
ISSN 0280-5316
ISRN LUTFD2/TFRT--5792--SE

Modeling and Balancing of Spherical
Pendulum using a Parallel

Kinematic Manipulator

David Barrio Vicente

Department of Automatic Control
Lund University

April 2007

Document name
MASTER THESIS
Date of issue
April 2007

Department of Automatic Control
Lund Institute of Technology
Box 118
SE-221 00 Lund Sweden Document Number

ISRNLUTFD2/TFRT--5792--SE
Supervisor
Anders Robertsson at Automatic Control in Lund.
Rolf Johansson at Automatic Control in Lund (examiner)

Author(s)
David Barrio Vicente

Sponsoring organization

Title and subtitle
Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator (Modellering och balansering av
en sfärisk pendel med en parallellkinematisk manipulator)

Abstract
The balancing act of an inverted pendulum with a robotic manipulator is a classical benchmark for testing modern control
strategies in conjunction with fast sensor-guided movements. From the control design perspective, it presents a
challenging and difficult problem as the system is open-loop unstable and includes nonlinear effects in the actuators, such
as friction, backlash, and elasticity. In addition, the necessity of a sensor system that can measure the inclination angles of
the pendulum contributes to the complexity of the balancing problem. The pendulum is projected onto the xz and yz
planes of the inertial coordinate system. These projections are controlled by a state-space controller.
A specially developed sensor system allows the contactless measurement of the inclination angles of the pendulum. This
system consists of a small magnet, placed at the bottom of the pendulum and Hall-effect sensors placed below the end
effector.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
english

Number of pages
104

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through:University Library, Box 3, SE-221 00 Lund, Sweden Fax +46 46
222 42 43

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 4

Contents

David Barrio Vicente

Contents

1 Introduction..7

2 PKMs...9

2.1 Robotics. Historical background ..9
2.2 Parallel manipulators ..11
2.3 Comparisons with serial structures...12
2.4 The Tau structure..13
2.5 The Gantry-Tau structure ...13

3 Modeling and simulation of pendulum dynamics.............................17

3.1 Modeling...17
3.2 Linearization of the dynamic model...18
3.3 Mathematic model ..20

4 Control design ..23

4.1 LQR problem..23
4.2 Design of the LQR controller ...24
4.3 Simulation of the designed controller25

4.3.1 Simulation in MATLAB...25
4.3.2 Simulation in Dymola ...25

5 Modeling of pendulum dynamic (4 outputs)27

5.1 Modeling...27
5.2 Linearization of the dynamic model...28
5.3 Mathematic model ..28

6 Control design: controller + observer..31

6.1 State observer ...31
6.2 Design of the observer state ...32
6.3 Simulation of the designed controller33

6.3.1 Simulation in MATLAB...33
6.3.2 Simulation in Dymola ...34

7 Kinematics for a Gantry-Tau parallel robot.....................................37

7.1 Inverse kinematics ..38
7.2 Forward kinematics ..39
7.3 Velocity Jacobian ...41
7.4 Acceleration..42

8 Simulation of full system (robot + controller + pendulum).............43

8.1 Improving simulation. Motion in Z-coordinate........................44
8.2 Improving simulation. Add offsets at X and Y coordinates.....47

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 6

9 Design of electronics for angle measurements49
9.1 Select a suitable Hall-sensor...49
9.2 Behaviour of A 3515 Hall-sensor ...50

10 Experiment 1: balancing using serial robot (IRB140)53

10.1 IRB 140...53
10.2 Modeling of robot + pendulum ..54
10.3 Inverse kinematics of a serial robot..55
10.4 Inverse kinematics of IRB140..57

10.4.1 Find q1, q2 and q3 ..57
10.4.2 Find q4, q5 and q6 ..60

11 Experiment 2: checking behavior of angle measurement system .63

12 Conclusion and future work ...65

A State space..67

A.1 State variables..67
A.2 Linear systems ...67

A.2.1 Controllability and observability ...69
A.2.2 Transfer function..69
A.2.3 Canonical realizations ..70
A.2.4 Proper transfer functions..70
A.2.5 Feedback ..71
A.2.6 Feedback with set point (reference) input..................................72

A.3 Non-linear systems ..73

B A 3515 Hall-sensor...75

B.1 Features and absolute maximum ratings75
B.2 Characteristics definitions ...76
B.3 Applications information ...77

C MATLAB code for calculating LQR controller and simulating79

D MATLAB code for calculating inverse kinematics for PKM.........83

E MATLAB code for calculating forward kinematics for PKM85

F Modelica code for the final simulation ..87

F.1 ForwardKinematicsPKM ...88
F.2 ForwardKinematicsPKM ...97
F.3 ctrl_feed_ob..99
F.4 pend_4out_pos ...102

References..103

Chapter 1: Introduction

David Barrio Vicente 7

1 Introduction
A robot balancing an inverted pendulum is an impressive demonstration object that
shows how an intelligent combination of modern control algorithms, robotics, and
electronics can lead to a high-performance dynamic system. As such, it constitutes a
typical mechatronical system.

Its realization requires the design of a state-space controller, calculation of the
forward and inverse kinematics and the development of specialized signal processing
electronics, which are necessary for the measurement of the inclination angles of the
pendulum.

The goal project is controlling the balance of an inverted pendulum. The pendulum is
supported over a plate, which is joined to robot hand.

The parallel robot, which I will use in this master thesis, will be a Gantry-Tau
structure but the pendulum and its plate will be possible to use with others robots.

The lower pendulum part is an iron cone. Over the cone there is a magnetic object. On
the plate surface, two hall-sensors for magnetic field will be placed to take
measurements of pendulum angle on at x-y axis.

The TCP-robot will be moved along x-y directions.

Figure 1.1 Cross section of pendulum and sensor.

Above picture shows the pendulum structure. It can be seen:

1. Pendulum (glass fibber tube).

2. Permanent magnet.

3. Cone (steel).

4. Mounting plate (plastic).

5. Magnetic flux.

6. Hall-effect sensor and (α) inclination angle of the pendulum.

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 8

My master thesis will have three stages:

• Simulation of pendulum dynamics: I will use MATLAB1 and Dymola2
software to do it.

• Control design: there are several possibilities (P, PI, PID, LQR, etc.). I will
have to study everyone and to choose the most suitable.

• Design of electronics for angle measurements: hall-sensors give in a little
signal which is in relation to magnetic flux that is in relation to pendulum
angle. I will have to amplify that signal using operational amplifiers.

This master thesis will allow me to use and to extend my knowledge I learnt in Spain
for last years about Electronics, Robotics and Automatic Control.

1MATLAB version 7.2.0.232 (R2006a) was used.
2Dymola version 6 was used.

Chapter 2: PKMs

David Barrio Vicente 9

2 PKMs

2.1 Robotics. Historical background
Today robots are natural components in the manufacturing industry and are even
expanding to other fields. Robots are however a pretty young product compared to
other equipment used today.

The robotic history began in the late 1950’s in USA where George Devol and Joseph
Engelberger started what was to become the Unimation. Joseph Engelberger is
sometimes called ”The Father of Robotics”. Unimation was the first company who
delivered robots to the American industry and General Motors was the first customer
in 1961:

Figure 2.1 First industrial robot in a factory.

The word ”Robot” comes from the Czech play ”Rossums Universal Robots”,
performed in the 1920’s. The big breakthrough came 1964 when General Motors
ordered 66 Unimate robots from Unimation, to be installed in their new top modern
factory in Ohio. Even though the industry was hard to convince the public was now
very interested in the robots, and Unimate robots appear in commercials and talk
shows. Soon several other companies followed. IBM, AMF, Hughes Aircraft and
Western Electric are just some of many companies who started their own production
of robots.

In Europe the Scandinavian countries were early to adopt the new invention and
several companies in Sweden, Norway and Finland started to develop robots or
produce the Unimate robot on licence. Among the pioneers in Sweden one can

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 10

mention Roland Kaufeldt, founder of Kaufeldt AB, the kitchen appliances company
Electrolux, Esab, manufacturer of welding products and Asea, electronics
manufacturer. In Norway Trallfa, manufacturer of wheelbarrows, constructed a robot
for painting which became a success story.

In 1971 Asea started to develop a robot, which would come to make ABB one of the
main players on the market. The robot, which was to be called IRB 6, had a fully
electronic control and power system, and was the first microprocessor controlled
robot. It was also an anthropomorphic robot, i.e. it imitated the human anatomy.
Using Harmonic Drives meant that it was much more compact than other robots. The
production of IRB 6 started in 1973:

Figure 2.2 IRB 6 robot.

Other countries in Europe were not so eager to follow. Europe had a high
unemployment rate and there was no need for robots since the pressure to raise
productivity was relatively low. There was however some exceptions. The German
company Kuka developed a robot used for welding, mainly sold to the European car
industry. The European car industry also started to produce robots on their own.

While Europe had a high unemployment rate and no problem to get enough labour the
situation was very much the opposite in Japan. The high economical growth in the
60’s resulted in a lack of labour. This meant that the companies were very open for
new ideas and the robots were embraced as a way to increase the production. The
industry was quick to apply the robots in the production and soon there were many

Chapter 2: PKMs

David Barrio Vicente 11

Japanese robot producers to compete on the growing market. In 1980 there were 150
Japanese robot producers and in 1988 nearly 70 % of the 256 000 robots in use all
over the world were installed in Japan. Some large Japanese robot manufacturers
today are Fanuc, Yaskawa and Kawasaki.

In Scandinavia Asea became the main robot producer in the mid 80’s when both
Electrolux robot production and Trallfa was incorporated. After Asea and the Swiss
company Brown Boveri merged in 1988 and formed ABB, the robot production of
Cincinnati Milicroms, Graco Robotics and Esab were also incorporated.

2.2 Parallel manipulators
Parallel kinematics manipulators (PKMs) have recently attracted a lot of interest in
the robot community. The main reason for this is some inherited properties of the
structure, mainly high stiffness and dynamical advantages.

A parallel mechanism can be defined as a closed-loop mechanism in which the end
effector (mobile platform) is connected to the base by at least two independent
kinematics chains. In other words, a parallel kinematics manipulator consists of
several kinematics chains, in contrast to the serial that only consist of one. This is a
very general definition that opens up for many different constructions, with very
different properties.

There are already some PKMs on the market like IRB 340 Flexpicker, which is based
on the Delta structure:

Figure 2.3 IRB 340 Flexpicker robot.

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 12

Other examples of parallel structures are the Hexaglide, the Triaglide, the I4 and the
Orthoglide:

Figure 2.4 Orthoglide robot.

There is some common vocabulary that is used for parallel manipulators. The
manipulator is said to consist of a mobile platform connected to a fixed base by
several kinematics chains, called legs. If the number of legs is greater or equal to the
degrees-of-freedom (DOFs) of the mobile platform and each arm having one actuated
joint, the manipulator is called fully parallel.

2.3 Comparisons with serial structures
Same different properties of serial and parallel manipulators are workspace, payload,
accuracy and dynamical behaviour. These are general properties, more or less true for
different constructions, which give a background to raising interest in parallel robots
and the problems inherited in the structure.

• Workspace: one of the main drawbacks with parallel robots is that they
generally have a small workspace compared to the footprint of the robot.

Chapter 2: PKMs

David Barrio Vicente 13

• Payload: in a serial structure each actuator has to have the necessary power to
move not only the manipulated object, but also the links and actuators located
later in the kinematics chain. In a parallel structure the end-effector is directly
supported by all actuators, and the actuators can be located close to the base,
hence the payload can be much larger.

