
ISSN 0280-5316
ISRN LUTFD2/TFRT--5684--SE

Porting the Ericsson Bluetooth Stack
A Real-Time Analysis

Mats Attnäs
Ulrik Laurén

Department of Automatic Control
Lund Institute of Technology

April 2002

Document name
MASTER THESIS
Date of issue
April 2002

Department of Automatic Control
Lund Institute of Technology
Box 118
SE-221 00 Lund Sweden Document Number

ISRN LUTFD2/TFRT--5684--SE
Supervisor
Karl-Erik Årzén. LTH
Pär-Gunnar Hjälmdahl, Ericsson

Author(s)
Mats Attnäs and Ulrik Laurén

Sponsoring organization

Title and subtitle
Porting the Ericsson Bluetooth Stack – A Real-Time Analysis.
(Flyttning av Ericssons Bluetooth stack – En realtidsanalys)

Abstract
This master's thesis discusses the real-time issues of the operating system used by the Ericsson Bluetooth
stack and the effects of replacing this operating system.
The practical part consists of switching the operating system for the Ericsson Bluetooth stack and
verifying if it still is operational and fulfils all timing requirements.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
104

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through:
University Library 2, Box 3, SE-221 00 Lund, Sweden
Fax +46 46 222 44 22 E-mail ub2@ub2.se

Porting the Ericsson Bluetooth stack

– A real-time analysis

Master's thesis by

Mats Attnäs and Ulrik Laurén

Lunds tekniska högskola

April 2002

2

1 Contents
1 Contents ...1

2 Introduction..5
2.1 Goal and purpose...5
2.2 What we have done ...5
2.3 What we have learned ...5
2.4 Requirements and constraints ...6
2.5 Investigated operating systems ...6

2.5.1 OSE Epsilon..7
2.5.2 µC/OS-II ..7
2.5.3 eCos..8
2.5.4 Nucleus PLUS...8
2.5.5 VxWorks..9

2.6 Outline of the thesis ...9

3 Background..11
3.1 Real-time operating systems ...11

3.1.1 Introduction ...11
3.1.2 Classification of a real-time operating system ..11
3.1.3 Scheduling ..12
3.1.4 Internal components..12

3.1.4.1 Scheduling mechanism ..13
3.1.4.2 Memory handler ...13
3.1.4.3 Interrupt handler...13
3.1.4.4 Clock ..13
3.1.4.5 Error Handler..14
3.1.4.6 Data access synchronisation..14

3.2 Embedded system ...14
3.3 Bluetooth ..14
3.4 Bluetooth specification and the Ericsson solution..15

3.4.1 Link Manager ..16
3.4.2 Host Control Interface ...16
3.4.3 Higher layers ...16

3.5 Communication links ..17
3.5.1 SCO link ..17
3.5.2 ACL link...17

4 Analysis of the Bluetooth specification..19
4.1 Introduction ..19
4.2 Timing requirements ..19

4.2.1 Timing requirements in the general Bluetooth specification19
4.2.2 Timing requirements in the Ericsson solution ...20

4.3 Memory requirements ..20
4.3.1 Memory requirements in the general Bluetooth specification.....................................20
4.3.2 Memory requirements in the Ericsson solution...20

4.4 Core..21
4.4.1 Introduction ...21
4.4.2 VOS...21
4.4.3 IRQ..21
4.4.4 Handler Control ...22
4.4.5 Power Management..22

 1

4.4.6 Timer ...22
4.4.7 Clock ...22
4.4.8 Cache..23

4.5 RTOS ...23

5 OSE Epsilon for ARM..25
5.1 Problems ..25
5.2 Interrupt handling ...25
5.3 Memory handling..25
5.4 Timing...26

5.4.1 Interrupt service times...26
5.4.2 Scheduling ..26

6 eCos..29
6.1 Introduction ..29

6.1.1 Configuration layout ..29
6.2 Problems encountered...30

6.2.1 Compilation ...30
6.2.2 Configuration...31

7 µC/OS-II ..33
7.1 Introduction ..33
7.2 Problems ..33

7.2.1 Priorities ..34
7.2.2 Messaging...34
7.2.3 Memory allocation...34
7.2.4 Stack handling...34
7.2.5 Interrupt handling ..34

8 Porting VOS to µC/OS-II..35
8.1 Introduction ..35

8.1.1 Code organisation...35
8.1.2 Memory Allocation...35
8.1.3 Configuration...37
8.1.4 Message handling...37
8.1.5 Synchronisation...38
8.1.6 Limitations ...38

8.2 Modifications made to VOS..39
8.2.1 Memory allocation and deallocation..39

8.2.1.1 VOS_Alloc..39
8.2.1.2 VOS_Free ..40

8.2.2 Time management ..40
8.2.3 Process information ..41

8.2.3.1 VOS_CurrentProcess...41
8.2.4 Message transfer ..41

8.2.4.1 VOS_Send ...41
8.2.4.2 VOS_Receive...42
8.2.4.3 VOS_ReceiveList ...42
8.2.4.4 VOS_Sender ..42

8.2.5 Critical sections ...43
8.2.5.1 VOS_EnterCritical ..43
8.2.5.2 VOS_ExitCritical...43

8.2.6 Error handling..43
8.2.6.1 VOS_Error..43

8.2.7 Start-up and activation ..44
8.2.7.1 VOS_Init...44

8.3 Other CORE modifications...44

 2

8.3.1 Interrupt handling ..44
8.3.2 Boot sequence ..44

8.3.2.1 Stack initialisation...45

9 Performance tests ...47
9.1 Execution time..47

9.1.1 Introduction ...47
9.1.2 Method ..47
9.1.3 Results ..47

9.1.3.1 Critical regions ...47
9.1.3.2 Memory allocation ..48
9.1.3.3 Message passing ...49
9.1.3.4 Interrupt handling ...50

9.1.4 Conclusion ..51
9.2 Pre-scheduling performance..51

9.2.1 Method ..51
9.2.2 Results ..52
9.2.3 Conclusions...53

9.3 Memory usage ...53
9.3.1 Introduction ...53
9.3.2 Method ..53
9.3.3 Results ..54
9.3.4 Conclusion ..55

10 Tools used...57
10.1 Trace32 ..57
10.2 ARM Software Development Tool..57
10.3 Config ...57

11 Conclusion ..59
11.1 The choice of operating system ...59
11.2 The portability of the Ericsson Bluetooth stack..59
11.3 VOS requirements and limitations ...59
11.4 Time requirements ...60
11.5 General implementation experiences ..61

12 Acknowledgements..63

13 References ..65

14 Glossary ..67
14.1 Abbreviations ...67

Appendix I The IRQ mask ..69

Appendix II General information about task and interrupt handling71
1 Task switches ..71
2 Interrupt Service Routines ...71
3 Idle task..72
4 The stack ...72
5 Scenario: A normal task switch ...73
6 Scenario: Interrupt handling...74

Appendix III Implementation issues concerning task and interrupt handling77
1 Nested interrupts ...77
2 Problems with OSSched()..77

 3

Appendix IV How CORE_IrqHandler() works...81

Appendix V Configuring the µC/OS-II VOS port ...87

Appendix VI Error codes from µC/OS-II..89
1 Introduction ..89
2 µC/OS-II functions ...89

2.1 OSMemCreate() ...89
2.2 OSMemGet() ..90
2.3 OSMemPut() ..90
2.4 OSQCreate()...90
2.5 OSQPend() ..90
2.6 OSQPost() ..91
2.7 OSTaskCreate() ...91

Appendix VII The ARM architecture ...93
1 Introduction ..93
2 Registers..93
3 ARM and THUMB execution..93
4 Program status register ...94
5 Processor modes...95

5.1 User mode (USR) ...95
5.2 Interrupt request mode (IRQ) ...95
5.3 Fast interrupt request mode (FIQ)..96
5.4 Supervisor mode (SVC)..96
5.5 Abort mode (ABT)...96
5.6 Undefined mode (UND)..96
5.7 System mode (SYS) ...96

Appendix VIII Files ..97

 4

2 Introduction

2.1 Goal and purpose

The main goal of this master thesis was to switch the current real-time operating
system that powers the Ericsson Bluetooth embedded platform (BEP).

It is recommended that the reader of this master thesis have at least a basic un-
derstanding of real-time operating systems and embedded platforms to fully
comprehend and profit from the contents.

The reason for this was to evaluate if and how it could be done, and what prob-
lems one may encounter. Also, it would show if the intention of making the plat-
form portable had been successful or not. This could be useful for future applica-
tions in other hardware or software environments, allowing a greater flexibility
and possibility to integrate the system with existing client products.

The thesis was done in co-operation with Ericsson Technology Licensing.

2.2 What we have done

The work has mainly consisted of three parts:

• Preparatory investigation of suitable operating systems for porting.

• Adaptation of the system to interface with the new operating system.

• Analysis of the performance differences of the two ports, and their implica-
tions.

2.3 What we have learned

• The principles of the Bluetooth protocol.

• How an embedded application is designed and what its limitations are.

• How real-time operating systems work, and differences between design prin-
ciples of such.

• How to debug and examine an embedded application.

 5

2.4 Requirements and constraints

There are quite a few constraints placed on the work performed in the master
thesis since it deals with an already existing technology that should be modified,
not rebuilt. The main requirement is that the system has to be able to function in
such a tightly planned hard real-time environment that BEP offers. But since it is
designed for an embedded environment there is also a strict limit for how much
memory that could be used by the system.

Both of these requirements are dealt with by most real-time operating systems
but there are other limitations placed on the system. It is necessary for the RTOS
to function with the ARM7 processor architecture both in ARM and Thumb mode
(see Appendix VII for details on the ARM architecture). The reason for this is that
BEP has parts of it developed in assembly language that utilise both of these
modes and the test environment use the ARM7 processor.

The final requirements were that no changes should be made to the current de-
velopment environment and that the new operating system had to fit into the
model of the system. The reason behind these requirements was that this master
thesis should also try to discern any problems that could arise when working with
a new real-time operating system. This meant that it was necessary to develop
systems that support the existing functionality implemented in the virtual operat-
ing system (VOS) using the functions available in the new operating system. This
requirement also prevented any changes to the programs used in the original de-
velopment environment.

2.5 Investigated operating systems

To implement the port, a target operating system had to be found first. Three fac-
tors were especially important: Real-time performance, compactness and avail-
ability.

It was also necessary to gain basic knowledge of the existing operating system,
OSE Epsilon, to know how to adapt the new operating system. The principle of
the VOS is to require only very basic functionality from the operating system,
thereby allowing many different operating systems.

Our choice of target operating system finally fell on µC/OS-II, because of its sim-
plistic and efficient design and its royalty free license.

 6

2.5.1 OSE Epsilon

Supported target processors Siemens C166/167, ARM7/Thumb, NEC V85X, At-
mel AVR, Mitsubishi M16, 8051, 68HC11, Z80,
64180

Supported compilers Distributed as target specific assembly code

Supported standards None

Supplied as Assembly code

Guaranteed maximum interrupt
latency

Hard real-time

Scheduling policies Fixed priority preemptive scheduling (priority proc-
esses) + Round robin (background processes)

Priority inversion avoidance
mechanism

None

Nested interrupts Yes

OSE Epsilon is a real-time operating system developed by Enea OSE AB. They
also have a couple of other versions of their operating system but Epsilon is the
smallest version. It is the main real-time operating system used by Ericsson and
the platform currently used for the Ericsson Bluetooth stack.

2.5.2 µC/OS-II

Supported target processors x86, PowerPC, ARM, MIPS, StrongARM, NEC V850,
Hitachi SH, and many more

Supported compilers ANSI-C

Supported standards None

Supplied as Source

Guaranteed maximum inter-
rupt latency

Hard real-time

Scheduling policies Fixed priority preemptive scheduling

Priority inversion avoidance
mechanism

None

Nested interrupts No

µC/OS-II is a very small real-time operating system developed by Jean J. Lab-
rosse of Micriµm Incorporated. Its source code is openly available, and the terms
of use are very advantageous.

 7

2.5.3 eCos

Supported target processors x86, PowerPC, ARM, MIPS, StrongARM, NEC
V850, Hitachi SH, Panasonic AM3x, SPARC

Supported compilers GCC (GNU)

Supported standards EL/IX, ISO C, POSIX.1, µITRON

Supplied as Object, source

Guaranteed maximum interrupt
latency

Soft real-time

Scheduling policies Prioritised FIFO, bitmap

Priority inversion avoidance
mechanism

Priority inheritance, priority ceilings

Nested interrupts Yes

eCos is a highly configurable real-time operating system for deeply embedded
applications, maintained by Red Hat. It is not an embedded Linux, though it of-
fers POSIX.11 compatibility, as well as an optional µITRON2 compatibility layer.

eCos is also an open source initiative, and therefore free of charge.

