces. BReallutput outZ d;
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equation
connect (C_Matrix.vw[3],
connect (C_Matrix.vw[4],
connect (C_Matrix.vw[l],
connect (C_Matrix. vw[Z],
contect [ feedbackl .
contect [ feedbacks .

connect (feadback’

conhect (statel
contect (statef
conhect (stated
conhect (stated
contect (statel
contect (stateg
contect (state?
contect (stated
contect (stated
contect (state?
contect (states .
contect (stateb.
conhect (stated .
conhect (stated.
conhect (statez .
conhect (statel.
conhect (statel.
conhect (statez .
conhect (stated.
conhect (stated .
contect (stateb.
contect (states .
conhect (stated.
conhect (state?.
-V
-V
-V
-V
-V
-V
-V
-V

contiect (suml
contect [ Suns
contect {Suns
contiect {Sund
contect {(Sumk
contect [ Sune
contect {(sun?
contiect [ Sund

stated
stated
stated
statel
stateg
state?
stated

Ve
Ve

-V
contect [ feedbackd .
-V
-V
-V
-V
-V
-V
-V
-V
-V
-V

e

C_Matrix
C_Matrix
C_Matrix
C_Matrix
C_Matrix
C_Matrix
C_Matrix
C_Matrix
K Matrix
K Matrix
K Matrix
K Matrix
K Matrix
K Matrix
K Matrix
K Matrix
A Matrix
A Matrix
A Matrix
A Matrix
A Matrix
A Matrix
A Matrix
¥, 4 Matrix

statel

feedbackl. uz)
feedbackz uz)
feedback3. uz)
feedbackd nz)
L Matrix.ulZ])
L Matrix.ul4])
L Matrix.ull])
L Matrix.ulZ])
-allly 8-
ulZli
BRERRCH I
4]
BRER - I
ulell
7?1
a8l
a8l
7?1
ulell
BRER - I
4]
BRERRCH I
ulZli
~uflli
~uflli
ulZli
BRERRCH I
4]
BRER - I
ulell
a8l
7?1
a;

a;

a;

a;

a;

a;

a;

a;

r

0 o0 oo ooonononmnnNWmNmnaNnaoNna-NDNmNmmaom
LN LN

LT

REY)
REY)
REY)
REY)
REY)
REY)
REY)
REY)

dr
dr
dr
dr
dr
dr
dr
dr
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Appendix F: Modelica code for the final simulation

connect (B _Matrix_ w[l], suml. ull]) a3:
connect (L Matrix_ w[l], suml. ulZ]) a3:
connect (A Matrix_ w[l], suml. ul[2]) 3:
connect (B _Matrix w[E], sumZ. ull]) a:
connect (L Matrix_ w[E], sumZ. ulZ]) a3
connect (A Matrix w[E], sumZ. ul[2]) 3:
connect (B _Matrix w[2], sum2. ull]) a:
connect (L Matrix w[2], sum2. ulZ]) d:;
connect (A Matrix w[2], sum2. ul[2]) 3:;
connect (B _Matrix_ vw(4], sumd. ull]) 3:
connect (L Matrix_ w(4], sumd . ulZ]) 3:
connect (A Matrix_ vw[4], sumd. ul[2]) 3:
connect (B _Matrix w[E], sumb. ull]) a3:
connect (L Matrix w[E], sumb . ulZ]) a3:
connect (A Matrix_ w[E], sumb. ul[2]) 3:
connect (B _Matrix_ vw[e], sume.ul[l]) 3:
connect (L Matrix_ vw[e], sume.ulZ]) d:;
connect (A Matrix_ vw[e], sume.ul[2]) 3:;
connect (B _Matrix w[7], sum7.ull]) a3:
connect (L Matrix_ w[7], sum7. ulZ]) 3:
connect (A Matrix_ w[7], sun7.ul[2]) 3:
connect (B _Matrix_ w[2], sum2. ull]) 3:
connect (L Matrix_ w[2], sum2 . ulZ]) 3:
connect (A Matrix_ w[2], sum2. ul[2]) 3:;
contiect (Bphi, feedback4_ul) 8;
contect (Aphi, feedback3_ul) 8;
connect (Z5, feedbhackz ul) 4;

connect (¥s, feedhackl_ ul) a;
connect (K Matrix w[Z], out¥) o
connect (K Matrix w[l], outZ) o;
connect (B_Matrix uall], outZ) o;
connect (B_Matrix ualZ], outd) o;

end ctrl_ feed ob;
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F.4 pend_4out _pos

model pend dout_pos
=0
imner Modelica. Mechanics . MaltiBody. World world 3;
Modelica Mechanics MultiBody. Joints. ActuatedPrismatic motori d;
Modelica Mechanics MultiBody. Joints. ActuatedPrismatic motor2(n={0,0,1}) O
Hodelica.Mechanics. MultiBody. Joints.Universal conein b={0,0,1}) 3:
Modelica Mechanics MultiBody. Parts_ BodyBox bar(r={0,0.5,0}) 3;
Hodelica.EBlocks. Interfaces. RealOutput x5_Aphi d:
Modelica.Mechanics. MultiBody. Sensors. Absolutelensor Sensor |
get_angles=true,
get_w_abs=true,
get_r abs=true,
get_w_abs=true) 9:
Modelica. EBlocks. Interfaces. Peallutput x7_Bphi 3:
Modelica Blocks. Interfaces. BealInput uZ 3;
Modelica Blocks. Interfaces. BealInput ul 3;
Modelica. EBlocks. Interfaces. Feallutput xl _Xs a8;
Modelica. Blocks. Interfaces. Feallutput x3_Zs 87
Modelica Mechanics. Translational Position positiond 38;
Modelica Mechanics. Translational Position positionZ 8;
Modelica Mechanics MultiBody. Joinkts. ActuatedPriswmatic motor¥i(n={0,1,0}) a:
Modelica Mechanics. Translational Position positionY 8;
Modelica Blocks.Socurces.Sine motion Z coordinatel
amplitude=0,
fregqH==0,
startTime=0) 9;
equation
connect (cone. frame b, bar. frame a) ad:
connect (x5_Aphi, Sensor.yw[7]) O;
connect (x7_Ephi, Sensor.yw[2]) O;
connect (x1_Xs, Sensor.y[l]) o;
connect (x3_2=s, Sensor.y[3]) 97
connect (ul, positionX.s_ref) o5
connect (Sensor. frame a, cone. frame b)) d;
connect (U, positionZ.s_ref) o5
connect (world. frame b, motorY. frame a) o:
connect (position¥. flange b, motorY.axis) d:
connect (motion £ coordinate.y, position¥.s_ref) o
connect (motorY. frame b, motorzZ. frame a) o7
connect (motorZ. frame b, motorx. frame a) o7
connect (motorX. frame b, cone. frame a) d;
connect (positiong. flange b, motorZ.axis) dr
connect (positionX. flange b, motorx.axis) d:
end pend dout_pos;
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