• Accuracy: in serial robots the errors from each link accumulate to a total error
at the end-effector. An error in a joint closer to the base will also have a larger
effect on the total error than an error in a joint closer to the end-effector.
Parallel structures do not have these drawbacks at all, and are therefore
remarkably rigid.

• Dynamical behaviour: the fact that the arm structure of a parallel robot can be
made much lighter since the arms do not have to carry actuators, and the fact
that errors do not accumulate, give them better dynamic performance than
serial robots.

As seen in these comparisons, there are a lot of properties of a parallel structure
that could make it interesting. The main drawback of the structure is the small
workspace.

2.4 The Tau structure
As mentioned above the definition of a parallel manipulator opens up for a wide range
of constructions. We will here study a special group of parallel manipulators based on
a mobile platform, six arms and three actuators. Depending on where the arms are
connected to the platform, how they are grouped and what kind of actuators used the
performance will be very different even within this group of manipulators. One
example of construction like this is the Orthoglide, (see before figure).

In this group one can arrange the structures according to how the arms are grouped.
The Orthoglide has a structure that would be named 2/2/2, since the arms are grouped
in pairs. If the arms are grouped as 3/2/1, 3/1/2, 2/3/1, 2/1/3, 1/3/2 or 1/2/3 the
structure is referred to as a Tau-structure. One of the advantages of the Tau-structure
is that the different configurations make it possible to get the highest stiffness in a
desired direction. For a 2/2/2 structure there is only one configuration. ABB Robotics
introduced the Tau family of parallel kinematics manipulators.

2.5 The Gantry-Tau structure
As stated before, the main drawback with parallel structures is the small workspace
compared to the footprint of the robot. The Gantry-Tau [11] is constructed to
overcome this limitation while retaining most of the parallel structures advantages.

The Gantry-Tau has a total workspace larger than for a serial gantry robot with the
same footprint. The robot has been constructed for the assembly of aeroplane
components. This is an application where very large and expensive machines are used
today and a lighter and more cost efficient manipulator could compete.

The parallel robot used in this master thesis is a Gantry-Tau structure, with 3
translational DOF, that can allow a big working area compared to the other structures:

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 14

Figure 2.5 Gantry-Tau structure (robot on the left side).

This structure has 6 joints, in a 3-2-1 configuration, representing how many joints are
on each kinematics group of the robot.

The table robot can became a demonstration model, easier to transport than the real
size one.

The table robot consists of three parallel linear tracks, which are attached to a plate at
each end. One of the end plates has been reduced to an L-shape so that the platform
can move freely in this area. On the each track, the interface boards between tracks
and PC are attached.

The picture below shows the table robot:

Chapter 2: PKMs

David Barrio Vicente 15

Figure 2.6 Table robot.

The cart moves on a toothed belt, driven by a DC motor that is coupled to a gear
wheel. The tracks are about 50 cm long and fastened to the end plates with one screw
at each end, so the robot is easy to transport and assemble. The bars have a diameter
of 6 mm.

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 16

Chapter 3: Modeling and simulation of pendulum dynamics

David Barrio Vicente 17

3 Modeling and simulation of pendulum dynamics
In this chapter I am going to explain how I have made the modeling and simulation of
the pendulum dynamics.

In order to do that, Dymola simulation software [19] will be used. This software is
based on Modelica language [23], and permits to build models easily using Drag and
Drop, and simulate them as well as other many possibilities that will be seen later.

3.1 Modeling
In Dymola, I made a modeling of physic system. I just considered the motion of the
hand robot. For it, I included:

• 2 prismatic actuators3 (motorX and motorZ), which represent motions along X
and Z-axis. These motions will be made by the robot hand.

• 2 accelerators4 (accelerateX and accelerateZ), which represent input signal to
every motor.

• 1 universal joint5 (cone), which represents two DOFs of pendulum rotation.

• 1 body6 (bar), which represents the pendulum.

• 1 absolute sensor7 (sensor), which is able to give me every measure I need.
These measures are: linear position and velocity of both motors, angular
position and velocity of both degrees-of-freedom of the pendulum.

• 2 input ports8 (u1 and u2), to connect input signals to system.

• 8 output ports9 (x1_Xs, x2_Xv, x3_Zs, x4_Zv, x5_Aphi, x6_Aw, x7_Bphi and
x8_Bw), to read output signals from system.

• Of course, I need a reference system10: world.

3Included in Modelica.Mechanics.MultiBody.Joints.ActuatedPrismatic.
4Included in Modelica.Mechanics.Translational.Accelerate.
5Included in Modelica.Mechanics.MultiBody.Joints.Universal.
6Included in Modelica.Mechanics.MultiBody.Parts.BodyBox.
7Included in Modelica.Mechanics.MultiBody.Sensors.AbsoluteSensor.
8Included in Modelica.Blocks.Interfaces.RealInput.
9Included in Modelica.Blocks.Interfaces.RealOutput.
10Included in Modelica.Mechanics.MultiBody.World.

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 18

This one is the completed diagram:

Figure 3.1 Dynamic model of the system.

Now I have a system and I can see its dynamic behaviour by means of Dymola. But
that is not very useful. I already knew that the system would be unstable. For working
with the system, for instance to calculate a controller, I need a mathematical model of
it. Besides, that model must be linear. At the next step I will get a linear mathematical
model.

3.2 Linearization of the dynamic model
Dymola has a tool to get a representation of a system by means of its state-space
model. Besides, that model will be linear. It is possible to find that tool on the
Simulation sheet, inside Simulation command:

Chapter 3: Modeling and simulation of pendulum dynamics

David Barrio Vicente 19

Figure 3.2 Linearize tool in Dymola.

After executing this tool, a MATLAB file (dslin.mat) is made. This file stores all
necessary information to make a state-space11 model of the system using MATLAB
software.

11More information about state-space representation in Appendix A.

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 20

3.3 Mathematic model
The first step to extract a mathematic model from dslin.mat file is loading it in
MATLAB: load dslin_4outputs_ob.mat

This command creates four variables. One of them (xuyName) contains information
about inputs, outputs and states of the system:

xuyName =

motorX.s
motorX.v
motorZ.s
motorZ.v
cone.revolute_a.phi
cone.revolute_a.w
cone.revolute_b.phi
cone.revolute_b.w
u2
u1
x5_Aphi
x7_Bphi
x8_Bw
x6_Aw
x1_Xs
x3_Zs
x4_Zv
x2_Xv

Other variable contain A, B, C and D matrixes, that is, four matrixes to do a complete
representation of a system by means of its state-space model:

Figure 3.3 ABCD variable in MATLAB.

states

inputs

outputs

Chapter 3: Modeling and simulation of pendulum dynamics

David Barrio Vicente 21

Next step is extracting A, B, C and D matrixes from ABCD variable.

ABCD =

Which is very easy using MATLAB:
A=ABCD(1:8,1:8);
B=ABCD(1:8,9:10);
C=ABCD(9:16,1:8);
D=ABCD(9:16,9:10);

A

8x8

C

8x8

B

8x2

D

8x2

16x10

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 22

Chapter 4: Control design

David Barrio Vicente 23

4 Control design
I checked in the before simulation that open-loop system is unstable. That means I
need to introduce a control system to stabilizer it.

There are several possibilities to do it: proportional controller, proportional integral
controller, proportional integral derivative controller, cascade controller, linear
quadratic regulator…

Designing one of them (LQR) is very easy because I have state-space model in
MATLAB. This software has a command (lqr), which give me K feedback matrix. I
only need this matrix to control and stabilizer the closed-loop system.

4.1 LQR problem
The theory of optimal control is concerned with operating a dynamic system at
minimum cost. The case where the system dynamics are described by a set of linear
differential equations and the cost is described by a quadratic functional is called the
LQ problem. One of the main results in the theory is that the solution is provided by
the linear-quadratic regulator (LQR), a feedback controller whose equations are given
below.

For a continuous-time linear system described by:

)()()(
)()()(
tDutCxty
tButAxtx

+=
+=&

where:

 x = state vector (n-dimension)

 u = control vector (r-dimension)

 y = output vector (m-dimension)

 A = constant coefficient matrix (nxn dimension)

 B = constant coefficient matrix (nxr dimension)

 C = constant coefficient matrix (mxn dimension)

 D = constant coefficient matrix (mxr dimension)

with a cost functional defined as:

dttRututQxtxJ TT))()()()((
0∫
∞

+=

where the matrices Q and R are positive-semidefinite and positive-definite,
respectively. Note that this cost functional is thought in terms of penalizing the
control energy (measured as a quadratic form) and the time it takes the system to
reach zero-state. This functional could seem rather useless since it assumes that the
operator is driving the system to zero-state, and hence driving the output of the system
to zero. This is indeed right, however the problem of driving the output to the desired
level can be solved after the zero output one is. In fact, it can be proved that this
secondary problem can be solved in a very straightforward manner. The optimal
control problem defined with the previous functional is usually called the state

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 24

regulator problem and its solution the linear quadratic regulator (LQR) which is no
more than a feedback matrix gain of the form:

)()()(1 tKxtPxBRtu T −=−= −

where K is a rxn dimension matrix and P is found by solving the Riccati equation:

01 =+−+ − QPBPBRPAPA TT

This problem was elegantly solved by Rudolf Kalman (1960).

Therefore, the design of the systems of optimal control consists of calculating K
matrix elements.

An advantage of using quadratic optimal control is that designed system will be
stable, except in case of system is not controllable12.

MATLAB has a command (lqr) which provides a solution Riccati equation in
continuous time and it determines the optimal feedback gain matrix (K).

4.2 Design of the LQR controller
The first step is to check if the system is controllable. If the system is not controllable,
when I connect the feedback by means of K matrix, the system may be not stable.

To check it, I have to calculate the matrix below:

)(765432 BABABABABABAABBCON =

System is controllable if and only if rank13 (CON) = n = 8.

I checked using MATLAB that the system is controllable.

Before using lqr command in MATLAB, I have to determinate Q and R matrixes.
Both matrixes must be positive-semidefinite. Then, the simplest form is identity
matrix. So:

































=

10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001

Q 







=

10
01

R

Now I can use lqr command to obtain K matrix: K = lqr(A,B,Q,R)

12More information about controllability in Appendix A.
13Rank is the number of linearly independent rows in a matrix.

Chapter 4: Control design

David Barrio Vicente 25

4.3 Simulation of the designed controller
After executing lqr command in MATLAB, I have K matrix. To check if this matrix
stabilizes the system, I have to simulate. At the beginning, I will simulate in
MATLAB, and after that I will make a simulation in Dymola.

4.3.1 Simulation in MATLAB14

I will use initial command to do the simulation. This command allows to obtain
initial condition response of state-space models. Before that, I have to close the loop.
The only different matrix is A. Closed-loop A matrix (Acl) is Acl = A – B*K

Results for this simulation are shown below: initial conditions are: Aphi = 10º = 0.17
rad. and Bphi = 4º = 0.07 rad.:

Figure 4.1 Simulation obtained in MATLAB.

I checked that results were like expected and that the response was stable.

4.3.2 Simulation in Dymola

The first step is creating a model with the system and the feedback. For it, I included a
gain matrix15 (K_matrix), which represents the optimal feedback gain matrix (K). Of
course, I included a pendulum model.

14MATLAB file can be seen in Appendix C.
15Included in Modelica.Blocks.Math.MatrixGain.

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 26

I introduced values obtained from MATLAB in K_matrix block

Modeling of control system is shown below:

Figure 4.2 Dynamic model of the controlled system.

The follow graphs show results (initial conditions are the same that before one):

Figure 4.3 Simulation obtained in Dymola.

Results in Dymola were similar that MATLAB, like expected.