2.5.4 Nucleus PLUS

Supported target processors x86, PowerPC, ARM, MIPS

Supported compilers ANSI-C

Supported Standards µITRON, OSEK

Supplied as Source

Guaranteed maximum interrupt
latency

Hard real-time

Scheduling policies Prioritised FIFO

Priority inversion avoidance
mechanism

Yes

Nested interrupts Yes

Nucleus PLUS is a royalty free, small and powerful RTOS from Accelerated
Technology, optionally supporting µITRON or OSEK3.

1 Set of standards designed to provide application portability between Unix variants
2 Application interface for real-time systems, widely used in the Japanese embedded market
3 An RTOS interface standard used mainly in the vehicle manufacturing industry

 8

2.5.5 VxWorks

Supported target processors x86, PowerPC, ARM, MIPS, 68K, i960, SH,
SPARC, NEC V8xx, M32 R/D, RAD6000, ST 20

Supported compilers ANSI-C/C++

Supported Standards POSIX 1003.1b

Supplied as Object

Guaranteed maximum interrupt
latency

Hard real-time

Scheduling policies Prioritised FIFO, round robin

Priority inversion avoidance
mechanism

Yes

Nested interrupts Yes

VxWorks from Wind River Systems is the most widely used RTOS in the world,
and is both scalable and efficient.

2.6 Outline of the thesis

A short description of the information presented in the chapters:

In chapter 3 there is an introduction to the more important concepts necessary
for understanding the contents of this report. The chapter is followed by an
analysis of the Bluetooth specification and the Ericsson solution, focusing on ei-
ther real-time or memory constraints. This is followed by a short introduction and
analysis of the three operating systems that were examined thoroughly, namely
OSE Epsilon, eCos and µC/OS-II. After this introduction and analysis, a detailed
description of the modifications that were necessary for the Ericsson solution to
function with its new operating system, µC/OS-II, follows. The performance tests
and their implications are presented and discussed in the next chapter, followed
by a short description of the programs used. This is followed by the conclusions
of the master thesis and finally there are the acknowledgements and references
followed by a short glossary of important abbreviations.

Following all these chapters are a number of appendices that are referenced
from various parts of the report.

 9

 10

3 Background

3.1 Real-time operating systems
3.1.1 Introduction

An operating system is basically the software needed to run applications, pro-
grams, on a computer system. This software includes process handling, hard-
ware drivers and memory handling, all those things that often are taken for
granted when using modern computers.

When real-world interaction becomes an issue, so do real-world time constraints.
These constraints are most often of a temporal nature, it is necessary to com-
plete certain tasks within a certain time. When working with humans these inter-
actions often have constraints in the range of a few seconds, but when interact-
ing with other computer devices these timing constraints are reduced to very
small units.

For this reason, real-time operating systems contain certain basic primitives:

• Prioritised processes/threads

• Multileveled interrupts

• Mutexes and semaphores

3.1.2 Classification of a real-time operating system

There are two basic types of real-time operating systems, hard and soft ones.
The hard real-time systems are predictable; it is possible to guarantee maximum
and minimum execution time for system calls, procedures, and interrupt laten-
cies. Hard real-time operating systems therefore have very high demands in
terms of scheduling and interrupt handling.

In soft real-time systems, the system only needs to behave in a consistent man-
ner, being allowed to fail to fulfil the time constraints from time to time. This lee-
way allows the system to employ somewhat less strict interrupt handling, and the
scheduling can be done in a not so strict and predictable manner.

Real-time operating systems can alternatively be grouped according to their in-
teraction with their surroundings. They can be either time or event driven, or in
rare cases both.

 11

An event driven real-time operating system reacts to events that occur during
execution, and can modify the order of execution, while a time driven real-time
operating system has a fixed execution schedule that is calculated before execu-
tion starts.

3.1.3 Scheduling

The scheduler plans the execution to ensure that the processes can fulfil their
deadlines. However, the running process may be interrupted by a more important
process, in which case the operating system has to be able to do a context
switch, letting the more important process run. This is allowed only if at least one
of the following conditions are met:

• A clock tick interrupt has occurred. Clock tick interrupts occur when the system
updates the time, and checks if any other task with a higher priority wants to
run.

• A running task performs a system call.

• The interrupt handler orders a switch due to an external interrupt.

The system can be divided into four distinct layers, see Figure 1. The bottom
layer is the hardware that contains CPU, physical memory, a clock, and commu-
nication hardware. On top of this layer is the hardware adaptation layer, contain-
ing functionality for registers and interrupt handling. The real-time operating sys-
tem layer consists of functionality for scheduling, synchronisation and inter-
process communication. The highest layer consists of applications that run on
the platform.

Hardware

Hardware Adaptation Layer

Real-time operating system

Application

Figure 1. The structure of an embedded solution

3.1.4 Internal components

This section describes the internal components of a typical real-time operating
system. Many of these components can also be found in standard operating sys-
tems.

 12

3.1.4.1 Scheduling mechanism

The scheduling mechanism plans the order in which the active processes are to
execute. This planning can be done according to a variety of principles. The ba-
sic concept for all of them is that processes have a deadline to uphold. The two
most common algorithms are rate monotonic scheduling and earliest deadline
scheduling. Both of them have pros and cons. Rate monotonic scheduling has a
stabile, predictable behaviour, but assumes that all tasks are independent. Earli-
est deadline scheduling is easy to implement and uses the CPU very efficiently,
but may result in unpredictable behaviour if a task fails to meet its deadline. Both
algorithms are designed to be used in an event driven operating system, where
new processes are activated due to external events, and not according to a pre-
defined plan.

3.1.4.2 Memory handler

The memory handling system is responsible for the handling of dynamic memory,
with the use of a central memory pool. When a process has finished using a
memory portion, it returns it to the memory pool. To prevent memory fragmenta-
tion it is important to have a good algorithm for memory allocation, especially in
small, embedded systems, where often the amount of available memory is very
limited.

3.1.4.3 Interrupt handler

Interrupts can be activated from either hardware or software, and both have to be
handled. This is taken care of by the interrupt handler, which can force context
switches. If the priority of an interrupt is not high enough it will be discarded, and
the running process will continue running. A discarded interrupt is dealt with ei-
ther by ignoring it, hoping that if the problem remains a new interrupt will occur,
or delaying it until the executing processes has finished. When an interrupt is
called, there is a short delay before the interrupt can start executing. This delay is
called interrupt latency, and during this period the executing process is stored
away and the new process, activated by the interrupt, is placed into memory
ready to start executing.

3.1.4.4 Clock

An external clock generates ticks through hardware interrupts to the operating
system, allowing it to update the internal clock. Processes used to measure time
intervals and to set timers to activate after a certain amount of ticks can then use
the internal clock. This is necessary if the operating system is designed to sup-
port periodical and sleeping processes. The precision of the clock has to be very
good to prevent drift over long periods.

 13

3.1.4.5 Error Handler

The error handling consists of a central system that can handle exceptions from
running processes and activate a suitable response. This response varies ac-
cording to the severity of the error encountered. Serious errors can cause the er-
ror handler to terminate the executing process or even freeze the entire system.

3.1.4.6 Data access synchronisation

Access to shared resources, such as memory areas or devices, can be con-
trolled using some kind of signalling device that prevents other processes from
using that resource. This can be implemented in many different ways, but it is of-
ten implemented with semaphores or mutexes.

It is necessary for a real-time operating system to prevent simultaneous access
to resources because this might result in corrupted data.

3.2 Embedded system

An embedded system is a computer system that is integrated into a device, per-
forming a certain task. The size and complexity of both the computer system and
its task may vary substantially, though generally it is a matter of small devices
with very limited processing and memory capabilities. Furthermore, embedded
systems often act in co-ordinance with external events and conditions, such as
sensors and timers, rather than actual user interaction.

3.3 Bluetooth

Bluetooth is a wireless communications standard developed by the Bluetooth
Special Interest Group (SIG). Its main focus is to provide wireless connectivity
between any kind of electronic device, at a low price and easy access. To put it
simple, Bluetooth reduces the need for cables and specific communication proto-
cols between devices, allowing everything to communicate with anything.

Bluetooth powered units can communicate and send data or voice over the con-
nections. The existing standard is designed to support a multitude of different de-
vices including everything from headsets for mobile telephones to connecting
computers to networks.

In Bluetooth, there are masters and slaves. A master can have many slaves, and
may also be the slave of another master. A master with slaves is called a pi-
conet. Several inter-connected piconets form a scatternet.

 14

3.4 Bluetooth specification and the Ericsson solution

The Ericsson Bluetooth solution for embedded systems is a hardware and soft-
ware platform, see Figure 2. The hardware contains the baseband controller
block (EBC), a CPU, some RAM, some ROM, some flash memory and in-
put/output ports (UART and USB). Apart from the application, the software
mainly consists of two parts: the Bluetooth stack and the operating system. To
make a port of the stack as easy as possible, an interface layer (VOS and tem-
plates) is put between the two. All operating system calls from the stack are con-
sequently done through this layer.

EBC

Drivers

Application

LEGS

L2CAP

HCI

LM

Tem
plates

Other hardware

VOS

OSE Software

Hardware

Figure 2. Schematics of the Ericsson Bluetooth platform, and its surrounding
components, both hardware and software

In a host solution where the Bluetooth device is not planned to run everything on
its own processor the layout of the components is a bit different as shown in
Figure 3.

 15

Physical bus

HCI Firmware

EBC

Drivers

Higher
Layers

HCI Driver

LM
Tem

plates

Other hardware

VOS

OSE

Host Software

Software

Hardware

Figure 3. Shows a schematic describing the host version of the Ericsson Blue-
tooth platform.

3.4.1 Link Manager

The link manager is the lowest software layer in the stack. It controls the usage
of the common channel, connections of new slaves and searches for available
units. It also implements security for the data transferred through encryption and
controls how to portion packets between the master and the slaves on the com-
mon channel.

The physical channel is divided into equally sized time frames of 1,250 µs each.
Each frame is divided into two slots, which hence are 625 µs each. The master in
a connection uses the first slot in each frame to send data and the second slot to
receive data from the slaves.

This layer is very tightly coupled with the Ericsson baseband controller, EBC. It is
the main product developed by Ericsson Technology Licensing, EBT.

3.4.2 Host Control Interface

The host control interface implements a uniform interface for accessing the lower
layers of the Bluetooth stack. This layer is divided into two parts when imple-
menting a host based solution. The commands can be transferred over some
kind of physical medium e.g. USB, RS-232.

3.4.3 Higher layers

The function of the higher layers is to implement the services that are necessary
for the different roles that the Bluetooth device can be used in.

 16

In what is called the embedded solution, the higher layers are a part of the soft-
ware running on the same CPU and using the same memory. This usually puts
higher demands on the available resources and may result in changes to the op-
erating system used in the solution.

3.5 Communication links

There are two defined types of links that can be established between master and
slave unit:

• Synchronous Connection-Oriented link (SCO link)

• Asynchronous Connection-Less link (ACL link)

3.5.1 SCO link

This link is designed for time-bounded information, e.g. voice communication be-
tween a master and a specific slave in a piconet. The master can have a maxi-
mum of three different SCO links established at the same time to either one or
several different slaves.

All the SCO links are point-to-point and maintained by using reserved slots at
regular intervals, adherence to the protocol is therefore important so that a re-
served slot is not used for another type of communication thereby losing the link.
No data sent over the link is repeated. There is not even a retransmission system
for lost data packets. Slots not reserved for the SCO link can be used for other
types of communication between Bluetooth units.

In an SCO link is it always possible for a slave to send data to the master as a
response to a message from the master, unless it was directed to another slave
unit.

3.5.2 ACL link

The ACL link is used for point-to-multipoint communication in a piconet. It is pos-
sible to create an ACL link to a slave that is already involved in an SCO link by
using the slots that are not already reserved. In contrast to the SCO link there
may only exist one ACL link between a master and a slave.

Data transferred over an ACL link is most of the time protected by a retransmis-
sion system that assures data integrity. Communication from a slave to the mas-
ter is only allowed if the slave was addressed directly by the master. Packets
sent without being addressed to a specific slave is considered to be a broadcast
and is read by all the slaves connected to the piconet.

 17

 18

4 Analysis of the Bluetooth specification

4.1 Introduction

Ideally, we would do a white box analysis of the existing system, determining tim-
ing requirements and limitations. Due to insufficient documentation on the high
and mid level design, though, this was not feasible. We instead performed a
black box analysis of the existing timing constraints in the Ericsson solution.

4.2 Timing requirements
4.2.1 Timing requirements in the general Bluetooth specification

The current specifications for Bluetooth do not contain any demands concerning
software latencies in the system. The only existing constraints concern the hard-
ware supporting the software system. The radio system has a ±10 µs long win-
dow for receiving data. This prevents minor clock mismatches from disturbing the
system.

However, the time limits in the hardware propagate to the software in the Erics-
son solution. Therefore, a short description of the different transmission time lim-
its is given.