Chapter 5: Modeling of pendulum dynamic (4 outputs)

David Barrio Vicente 27

5 Modeling of pendulum dynamic (4 outputs)
In the real system, I cannot measure eight states (position and velocity along X and Z
axis, and angle and angular velocity around two directions). So I have to do a
modeling only with states I can measure (outputs). These states are position along X
and Z-axis, and pendulum angle around two directions (four outputs).

5.1 Modeling
The new model is below:

Figure 5.1 Dynamic model of the system.

This model is similar with previous model but now I have only four states like
outputs. I have removed states I cannot measure such as velocity along X and Z-axis,
and angular velocity around two directions. Hence I have held states which I can
measure such as position along X and Z-axis, and pendulum angle around two
directions.

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 28

5.2 Linearization of the dynamic model
The next step is to execute Linearize tool in Dymola. So I obtain MATLAB file
(dslin.mat), which stores all necessary information to make a state-space model of the
system using MATLAB software.

5.3 Mathematic model
Procedure to extract a mathematic model from dslin.mat file is similar to chapter 3.1.

The first step is loading it in MATLAB: load dslin_4outputs_ob.mat

This command creates four variables. One of them (xuyName) contains information
about inputs, outputs and states of the system:

xuyName =

motorX.s
motorX.v
motorZ.s
motorZ.v
cone.revolute_a.phi
cone.revolute_a.w
cone.revolute_b.phi
cone.revolute_b.w
u2
u1
x5_Aphi
x7_Bphi
x1_Xs
x3_Zs

Like it can be seen, now there are four outputs.

Other variable contain A, B, C and D matrixes, that is, four matrixes to do a complete
representation of a system by means of its state-space model:

Figure 5.2 ABCD variable in MATLAB.

states

inputs

outputs

Chapter 5: Modeling of pendulum dynamic (4 outputs)

David Barrio Vicente 29

Next step is extracting A, B, C and D matrixes from ABCD variable.

ABCD =

Which is very easy using MATLAB:
A=ABCD(1:8,1:8);
B=ABCD(1:8,9:10);
C=ABCD(9:12,1:8);
D=ABCD(9:12,9:10);

A

8x8

C

4x8

B

8x2

D

4x2
12x10

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 30

Chapter 6: Control design: controller + observer

David Barrio Vicente 31

6 Control design: controller + observer
In order to control the system, I have to observer four states, which I cannot measure.

Designing the observer is very easy because I have state-space model in MATLAB.
This software has a command (lqe), which give me L observer gain matrix. I only
need this matrix and K matrix to control and stabilizer the closed-loop system.

6.1 State observer
A state observer is an extension to a state-space model that provides feedback to
control a system. A state observer is used on a system where direct access to the state
is not possible. If the system is observable16, then state observers can be designed to
estimate the signals that cannot be measured. These signals are estimated with base in
the outputs measures and the control.

Two of the basic parts of a control system are the plant and the controller. The "plant"
is the black box model of the system that is to be controlled. The name originates
from systems used to control factories or "plants." The controller is the subsystem
designed to control the plant. The usual state space model for a plant can be written
as:

)()()(
)()()(
tDutCxty
tButAxtx

+=
+=&

If this system is observable then the output, y(t), can be used to steer the state of
another state space model. This observer system is commonly denoted with a "hat":

)(ˆ tx and)(ˆ ty . The output of the observer system is subtracted from the output of the
plant system; multiplied by a matrix L; and added to the state equation.

[])(ˆ)(ˆ)()(ˆ)(ˆ tuBtytyLtxAtx +−−=&

)(ˆ)(ˆ)(ˆ tuDtxCty +=

For control purposes the output of the observer system is fed back to the input of both
the observer and the plant:

)(ˆ)()(ˆ txKtutu −==

for some matrix K.

The observer equations become:

[])(ˆ)(ˆ)()(ˆ)(ˆ txBKtytyLtxAtx −−−=&

)(ˆ)(ˆ)(ˆ txDKtxCty −=

or

[] [])(ˆ)()(ˆ)(ˆ tytyLtxBKAtx −−−=&

[])(ˆ)(ˆ txDKCty −=

16More information about observability in Appendix A.

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 32

This is a diagram of the controlled system:

Figure 6.1 Control system by means of observed state feedback.

6.2 Design of the observer state
The first step is to check if the system is observable. If the system is not observable,
when I connect the feedback by means of K and L matrix, the system may be not
stable.
To check it, I have to calculate the matrix below:

































=

7

6

5

4

3

2

CA
CA
CA
CA
CA
CA
CA
C

OB

System is controllable if and only if rank (OB) = n = 8.

I checked using MATLAB that the system is observable.

Before using lqe command in MATLAB, I have to determinate Q, R and G matrixes.
These matrixes must be positive-semidefinite. Then, the simplest form is identity
matrix. So:

A

-K

A

L

1/s

C B +

+

+

+

+

+
B C - +

u y x 1/s

x~

y~

PENDULUM

Chapter 6: Control design: controller + observer

David Barrio Vicente 33

































=

10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001

Q 







=

10
01

R

































=

10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001

G

Now I can use lqe command to obtain L matrix: L = lqe(A,G,C,Q,R)

6.3 Simulation of the designed controller
After executing lqe command in MATLAB, I have L matrix. To check if this matrix
stabilizes the system, I have to simulate. At the beginning, I will simulate in
MATLAB, and after that I will make a simulation in Dymola.

6.3.1 Simulation in MATLAB17

I will use initial command to do the simulation. This command allows to obtain initial
condition response of state-space models. Before that, I have to close the loop. The
only different matrix is A. Closed-loop A matrix (Aob) is Aob = A – L*C – B*K

17MATLAB file can be seen in Appendix C.

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 34

Results for this simulation are shown below: initial conditions are: Aphi = 10º = 0.17
rad. and Bphi = 4º = 0.07 rad.:

Figure 6.2 Simulation obtained in MATLAB.

I checked that results were like expected and that the response was stable.

6.3.2 Simulation in Dymola
The first step is creating a model with the system and the feedback. For it, I included:

• A pendulum model18 (pend_4output), which represents pendulum dynamics.

• 8 sums19 (sum1…sum8).

• 8 integrators20 (state1…state8).

• 4 feedback21 (feedback1…feedback4).

• 5 gain matrix22 (A_Matrix, B_Matrix, C_Matrix, K_Matrix, L_Matrix), which
represent matrixes of state-space model (A, B and C), feedback gain matrix (K)
and observer gain matrix (L).

18This block was described at the paragraph 5.1.
19Included in Modelica.Blocks.Math.Sum.
20Included in Modelica.Blocks.Continuous.Integrator.
21Included in Modelica.Blocks.Math.Feedback.
22Included in Modelica.Blocks.Math.MatrixGain.

Chapter 6: Control design: controller + observer

David Barrio Vicente 35

I introduced values obtained from MATLAB in K_Matrix and L_Matrix blocks

Modeling of control system + observer is shown below:

Figure 6.3 Dynamic model of the system + control + observer.

Previous model is similar to diagram shown in figure 6.1.

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 36

And the follow graphs show results (initial conditions are the same that before
simulation with MATLAB):

Figure 6.4 Simulation obtained in Dymola.

Now results are a little different with reference to MATLAB. Perhaps that is so
because calculates in MATLAB were made with linear system and system is not
linearized in Dymola. Nevertheless, results are correct because response is stable.

Chapter 7: Kinematics for a Gantry-Tau parallel robot

David Barrio Vicente 37

7 Kinematics for a Gantry-Tau parallel robot
Robot kinematics is the study of the motion (kinematics) of robots. In a kinematic
analysis the position, velocity and acceleration of all the links are calculated without
considering the forces that cause this motion. The relationship between motion, and
the associated forces and torques is studied in robot dynamics.

Robot kinematics deals with aspects of redundancy, collision avoidance and
singularity avoidance. While dealing with the kinematics used in the robots we deal
each parts of the robot by assigning a frame of reference to it and hence a robot with
many parts may have many individual frames assigned to each movable parts. For
simplicity we deal with the single manipulator arm of the robot. Each frame is named
systematically with numbers, for example the immovable base part of the manipulator
is numbered 0, the first link joined to the base is numbered 1 and the next link 2 and
similarly till n for the last nth link.

Robot kinematics is mainly of the following two types: forward kinematics and
inverse kinematics. Forward kinematics is also known as direct kinematics. In
forward kinematics, the length of each link and the angle of each joint is given and we
have to calculate the position of any point in the work volume of the robot. In inverse
kinematics, the length of each link and position of the point in work volume is given
and we have to calculate the angle of each joint.

Figure 7.1 Schematic Gantry-Tau structure.

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 38

7.1 Inverse kinematics23
The inverse kinematics solves the following problem: "given the actual end effector
pose, what are the corresponding joint positions?" The solution of the inverse problem
is not always unique: the same end effector pose can be reached in several
configurations, corresponding to distinct joint position vectors.

For the considered parallel robot the inverse kinematics problem is formulated as
follow [11]. Calculate the location of points A, B and C along the linear tracks for a
given TCP location. Let:

A = X1

B = X2

C = X3

TCP = [X Y Z]T

Here the parameters X1, X2 and X3 are to be determined and can be found as the
intersection between spheres with midpoints at TCP-mp_d1, TCP-mp_d2 and TCP-
mp_d3 and the respective linear track.

The spherical equations can be written as follows:
2

1
2

11
2

11
2

11)_()_()_(ldmpZZdmpYYdmpXX zyx =−−+−−+−−

2
2

2
22

2
22

2
22)_()_()_(ldmpZZdmpYYdmpXX zyx =−−+−−+−−

2
3

2
33

2
33

2
33)_()_()_(ldmpZZdmpYYdmpXX zyx =−−+−−+−−

where mp_d collects offsets in cart and plate.

Then we can determine the parameters:
2

11
2

11
2

111)_()_(_ zyx dmpZZdmpYYldmpXX −−−−−−±+=

2
22

2
22

2
222)_()_(_ zyx dmpZZdmpYYldmpXX −−−−−−±+=

2
33

2
33

2
333)_()_(_ zyx dmpZZdmpYYldmpXX −−−−−−±+=

The sign before the root expression decides the configuration of the robot.

23MATLAB file can be seen in Appendix D.

Chapter 7: Kinematics for a Gantry-Tau parallel robot

David Barrio Vicente 39

7.2 Forward kinematics24
The forward kinematics solves the following problem: "given the joint positions, what
is the corresponding end effector pose?" With Gantry-Tau structure, there are two
possibilities for each given joint positions.

For the considered parallel robot the forward kinematics problem can be formulated
as follows [11]. Calculate the location of the TCP for given A, B and C.

Three spheres with radius l1, l2 and l3 describe all possible location for the TCP for A,
B and C. The intersection points between the spheres describe the location of the TCP.

The midpoints of the spheres are:

[] 11111 _ dmpZYXP T
c −=

[] 22222 _ dmpZYXP T
c −=

[] 33333 _ dmpZYXP T
c −=

and the spherical equations are:

() () () 2
1

2
1

2
1

2
1 lZZYYXX =−+−+−

() () () 2
2

2
2

2
2

2
2 lZZYYXX =−+−+−

() () () 2
3

2
3

2
3

2
3 lZZYYXX =−+−+−

Mathematical symbolic software can solve the spherical equations, but produces a
rather extensive solution. Proficient use of simplification rules is needed in order to
simplify the solution. This problem is avoided by solving the equations in two steps.
First find the intersection between two of the spheres. The intersection is either a
circle or a point. Ignore the point case for now. The intersection between the third
sphere and one of the other forms of course also a circle. Derive the plane where this
circle is located. Secondly the intersections of this plane and the first circle describe
the possible location for the TCP.

In the solution below the intersection circle between spheres with midpoints at B and
A is calculated. All calculations are then done in a coordinate system with the z-axis
pointing from B to A.

Figure 7.2 Intersection between two spheres.

24MATLAB file can be seen in Appendix E.

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 40

BA

lBAl
s

2

2
1

2
2
2

1

−+
=

,
2
1

2
2 slr −=

Midpoint for the circle:

BA

BAsBD 1+= ,
CA

lCAl
s

2

2
1

2
2
3

2

−+
=

A point on the plane:

CA

CAsCE 2+=

The normal vector for the plane:

CAN =

Deriving the rotation matrix:









−
−

= −

21

121tan
YY
XX

θ ,















−

= −

BA

ZZ 211cosβ

() ()
() ()
















−=

100
0cossin
0sincos

θθ
θθ

zRot , () ()
() () 















−=

ββ
ββ

cossin0
sincos0

001

xRot

zxxz RotRotRot =

The normal vector for the plane, N, and points D and E are transformed into a
coordinate system with the z-axis pointing from B to A:

() NRotNNNN xzzyx ==1

() DRotzyxD xzddd ==1

() ERotzyxE xzeee ==1

The spherical equations can now be written in the new coordinate system as the
intersection between a circle and a sphere:

() () 222 ryyxx drdr =−+−

() () () 0=−+−+− erzeryerx zzNyyNxxN

dr zz =

where:

() TCPRotzyx xz
T

rrr =

Chapter 7: Kinematics for a Gantry-Tau parallel robot

David Barrio Vicente 41

There are two solutions:

q

yxzxyexdy
r N

SNTNTNxNxN
x

−−−+
= 32

22

1

q

xyzxydxey
r N

SNTNTNxNxN
y

+−−+
= 31

22

1

dr zz =1

q

yxzxyexdy
r N

SNTNTNxNxN
x

+−−+
= 32

22

2

q

xyzxydxey
r N

SNTNTNxNxN
y

−−−+
= 31

22

2

dr zz =2

where:

ed xxT −=1 , ed yyT −=2 , ed zzT −=3

yxxy NNN = , zyyz NNN = , zxxz NNN =

22
yxq NNN += , rNQ y= , 32 TNTNR zy +=

22
111

2 2))((RQRTNTrTrNS xx −+−−+=

And the final solutions are:
















= −

1

1

1
1

1

r

r

r

xz

z
y
x

RotTCP ,















= −

2

2

2
1

2

r

r

r

xz

z
y
x

RotTCP

The configuration of the robot decides which solution is valid.

7.3 Velocity Jacobian
Reference [6] does a study about kinematics and dynamics of robot used in this paper.
From it I am going to derive some equations to get Jacobian matrix.

Thanks to the Tau-configuration, the orientation of the end-effector plate is constant
and the three DOFs of the robot are completely translational, so it is sufficient to
consider one link per link cluster. The closure equation for link i is then:

0)(2222 =∆+∆+∆− iiii ZYXL
Where T

iii ZYX),,(∆∆∆ is the vector along link i:

iixi XdmpXX −+=∆ _

iiyi YdmpYY −+=∆ _

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 42

iizi ZdmpZZ −+=∆ _
Relating robot geometry with linear velocity of end-effector and joint velocity of
carts:

QDV
X
X
X

X
X

X

Z
Y
X

ZYX
ZYX
ZYX

&

&

&

&

&

&

&

=∆≡
































∆
∆

∆
=

































∆∆∆
∆∆∆
∆∆∆

3

2

1

3

2

1

333

222

111

00
00
00

Relating before equation with QJV &= , we can deduce:

















∆∆∆∆
∆∆∆∆
∆∆∆∆

=∆= −−

3333

2222

1111
11

1
1
1

XZXY
XZXY
XZXY

DJ

(For 0≠∆ iX , that is, not on the edge of workspace.)

The end-effector velocity can be obtained by inverting the inverse Jacobian matrix:

















=
















3

2

1

X
X
X

J
Z
Y
X

&

&

&

&

&

&

7.4 Acceleration
From [6] we can take some equations about acceleration of the parallel robot.

The end-effector acceleration is obtained by differentiating the closure equations
twice by time:

















++−
++−
++−

−
































∆
∆

∆
=

































∆∆∆
∆∆∆
∆∆∆

222
3

222
2

222
1

3

2

1

3

2

1

333

222

111

)(
)(
)(

00
00
00

ZYXX
ZYXX
ZYXX

X
X
X

X
X

X

Z
Y
X

ZYX
ZYX
ZYX

&&&&

&&&&

&&&&

&&

&&

&&

&&

&&

&&

















++−
++−
++−

∆−
















=















−

222
3

222
2

222
1

1

3

2

1

)(
)(
)(

ZYXX
ZYXX
ZYXX

X
X
X

J
Z
Y
X

&&&&

&&&&

&&&&

&&

&&

&&

&&

&&

&&

(Vectors along links not linearly dependent for second equation.)

Chapter 8: Simulation of full system (robot + controller + pendulum)

David Barrio Vicente 43

8 Simulation of full system (robot + controller + pendulum)
After getting forward and inverse kinematics in MATLAB, I had to translate these
functions to Modelica language in order to make a model of the full system in
Dymola.

The included blocks in the model are:

• A block25, which represents pendulum dynamics and motion of robot hand
(pendulum_4out_pos).

• A block26, which represents controller + observer system (ctrl_feed_ob).

• A block27, which represents forward kinematics of PKM
(ForwardKinematicsPKM).

• A block28, which represents inverse kinematics of PKM
(InverseKinematicsPKM).

• 4 integrators29 (integrator1…integrator4). In the pendulum_4out_pos block, I
changed two acceleration actuators by two position actuators because at the
robot, I will control the position instead of the acceleration.

• A constant30 (Z_desired), which represents desired Z-coordinate.
Modeling of control system + pendulum + robot is shown below:

Figure 8.1 Dynamic model of the system.

25This block was described at the paragraph 5.1.
26This block was described at the paragraph 6.3.2.
27This block was described at the paragraph 7.2.
28This block was described at the paragraph 7.1.
29Included in Modelica.Blocks.Continuous.Integrator.
30Included in Modelica.Blocks.Sources.Constant.

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 44

And the follow graphs show results (initial conditions are: Aphi = 10º = 0.17 rad. and
Bphi = 4º = 0.07 rad.):

Figure 8.2 Simulation obtained in Dymola.

We can see results are correct. Response was similar to before response without
including the robot.

8.1 Improving simulation. Motion in Z-coordinate
The aim of this step is testing how the system works if there is a motion along Z-
coordinate. For doing it, I took the dynamic model that was explained at the paragraph
5.1. I replace two acceleration actuators by two position actuators (at the robot, I will
control position instead of acceleration).

Besides, I added:

• A prismatic actuators31 (motorY), which represents motions along Y-axis
(vertical direction).

• A positioner32 (positionY), which represents input signal to motion along
vertical direction.

• A sine signal input33 (motion_Z_coordinate), which represents the motion
along vertical direction.

Chapter 8: Simulation of full system (robot + controller + pendulum)

David Barrio Vicente 45

Diagram below shows the dynamic model of the system:

Figure 8.3 Dynamic model of the system.

31Included in Modelica.Mechanics.MultiBody.Joints.ActuatedPrismatic.
32Included in Modelica.Mechanics.Translational.Position.
33Included in Modelica.Mechanics.Blocks.Sources.Sine.

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 46

The input for motion along vertical direction was a sine signal like this (amplitude =
0.4 m, frequency = 0.3 Hz):

Figure 8.4 Input for motion along Z-coordinate.

And the follow graphs show results (initial conditions are: Aphi = 10º = 0.17 rad. and
Bphi = 4º = 0.07 rad.):

Figure 8.5 Result of the simulation.

You can observer how the system become stable.

Chapter 8: Simulation of full system (robot + controller + pendulum)

David Barrio Vicente 47

8.2 Improving simulation. Add offsets at X and Y coordinates
The aim of this step is testing how the system works if I add an offset along X and/or
Y-coordinate. For doing it, I took the dynamic model which was explained at the
paragraph 8.

Besides, I added:

• 2 feedback34 (feedbackX and feedbackZ).

• 2 constant35 (ofssetX and offsetZ), which represents input signal to motion
along vertical direction

Diagram below shows the dynamic model of the system:

Figure 8.6 Dynamic model of the system.

34Included in Modelica.Blocks.Math.Feedback.
35Included in Modelica.Blocks.Sources.Constant.

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 48

Offsets I added for doing the simulation were 1 and 2.

And the follow graphs show results (initial conditions are: Aphi = 10º = 0.17 rad. and
Bphi = 4º = 0.07 rad.):

Figure 8.7 Result of the simulation.

You can observer how the system become stable.

Chapter 9: Design of electronics for angle measurements

David Barrio Vicente 49

9 Design of electronics for angle measurements
Hall-sensors are based in Hall effect. The Hall effect refers to the potential difference
(Hall voltage) on opposite sides of a thin sheet of conducting or semiconducting
material in the form of a 'Hall bar' (or a Van der Pauw element) through which an
electric current is flowing, created by a magnetic field applied perpendicular to the
Hall element. Edwin Hall discovered this effect in 1879.

The ratio of the voltage created to the product of the amount of current and the
magnetic field divided by the element thickness is known as the Hall coefficient and
is a characteristic of the material of which the element is composed.
However, Hall-sensors give in a little signal, which is in relation to magnetic flux that
is in relation to pendulum angle.

I will have to chose available sensor and test it. After that, perhaps I will have to
amplify that signal using operational amplifiers.

9.1 Select a suitable Hall-sensor
The first step was searching a hall-sensor in ELFA [20], which is an electronics
supplier. For doing it, I wrote hall sensor in its searcher. I got several results:

Figure 9.1 Results of the Hall-sensor search.

After checking every possibility, I took two sensors: A 3515 [3] and KMZ 10 [4].
Besides, both sensors were available in the laboratory, so I could test their way of
working.

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 50

Finally I selected A 3515 Hall-sensor36 due to its characteristics of working and its
simplicity for adapting its voltage output by means of only operational amplifiers.

9.2 Behaviour of A 3515 Hall-sensor
Picture below shows set up I made to test working of the Hall-sensor:

Figure 9.2 Set up for testing Hall-sensor.

After that, I followed below steps:

• I measured length of the pendulum (h = 235 mm).

• I connected 5 V DC to the supply voltage of the Hall-sensor.

• I connected a voltmeter at its output.

• I was taking measures while I moved pendulum with ∆d = 5 mm.

36More information about A 3515 Hall-sensor in Appendix B.

α

d

h
pendulum

Hall-sensor

∆d

Chapter 9: Design of electronics for angle measurements

David Barrio Vicente 51

After taking every measure between –100 mm < α < +100 mm (–23° < α < +23°), I

calculated the corresponding angle 





=

h
darctgα and I drew a graphic with results:

Figure 9.3 Result of Hall-sensor operating.

You can see on above picture that sensor response is nearly linear.
Now, I have to adapt that response to limits of date-acquisition system, that is, adjust
sensor output to ±10 V, and 0 V when α = 0 V.
For doing it, I will place an amplifier stage next to Hall-sensor. Something like this:

Figure 9.4 Stage with operational amplifier.

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 52

I used an amplifier with zero correction available in the laboratory. After adjusting
offset and gain, I obtained this result:

Figure 9.5 Result of Hall-sensor operating + operational amplifier.

Results were like expected and output is almost perfect. I will be able to correct some
little deviations by means of computer.

Now, I obtain ±10 V when pendulum angle is ±12° as needed.