RX slot

1250 µs

625 µs

TX slot
±10 µs

Figure 4. The time limits of the Bluetooth protocol

The Bluetooth protocol sends and receives information in frames. Each frame is
divided into two slots, one TX slot and one RX slot. During the TX slot the unit
can send data and during the RX slot it can receive data. Each slot is 625 µs long
and a frame is therefore 1,250 µs long. For a master, the first slot is TX and the
second RX. For slaves, the order is reversed.

 19

4.2.2 Timing requirements in the Ericsson solution

In the Ericsson solution, the transmission system for the hardware consists of
two small buffers, one for sending packets and one for packets to be sent next.
The reception system is similar, but with one buffer for receiving packets and one
buffer for previously received packets.

It is possible to decide packet type and create the specific packet during a period
of 1,250 µs but it is much easier to plan and create packets for a longer time pe-
riod. The reason for this is that voice transfers are made with SCO packets and
these have a fixed interval. A SCO packet has to be sent every third frame if the
system is not to lose quality. Voice communication usually continues during long
periods of time, at least when time is measured in µs. But if the delay between
incoming data and its outgoing response is too long, the system loses much
flexibility. The ability to plan ahead also removes some sensitivity concerning in-
terrupts but the system is still sensitive for interrupts when it comes to writing
new data into the buffer.

4.3 Memory requirements
4.3.1 Memory requirements in the general Bluetooth specification

There are none.

4.3.2 Memory requirements in the Ericsson solution

The existing Ericsson solution that we used was developed on Lydia boards us-
ing the Irma C circuit. This development environment is equipped with 56 kB of
RAM and another 512 kB of flash memory. The entire system with real-time op-
erating system and processes for controlling the Bluetooth system has to function
without any extra memory space. This place high demands on the memory foot-
print of a new operating system. The existing real-time operating system kernel,
Enea’s OSE Epsilon, fulfils the demands by implementing only the most impor-
tant features. It has the following features:

• inter-process communication

• dynamic memory management

• error handling

• hardware and software interrupts

• timer interrupts (alarms)

 20

• synchronisation mechanisms

• pre-emptive process scheduling

The Ericsson solution of the implementation of the Bluetooth stack should not be
affected by the used real-time operating system. The solution to this problem is a
layer around the real-time operating system called core.

4.4 Core
4.4.1 Introduction

The core layer, described in [6], contains all the functionality that is necessary to
run the Bluetooth stack. It contains a couple of different modules each imple-
mented to handle one specific function for the stack. This design was chosen to
make the system portable because no changes have to be made to the stack
when the operating system is changed. Nevertheless, a few of the modules in the
core have to be updated and the templates modified to work with the new operat-
ing system.

The modules VOS, IRQ, handler control, power management, timer, clock and
cache are contained in the core layer.

4.4.2 VOS

The virtual operating system acts as an interface between the operating system’s
services and the Bluetooth stack. This module and the operating system have to
be configured for specific applications. This configuration is done with the tem-
plate module, which is not a part of the core.

Drivers and applications use the functions offered by VOS in order to simplify
porting of the implementation to another operating system, since operating sys-
tem specific commands are only used within VOS, and not scattered all over the
entire code. When porting the system the procedures implemented in VOS have
to be rewritten to use the new functions presented by the new real-time operating
system. This is based on the hypothesis that a new real-time operating system is
very similar to the existing system and has comparable functions.

4.4.3 IRQ

The interrupt handling module handles interrupts from the hardware and supports
nested interrupts with different levels of priority. By supporting nested interrupts,
this module allows interrupts with a higher priority to execute immediately.

 21

Procedures that are called at a certain interrupt are called interrupt service rou-
tines. They are registered in this module.

No changes should be done to the interrupt handler when porting to another op-
erating system, because all modifications will be found in templates.

4.4.4 Handler Control

This implementation of core supports a group of handlers that are controlled from
this module. Different processes register handler events, triggering the registered
handler when the events occur. A couple of examples of different handlers are
the following

• Error handler is called when an error occurs in another module in the core or
directly from the RTOS through the VOS.

• Send handler is used to debug the system in runtime and triggers when mod-
ules send messages.

• Trace handler is used for output of debug text.

• Event handler is used to log important events.

• Idle handler is the process that runs when the system enters idle mode.

4.4.5 Power Management

This module contains methods for controlling the power consumption through ac-
tivating and deactivating different parts of the hardware. The module depends on
the VOS, IRQ and timer modules and must be modified if the necessary func-
tions used by VOS are not available in the new operating system.

4.4.6 Timer

This module contains the functionality to measure time and create alarms that
perform specified procedure calls after a set period. It also contains information
about how long time has passed since the latest system reset.

4.4.7 Clock

The clock module handles the different hardware clocks available in the system
and controls the frequency of the CPU. Through this module it is possible to ac-
cess the different hardware clocks and set their frequency.

 22

4.4.8 Cache

This module handles the cache memory available in the hardware through ini-
tialisation and configuration of the cache.

4.5 RTOS

This is not exactly a module in the same sense as the other parts of the core, it is
the heart that powers the core. This module contains functionality for process
scheduling, dynamic memory handling, inter-process communication and data
synchronisation.

When exchanging the RTOS is it important that the new system is not too com-
plex with many modules and that the drivers are independent from the kernel.

 23

 24

5 OSE Epsilon for ARM

This chapter will present and discuss the different results that have been investi-
gated and presented in [3] and give an insight into the current operating system
used by Ericsson Technology Licensing in their Bluetooth solution. This report
also contains measurements of the different times that were considered critical to
the performance of the existing solution based on OSE Epsilon.

5.1 Problems

The only major problem with OSE Epsilon is the fact that the code is not avail-
able for analysis since a program generates it and it does not contain any com-
ments. All data about how the internal functions work in the operating system has
to be mapped through experiments.

5.2 Interrupt handling

The interrupt handling implemented for OSE Epsilon handles nested interrupts
with five different levels of priority, an interrupt with a higher priority can super-
sede a lower prioritised. If nested interrupts occur the system stores all registers
used by the previous interrupt on a special stack. This stack has enough room to
store one set of registers for each level of priority. If a task is interrupted the reg-
isters are saved in the task’s control block making it easy to locate them after-
wards.

The functionality for this is located in a few assembly macros that exist in the file
osarm.mac. The macros are INIT_INT_NESTED() and QUIT_INT_NESTED().

5.3 Memory handling

Memory handling in OSE Epsilon is based on lists containing memory chunks of
different sizes. These memory chunks are not created at initialisation but created
later, out of a large memory pool, when they are needed. The disadvantage of
this is that it may result in a slightly longer time to allocate a new memory chunk
since it has to be created. The advantage is that the setup time during system
initialisation should be shorter and it also gives a greater flexibility since it is not
necessary to know the exact number of the different memory chunks that will be
used.

There is a hidden header in front of the allocated memory area that contains 14
bytes of data. Most of the fields are two bytes in length except the first field that is
four bytes long and the last field that is only one byte long. This header contains
the following fields:

 25

• Next This field contains a 32-bit value that is used as a pointer to the
next memory chunk.

• Owner Defines the owner of the memory chunk, a value of zero means
that OSE Epsilon owns the chunk.

• Size This field contains the memory chunk size that was requested by
VOS_Alloc().

• Head A field that describes in which memory size group the chunk is reg-
istered.

• Sender Contains the identifier of the task that sent this memory chunk to
another task. It is set to zero when the memory is allocated.

• Sig_no A number that relates to the memory chunk when it is used as a
signal.

• Data The head of the memory chunk that can be used by the different
tasks to store data in. This field is only one byte in length.

5.4 Timing

OSE Epsilon fulfils the demands that are placed on it regarding the time critical
sections. This was proven in [3].

5.4.1 Interrupt service times

Presented in the report are details about the interrupt latencies where a value of
40 – 45 µs is presented for the total delay from the hardware as well as the oper-
ating system. OSE Epsilon uses 30 – 35 µs to load the interrupt registers and
perform a context switch. Hardware and sections of the code that are locked from
interrupts use the rest of the time. The longest time it takes for completing an in-
terrupt service routine is 330 µs. This has been presented in [3] when describing
a reception of a RD interrupt. A RD interrupt means that the system has received
an ACL data packet. The most common interrupt is the timer interrupt and it
takes a total time of 260 µs to execute this interrupt service routine in the setup
used in [3].

5.4.2 Scheduling

The case presented for performing a pre-scheduling is two timer interrupts, one
to start the scheduler and one to start the EBC transfer, followed by the maximal
processing time necessary and the time necessary for transfer the results to the
EBC. This amounts to 260 µs used for the timer interrupt and 1750 µs for the
processing of the next sequence of packets sent, resulting in a total of 2010 µs
used. This sequence of actions should be performed over a time period of eight

 26

frames, each frame is 1250 µs, giving a total of 10 000 µs available. This leaves
an amount of 7990 µs for interrupt handling and other actions that may disturb
the process.

Based on the results in the report the worst type of interrupt to service is the in-
terrupt for receiving ACL data, that takes 330 µs to process, and the interrupt for
transmitting ACL data, that takes 250 µs to process. There may be one of each
of these interrupts during a frame. This result in a maximum of eight interrupts of
each type during the pre-scheduling. Handling these interrupts take a total of 8 *
(330 µs + 250 µs), that is 4640 µs used for the interrupts, leaving a total of 3350
µs to use for other applications during these eight frames. During the last frame,
that writes the scheduled data to the available hardware registers, 260 µs is used
for the timer interrupt activating the write function and another 260 µs is used for
writing the data. The remaining 730 µs are left for handling other interrupts and
necessary applications. The same worst case of receiving and transmitting ACL
data applies to this situation and results in another 330 µs + 250 µs used for in-
terrupts handling, this leaves 150 µs for other uses in this frame.

When the entire system use a common CPU, as in an embedded solution, it is
necessary to add all other interrupts that may occur. Interrupts from the UART or
USB for data transfers are not considered in this and the system only has a total
of 3350 µs left to use for these interrupts during scheduling and 150 µs during
the frame when writing the scheduled data to hardware. This results in a very
small amount of time left in the final frame for anything else than writing the data
which means that writing the data to the hardware has to have a very high priority
so that it is not delayed. If the writing of the next sequence of scheduled frames
are delayed so that it does not happen during the planned frame this will result in
difficulties since the system will transmit erroneous packets.

 27

 28

6 eCos

6.1 Introduction

eCos (Embedded Configurable Operating System) was the first contestant to be
evaluated for the position of replacing OSE Epsilon in the embedded Bluetooth
software in this project. It has a number of advantages and characteristics. It is

• Free of charge for both development and commercial use

• Designed to be highly modular and easily configurable, making it possible to
include only the parts that you need

• Compatible with many interface standards, such as µITRON, EL/IX, and of
course ANSI-C

• Open source, developed and maintained by a large number of people around
the world. This may be considered both an advantage and a disadvantage:

- It has a key role in the pricing policy, people work for free

- It is constantly and quickly updated if any problems arise

But,

- It may end up becoming inconsistent

- It tends to be poorly documented

6.1.1 Configuration layout

To make configuration as easy as possible, a special configuration tool is pro-
vided. This tool presents the internal elements of the eCos real-time operating
system in a graphical way too improve the feeling of control for the user. It is
easy to find and understand the variables that need changes with this GUI
(shown in Figure 5), but it also hides a lot of information from the user.

 29

Figure 5 The configuration tool used by eCos.

Each configuration is based on a number of packages. Some base packages are
required, depending on the target platform. The only platform dependent pack-
ages are the Hardware Abstraction Layer (HAL) packages. For convenience,
packages are grouped together in pre-defined template setups. Once a platform
and a template have been chosen, the configuration tool allows for modifications
of defined parameters.

The packages are defined in a number of text files, written in a TCL-based script
language called Component Definition Language (CDL).

6.2 Problems encountered
6.2.1 Compilation

Although eCos is supposed to be very open and portable, its ties with the GNU
compiler and utilities remain strong. eCos relies on many non-ANSI features of
the GNU C++ compiler, making compilation with ARM’s tools difficult. A few of
the language extensions that are provided by the GNU C++ compiler were added
specifically to support eCos. The first of these extensions is constructor priority
ordering which gives the possibility to decide in which order static objects are

 30

created through the use of the __attribute__ mechanism. This feature makes it
possible to e.g. create a scheduler object before the system creates any thread
objects. Another extension is selective linking that allows the user to only import
specific sections and not an entire library when a part of the application needs to
use an external function or variable.

This is a problem when working with the ARM Development Suite since it does
not support these features that are necessary to compile eCos correctly. There
are two different ways of handling this problem. The first solution is to restructure
and rewrite the code in eCos so that the use of these special extensions is un-
necessary. Even if it would be possible to modify the eCos code in this way, it
would be out of scope for this project, and would make integration of new ver-
sions of the operating system difficult.

The second solution to this problem is that the ARM Development Suite allows
import of compiled object files in various formats, including the ones preferred by
the GNU tools; ELF and XCOFF. This makes it possible to compile the eCos
code with the GNU compiler into object files, and by including header files for the
Bluetooth core code, making it available in the ARM environment. The core code
could then be compiled with ARM’s compiler, and linked together using its linker
into a complete flashable executable.

This solution has other problems that were encountered after a few short tests.
As it turns out, even though object file formats are compatible, there are differ-
ences when it comes to the basic routines such as division and modulo, which
are called differently in the GNU object files. It may be possible to remedy this by
altering the files, but for now, it remains an unsolved puzzle.

It would most likely be possible to compile the Ericsson Bluetooth stack using the
GNU tools, and thereby permitting eCos to be used as the operating system. But
since all development is done using ARM’s tools, and will continue to be done
using them, this option is somewhat uninteresting from Ericsson’s point of view.

6.2.2 Configuration

In its specifications, eCos defines clearly the difference between the hardware
abstraction layer and the operating system modules. In reality, though, separat-
ing them is hard work. Since very little peripheral interaction is required in the
application, most of the hardware abstraction layer is unnecessary.

 31

 32

7 µC/OS-II

7.1 Introduction

The second real-time operating system that was tested was µC/OS-II, version
2.04, from Micriµm Incorporated, owned by Jean J. Labrosse. This is not exactly
a real-time operating system, it is more of a real-time kernel and therefore con-
tains less unnecessary functions for the project.

The advantages with µC/OS-II are many but a short list of the most important
ones are:

• Available code. All code for the real-time kernel is available and modifiable so
that it works on the intended system. A lot of different ports are available from
the homepage.

• FAA (Federal Aviation Authority) certification. The real-time kernel has been
certified for use by safety critical systems in aviation and medical products.
This proves that µC/OS-II is a very robust real-time operating system.

• Small footprint. Depending on the processor it is possible to reduce the foot-
print of µC/OS-II to around 2KB of code and 200 bytes of data, excluding the
stacks.

• Execution time. Most functions in µC/OS-II have a constant and deterministic
execution time. The execution time does not depend on the number of running
processes.

• Available functions. Supports pre-emptive real-time scheduling and has a mul-
titasking kernel. It also contains the functions for semaphores, messaging,
task management, time management and fixed size memory management.

7.2 Problems

All systems contain a few problematic features that have to be handled and
µC/OS-II was not an exception to this. A few of the limitations may result in prob-
lems later during development of the Bluetooth system. This chapter will give a
short description of the areas where µC/OS-II differs from OSE Epsilon and what
may cause problems that will affect the porting of the virtual operating system
layer.

 33

7.2.1 Priorities

There is a maximum of 63 tasks in µC/OS-II excluding the idle task. This limit is
the result of how priorities are implemented in µC/OS-II. Another problem with
the current implementation of priorities in µC/OS-II is that it does not allow multi-
ple tasks to share a priority level. In the OSE Epsilon implementation of the sys-
tem this feature of shared priorities levels is used by the different tasks. The rea-
son for these limitations is that the priorities are implemented with a table with 64
places available and the lowest priority is used by the operating system for the
idle task.

7.2.2 Messaging

In µC/OS-II, there is no record of which process sent a certain message. This is
required by VOS, so it is necessary to add such a reference in the VOS layer it-
self. Consequently, this causes some raised complexity of the VOS layer.

7.2.3 Memory allocation

Memory handling is based on fixed size memory chunks so that the system has a
certain amount of memory chunks of each size. This requires a good understand-
ing of how many chunks the different tasks need and how large these chunks
need to be. When the tasks free these allocated chunks it is important to return
them to the correct memory handler. This requires that either VOS or the task
remember from which memory handler each chunk is allocated.

7.2.4 Stack handling

In OSE Epsilon, the configuration file handles creation and initialisation of the
necessary stacks. This is not the case in µC/OS-II, since this is a much more
simplistic operating system to work with and therefore requires more work during
initialisation. It is necessary to declare and initialise all stacks used by the system
e.g. the main thread stack and interrupt stacks. To reduce the complexity of stack
creation the initialisation for all the interrupt stacks are placed in the same file,
int_hdlr.s, a part of the core system and the rest of the stacks are initialised by
the macro DECLARE_PROCESSES() found in config_macros.h. This macro is used by
the function VOS_Init() found in vos.c.

7.2.5 Interrupt handling

There is no interrupt handler delivered with the µC/OS-II source since its imple-
mentation will differ too much depending on which platform that is used. There is
instead a second layer, a hardware abstraction layer, which contains the inter-
face to the hardware, a so-called port. The available interrupt handler from Lee
Dunbar’s porting to the ARM7Thumb processor did not support nested interrupts,
which resulted in a need to design and implement a new interrupt handler, to use
with µC/OS-II, that can handle nested interrupts.

 34

8 Porting VOS to µC/OS-II

8.1 Introduction

The porting of VOS consisted of making it rely on µC/OS-II rather than OSE Epsi-
lon. During this porting, a couple of problems were encountered and solved.
They are summarised in the following sections.

8.1.1 Code organisation

The current implementation of the system contains the VOS interface that should
be the only part of the system that utilises the variables and functions in the real-
time operating system that powers the system. Unfortunately this is not com-
pletely true as both usb.c and core.c contains references to specific OSE Epsilon
commands and variables. In the new implementation that uses µC/OS-II instead
of OSE Epsilon this has been changed so that core.c only uses variables and
functions available in vos.c and vos.h. The problem with usb.c is that it uses
semaphores and that there is no support in vos.c for semaphores and therefore
either has to be added to the virtual operating system or rewritten so that usb.c
uses the messaging system available in µC/OS-II. Therefore, USB support has
been left out for the moment.

Function names that begin with OS, such as OSStart() or OSMemCreate() are al-
ways µC/OS-II functions. Functions that are a part of the Bluetooth system are
named in the style of CORE_Start(), VOS_Alloc() and so on depending on from
which module they are.

8.1.2 Memory Allocation

In µC/OS-II, the memory allocation is semi-dynamic, in a way that prevents frag-
mentation and assures a deterministic allocation time. A fixed memory area is
defined, and a special "memory pool control block" handles how much of this
memory area is used. The memory area is divided in a number of equally sized
and indivisible memory chunks that are returned to the caller upon allocation re-
quests to the controlling memory pool control block. The way the adaptation to
the VOS allocation and de-allocation is done, a number of memory pool control
blocks are created, each with a certain memory chunk size. Currently, there are
eight such memory pool control blocks, set according to Table 1.

When returning an allocated memory chunk to the µC/OS-II memory pool control
block (MPCB), it is necessary to provide a reference to the memory pool control
block from which the chunk was retrieved. In order to make this work with the
VOS_Free() function, which only takes a pointer to the allocated memory chunk,

 35

the index number for the memory pool control block is placed in a hidden header,
in front of the memory chunk, as shown in Figure 6.

Unused
MPCB
index

ID field Data field Header

Figure 6. Description of a memory chunk.

 Number of
chunks

Size of chunk +
header

Memory
usage

Block Handler 1 10 4 + 4 80

Block Handler 2 5 8 + 4 60

Block Handler 3 5 12 + 4 80

Block Handler 4 10 20 + 4 240

Block Handler 5 10 56 + 4 600

Block Handler 6 2 84 + 4 176

Block Handler 7 2 124 + 4 256

Block Handler 8 2 272 + 4 552

Total amount of memory used 2044

Table 1. Specification of the available memory chunks.

 36

Tests have been done to verify that this is indeed the memory distribution
needed when running the stack with a reasonable use case. There are some ex-
tra chunks for each size, to ensure that the system works in somewhat more ex-
treme cases. The test results are presented in 9.3.3.

The overhead of four bytes for each memory chunk is a bit on the high side but it
is unfortunately necessary since the memory chunks have to stay word aligned.
In the current implementation only two of the four bytes will ever be used. OSE
Epsilon, on the other hand, uses 16 bytes, so four bytes is actually quite slim.

8.1.3 Configuration

In order to allow simple configuration of memory pool size distributions, stack
sizes and process setup, VOS and core use a couple of header files, created
with a small configuration program. This program reads the file system.con and
creates two header files named config_mempool.h and config_macros.h, which
are used by VOS to initialise the memory pool and the tasks, and an additional
file called config_stacks.s. The last file config_stacks.s is used by int_hdlr.s to
set the correct sizes for the interrupt stacks.

ID field Data field Header

Empty Identifies the
sender

MPCB
index

Figure 7. Description of a memory chunk, including the sender identifier.

8.1.4 Message handling

It is important for VOS to be able to identify from which process a message was
sent. This presented a problem since there is no support from µC/OS-II when
dealing with this problem. The problem is solved by using one of the bytes avail-
able in the header (there are three unused bytes left since only one byte is used
for describing the MPCB) to store the priority of the sending task, see Figure 7.
Since there may not exist more than one task at each priority level the priority
can be used to identify a single task. With a maximum of 64 different priorities
one byte is enough to store this information.

 37

In OSE Epsilon, each task is associated with a message queue, which is re-
flected in the way VOS_Send() only takes the receiver task id as destination pa-
rameter. In µC/OS-II, there is no direct connection between tasks and message
queues. Tasks can therefore receive messages from any queue, and any num-
ber of queues can be created. In the VOS adaptation though, an array consisting
of pointers to the queue control blocks is created, linking each task with exactly
one unique queue.

8.1.5 Synchronisation

There are neither semaphores nor mutexes in VOS. Synchronisation between
tasks is created through signals sent between them and not through blocking ac-
cess to shared resources. This solution removes the need for time slicing be-
tween tasks since they cannot be allowed to compete for resources. There is in-
stead a form of co-operative multitasking based on signals.

The only exception to this is the interrupts. Interrupts can happen at any time and
it is not possible to guarantee that a task is not using a shared resource at the
time of an interrupt. It is therefore possible to disable all interrupts to prevent
them from disturbing the system when it accesses shared resources.

8.1.6 Limitations

During implementation a few limitations in µC/OS-II were found. They were not
serious and could easily be solved, in the worst case through some extra coding.

The following limitations were solved during implementation:

• During allocation of memory it is necessary for VOS to know which MPCB to
access for receiving a memory chunk of the correct size.

• During deallocation of memory chunks it is necessary for VOS to know from
which MPCB the chunk was allocated.

• It is not necessary for OSE Epsilon to know the exact number of memory
chunks for each size since they are dynamically created during memory allo-
cation. In µC/OS-II it is necessary to know how many memory chunks that are
needed of the different sizes since it has to be set during start-up.

• The amount of space for signals has to be set before the system is started.
Each task has a limited amount of space for received signals. The amount has
been set by tests.

• There is no support for tasks sharing the same priority. The previous solution
with OSE Epsilon allowed several tasks to share a priority but in the µC/OS-II
implementation the priorities were rearranged so that a priority only is used by
one task.

 38

The following limitations are still left in the final system:

• There cannot be more than 63 tasks. This is due to the fact that the table that
handles priorities only contains 64 positions and the lowest priority is reserved
for the idle task.

• It is necessary to know the maximum amount of memory chunks of each size
that the system uses at the same time. This information is used to create the
configuration files and prevents crashes due to insufficient amount of memory
chunks.

8.2 Modifications made to VOS

This section contains an in depth description of the changes that were made to
the virtual operating system. It is divided into subsections describing the different
services that VOS provides.

8.2.1 Memory allocation and deallocation

8.2.1.1 VOS_Alloc

This function receives a parameter to know how much memory space the calling
process needs to allocate. The most important steps are shown in Code section
1. It returns a pointer to a memory chunk of the requested size, or larger if the
most efficient size was not available, by making a call to the corresponding
memory pool control block. Any errors that are encountered by the call to the
µC/OS-II function OSMemGet() are handled by a call to VOS_Error(). The final ac-
tion stores a reference in the hidden header describing from which memory pool
control block the memory chunk was taken.

/* Choose memory block from the requested size */
if (ulSize <= MEMPOOL_BLOCK0_SIZE &&
 aptMemPool[0]->OSMemNFree > 0) {
 memCtlBlockIndex = 0;
} else if (ulSize <= MEMPOOL_BLOCK1_SIZE &&
 aptMemPool[1]->OSMemNFree > 0) {
 memCtlBlockIndex = 1;

 ...

} else if (ulSize <= MEMPOOL_BLOCK7_SIZE &&
 aptMemPool[7]->OSMemNFree > 0) {
 memCtlBlockIndex = 7;
}

/* Allocate a memory chunk */
ptPointer = (void *) OSMemGet(aptMemPool[memCtlBlockIndex], &err);

 39

 ... Error handling

/* Put a four byte padding before the allocated memory */
*((uint32 *) ptPointer) =
 (uint32) ((0xFF << 8) | memCtlBlockIndex);

/* Move the pointer four bytes */
ptPointer = (void *) ((uint32 *) ptPointer + 1);

return ptPointer;

Code section 1. The code used for memory allocation.