Chapter 10: Experiment 1: balancing using serial robot (IRB140)

David Barrio Vicente 53

10 Experiment 1: balancing using serial robot (IRB140)
First experiment was balancing my pendulum with IRB140 robot, which is in the
robotics laboratory.

Before doing experiment, I simulated the system using Dymola. In order to do it, I
built a model of the manipulator + pendulum and I also obtained inverse kinematics
model from it.

10.1 IRB 140
IRB 140 is a typical industrial serial robot with six DOFs. It is the most compact
robots that ABB makes.

Its most important technical data are:

• Handing capacity: 5 kg.

• Number of axis: 6.

• Working range of axis movement:

o Axis 1: 360°.

o Axis 2: 200°.

o Axis 3: 280°.

o Axis 4: Unlimited (400° default).

o Axis 5: 240°.

o Axis 6: Unlimited (800° default).

Picture below show the robot structure:

Figure 10.1 IRB 140.

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 54

10.2 Modeling of robot + pendulum
In Dymola, I made a modeling of physic system, that is, a model of robot +
pendulum. For it, I included:

• 6 rotational actuators37 (J1 … J6), which represent motions of every joint.

• 6 positioners38 (position1 … position6), which represent input signal to every
joint.

• 6 links39 (link1 … link6), which represent links of the robot.

• 1 universal joint40 (cone), which represents two DOFs of the pendulum
rotation.

• 1 body41 (pendulum), which represents the pendulum.

• 1 absolute sensor42 (sensor), which is able to give me every measure I need.
These measures are: X and Y TCP-coordinates and angular position of both
DOFs of the pendulum.

• 6 input ports43 (u1 … u6), to connect input signals to system.

• 6 output ports44 (x1_Xs, x3_Zs, x5_Aphi and x7_Bphi), to read output signals
from system.

• Of course, I need a reference system45: world.

37Included in Modelica.Mechanics.MultiBody.Joints.ActuatedRevolute.
38Included in Modelica.Mechanics.Rotational.Position.
39Included in Modelica.Mechanics.MultiBody.Parts.BodyShape.
40Included in Modelica.Mechanics.MultiBody.Joints.Universal.
41Included in Modelica.Mechanics.MultiBody.Parts.BodyBox.
42Included in Modelica.Mechanics.MultiBody.Sensors.AbsoluteSensor.
43Included in Modelica.Blocks.Interfaces.RealInput.
44Included in Modelica.Blocks.Interfaces.RealOutput.
45Included in Modelica.Mechanics.MultiBody.World.

Chapter 10: Experiment 1: balancing using serial robot (IRB140)

David Barrio Vicente 55

This one is the completed diagram:

Figure 10.2 Dynamic model of the system.

10.3 Inverse kinematics of a serial robot
Unlike simulation of parallel robot, at this experiment I have built a modelling of the
robot, so I do not need to derive forward kinematics model.

The inverse kinematics solves the following problem: "given the actual end effector
pose, what are the corresponding joint positions?" The solution of the inverse problem
is not always unique: the same end effector pose can be reached in several
configurations, corresponding to distinct joint position vectors.

Although the general problem of inverse kinematics is quite difficult, it turns out that
for manipulators having six joints, with the last three joints intersecting at a point, it is
possible to decouple the inverse kinematics problem into two simpler problems, know
respectively, as inverse position kinematics, and inverse orientation kinematics. To
put it another way, for a six-DOF manipulator with a spherical wrist, the inverse
kinematics problem may be separated into two simpler problems, namely first finding
the position or the intersection of the wrist axes, hereafter called the wrist centre, and
then finding the orientation of the wrist.

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 56

The IRB140 has exactly six DOFs and its last three joints axes intersect at a point o.
We express follow equations as two sets of equations representing the rotational and
positional equations:

RqqR =),...,(61
0
6

dqqd =),...,(61
0
6

where d and R are the given position and orientation of the tool frame.

Tool centre point is defined so:



















=







=

1000
10 zzzz

yyyy

xxxx

paon
paon
paon

dR
TCP

Now assumption of a spherical wrist means that the axes z4, z5 and z6 intersect at o and
hence the origins o4 and o5 assigned by the D-H convention will always be at the wrist
centre o. Often o3 will be at o as well but this is not necessary for our subsequent
development. The important point for this assumption for the inverse kinematics is
that motion of the final three links about these axes will not change the position of o.
The position of the wrist centre is thus a function of only the first three joint variables.
Since the origin of the tool frame o6 is simply a translation by a distance d6 along the
z5 axis from o, the vector o6 in the frame o0x0y0z0 are just:

Radoo 66 −=−

Let pc denote the vector from the origin of the base frame to the wrist centre. Thus in
order to have the end-effector of the robot at the point d with the orientation of the
end-effector given by R = (rij), it is necessary and sufficient that the wrist centre o be
located at the point:

Raddpw 6−=

and that the orientation of the frame o0x0y0z0 with respect to the base be given by R. If
the components of the end-effector position d are denoted dx, dy, dz and the
components of the wrist centre pw are denoted by pxw, pyw, pzw then the relationship is:

















−
−
−

=
















zz

yy

xx

zw

yw

xw

add
add
add

p
p
p

6

6

6

Using before equation we may find the values of the first three joint variables. This
determines the orientation transformation 3

0R , which depends only on these first three
joint variables. We can now determine the orientation of the end-effector relative to
the frame o3x3y3z3 from the expression:

6
3

3
0 RRR =

as:

RRR 13
0

6
3)(−=

Chapter 10: Experiment 1: balancing using serial robot (IRB140)

David Barrio Vicente 57

The final three joints angles are then found as a set of Euler angles corresponding to
6
3R . Note that the right hand side of before equation is completely known since R is

given and 3
0R can be calculated once the first three joint variables are known.

The idea of kinematics decoupling is illustrated in figure below:

Figure 10.3 Kinematics decoupling.

10.4 Inverse kinematics of IRB140
I will divide the problem in two parts: at the beginning I will find q1, q2 and q3, which
will give me the position of WCP, and after that I will find q4, q5 and q6, which will
give me the orientation of TCP.

10.4.1 Find q1, q2 and q3

I will use a geometric approach to find the variables q1, q2 and q3, corresponding to
wrist centre point (pw).

Consider the manipulator shown in figure below, which represent the three first joints
of the IRB140:

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 58

Figure 10.4 Elbow manipulator.

With the components of pw denoted by pxw, pyw, pzw, the project pw onto the x0y0 plane
as shown in figure below:

Figure 10.5 Projection of the wrist centre onto x0-y0 plane.

We see from this projection that:

),tan(tan 1
1 xwyw

xw

yw ppa
p
p

=







= −θ

where atan(pyw,pxw) denote the two argument arctangent function.

Note that a valid second solution for θ1 is:

),tan(),tan(1 xwywxwyw ppappa −−=+= πθ

To find the angles θ2 and θ3, given θ1, we consider the plane formed by the second
and third links as shown in figure below:

Chapter 10: Experiment 1: balancing using serial robot (IRB140)

David Barrio Vicente 59

Figure 10.6 Projecting onto the plane formed by links 2 and 3.

Since the motion of links two and three is planar, the solution can be found as I
explain following.

Using the Law of Cosines we see that the angle θ3 is given by:

42

2
4

2
2

22

3 2
cos

da
dasr −−+

=θ

If I consider offset which is introduced by Denavit-Hartenberg parameters d1 and a1:

() () ()
D

da
dadPapap zwywxw =

−−−++++
=

42

2
4

2
2

2
1

2
11

2
11

3 2
)sin()cos(

cos
θθ

θ

We could now determine θ3 as:

)(cos)cos(1
33 DD −=⇒= θθ

However, a better way to find θ3 is to notice that if:
2

33
22

3
2

3
2 1)sin(1)(sin1)(sin)(cos DD −±=⇒=+⇒=+ θθθθ

And, hence, θ3 can be found by:

⇒
−±

==
D

D 2

3

3
3

1
)cos(
)sin(

)tan(
θ
θ

θ

),1tan(1tan 2
2

1
3 DDa

D
D

−±=








 −±
= −θ

The advantage of this latter approach is that both the elbow-up and elbow-down
solutions are recovered by choosing the positive and negative signs respectively.

Similary θ2 is given as:

⇒




 +−=)cos(),sin(tan),tan(342342 θθθ dadarsa

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 60






 +−

−





 +++−=

)cos(),sin(tan

))sin(())cos((,tan

34234

2
11

2
1112

θθ

θθθ

dada

apapdpa ywxwzw

10.4.2 Find q4, q5 and q6

In the previous paragraph I used a geometric approach to solve the inverse position
problem. This gives the values of the first three joint variables corresponding to a
given position of the wrist origin. The inverse orientation problem is now one on
finding the values of the final three joint variables corresponding to a given
orientation with respect to the frame o3x3y3z3. For a spherical wrist this can be
interpreted as the problem of finding a set of Euler angles corresponding to a given
rotation matrix R as I pointed out in paragraph 10.3.

Equations to calculate q4, q5 and q6 are:

RRRRRR 13
0

6
3

6
3

3
0)(−=⇒=

where:

• 6
3R is a matrix 3x3, which is a function of θ4, θ5 and θ6.

• 3
0R can be obtained from θ1, θ2 and θ3 and Denavit-Hartenberg transformation

matrixes 1
0A , 2

1A and 3
2A :

3
2

2
1

1
0

3
0

3
2

2
1

1
0

3
0

3
03

0 ****
10

RRRRorAAA
dR

T ==







=

• R is the rotation matrix of TCP:









=

10
dR

TCP

RR 13
0)(− is a matrix 3x3 (as 6

3R). So, I have 9 equations and 9 unknown quantities to
find θ4, θ5 and θ6.

Following with the calculations, I obtain:

•
















−
+−+
−−−

==

56565

546465464654

546465464654
6
5

5
4

4
3

6
3 **

CSSCS
SSCCSCSSCCCS
SCCSSCCSSCCC

RRRR

•















==−

333231

232221

131211
13

0)(
bbb
bbb
bbb

BRR

Therefore 9 equations are:

• 6465411 SSCCCb −= (Equation 1)

Chapter 10: Experiment 1: balancing using serial robot (IRB140)

David Barrio Vicente 61

• 6465412 CSSCCb −−= (Equation 2)

• 5413 SCb = (Equation 3)

• 6465421 SCCCSb += (Equation 4)

• 6465422 CCSCSb +−= (Equation 5)

• 5423 SSb = (Equation 6)

• 6531 CSb −= (Equation 7)

• 6532 SSb = (Equation 8)

• 533 Cb = (Equation 9)

From equation 3 y 6 I find θ4:

),(2tan)tan(132344
4

4

13

23

5423

5413 bba
C
S

b
b

SSb
SCb

=⇒==




=
=

θθ

From equation 7 y 8 I find θ6:

),(2tan)tan(313266
6

6

31

32

6532

6531 bba
C
S

b
b

SSb
CSb

−=⇒−=−=




=
−=

θθ

From equation 3 y 9 I find θ6:

),(2tan)tan()tan(433135
433

13
554

33

13

533

5413 Cbba
Cb

b
C

b
b

Cb
SCb

=⇒=⇒=




=
=

θθθ

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 62

Chapter 11: Experiment 2: checking behaviour of angle measurement

David Barrio Vicente 63

11 Experiment 2: checking behaviour of angle measurement
system
Second experiment was checking behaviour of the actual angle measurement system.
For doing it, I did the same assemble that I described in part 9.2 of this report.

I checked both sensors (a sensor measures angle at X-direction and other one
measures angle at Y-direction).

Results of both sensors were similar. These graphs show results of one of them:

Figure 11.1 Result of Hall-sensor operating without amplifier (upper graph) and with amplifier (lower
graph).