The actual selection of memory pool control block is done in the macro
CHOOSE_MEMPOOL_INDEX(), found in config_mempool.h, but is displayed in its pre-
processed form for readability.

8.2.1.2 VOS_Free

This function receives a pointer to the used memory chunk and returns it to the
pool of available memory. The code is shown in Code section 2. Information
about which memory pool control block it should be returned to is stored in the
header that is placed in front of the memory chunk. Without the information
stored in this header it would not be possible to make a correct function call to
the µC/OS-II function OSMemPut().

/* Get a pointer to the padding */
ptPad = (uint32 *) (((uint32 *) *ppMem) - 1);

/* Get the memory block index from the padding */
blockIndex = (uint8) (*ptPad & 0xFF);

/* Free the allocated memory */
OSMemPut((OS_MEM *) aptMemPool[blockIndex], (void *) ptPad);

Code section 2. The code used for deallocation.

8.2.2 Time management

This is not used by VOS and therefore should not be implemented.

In µC/OS-II time is monitored by the use of time ticks. These ticks are used for
the functionality of delaying a task a set amount of time. This functionality will not
be used by the existing implementation of the system since it utilises the func-
tionality of the timer component when the need for time management is encoun-
tered.

 40

8.2.3 Process information

8.2.3.1 VOS_CurrentProcess

This function returns an identifier for the running task. The identifier is the same
as the priority of the task since there cannot be more than one task for each pri-
ority. The only code, outside of vos.c, that utilises this function is located in
core.c and it is used when handling logging and error information.

If the system is handling an interrupt and is currently inside an IRS when there is
a call to the function it returns a value of 0xFF.

8.2.4 Message transfer

8.2.4.1 VOS_Send

This function has two parameters, a pointer to the message and a task identifier
(the priority of the receiving task) describing the receiving task. The essential
code of this function is presented in Code section 3. It stores the task identifier
inside the hidden header placed in front of the memory chunk used for the signal.
This identifier is also used for locating the correct message queue to place the
signal in. After the message is posted in the message queue the function checks
for any errors and if found makes a call to VOS_Error().

if (OSIntNesting == 0) {
 /* Set sender thread id in the padding word (see figure in VOS_Alloc) */
 *((uint32 *) ((uint32) *ppMsg - 4)) &= (OSPrioCur << 8) | 0xFFFF00FF;
 }

 /* Will work since tProcess is the priority */
 pEvCtlBlk = aptECBMap[tProcess];
 if (pEvCtlBlk != NULL)
 {
 /* Send the message */
 err = OSQPost(pEvCtlBlk, *ppMsg);

 /* Handle any returned error codes*/
 if (err != OS_NO_ERR)
 {
 VOS_Error(err);
 }
 }

Code section 3. Sending a message.

 41

8.2.4.2 VOS_Receive

This function searches for the oldest received message to the calling task. When
a call is made to the function VOS_ReceiveList() it stores the ignored messages
in a special list.

The message returned by this function could either be from the list of previously
ignored messages or, if that list is empty, from the message queue connected to
the task. If no message is found the function will wait forever for a message to
arrive but such a situation cannot occur since this is a message driven system.
As shown in Code section 4 the priority of the running process is used as an in-
dex to find the correct message queue to check.

/* Retrieve the id (priority) of the running process. */
tCurrentProcess = (VOS_TProcess)OSPrioCur;

…

/* Wait for a message, may change running process */
/* MAX_INT used for timeout and this may result in a long wait*/
ptTempMsg =
 (VOS_TMessageHeader*) OSQPend(aptECBMap[tCurrentProcess],
 0, &err);

Code section 4. Receiving a message.

8.2.4.3 VOS_ReceiveList

This function searches for messages sent to the calling task that fulfils the pa-
rameters sent to this function. The parameters consist of a list of the message
identifiers that are acceptable and the number of identifiers sent in the list. It
searches through the previously ignored messages and if none of these match
the list it starts checking the message queue connected to the task until it locates
a correct message. Any message that does not fulfil the parameters is ignored
and added to the list of ignored messages. The first message that matches one
of the identifiers in the list is returned to the caller of this function. If the function
cannot locate a matching message it will continue to wait until such a message is
received.

8.2.4.4 VOS_Sender

This function returns the identifier of the sending task for the message that is
sent as a parameter to the function. The identifier for the sender is located in the
header and is the same as the priority of the sending task.

 42

/* Get the full value of the word size padding */
pad = *((uint32 *) ((int32) pMsg - 1));

/* Return the second least significant byte. */
/* This is the sender priority */
return (VOS_TProcess) (pad >> 8) & 0x000000FF;

Code section 5. How to access information about the sender of the message.

8.2.5 Critical sections

8.2.5.1 VOS_EnterCritical

There is no support added in VOS for any advanced handling of resource alloca-
tion and deallocation with e.g. mutexes or semaphores. The system implemented
is instead based on only one available critical resource. Taking this resource
locks the system so that it does not send any interrupts to the interrupt handler.
This is done through the use of the IRQ mask described in Appendix I.

8.2.5.2 VOS_ExitCritical

Reactivates the system so that it can once again reach the interrupt handler with
interrupts from the system, restoring the IRQ mask as described in Appendix I.

8.2.6 Error handling

8.2.6.1 VOS_Error

This function receives errors from the entire operating system and relays them to
the error handler implemented in core. The error structure that is sent to the error
handler contains information about the error code, which process that created the
error, and a reference to the stack pointer of the process. The error codes are
listed in either core_error.h or driver_error.h depending on where they origi-
nate. Errors that originate from within µC/OS-II have their error codes listed in
ucos_ii.h and they have a value between 0-130 depending on which function in
µC/OS-II that created the error.

All errors sent to CORE_ErrorHandler() will be transferred to the
SIGLOG_ErrorHandler() that sends the data about the error to the communication
port used for testing the system. Both functions prevent the system from continue
to run so that the system has to go through a hardware reset before it is fully
functional again.

All the possible error codes returned by this function are presented in Appendix
VI.

 43

8.2.7 Start-up and activation

8.2.7.1 VOS_Init

This function initialises all the necessary components used by the different tasks.
Each available priority has its message queue and message pool, for storing ig-
nored messages, created. Both of these message-handling devices are then ini-
tialised. The memory pool control blocks and the tasks are also created and ini-
tialised with the macros found in the file config_macros.h.

Everything that was previously done in the OSE Epsilon for ARM file osarmcon.s,
generated from the configuration file osarm.con, is now done in VOS. More spe-
cifically, it is done in VOS_Init().

8.3 Other CORE modifications
8.3.1 Interrupt handling

The new system contains two different stacks used by the interrupt handler. The
information stored in the registers when an interrupt occurs is stored in the inter-
rupt register stack. During an interrupt it is necessary to have a stack that can be
used by the interrupt to store temporary data and this is done on the interrupt
stack. The reason for the two stacks is that the system supports nested inter-
rupts4 and has to switch mode for this to function and this result in problems with
the stack pointer. The simplest way of handling the stack pointer is to save the
registers in one stack and temporary variables on another stack.

The two stacks have different needs regarding size since the interrupt register
stack needs a total of 280 bytes, 56 bytes for storing all the data from the regis-
ters and it need to be able to store five complete sets of registers. The reason for
five sets of registers is that one set is from the interrupted task and four sets from
the maximum times an interrupt can be suspended by an interrupt with a higher
priority. The interrupt stack also need quite a lot of space and is not as easy to
calculate since it needs to be able to store the maximum use of the stack for
each interrupt priority level.

8.3.2 Boot sequence

The boot sequence, starting from the label BOOT_Entry has had some minor
changes. Generally, it does the same thing as the OSE port:

4 Nested interrupts means that interrupts can suspend other interrupts of a lower priority. There-
fore allowing a nested structure where there may exist many different interrupts that need to run
before the system can leave the interrupt phase and continue with the running task.

 44

• Platform dependent memory initialisation by setting the wait states5 and the
type of memory used.

• Code copying from flash to RAM. If the code resides in flash, it needs to be
copied to RAM in order to run.

• Variable initialisation. Some variables may have set initial values. These need
to be copied to the right location in the RAM. All other variables are set to zero
in the same fashion.

8.3.2.1 Stack initialisation

During the boot sequence, the memory area designated as the interrupt stack is
used as stack. Once the tasks has started, after calling OSStart() in os_core.c,
this stack is overwritten, since it is no longer needed.

Each task has its own stack, defined in C code upon creation. Task creation is
done by VOS_Init() found in vos.c and the memory areas for the stacks are also
declared there. The actual declarations are done with the help of a macro called
DECLARE_PROCESSES(), from a generated h-file based on the desired number of
tasks and stack sizes for each of them. Initialisation is done the same way with
the macro INIT_PROCESSES(). The configuration of these macros is covered in
Appendix V.

5 A wait state is a delay of one or more clock cycles added to the processor's instruction execu-
tion time to allow it to communicate with slow external devices

 45

 46

9 Performance tests

9.1 Execution time
9.1.1 Introduction

In order to assess the performance of the µC/OS-II port, measurements of crucial
parts of the system were made. How do the differences in implementation affect
the time needed to perform certain tasks, and how does that in turn affect the ful-
filment of the real-time demands?

9.1.2 Method

To measure the time needed for the different operations, a digital oscilloscope in
conjunction with binary values to a couple of LEDs on the development board
were used. Writing to a certain memory address sets these LEDs. The way this
can be used to measure the time is as follows: When the region that is to be
measured is entered, the value of an LED is set, and when the region is exited,
the value is unset. The oscilloscope, with probes connected to the LEDs, can
then measure the time passed quite accurately.

Using this method of measurement does however cause some additional time for
setting and unsetting the values of the pins. In order to get an accurate value,
this additional time must be measured separately and subtracted.

9.1.3 Results

9.1.3.1 Critical regions

These are basically the same implementation, since the original handling of criti-
cal regions in the ARM/THUMB port of µC/OS-II was replaced with the one used
in the OSE port, in order to allow nested interrupts to work the way it is assumed
in the system. See Appendix III and Appendix IV for more on this.

 µC/OS-II OSE Epsilon

VOS_EnterCritical() 7.44 µs 8.84 µs

VOS_ExitCritical() 8.04 µs 12.24 µs

Table 2. Measured times for entering and exiting critical regions

 47

The improvements in handling of critical regions in the µC/OS-II port are due to
two minor modifications:

• The variable uiVosCriticalCounter (defined in vos.c) and the variable
IRQ_LOCK_COUNTER were joined into one. They both have the same meaning,
and by only increasing one counter it was possible to reduce the amount of
code. The reduction in code has given a slight decrease in execution time.

• In the assembly function arm_unlock(), a lock was made before the unlock as
a precaution. This lock was removed, since such precautions are unneces-
sary when the lock states have been verified by asserts.

9.1.3.2 Memory allocation

The allocation and de-allocation (freeing) of dynamic memory is also an impor-
tant time consuming part of the operating system. It is something that is closely
coupled with message passing, since the messages need to be dynamically de-
clared.

 µC/OS-II OSE Epsilon

VOS_Alloc(272) 53.4 µs 50.8 µs

VOS_Alloc(4) 48.2 µs 46.8 µs

VOS_Free(272) 28.4 µs 49.8 µs

VOS_Free(4) 28.4 µs 48.6 µs

Table 3. Measured times for allocating and de-allocating dynamic memory. The
values in parentheses indicate the number of bytes requested

OSE is slightly faster when allocating, but significantly slower when de-allocating.
This may be due to differences in the memory pool data structures, OSE may
need to step through a list to put back a memory chunk.

The differences when allocating a large block in contrast to a small one are more
or less equal. The time consumed by the µC/OS-II function OSMemGet() is in itself
always constant, but the selection of suitable memory pool control block in VOS
is not (see 8.1.2).

 48

9.1.3.3 Message passing

The message passing is one of the central parts of the system, and a quick re-
sponse time is very important for the overall performance.

The performance tests were made in the following way. First, the two VOS func-
tions VOS_Send() and VOS_Receive() were measured isolated, so that these times
could be compared to those in the more complex scenarios below. Isolated
means that there is no task switch involved when sending, and no waiting done
when receiving. This is done by first doing a VOS_Send() to the current process,
and after that a VOS_Receive(). The sending does not cause a task switch, since
the current task evidently is the highest priority task ready, and no one is ready to
receive the message since it was sent to itself. The receive function does not
wait, since there most certainly is a message waiting.

In order to include the time for the task switches, two scenarios were devised.

• Sending a message to higher priority task causes the sending task to be pre-
empted, and the higher priority task to resume running, given that it was wait-
ing for a message. The two tasks in question were hci_commander (priority 15
in the µC/OS-II port, priority 11 in the OSE Epsilon port) and hci_transport
(priority 4 and 3).

• Sending a message to a lower priority task does not result in a task switch,
even if the receiver task is waiting for a message. Eventually, the lower prior-
ity task will get to run, and handle the message. This will of course take a
while, and that duration is included in the measured time. The two tasks in
question in were lm_connection (priority 11 in the µC/OS-II port, priority 7 in
the OSE port) and lm_supervision (priority 13 and 8).