Results were not like expected due to a non-linearity, which appears around the up-
position of the pendulum. This non-linearity did not appear when I tested the sensor
with other plate and other pendulum, that is, not with the final plate and pendulum.

So, I think this non-linearity can be caused by a non-symmetry of the pendulum
structure and for a hard system to get the measurements since it was done completely
at hand.

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 64

Chapter 12: Conclusion and future work

David Barrio Vicente 65

12 Conclusion and future work
This master thesis allows me using and extending my knowledge in three big areas of
engineering like are Automatic Control, Robotics and Electronic.

Dymola is very powerful software, which is able to realize modeling and simulation
of a system.

Modeling is made very simple. It is indispensable to know no Newton’s laws or
solving long equations. Simply it is necessary to drag and drop the different available
blocks.

Simulations are very convincing. They are not limited at a representation over
coordinates axes, but you can see a 3D representation of the system dynamics. This is
a good way to get an idea about motions that are produced by the pendulum.

Dymola's interface is easy and very intuitive. Besides, it allows to obtain a
mathematical model of the system by a simple click of the mouse. This mathematical
model is prepared to be manipulated by MATLAB, which is the software most used
in engineering.

Dymola uses a high-level language called Modelica. I had never worked with this
language, but it was not difficult because I knew C and MATLAB languages, which
both are very similar.

I chose a linear-quadratic regulator (LQR) for controlling the system. It gave excellent
results at the different simulations that I realized. Its design was very simple since
Dymola provided me a mathematical model of the system (at state-space
representation) and the calculation of feedback matrix K with MATLAB was
immediate.

Robot used in this master thesis was a parallel kinematic manipulator. So, I have
learnt more things about this kind of robot whose use is increasing on the industry.

The sensing problem of measuring the inclination angle of the pendulum was solved
by using a contactless measuring setup based on Hall-effect sensors and a permanent
magnet inside the pendulum. Sensors were stuck below the plate where the pendulum
is supported.

Signal amplification was solved using two operational amplifiers in cascade for every
sensor. Regulating gain and offset, I could adapt the signal to a suitable magnitude in
order to the data acquisition card of the robot reads correctly that signal.

With respect to the future work, the most important thing would be checking if the
control system designed in this master thesis works correctly in the actual robot and
the pendulum is stabilized around the up position. It could be tested first in the table
robot and after in the “big robot”.

On the other hand, the set-up (plate + pendulum) can also be used in the other serial
robots of the Robotics Laboratory, that is IRB 2400 and IRB 140. In this case, I would
recommend doing before some simulations using Dymola software.

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 66

Appendix A: State space

David Barrio Vicente 67

A State space
In control engineering, a state space representation is a mathematical model of a
physical system as a set of input, output and state variables related by first-order
differential equations. To abstract from the number of inputs, outputs and states, the
variables are expressed as vectors and the differential and algebraic equations are
written in matrix form.

The state space representation (also known as the "time-domain approach") provides a
convenient and compact way to model and analyse systems with multiple inputs and
outputs. With p inputs and q outputs, we would otherwise have to write down qxp
Laplace transforms to encode all the information about a system.

Unlike the frequency domain approach, the use of the state space representation is not
limited to systems with linear components and zero initial conditions. "State space"
refers to the space whose axes are the state variables. The state of the system can be
represented as a vector within that space.

A.1 State variables
The internal state variables are the smallest possible subset of system variables that
can represent the entire state of the system at any given time.

State variables must be linearly independent; a state variable cannot be a linear
combination of other state variables. The minimum number of state variables required
to represent a given system, n, is usually equal to the order of the system's defining
differential equation.

If the system is represented in transfer function form, the minimum number of state
variables is equal to the transfer function's denominator after it has been reduced to a
proper fraction. In electronic systems, the number of state variables is the same as the
number of energy storage elements in the circuit (capacitors and inductors).

Figure A.1 Typical state space model.

A.2 Linear systems
The most general state space representation of a linear system with p inputs, q outputs
and n state variables is written in the following form:

)()()()()(tutBtxtAtx +=&

)()()()()(tutDtxtCty +=

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 68

where:

pqn tutytx ℜ∈ℜ∈ℜ∈)(;)(;)(

[] [] [] []
dt

tdxtxqxpDqxnCnxpBnxnA)()(;)(dim;)(dim;)(dim;)(dim ==⋅=⋅=⋅=⋅ &

x(⋅) is called the "state vector", y(⋅) is called the "output vector", u(⋅) is called the
"input (or control) vector", A(⋅) is the "state matrix", B(⋅) is the "input matrix", C(⋅) is
the "output matrix", and D(⋅) is the "feedthrough (or feedforward) matrix".

For simplicity, D(⋅) is often chosen to be the zero matrix, i.e. the system is chosen not
to have direct feedthrough.

Notice that in this general formulation all matrixes are supposed time-variant, i.e.
some or all their elements can depend from time. The time variable t can be a
"continuous" one (i.e. ℜ∈t) or a discrete one (i.e. Ζ∈t): in the latter case the time
variable is usually indicated as k.

Depending from the assumptions taken, the state-space model representation can
assume the following forms:

System type State-space model

Continuous time-invariant
)()()(tButAxtx +=&

)()()(tDutCxty +=

Continuous time-variant
)()()()()(tutBtxtAtx +=&

)()()()()(tutDtxtCty +=

Discrete time-invariant
)()()1(kBukAxkx +=+

)()()(kDukCxty +=

Discrete time-variant
)()()()()1(kukBkxkAkx +=+

)()()()()(kukDkxkCky +=

Laplace domain of continuous
time-invariant

)()()(sBUsAXssX +=

)()()(sDUsCXsY +=

Z-domain of discrete
time-invariant

)()()(zBUzAXzzX +=

)()()(zDUzCXzY +=

The stability of a time-invariant state-space model can easiest be determined by
looking at the system's transfer function in factored form. It will then look something
like this:

))()()((
))()((

)(
4321

321

pspspsps
zszszs

ksG
−−−−

−−−
=

Appendix A: State space

David Barrio Vicente 69

The denominator of the transfer function is equal to the characteristic polynomial
found by taking the determinant of:

λ(s) = | sI − A |
The roots of this polynomial (the eigenvalues) give in the poles in the system's
transfer function. These poles can be used to analyse whether the system is
asymptotically stable or marginally stable.

An alternative approach to determining stability, which does not involve calculating
eigenvalues, is to analyse the system's Lyapunov stability. The zeros found in the
numerator of G(s) can similarly be used to determine whether the system is minimum
phase.

The system may still be input-output stable even though it is not internally stable.
This may be the case if unstable poles are canceled out by zeros.

A.2.1 Controllability and observability
A continuous time-invariant state-space model is controllable if and only if:

nBAABBrank n =−)...(1

A continuous time-invariant state-space model is observable if and only if:

n

CA

CA
C

rank

n

=



















−1

...

A.2.2 Transfer function
The "transfer function" of a continuous time-invariant state-space model can be
derived in the following way

)()()(tButAxtx +=&

which after the Laplace transform give in:
)()()(sBUsAXssX +=

)()()(sBUsXAsI =−

)()()(1 sBUAsIsX −−=

this is substituted for X(s)in the output equation:
)()()(sDUsCXsY +=

)())()(()(1 sDUsBUAsICsY +−= −

which results in the final transfer function:
)()()(sUsGsY =

DBAsICsG +−= −1)()(

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 70

Clearly G(s) must have q by p dimensionality, and thus has a total of qp elements. So
for every input there are q transfer functions with one for each output. This is why the
state-space representation can easily be the preferred choice for multiple-input,
multiple-output (MIMO) systems.

A.2.3 Canonical realizations
Any given transfer function which is strictly proper can easily be transferred into
state-space by the following approach:

Given a transfer function, expand it to reveal all coefficients in both the numerator
and denominator. This should result in the following form:

43
2

2
3

1
4

43
2

2
3

1)(
dsdsdsds

nsnsnsn
sG

++++
+++

=

The coefficients can now be inserted directly into the state-space model by the
following approach:

)(

0
0
0
1

)(

0100
0010
0001

)(

4321

tutx

dddd

tx



















+

















 −−−−

=&

[])()(4321 txnnnnty =

This state-space realization is called controllable canonical form because the resulting
model is guaranteed to be controllable.

The transfer function coefficients can also be used to construct another type of
canonical form:

)()(

000
100
010
001

)(

4

3

2

1

4

3

2

1

tu

n
n
n
n

tx

d
d
d
d

tx



















+



















−
−
−
−

=&

[])(0001)(txty =

This state-space realization is called observable canonical form because the resulting
model is guaranteed to be observable.

A.2.4 Proper transfer functions
Transfer functions, which are only proper (and not strictly proper), can also be
realised quite easily. The trick here is to separate the transfer function into two parts: a
strictly proper part and a constant.

)()()(∞+= GsGsG SP

The strictly proper transfer function can then be transformed into a canonical state
space realization using techniques shown above. The state space realization of the

Appendix A: State space

David Barrio Vicente 71

constant is trivially)()()(tuGty ∞= . Together we then get a state space realization
with matrices A, B and C determined by the strictly proper part, and matrix D
determined by the constant.

Here is an example to clear things up a bit:

1
12

2
33
33)(22

2

+
++

+
=

++
++

=
ss

s
ss
sssG

which gives in the following controllable realization:

)(
0
1

)(
01
12

)(tutxtx 







+







 −−
=&

[] [])(1)(21)(tutxty +=

Notice how the output also depends directly on the input. This is due to the)(∞G
constant in the transfer function.

A.2.5 Feedback

A common method for feedback is to multiply the output by a matrix K and setting
this as the input to the system:)()(tKytu = . Since the values of K are unrestricted the
values can easily be negated for negative feedback. The presence of a negative sign
(the common notation) is merely a notational one and its absence has no impact on the
end results.

)()()(tButAxtx +=&

)()()(tDutCxty +=

becomes:
)()()(tBKytAxtx +=&

)()()(tDKytCxty +=

solving the output equation for y(t) and substituting in the state equation results in:

)())(()(1 txCDKIBKAtx −−+=&

)()()(1 tCxDKIty −−=

The advantage of this is that the eigenvalues of A can be controlled by setting K
appropriately through eigendecomposition of))((1CDKIBKA −−+ . This assumes
that the open-loop system is controllable or that the unstable eigenvalues of A can be
made stable through appropriate choice of K.

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 72

One fairly common simplification to this system is removing D and setting C to
identity, which reduces the equations to:

)()()(txBKAtx +=&

)()(txty =

This reduces the necessary eigendecomposition to just A + BK.

Figure A.2 Typical state space model with feedback.

A.2.6 Feedback with set point (reference) input
In addition to feedback, an input, r(t), can be added such that:

)()()(trtKytu +−=

)()()(tButAxtx +=&

)()()(tDutCxty +=

becomes:
)()()()(tBrtBKutAxtx +−=&

)()()()(tDrtDKytCxty +−=

solving the output equation for y(t) and substituting in the state equation results in:

)())(()())(()(11 trDDKIKIBtxCDKIBKAtx −− +−++−=&

)()()()()(11 tDrDKItCxDKIty −− +++=

One fairly common simplification to this system is removing D, which reduces the
equations to:

)()()()(tBrtxBKCAtx +−=&

)()(tCxty =

Appendix A: State space

David Barrio Vicente 73

Figure A.3 State feedback with set point.

A.3 Non-linear systems
The more general form of a state space model can be written as two functions:

))(),(,()(tutxtftx =&

))(),(,()(tutxthty =

The first is the state equation and the latter is the output equation.

If the function f(·,·,·) is a linear combination of states and inputs then the equations
can be written in matrix notation like above.

The u(t) argument to the functions can be dropped if the system is unforced (i.e., it
has no inputs).

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 74

Appendix B: A 3515 Hall-sensor

David Barrio Vicente 75

B A 3515 Hall-sensor
The A3515 (and A3516) are sensitive, temperature-stable linear Hall-effect sensors
with greatly improved offset characteristics. Ratiometric, linear Hall-effect sensors
provide a voltage output that is proportional to the applied magnetic field and have a
quiescent output voltage that is approximately 50% of the supply voltage. These
magnetic sensors are ideal for use in linear and rotary position sensing systems in the
harsh environments of automotive and industrial applications over extended
temperatures to -40° C and +150° C. The A3515 features an output sensitivity of 5
mV/G while the A3516 has an output sensitivity of 2.5 mV/G.
Each BiCMOS monolithic circuit integrates a Hall element, improved temperature-
compensating circuitry to reduce the intrinsic sensitivity drift of the Hall element, a
small-signal high-gain amplifier, and a rail-to-rail low-impedance output stage.

A proprietary dynamic offset cancellation technique, with an internal high-frequency
clock, reduces the residual offset voltage, which is normally caused by device
overmolding, temperature dependencies, and thermal stress. This technique produces
devices that have an extremely stable quiescent output voltage, are immune to
mechanical stress, and have precise recoverability after temperature cycling. Many
problems normally associated with low-level analog signals are minimized by having
the Hall element and amplifier in a single chip. Output precision is obtained by
internal gain and offset trim adjustments during the manufacturing process.

These devices are supplied in a 3-pin mini-SIP “U” package or a 3-pin ultra-mini-SIP
“UA” package.

B.1 Features and absolute maximum ratings
These are the main features:

• Temperature-stable quiescent output voltage.

• Precise recoverability after temperature cycling.

• Output voltage proportional to applied magnetic field.

• Ratiometric rail-to-rail output.

• Improved sensitivity.

• 4.5 V to 5.5 V operation.

• Immune to mechanical stress.

• Small package size.

• Solid-state reliability.

And some of its absolute maximum ratings are:

• Supply voltage, VCC: 8.0 V.

• Output voltage, VO: 8.0 V.

• Output sink current, IO: 10 mA.

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 76

• Magnetic flux density, B: unlimited.

• Operating temperature range (depend type), TA:

o Suffix E–: -40° C to +85° C.

o Suffix L–: -40° C to +150° C.

• Storage temperature range, TS: -65° C to +170° C.

B.2 Characteristics definitions
I am going to explain the most important characteristics of these Hall-sensors:

• Quiescent voltage output: in the quiescent state (no magnetic field), the
output is ideally equal to one-half of the supply voltage over the operating
voltage and temperature range (VOQ ≈ VCC/2). Due to internal component
tolerances and thermal considerations, there is a tolerance on the quiescent
voltage output and on the quiescent voltage output as a function of supply
voltage and ambient temperature. For purposes of specification, the quiescent
voltage output as a function of temperature is defined as:

)25(

)25()(
)(

C

COQTAOQ
TOQ Sens

VV
V

°

°
∆

−
=∆

This calculation gives in the device’s equivalent accuracy, over the operating
temperature range, in gauss.

• Sensitivity: the presence of a south-pole magnetic field perpendicular to the
package face (the branded surface) will increase the output voltage from its
quiescent value toward the supply voltage rail by an amount proportional to
the magnetic field applied. Conversely, the application of a north pole will
decrease the output voltage from its quiescent value. This proportionality is
specified as the sensitivity of the device and is defined as:

G
VV

Sens GOGO

1000
)500()500(−−

=

The stability of sensitivity as a function of temperature is defined as:

%100
)25(

)25()(
)(×

−
=∆

°

°
∆

C

CTA
T Sens

SensSens
Sens

• Ratiometry: the A3515xU, A3515xUA, A3516xU, and A3516xUA feature a
ratiometric output. The quiescent voltage output and sensitivity are
proportional to the supply voltage (ratiometric).

The per cent ratiometric change in the quiescent voltage output is defined as:

%100
5

)5()(
)(×=∆ ∆ VV

VV
V

CC

VOQVCCOQ
VOQ

and the per cent ratiometric change in sensitivity is defined as:

Appendix B: A 3515 Hall-sensor

David Barrio Vicente 77

%100
5

)5()(
)(×=∆ ∆ VV

SensSens
Sens

CC

VVCC
V

• Linearity and symmetry: the on-chip output stage is designed to provide a
linear output to within 500 mV of either rail with a supply voltage of 5 V. This
is equivalent to approximately ±800 gauss of ambient field. Although
application of stronger magnetic fields will not damage these devices, it will
force the output into a non-linear region. Linearity in per cent is measured and
defined as:

%100
)(2)250(

)500(×
−

−
=+

OQGO

OQGO

VV
VV

Lin

%100
)(2)250(

)500(×
−

−
=−

−

−

OQGO

OQGO

VV
VV

Lin

and output symmetry as:

%100
)500(

)500(×
−

−
=

− GOOQ

OQGO

VV
VV

Sym

B.3 Applications information
Calibrated linear Hall devices, which can be used to determine the actual flux density
presented to the sensor in a particular application, are available.

For safe, reliable operation, the output should not be pulled above the supply voltage
or pulled below the device ground.

For optimum performance, a 0.1 mF capacitor between the supply and ground, and a
100 pF capacitor between the output and ground, should be added.

The ratiometric feature is especially valuable when these devices are used with an
analog-to-digital converter. A/D converters typically derive their LSB step size by
ratioing off a reference voltage line. If the reference voltage varies, the LSB will vary
proportionally. This is a major error source in many sensing systems. The A3515xU,
A3515xUA, A3516xU, and A3516xUA can eliminate this source of error by their
ratiometric operation. Because their gain and offsets are proportional to the supply
voltage, if they are powered from the A/D reference voltage, the sensor output voltage
will track changes in the LSB value.

These devices can withstand infrequent temperature excursions, beyond the Absolute
Maximum Ratings, to TA = 170°C provided the junction temperature, TJ, does not
exceed 200° C.

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 78

Appendix C: MATLAB code for calculating LQR controller and simulating

David Barrio Vicente 79

C MATLAB code for calculating LQR controller and
simulating

% Clear variables and command window and close windows
clear all;
clc;
close all;

% Load file with mathematical model got with Dymola
load dslin_4outputs_ob.mat % 8 states, 4 outputs (Xs, Zs, Aphi and
Bphi)

% Show 8 states, 2 inputs and 4 outputs
xuyName

% Initial condition
Aphi=10; % [degrees]
Bphi=4; % [degrees]
Aphi_rad=Aphi*(pi/180); % [rad]
Bphi_rad=Bphi*(pi/180); % [rad]
x0=[0 0 0 0 Aphi_rad 0 Bphi_rad 0];

% Size of (ABCD): 12x10
A=ABCD(1:8,1:8); % 8x8
B=ABCD(1:8,9:10); % 8x2
C=ABCD(9:12,1:8); % 4x8
D=ABCD(9:12,9:10); % 4x2

% Check if system is controllable
CON=[B A*B (A^2)*B (A^3)*B (A^4)*B (A^5)*B (A^6)*B (A^7)*B];
if rank(CON)==length(A)
 disp('System is controllable')
else
 disp('System is not controllable')
end

% LQR CONTROL DESIGN **
R=eye(2); % Identity matrix 2x2 (R matrix must be square with as many
columns as B)
Q=eye(8); % Identity matrix 8x8 (A and Q matrixes must be the same
size)
K = lqr(A,B,Q,R) % Calculate and show optimal gain matrix

% Closed loop matrix
Acl=A-B*K;
Bcl=B;
Ccl=C;
Dcl=D;

% Simulation closed loop
sysCL=ss(Acl,Bcl,Ccl,Dcl);
T=0:0.01:10; % Simulation time vector

[Y,T,X]=initial(sysCL,x0,T); % Response of state-space models with
initial condition
Y(:,1:2)=Y(:,1:2)*180/pi; % Outputs (angles) in degrees

U=-K*X'; % Control law

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 80

% Graphs
figure
subplot(211);
plot(T,U(1,:));
hold on;
plot(T,U(2,:),'r');
title('Pendulum + feedback matrix K');
legend('AccelerateX','AceclerateZ');
%legend('AccelerateX','AceclerateY');
xlabel('Time (s)');
ylabel('Inputs (m/s^2)');
grid on;

subplot(212);
plot(T,Y(:,1));
hold on;
plot(T,Y(:,2),'r');
legend('Aphi','Bphi');
%legend('Alpha1','Alpha2');
xlabel('Time (s)');
%ylabel('Outputs (rad)');
ylabel('Outputs (degrees)');
grid on;

% Check if system is observable
OB=[C; C*A; C*(A^2); C*(A^3); C*(A^4); C*(A^5); C*(A^6); C*(A^7)];
if rank(OB)==length(A)
 disp('System is observable')
else
 disp('System is not observable')
end

% DESIGN CONTROL WITH STATE OBSERVER ********************************
G=eye(8); % Identity matrix 8x8 (A and G matrixes must have the same
number of rows)
Q=eye(8); % Identity matrix 8x8 (Q must be square with as many
columns as G)
R=eye(4); % Identity matrix 4x4 (R matrix must be square with as many
rows as C)
L=lqe(A,G,C,Q,R) % Calculate and show observer gain matrix

% Closed loop matrix
Aob=A-L*C-B*K;
Bob=B;
Cob=C;
Dob=D;

% Simulation closed loop with observer
sysOB=ss(Aob,Bob,Cob,Dob);

[Y,T,X]=initial(sysOB,x0,T); % Response of state-space models with
initial condition
Y(:,1:2)=Y(:,1:2)*180/pi; % Outputs (angles) in degrees

% Graphs
figure
subplot(211);
plot(T,U(1,:));
hold on;
plot(T,U(2,:),'r');
title('Pendulum + feedback matrix K + observer matrix L');

Appendix C: MATLAB code for calculating LQR controller and simulating

David Barrio Vicente 81

%legend('AccelerateX','AceclerateZ');
legend('AccelerateX','AccelerateY');
xlabel('Time (s)');
ylabel('Inputs (m/s^2)');
grid on;

subplot(212);
plot(T,Y(:,1));
hold on;
plot(T,Y(:,2),'r');
%legend('Aphi','Bphi');
legend('Alpha1','Alpha2');
xlabel('Time (s)');
%ylabel('Outputs (rad)');
ylabel('Outputs (degrees)');
grid on;

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 82

Appendix D: MATLAB code for calculating inverse kinematics for PKM

David Barrio Vicente 83

D MATLAB code for calculating inverse kinematics for
PKM

% INVERSE KINEMATICS

% Reference system: WORLD

% INPUT ARGUMENTS
% TCP -> 3x1 -> TCP = [TCPx; TCPy; TCPz] -> Tool Centre Point
% P1 -> 3x1 -> P1 = [P1x; P1y; P1z] -> Position of cart 1
% P2 -> 3x1 -> P2 = [P2x; P2y; P2z] -> Position of cart 2
% P3 -> 3x1 -> P3 = [P3x; P3y; P3z] -> Position of cart 3
% L -> 1x3 -> L = [L1 L2 L3] -> Lengths of the links 1,2 and 3
% mp_D -> 3x3 -> % Offset on the plate

% OUTPUT ARGUMENTS
% X1 -> 1x1 -> Position of cart 1 in X-direction
% X2 -> 1x1 -> Position of cart 2 in Y-direction
% X3 -> 1x1 -> Position of cart 3 in Z-direction

function [X1, X2, X3] = robot2(TCP,P1,P2,P3,L,mp_D)