Both scenarios were defined as the first occurrence of the situation after a con-
nection to a slave has been made, in order to make the results comparable.

 49

 µC/OS-II OSE Epsilon

VOS_Send(), no switch 43.8 µs 111.8 µs

VOS_Receive(), no wait 35.8 µs 55.8 µs

Send+receive, to higher
priority process

140.0 µs 180.0 µs

Send+receive, to lower
priority process

705.0 µs 720.0 µs

Table 4. Measured times for message passing

The reason why the VOS_Send() takes so much more time in the OSE port than in
the µC/OS-II port may be that they have different kinds of data structures han-
dling the states of the tasks (waiting, ready, running, dormant). In µC/OS-II, task
states are handled using the thread priority as identifier in a number of arrays
and matrices, making the determination of which task is the highest ready and
which tasks are waiting for messages in certain queues a quick and efficient op-
eration. OSE may do this differently, but in turn allows several tasks to share the
same priority, and thereby allows time sliced background tasks, which is not
used.

9.1.3.4 Interrupt handling

Many time critical operations in a real-time system are initiated by an interrupt,
either because of a timer or external events. Therefore, a quick response time is
important when handling interrupts.

Also, it is important that the handling of an interrupt service routine does not take
too long, since this will delay all other execution. This is, however, more a con-
cern for the designer of the interrupt service routine than of the routines that han-
dle them.

Only the preamble6 of the interrupt handling is listed, since that is what causes
most the interrupt latency, and therefore is of most interest. Comparing the inter-
rupt handling that is done after the interrupt service routine has finished would be
interesting too, but was left out because of its complexity and lack of time.

6 The preamble is the part of the interrupt that saves information from the registers and prepares
the system. It does not contain the time spent deciding which interrupt to start since this time is
the same for both versions.

 50

 µC/OS-II OSE Epsilon

Preamble, non nested 14.2 µs 4.3 µs

Preamble, nested 9.4 µs 2.7 µs

Table 5. Measured times for preparing for a interrupt service routine to run

As seen in Table 5, the OSE port is considerably faster at handling interrupts.
This is due to differences in the way the task information is stored at switches.
The solution in the ARM/THUMB port of µC/OS-II uses the task stacks to store
the saved registers and status. OSE Epsilon stores this in a special area allo-
cated for each task, which makes switching simpler but requires a bit more
memory. See Appendix II for details on task switching and stack handling in the
µC/OS-II port.

9.1.4 Conclusion

All in all, the µC/OS-II port and the OSE port perform equally well. This is mostly
because they are very similar in concept, at least in the parts used by the VOS.

The µC/OS-II port is in fact generally faster, though the lengthy preamble in the
interrupt handling may be a cause for concern. Improvements can possibly be
made by simplifying the access to the saved task registers and status in the
ARM/THUMB port of µC/OS-II.

The implications of these differences do not seem to affect the ability to meet the
real-time demands.

9.2 Pre-scheduling performance

The performance of pre-scheduling is crucial when it comes to fulfilling the real-
time constraints of the system. Tests were therefore conducted to examine how
the change of operating system affected the time consumed handling the pre-
scheduling.

9.2.1 Method

The tests were conducted in the following way. Upon entry in the pre-scheduling
function a LED is turned on, and upon exit it is turned off again. The time used by
interrupts is also included in the measurement so the results show the real exe-
cution time for the pre-scheduler.

 51

It is possible to see how the execution time differs by using the average function
on the oscilloscope. It measures the latest 128 time periods where the LED was
active and summarises this data into a diagram. See Figure 9 and Figure 10 for
such images displaying the execution time distribution for OSE Epsilon and
µC/OS-II respectively.

9.2.2 Results

The system was measured when it was transmitting DM1 packets over an ACL
link, other types of data packets were tested but discarded since there was an
obvious trend showing that DM1 packets placed a maximal strain on the system.

The images shown in Figure 9 and Figure 10 may need a short explanation. The
horizontal axis represents the execution time for the pre-scheduling and the ver-
tical axis displays the percentage of the executions that were running for as long
as the horizontal axis indicates at that position. Both of the plots presented share
the same scale for the vertical and horizontal axes to ease comparisons. The
sudden edges in the diagrams shows that many executions took about the same
time to complete, most probably due to a fix number of execution paths depend-
ing on the pre-scheduling needs. The slopes after the sudden edges are caused
by delays of one sort or another, including interrupt handling.

Displayed in Figure 9 is the time distribution for pre-scheduling using OSE Epsi-
lon. There are three important execution times that are shown in the diagram, the
fastest execution time is 400 µs. This is true for approximately 18% of the times
that pre-scheduling is performed. Almost a third of all executions finished after
500 µs and a total of 60% of the executions have finished after 1680 µs. The
longest execution in this diagram took 2240 µs, but longer samples have been
observed.

1680 µs

500 µs

400 µs

Figure 9. The distribution of time spent pre-scheduling when running OSE Epsi-
lon during high-load data transfer.

 52

Showed in Figure 10 are the results from using µC/OS-II when running the pre-
scheduling. The similarities between the diagrams are remarkable and show al-
most the same pattern. The only significant difference between them is that there
is a small delay for a small percentage of the samples at the 1680 µs time limit.

1680 µs

500 µs

400 µs

Figure 10. The distribution of time spent pre-scheduling when running µC/OS-II
during high-load data transfer.

9.2.3 Conclusions

The scenario studied in both cases was chosen in order to press the system
hard, pumping a continuous stream of data. However, it is not a worst case sce-
nario since it was not possible to guarantee constant interrupts. However, it
shows the performance during a high-load usage scenario.

As seen in the figures, there are no significant differences in the performance,
the µC/OS-II port is insignificantly slower at times. The differences discussed in
the previous section are apparently not affecting the overall performance.

9.3 Memory usage
9.3.1 Introduction

Another area of concern was the usage of available memory. It is important to
keep the footprint of the operating system as small as possible. A sequence of
tests was performed to see how many memory chunks of the different sizes that
were necessary.

9.3.2 Method

The use of the memory chunks is measured by a small modification to the
VOS_Alloc() and VOS_Free() functions. They use a small two-dimensional matrix
to keep both the current number of allocated memory chunks, from all the avail-
able MPCBs, and the maximum number of chunks used for each MPCB.

 53

The system then sends data between two Bluetooth units over an ACL link with
different packet types. After the system has been transmitting data at the maxi-
mum speed for a short moment the values of the matrix are checked.

This test is not performed with the system running in flash which will affect the
speed with which it can perform different actions but this should not affect the
use of memory chunks since they are not time dependent.

9.3.3 Results

The memory usage was tested with both data medium rate packets (DM) that
contain CRC for the data payload and data high rate packets (DH) that does not
contain any CRC for the data payload. The number following the type of packet is
the number of time slots a packet may cover. The values in Table 6 display the
maximum number of memory chunks of different sizes that are used simultane-
ously by the system.

As shown in Table 2 there are not very large differences between the different
types of packets. It is very interesting, though, to see that not a single memory
chunk of with a size of 84 bytes is ever allocated during ACL data transfer.

The system’s worst case is when DM1 packets transfer data, at that point it uses
the maximum amount of memory chunks. The theoretical worst case for the
amount of memory used is then 1112 bytes and the best case is for either DM5
or DH1 that both use in their worst case scenarios 988 bytes.

 54

Available Size DM1 DM3 DM5 DH1 DH3 DH5

10 4 5 5 5 5 5 5

5 8 3 3 3 3 3 3

5 12 5 5 4 4 5 4

10 20 3 3 3 3 3 3

10 56 5 4 3 3 4 4

2 84 0 0 0 0 0 0

2 124 1 1 1 1 1 1

2 272 2 2 2 2 2 2

Table 6. Results of the memory usage test with different data packets.

9.3.4 Conclusion

Since the system will use a larger memory chunk if the most efficient size is not
available are there no problems with the distribution of the smaller memory
chunks. But there may be problems with the largest memory chunks since there
may arise an unexpected need from the system to allocate a lot of these large
chunks.

However, at the present there is no reason to be alarmed by the use of memory
chunks in the system. Rather the opposite is true, there may be a possibility to
reduce the amount of available memory chunks but there might be unforeseen
situations that demand a higher memory usage so the overhead should be left
untouched since it does not affect the system in a negative way.

 55

 56

10 Tools used

Here follows a short presentation of the tools that were used during the work of
this porting of the BEP to µC/OS-II.

10.1 Trace32

Trace32 is a program developed by Lauterbach Datentechnik GmbH. The pro-
gram, when used together with an in-circuit-debugger, allows the user to see how
the code behaves on the test board. It is possible to look at the registers in the
CPU as well as the code in the memory. This tool was very helpful during debug-
ging and testing due to the insight it gave to the inner workings of the code.

The program supports special features and can retrieve internal statistical infor-
mation from µC/OS-II, but only when used with the 68HC08 processor, and OSE
Epsilon, when used on ARM7.

10.2 ARM Software Development Tool

The ARM Software Development Tool (SDT) is a program used to handle a soft-
ware project. It deals with compilation, assembling and linking, as well as sets
parameters organised in different build variants. For example, a build variant can
be configured to include debug code or have different output formats, allowing
execution in either Trace32 or directly on the board.

10.3 Config

The configuration program was written in C and compiled with GCC. It is a very
simple program that translates a configuration file into several macros and save
these in a couple of h-files, used at compilation. For further information see
Appendix V.

 57

 58

11 Conclusion

11.1 The choice of operating system

The operating system chosen for the port, µC/OS-II, is conceptually very similar
to OSE Epsilon, the operating system that it replaced.

In a way, this may have made the results of the thesis less significant. Replacing
it with a fundamentally different operating system would have proved the level of
flexibility of the stack and how it would have to be changed in order to function
under this new environment. But then again, the thesis had to be finished within
reasonable time.

Other interesting operating systems that were not selected are Nucleus and
VxWorks. The main reason behind not selecting any of them was that they were
introduced quite late in the project, but we still did a quick examination of how
they relate to µC/OS-II.

11.2 The portability of the Ericsson Bluetooth stack

The version of the stack that was used when porting has proven to be well de-
signed for portability.

However, one issue was discovered during the project. It concerns how the sys-
tem prevents an involuntary rescheduling by blocking all the interrupts. This may
result in problems with operating systems that contain support for running parallel
processes. It presents no problem with the current system since it is designed for
a host solution. Possible operating systems for porting are primarily those that
are used by the system as a library of functions, incorporated into the executable,
thereby allowing only the stack to run on the system. These types of operating
systems are commonly known as micro-kernels.

If another type of operating system is selected this will modify the basis of the
system in such a way that a redesign might be necessary to introduce time slic-
ing so that the operating system's functions do not starve. This is outside the
scope of this master thesis but might be considered for further analysis by Erics-
son Technology Licensing.

11.3 VOS requirements and limitations

• No resource synchronisation. There is no explicit resource protection mecha-
nism incorporated in VOS since there are no semaphores or mutexes. These
mechanisms are not necessary if there are no situations where two tasks si-

 59

multaneously wants to access a resource, but it requires a more careful sys-
tem design.

• No time slicing. There is no support for automatic time slicing between proc-
esses in VOS. This complicates the selection of new operating systems be-
cause there should not be any need for simultaneous tasks. A solution to this
is to use micro-kernels that can be incorporated into the system and that do
not need running tasks.

• Preemptive scheduling. It is necessary to check each time a signal is sent if
the receiving task is waiting for a signal and if the receiving task has a higher
priority if so a task switch takes place. This is due to the fact that the system
only can have one processes running at a time and the signal works like a to-
ken where the task holding the token may execute.

• Minimal functional requirements. There are very few operating systems that
do not support the very basic functionality necessary for implementing VOS. It
only needs the following functions:

- Signalling service with queues. The tasks need some basic support for
sending signals and a possibility to store several signals before they are
processed.

- Memory handling. The basic functionality of allocating and freeing memory
is of course necessary.

- Unique addressing of tasks. All tasks need a unique address so that they
can be identified and selected.

- Prioritised task scheduling. The tasks need priorities and functionality in
the operating system to decide which task that should be allowed to run.

- Interrupt handling for nested interrupts. Support for at least five levels of
nested interrupts is also necessary to handle the current implementation.

11.4 Time requirements

The real time demand placed on the current system requires that all time limits
be kept. This limits the possible operating system candidates to only hard real-
time operating systems. As shown previously in Chapter 9 there are some minor
differences between the two implementations but they both work without any
problems.

 60

The most time critical part of the system is the scheduling of how to handle the
next couple of slots, i.e. when to send or receive data. We were not able to de-
tect any differences between the system running OSE Epsilon and µC/OS-II
when measuring these values. The differences in interrupt latency between the
two operating systems (see 9.1.3.4) have had almost no effect on the system.
The reason for this is that the µC/OS-II version of VOS saves a lot of time when
handling signals. Sending and receiving signals is somewhat faster compared to
the solution based on OSE Epsilon (see 9.1.3.3). The same is also true for allo-
cating and freeing the memory used by the signals (see 9.1.3.2).

The conclusion when looking back at the test results is that there are no prob-
lems for VOS to handle the scheduling independently of whether it is OSE Epsi-
lon or µC/OS-II that powers it. The behaviour of the execution time of the sched-
uling task has not given us any reasons for concern.

11.5 General implementation experiences

After having adapted the system to µC/OS-II, our main experiences regarding
porting of the Ericsson Bluetooth stack have been these:

• The adaptation of VOS is fairly easy, once you are aware of its requirements
and how these differ from the behaviour of the target operating system. Most
operating systems have mechanisms similar to those in OSE Epsilon that are
used by VOS, so at this level adaptation to most operating systems should be
possible. The risk, though, is that too much of what should be part of the op-
erating system is put in the VOS, making it less virtual than it ought to be.

• It is important to know the underlying limitations of the operating system. If
some part requires modification, the adaptation may take much longer than
anticipated, especially if your knowledge of the platform is limited. This was
our problem when adapting the interrupt handler and context switch. In retro-
spect, the work needed to be done there would have discouraged us from us-
ing µC/OS-II if we had known it all from the start. Having to modify the operat-
ing system should not be a part of the porting.

 61

 62

12 Acknowledgements

First of all would we like to thank the personnel at Ericsson Technology Licensing
at the Department of Research and Development – Software that gave us the
opportunity and support for this master thesis. Especially the manager Leif Ek-
man for allowing us to take this project and Ivan Fulöp for the idea that was the
base for this project. We would also like to thank our supervisor at Ericsson, Pär-
Gunnar Hjälmdahl, for his never-ending patience when guiding us through the
work.

Another important person for this master thesis that we would like to thank is Pro-
fessor Karl-Erik Årzén at the Department of Automatic Control at Lund Institute of
Technology for his support with the work and his opinions on how to improve the
report.

 63

 64

13 References

1 Specification of the Bluetooth System, version 1.1, 2001, Bluetooth Special
Interest Group

2 MicroC/OS-II The Real-Time Kernel, ISBN 0-87930-543-6, Jean J. Labrosse
3 LM and HCI CPU Performance, EN/LZT 108 5277/12 R1, Ericsson Technol-

ogy Licensing (Confidential)
4 The homepage of µC/OS-II, http://www.micrium.com/
5 ARM Architecture Reference Manual, ISBN 0-13-736299-4, Dave Jaggar
6 Functional Description: Bluetooth Embedded Platform, Core, OSE Epsilon

3.5.1 for ARM, 155 16-cnh 202 05/2 Uen (Confidential)

 65

http://www.micrium.com/

 66

14 Glossary

14.1 Abbreviations

ACL Asynchronous Connection-Less

ANSI American National Standards Institute

BEP Bluetooth Embedded Platform

CPU Central Processing Unit

CRC Cyclic Redundancy Check

EBC Ericsson Bluetooth Core

EBT Ericsson Technology Licensing AB

ECB Event Control Block

eCos Embedded Configurable Operating System

FS Frame Scheduler

GCC GNU (GNU’s Not Unix) C Compiler

GUI Graphical User Interface

HAL Hardware Abstraction Layer

HCI Host Control Interface

L2CAP Logical Link Control and Adaption Protocol

LM Link Manager

MPCB Memory Pool Control Block

RAM Random Access Memory

 67

ROM Read-Only Memory

RTOS Real Time Operating System

RX Receive

SCO Synchronous Connection-Oriented

SIG Special Interest Group

TX Transmit

UART Universal Asynchronous Receiver/Transmitter

USB Universal Serial Bus

VOS Virtual Operating System

µITRON Micro Industrial TRON (The Real-time Operating system Nu-
cleus)

 68

Appendix I The IRQ mask

This appendix describes how the problem with prioritised interrupts is solved with
the help of a combination of hardware and software. The original architecture did
not support prioritised interrupts because it only had one flag that could activate
or deactivate interrupts.

In order to stop certain interrupts from coming, there is a hardware IRQ mask im-
plemented. There is also the I flag, which is part of the Program Status Register
(PSR), disabling all interrupts if set to one.

0
0
1
1
0
1
1

I flag

Exception vector
(software)

Mask

Figure 11. The passage of an IRQ

To retrieve the current mask, the content of rIRQ_MASK is read. The bit posi-
tions in the mask correspond to the different interrupts. Position zero, the least
significant bit, corresponds to interrupt number zero, position one to interrupt
one, and so on. A bit set to zero in a position means that the interrupt is passed
on, a bit set to one means that it gets blocked, as shown in Figure 11.

To set bits in the mask, you write to rIRQ_SETMASK. Only the bits set to one have
any effect on the mask, the bits already set to one in the mask are kept even if
the new bit value in the data written to rIRQ_SETMASK is a zero. Theoretically, this
correspond to rIRQ_MASK |= rIRQ_SETMASK.

To turn off bits in the mask, you write to rIRQ_CLRMASK. Only the bits set to one
have any effect, though in this case, they turn off bits in the mask. This corre-
sponds theoretically to rIRQ_MASK &= ~rIRQ_CLRMASK.

To allow a temporary change of the mask, normally to disallow all interrupts, the
current mask is always stored in the variable IRQ_SHADOW_REGISTER.

 69

Similarly, to simplify shutting off all interrupts, the variable IRQ_SHADOW_MASK_REG
contains the value needed to pass to rIRQ_SETMASK in order to turn off all inter-
rupts.

 1000010000001
| 1000
 1000010001001

Figure 12. An example of how to set the IRQ mask

Example: The mask is 0x1081, which is 1000010000001 binary. This means that
all interrupts except number zero, number seven and number twelve pass
through. If you want to disallow number three too, you write 0x8 to rIRQ_SETMASK,
making the new mask become 1000010001001 (see Figure 12).

 70

Appendix II General information about task and inter-
rupt handling

One of the most important parts of an operating system is the handling of tasks
and interrupts. They have many aspects in common, so they are best described
together.

These things are part of the platform specific parts of µC/OS-II, which under-
standably is not covered very thoroughly in Labrosse's book [2]. This port is
based on the µC/OS-II ARM-Thumb port done by Lee Dunbar [4].

1 Task switches

The task switching scheme in µC/OS-II is a co-operative one. The term co-
operative refers to the fact that the tasks voluntarily enter a waiting state allowing
another ready task to run. Therefore, µC/OS-II would not be a good choice of op-
erating system if you were to implement a system that has several "competing"
tasks. In the Bluetooth stack, however, all tasks work together for one common
goal, and all task switching is based on passing of signals. This makes µC/OS-II
a perfect candidate, being the slim and efficient operating system that it is.

Most task switches are caused by a call to OSSched(), which in the µC/OS-II VOS
implementation is in turn always called from OSQPost() or OSQPend(). A detailed
view on OSSched() can be found in Appendix III and Code section 7.

It seems that the way Labrosse describes a task switch does not correspond with
the way the implementation of the task switch is done in the ARM port of µC/OS-
II. Labrosse describes how the call to OS_TASK_SW() in OSSched() should only set a
flag, and let the actual task switch be handled by a periodic ISR. In the ARM port
though, the task switch is done directly in OS_TASK_SW(). The latter is probably
more efficient, since it would switch directly, and not when the next periodic inter-
rupt occurs.

2 Interrupt Service Routines

The handling of which ISR is to run, and the setting of the IRQ mask is done in
the core module. ISR's are registered and unregistered with IRQ_RegisterIsr()
and IRQ_UnregisterIsr() respectively.

The code of all ports contains sections that are called critical regions, this means
that the entire region has to be finished before the task is allowed to be post-
poned by the system. This is implemented by deactivating the interrupts during

 71

these regions. A postponed task is a task that is going to be switched, and a task
switch that is not called by the running task is the result of an interrupt. Unfortu-
nately, this complicates time slicing since it is the result of a periodic timer inter-
rupt service routine that interrupts a running task to determine which task that is
the most suited to run in that particular time slice.

However, time slicing is not at all part of the task model in µC/OS-II, and is not
used by the Bluetooth stack either. The µC/OS-II task model does however sup-
port letting tasks sleep for a certain period of time (a certain number of ticks), but
this is not implemented in our port, since it is not used in the Bluetooth stack and
would only require excessive processing. Implementing this functionality would
consist of assigning an ISR to a periodic interrupt (timer interrupt), and letting this
ISR call the µC/OS-II function OSTimeTick(). Also, the constant OS_TICKS_PER_SEC
in os_cfg.h would have to be adjusted to match the interval of the timer interrupt.
The actual task switch would then be done after having finished the ISR, which is
described in more detail below.

3 Idle task

There is an idle task defined by µC/OS-II, but it will never get to run, since there
is another idle task in the Bluetooth stack (which does in fact handle important
functionality). This hinders the µC/OS-II statistics functions to work properly,
since they rely on the amount of time the µC/OS-II idle task gets to run.

Since the extra idle task defined in µC/OS-II has no other purpose than statistics
it is not important for the system. The effects of that it will not be allowed to exe-
cute are marginal and will only affect measuring systems in µC/OS-II that are not
used.

4 The stack

When a task stops running, either voluntarily (e.g. when waiting for a signal) or
by an interrupt, its register values and program status are put on the task stack,
as shown in Figure 13. For a more detailed description of the registers, see
Appendix VII.

 72

PSR

RET

LR

R12

.

.

.

R0

Figure 13. The stack setup used when saving processor registers and program
status at a task switch.

The return address, marked RET in Figure 13, is the point where the task will
continue running once it is its turn to resume running. The link register, marked
LR in Figure 13, is the point where the task will return to after a call to a subrou-
tine has finished. In the case of an ordinary task switch, i.e. a call to OSSched(),
LR and RET will both be the same address, the instruction after the call to
OS_TASK_SW(). In the case of a task having been interrupted by an interrupt, it is
important to keep the LR of the task and at the same time know the return point,
since the task may very well be in a position where it is about to use its LR.

5 Scenario: A normal task switch

A task sends a message to another task:

• VOS_Send() is called. It takes a pointer to the message to send, and the task id
of the receiver task (which in µC/OS-II is equal to its priority).

• With the help of an array, containing pointers to the message queue control
blocks of each process (indexed by the task id), a call to OSQPost() is made.
OSQPost() needs to know to which queue the message is to be sent to, so it
needs a reference to the corresponding message queue control block.

• It is determined in OSQPost() which task that is the highest ready. This situation
may have changed if a higher priority task was waiting for a message from the
queue to which a message was just sent.

 73

• After having calculated which task that has the highest priority and is ready to
run, a call to OSSched() is made.

• OSSched() is called, meaning that the task is in a position where it has changed
the condition of which task is the highest ready. This is either a result of a task
entering a waiting state by making a call to the function VOS_Receive() or
VOS_ReceiveList(), or a task sending a message to a task with a higher prior-
ity.

• OS_TASK_SW() is called. It stores the values of the program status and the other
registers on the stack of current task (see Figure 13). The value of the current
stack pointer is put in the task control block, so that it can be retrieved once
this task gets to run again. The variables OSPrioHighRdy and OSTCBHighRdy, cal-
culated by OSSched(), now contain priority and pointer to the task control block
of the new task to run. The new stack pointer is retrieved from the task control
block that belongs to the task with the highest priority, and the program status
and registers are popped from this stack. Finally, a jump to the address where
the task was interrupted is done, upon which its old program status is also re-
stored.

• There are at this point three possible situations:

- The task that is started have been running earlier but reached a position
where it made a call to OSSched(). The task will now continue to run from
this same point.

- It is the first time the task gets to run. It will then start running at the ad-
dress of the function that is declared to be the main task function.

- The task was interrupted by an interrupt. It will then continue running wher-
ever it was interrupted.

6 Scenario: Interrupt handling
• Something, either hardware or software causes an interrupt to be generated.

In the ARM architecture, an interrupt always leads to the following course of
action:

- IRQ mode is entered. This means that anything you do to LR, SP, or SPSR
will not affect the interrupted mode. At start-up, the SP in IRQ mode is set
to point to the correct memory area.

- The address of the point where the program was running when the inter-
rupt occurred is stored in LR.

 74

- The program counter position is set to address 0x18. This is in the area
known as the exception vector. On this address there is a jump instruction
leading to CORE_IrqHandler().

• In CORE_IrqHandler(), the first step is to determine if it is a nested interrupt.
Looking at the value of the variable INT_LEVEL does this. At the same time,
the value of this variable is increased.

• There is one major difference between handling a nested interrupt and a non-
nested one: When not nested, the program status register and processor reg-
isters are stored on the stack of the interrupted task. This allows for an easy
switch to take place after the interrupt has been handled. When nested, the
processor registers and program status are instead stored on the IRQ mode
stack. If they were to be stored on the task stack, each task stack would have
to be big enough to have room for the registers of the worst-case nesting
situation.