% Length every link
L1 = L(1); % 1x1
L2 = L(2);
L3 = L(3);

% Offset on the plate
mp_d1 = mp_D(:,1); % 3x1
mp_d2 = mp_D(:,2);
mp_d3 = mp_D(:,3);

% Coordinates of the carts
Y1 = P1(2); % 1x1
Z1 = P1(3);
Y2 = P2(2);
Z2 = P2(3);
Y3 = P3(2);
Z3 = P3(3);

% Coordinates of the TCP
X=TCP(1); % 1x1
Y=TCP(2);
Z=TCP(3);

r1 = L1^2 - (Y1-Y-mp_d1(2))^2 - (Z1-Z-mp_d1(3))^2;
r2 = L2^2 - (Y2-Y-mp_d2(2))^2 - (Z2-Z-mp_d2(3))^2;
r3 = L3^2 - (Y3-Y-mp_d3(2))^2 - (Z3-Z-mp_d3(3))^2;

% Test if there is solution and calculate it
if (r1<0 | r2<0 | r3<0)
 error('No solution')
 return;
else % Two possible solutions
 X11 = X + mp_d1(1) + sqrt(r1);
 X21 = X + mp_d2(1) + sqrt(r2);
 X31 = X + mp_d3(1) + sqrt(r3);

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 84

 X1 = X + mp_d1(1) - sqrt(r1);
 X2 = X + mp_d2(1) - sqrt(r2);
 X3 = X + mp_d3(1) - sqrt(r3);
%{
 % Draw solutions
 figure()
 A = [Y2;Z2];B=[Y3;Z3];C=[Y1;Z1];

 % A 'blue star' show every cart position;
 plot3(X2,A(1),A(2),'b*', X3,B(1),B(2),'b*', X1,C(1),C(2),'b*')
 hold on
 plot3(X21,A(1),A(2),'b*', X31,B(1),B(2),'b*', X11,C(1),C(2),'b*')
 hold on

 % A 'blue square' show TCP position
 plot3(TCP(1),TCP(2),TCP(3),'b square')

 % One possibility
 plot3([X21 TCP(1)],[A(1) TCP(2)],[A(2) TCP(3)],'g','Linewidth',2)
 plot3([X31 TCP(1)],[B(1) TCP(2)],[B(2) TCP(3)],'g','Linewidth',2)
 plot3([X11 TCP(1)],[C(1) TCP(2)],[C(2) TCP(3)],'g','Linewidth',2)

 % Other possibility
 plot3([X2 TCP(1)],[A(1) TCP(2)],[A(2) TCP(3)],'r','Linewidth',2)
 plot3([X3 TCP(1)],[B(1) TCP(2)],[B(2) TCP(3)],'r','Linewidth',2)
 plot3([X1 TCP(1)],[C(1) TCP(2)],[C(2) TCP(3)],'r','Linewidth',2)

 % Show origin
 plot3([0 4],[0 0],[0 0],'k','Linewidth',3)
 plot3([0 4],[2 2],[0 0],'k','Linewidth',3)
 plot3([0 4],[1 1],[2 2],'k','Linewidth',3)

 grid on
 xlabel('X Axis')
 ylabel('Y Axis')
 zlabel('Z Axis')
%}
end

Appendix E: MATLAB code for calculating forward kinematics for PKM

David Barrio Vicente 85

E MATLAB code for calculating forward kinematics for
PKM

% DIRECT KINEMATICS

% Reference system: WORLD

% INPUT ARGUMENTS
% P1 -> 3x1 -> P1 = [P1x; P1y; P1z] -> Position of cart 1
% P2 -> 3x1 -> P2 = [P2x; P2y; P2z] -> Position of cart 2
% P3 -> 3x1 -> P3 = [P3x; P3y; P3z] -> Position of cart 3
% L -> 1x3 -> L = [L1 L2 L3] -> Lengths of the links 1,2 and 3
% mp_D -> 3x3 -> % Offset on the plate

% OUTPUT ARGUMENTS
% TCP1 -> 3x1 -> TCP1 = [TCP1x; TCP1y; TPC1z] -> Tool centre point 1
% TCP2 -> 3x1 -> TCP2 = [TCP2x; TCP2y; TPC2z] -> Tool centre point 2

function [TCP1,TCP2] = robot(P1, P2, P3, L, mp_D)

% Length every link
L1 = L(1); % 1x1
L2 = L(2);
L3 = L(3);

% Offset on the plate
mp_d1 = mp_D(:,1); % 3x1
mp_d2 = mp_D(:,2);
mp_d3 = mp_D(:,3);

% Centre of spheres
P1c = P1 - mp_d1; % 3x1
P2c = P2 - mp_d2;
P3c = P3 - mp_d3;

% Distance between spheres
P12 = P1c - P2c; % 3x1
P13 = P1c - P3c;

% Intersection of two spheres, assume solution is a circle (not a
point)
s1 = (L2^2+norm(P12)^2-L1^2)/(2*norm(P12)); % 1x1
s2 = (L3^2+norm(P13)^2-L1^2)/(2*norm(P13));

% Radio of the intersection circle
r = sqrt(L2^2-s1^2); % 1x1

% Center of the circle
D = P2c + s1*P12/norm(P12); % 3x1

% A point on the plane
E = P3c + s2*P13/norm(P13); % 3x1

% Normal vector of the plane
N = P13; % 3x1

% Rotation matrixes
theta = atan2((P2c(1)-P1c(1)),(P1c(2)-P2c(2))); % 1x1
beta = acos((P1c(3)-P2c(3))/(norm(P12)));

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 86

Rotz = [cos(theta) sin(theta) 0; -sin(theta) cos(theta) 0; 0 0 1]; %
3x3
Rotx = [1 0 0; 0 cos(beta) -sin(beta); 0 sin(beta) cos(beta)];

Rotxz = Rotx*Rotz; % 3x3

% The normal vector for the plane and points D and E are transformed
into a
% coordinate system with the z-axis pointing from P2 to P1.
N1 = Rotxz*N; % 3x1
Nx = N1(1);
Ny = N1(2);
Nz = N1(3);

D1 = Rotxz*D; % 3x1
xd = D1(1);
yd = D1(2);
zd = D1(3);

E1 = Rotxz*E; % 3x1
xe = E1(1);
ye = E1(2);
ze = E1(3);

% Intermediate parameters to calculate TCP
T1 = xd - xe;
T2 = yd - ye;
T3 = zd - ze;
Nxy = Nx*Ny;
Nyz = Ny*Nz;
Nxz = Nx*Nz;
Nq = Nx^2 + Ny^2;
Q = Ny*r;
R = Ny*T2 + Nz*T3;

if Nx^2*(r+T1)*(r-T1) - 2*Nx*T1*R + Q^2 -R^2 < 0
 error('No solution');
 return;
else
 S = sqrt(Nx^2*(r+T1)*(r-T1) - 2*Nx*T1*R + Q^2 -R^2);
end

% One possibility
xr1 = (Ny^2*xd+Nx^2*xe-Nxy*T2-Nxz*T3-Ny*S)/Nq;
yr1 = (Ny^2*ye+Nx^2*yd-Nxy*T1-Nyz*T3+Nx*S)/Nq;

% Other possibility
xr2 = (Ny^2*xd+Nx^2*xe-Nxy*T2-Nxz*T3+Ny*S)/Nq;
yr2 = (Ny^2*ye+Nx^2*yd-Nxy*T1-Nyz*T3-Nx*S)/Nq;

zr = zd;

% Solutions
TCP1 = inv(Rotxz)*[xr1 ; yr1 ; zr]; % 3x1
TCP2 = inv(Rotxz)*[xr2 ; yr2 ; zr];

Appendix F: Modelica code for the final simulation

David Barrio Vicente 87

F Modelica code for the final simulation

The program below belongs to final simulation:

Now, I am going to show the code of the four bocks (forwardKinematicsPKM,
inverseKinematicsPKM, ctrl_feed_ob1 and pend_4out_pos1), which are contained
inside this program.

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 88

F.1 ForwardKinematicsPKM

Appendix F: Modelica code for the final simulation

David Barrio Vicente 89

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 90

Appendix F: Modelica code for the final simulation

David Barrio Vicente 91

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 92

Appendix F: Modelica code for the final simulation

David Barrio Vicente 93

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 94

Appendix F: Modelica code for the final simulation

David Barrio Vicente 95

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 96

Appendix F: Modelica code for the final simulation

David Barrio Vicente 97

F.2 ForwardKinematicsPKM

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 98

Appendix F: Modelica code for the final simulation

David Barrio Vicente 99

F.3 ctrl_feed_ob

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 100

Appendix F: Modelica code for the final simulation

David Barrio Vicente 101

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 102

F.4 pend_4out_pos

References

David Barrio Vicente 103

References

[1] Brochier, B., Control of A Gantry-Tau Structure, Lund University, 2006.

[2] Brogårdh, T., Williams, I. and Hovland, G., Kinematic Error Calibration of
the Gantry-Tau Parallel Manipulator, IEEE, 2006.

[3] Data Sheet 3515.

[4] Data Sheet KMZ10A.

[5] Domingo, J., Robótica. Apuntes para la Asignatura, Valencia University,
2001.

[6] I. Dressler, A. Robertsson, and R. Johansson, Accuracy of Kinematic and
Dynamic Models of a Gantry-Tau Parallel Kinematic Robot, in Proc.
International Conference on Robotics and Automation, Rome, 2007.

[7] Fritzson, P. Principles of Object-Oriented Modeling and Simulation with
Modelica2.1, IEEE Press, 2000.

[8] García-Sanz, M. and Motilva Casado, M., Herramientas para el Estudio de
Robots de Cinemática Paralela: Simulador y Prototipo Experimental, Navarra
University (Spain), 2005.

[9] Getting Started with Dymola, PDF manual included in Dymola Help.

[10] Gunnar, J., Dynamical Analysis and System Identification of the Gantry-Tau
Parallel Manipulator, Technical Institute of Linköping, 2005.

[11] Johannesson, L., Berbyuk, V. and Brogårdh, T., Gantry-Tau – A New Three
Degrees of Freedom Parallel Kinematic Robot, Chalmers University of
Technology, Göteborg (Sweden).

[12] Mallo, S. and Mazzone, V., Construcción y Diseño de Controladores de un
Péndulo Invertido Rotante, National University of Quilmes (Argentina), 2003.

[13] Merlet, J-P., Parallel Robots, Kluwer Academic Publishers, 2001.

[14] Ogata, K. Ingeniería de Control Moderna, Prentice Hall, 1998.

[15] Romeo Tello, A., Apuntes de Robótica. Análisis Geométrico y Cinemático,
Zaragoza University, 2003.

[16] Spong, M. W. and Vidyasagar, M., Robot Dynamics and Control, John Wiley
& Sons, 1989.

[17] Sprenger, B., Kucera, L. and Mourad, S., Balancing of an Inverted Pendulum
with a SCARA Robot, IEEE, 1998.

[18] http://www.ctr.unican.es/asignaturas/instrumentacion_5_IT/

[19] http://www.dynasim.com

[20] http://www.elfa.se

[21] http://www.electro.patent-invent.com/electricity/inventions/hall_effect.html

[22] http://ib.cnea.gov.ar/~control2/Links/Tutorial_Matlab_esp/

[23] http://www.modelica.org

Modeling and Balancing of Spherical Pendulum using a Parallel Kinematic Manipulator

Lund Institute of Technology 104

[24] http://www.prodigyweb.net.mx/saucedo8

[25] http://www.wikipedia.org