• After having stored the necessary information, the µC/OS-II variable
OSIntNesting is increased with one. OSIntNesting is used in several places to
tell whether an ISR is currently being serviced. It is essentially the same as
INT_LEVEL, but to avoid having to change the µC/OS-II code, they were both
left as they were.

• Next, a switch is done to SYS mode, in which the procedure IRQ_ISR() is
called. In SYS mode, the ISR has its own stack, specially designated to be
used by ISR handling only. In both the IRQ mode and the SYS mode, the I flag
of the PSR is set to one, disabling interrupts. IRQ_ISR() will decide whether to
unset the I flag when calling the assigned ISR procedure, depending on the
priority of the IRQ.

• The ISR may have done some changes to the signal queue, i.e. done a
VOS_Send(). For this reason, a check of the tasks signal queues are done right
after the ISR has finished, by doing a call to OSIntExit(). OSIntExit() will up-
date OSPrioHighRdy and OSTCBHighRdy to reflect this new situation.

• At this point, there are three possible branches of execution:

- If the interrupt is nested, the processor registers and program status are
simply retrieved from the IRQ stack, and execution is resumed inside the
interrupted ISR.

- If the interrupt was not nested, and the ISR did not cause any change in
the task signal queues, the processor registers and program status are re-
trieved from the stack of the interrupted task, and execution is resumed
where it was interrupted.

 75

- If the interrupt was not nested, but the ISR caused a change in the task
signalling state, the highest priority task ready will become the new current
task. This means in fact just that the processor registers and program
status are retrieved from the stack of this new current task, and that execu-
tion will resume wherever that task was running when it was interrupted.
Also, the variables OSPrioCur and OSTCBCur will be updated to match the
new current task.

 76

Appendix III Implementation issues concerning task
and interrupt handling

1 Nested interrupts

Dunbar's port does not allow nested interrupts, and is in many aspects therefore
fundamentally different from the original OSE Epsilon solution. Most importantly,
because of this, the critical sections use the I flag as interrupt prevention in Dun-
bar’s solution. This has had to be changed, to avoid the following situation:

If a critical section were to be exited while in an ISR, it would allow new interrupts
to occur, even though this may not have been what was intended.

The OSE Epsilon version of IRQ_ISR() is currently based on disabling the inter-
rupts by setting the IRQ mask to disallow any interrupts. The current interrupt
enabling mask is stored in software, as IRQ_SHADOW_REGISTER, which enables the
function to restore the mask as it was before entering the critical region.

One way to implement Dunbar’s solution is to use the µC/OS-II variable
OSIntNesting that contains the current IRQ nesting level. A zero means that the
system currently is not handling an interrupt. If one desperately would like to use
the I flag as critical region lock, it would be necessary not to unset it while in an
ISR that should not be interrupted.

The solution implemented in the µC/OS-II port does not use Dunbar’s solution
using the I flag it uses instead the OSE Epsilon solution with the IRQ mask. This
has meant that some small changes, to the upper level µC/OS-II code, had to be
made to the port Lee Dunbar has created for running on ARM/Thumb architec-
ture.

2 Problems with OSSched()

There are no problems when using the OSSched() in conjunction with the I flag as
a controller of the critical regions. The I flag is stored in the PSR and all tasks
have a separate PSR, entering a critical region in one task will not affect another
task. The original code, see Code section 6, performs an OS_ENTER_CRITICAL()
when the task starts a task switch and ends with an OS_EXIT_CRITICAL() when the
task is later switched in again.

 77

However, when using the IRQ mask, whether to allow an IRQ or not is not a part
of the program status and will affect all tasks. Therefore, if this scheme is used,
no interrupts will be allowed between the points where OS_ENTER_CRITICAL() and
OS_EXIT_CRITICAL() are called. This solution will not work since it prevents inter-
rupts to happen after a task switch unless the new task makes a call to
OS_EXIT_CRITICAL() when it starts running.

void OSSched (void)
{
 extern void OS_TASK_SW(void);
 INT8U y;

 OS_ENTER_CRITICAL();
 if ((OSLockNesting | OSIntNesting) == 0) {
 y = OSUnMapTbl[OSRdyGrp];
 OSPrioHighRdy = (INT8U)((y << 3) + OSUnMapTbl[OSRdyTbl[y]]);
 if (OSPrioHighRdy != OSPrioCur) {
 OSTCBHighRdy = OSTCBPrioTbl[OSPrioHighRdy];
 OSCtxSwCtr++;
 OS_TASK_SW();
 }
 }
 OS_EXIT_CRITICAL();
}

Code section 6. The original contents of OSSched()

To solve this, a call to OS_EXIT_CRITICAL() is done in OS_TASK_SW() if one is in a
critical region, as determined by the value of IRQ_LOCK_COUNTER.

This way, the critical region is always exited before switching to a task. Also,
worth adding, a task could not possibly be inside a critical region at the moment
of task switch, since that is part of the definition of a critical region. The stretch of
code between the call to OS_EXIT_CRITICAL() and the actual switch to the pro-
gram counter position of the new task is protected from interrupts by having the I
flag set. It will however be reset when switching to the new task, since its PSR is
restored from the SPSR at the jump. SPSR is set when fetching the processor
registers and program status from the task stack.

Consequently, OSSched() is altered so that OS_EXIT_CRITICAL() is only called if no
task switch was performed, see Code section 7.

void OSSched (void)
{
 extern void OS_TASK_SW(void);
 INT8U y;

 78

 OS_ENTER_CRITICAL();
 if ((OSLockNesting | OSIntNesting) == 0) {
 y = OSUnMapTbl[OSRdyGrp];
 OSPrioHighRdy = (INT8U)((y << 3) + OSUnMapTbl[OSRdyTbl[y]]);
 if (OSPrioHighRdy != OSPrioCur) {
 OSTCBHighRdy = OSTCBPrioTbl[OSPrioHighRdy];
 OSCtxSwCtr++;
 OS_TASK_SW();
 } else {
 OS_EXIT_CRITICAL();
 }
 } else {
 OS_EXIT_CRITICAL();
 }
 OS_EXIT_CRITICAL();
}

Code section 7. The modified contents of OSSched()

 79

 80

Appendix IV How CORE_IrqHandler() works

The assembly function CORE_IrqHandler() handles IRQ's, and is called directly
from the exception vector. It can be divided into three sections:

• Context saving of current task

• Call to ISR handler

• Context loading for the task about to continue running

The context saving and loading is described in Appendix II, in the section de-
scribing the stack.

In the first section, there are two possible branches of execution. The first one
handles non-nested interrupts, i.e. interrupts that have occurred during normal
task execution. The second one handles nested interrupts, where the execution
of another ISR has been interrupted by an interrupt. Interrupts can interrupt one
another according to their priorities, a higher priority ISR can interrupt a lower
priority ISR.

In the third section, where the return to the interrupted context is done, there are
three branches of execution. One handles the most common case, where task
execution has been interrupted by an interrupt, and that same task is resumed.
The other handles the case where the ISR that has just finished caused another
task to be the highest priority task ready to run. This results in the task with the
highest priority to be resumed. The third case is where an interrupt was inter-
rupted by another interrupt that is resumed.

CORE_IrqHandler
; --------- INIT_INT_NESTED - BEGIN ------
 SUB LR,LR,#4 ; LR-4 gives point of interruption
 STMFD SP!,{R0-R3} ; Push R0-R3, so we can use them

 LDR R2,=OSIntNesting ; OSIntNesting++
 LDRB R3,[R2]
 ADD R3,R3,#1
 STRB R3,[R2]

 CMP R3,#1
 BGT CORE_IrqHandler_L1

 ; OSIntNesting == 1
 MRS R3,CPSR
 MRS R1,SPSR
 ORR R1,R1,#0x80 ; No IRQs

 81

 BIC R1,R1,#0x20 ; ARM mode
 MSR CPSR_cxsf,R1
 MOV R2,LR
 MOV R0,SP
 MSR CPSR_cxsf,R3

 STMFD R0!,{LR} ; Put return address on process stack
 STMFD R0!,{R2} ; Put old mode LR on process stack
 MOV LR,R0 ; Use LR instead of R0 as i-stack pointer
 LDMFD SP!,{R0-R3} ; Restore R0-R3

 STMFD LR!,{R0-R12} ; Save old mode registers
 MRS R0,SPSR ; Save old state
 STMFD LR!,{R0}
 LDR R0,=OSTCBCur ; Update process stack pointer
 LDR R0,[R0]
 STR LR,[R0]

 B CORE_IrqHandler_L2

Code section 8. Describing the first part of the CORE_IrqHandler().

The tricky thing here, as seen in the first conditional part of CORE_IrqHandler(),
see Code section 8, is how to get hold of the stack pointer of the current task.
CORE_IrqHandler() is called when an interrupt occurs, and is automatically in IRQ
mode, with the address of the interruption point in LR, and the program status
(CPSR) at that time in SPSR. Since LR and SP are banked, there is no direct
way of getting hold of a SP or LR in another mode. The ^ operator can only re-
trieve USR/SYS registers, and in this setup, only SVC mode gets interrupted at
the lowest nesting level. The solution is a quick switch to the mode that was inter-
rupted, store its LR and SP on R0 and R2, and return to IRQ mode. Once the
stack pointer is retrieved, the registers can be placed on the task stack.

CORE_IrqHandler_L1
 ; INT_LEVEL > 1
 LDMFD SP!,{R0-R3} ; Restore R0-R3
 STMFD SP!,{LR} ; Save return address
 SUB SP,SP,#(14*4)
 STMIA SP,{R0-R12,LR}^ ; Save old mode registers
 MRS R0,SPSR ; Save old state
 STMFD SP!,{R0}

CORE_IrqHandler_L2
 MSR cpsr_c,#0x9F ; enter SYS mode, no IRQs

Code section 9. Storing the registers due to a nested interrupt.

When handling a nested interrupt, see Code section 9, the same data needs to
be stored as when handling a non-nested interrupt. Since the ISRs always run in
SYS mode, they are accessible through the ^ operator, and putting them on the

 82

stack is very simple. The stack used, in this case, is the IRQ mode stack. The
IRQ stack is only used to store these register and program status values (apart
from the temporary use in the beginning of the interrupt handling routine).

Once these values are stored, a switch to SYS mode is done, and the ISR gets
to use the SYS mode stack. All ISRs share the same stack, but since they use it
in a "linear" fashion, that is not a problem. By linear it is meant that each ISR that
use the stack, i.e. push data onto it, will pop all data from the stack before it
ends. This guarantee that the position of the stack pointer will be the same when
the ISR is finished as it was when it started. So even if an ISR get interrupted by
another interrupt, when it gets turn to run again, the stack is just as it was when
the ISR was interrupted.

;--------- INIT_INT_NESTED - END ------

 BL IRQ_ISR ; Call the ISR handler (c code)

 BL OSIntExit ; Notify uC/OS
;--------- QUIT_INT_NESTED - BEGIN ------

 MSR cpsr_c,#0x92 ; IRQ mode, no IRQs

Code section 10. The call to IRQ_ISR() and notifications sent to µC/OS-II.

 LDR R0,=OSIntNesting
 LDRB R1,[R0]
 CMP R1,#0
 BNE CORE_IrqHandler_L3

 ; OSIntNesting == 0

 LDR R0,=OSCtxSw
 LDRB R1,[R0]
 CMP R1,#0
 BEQ CORE_IrqHandler_L4

 ; OSCtxSw == 1
 MOV R1,#0
 STRB R1,[R0]

Code section 11. Check for nested interrupts and if a context switch is neces-
sary.

After the ISR has been handled a check is made to decide which of the three
execution branches that is to be followed. The first check is made to the variable
OSIntNesting after it has been decreased by one. There are nested interrupts if

 83

the variable OSIntNesting does not equal zero and a branch to Code section 13
is done, where the system restores the previous interrupt.

If there are no nested interrupts a check is made to see if something changed
during the ISR, concerning which ready task that has the highest priority. There
is a branch to Code section 14, where the old task is restored, if the variable
OSCtxSw is set to zero otherwise the system continues with Code section 12 and
replaces the running task with the new higher prioritised task.

 ; Swap in next process
 MSR cpsr_c,#0x93 ; SVC mode, no IRQs

 ; Change the id of the current task
 ; and save previous id
 LDR R4,=OSPrioCur
 LDR R6,=OSPrioPrev
 LDRB R5,[R4]
 STRB R5,[R6]
 LDR R5,=OSPrioHighRdy
 LDRB R5,[R5]
 STRB R5,[R4]

 ; Get highest priority task TCB address
 LDR R4,=OSTCBCur
 LDR R6,=OSTCBHighRdy
 LDR R6,[R6]
 LDR SP,[R6] ; get new task's stack pointer

 ; OSTCBCur = OSTCBHighRdy
 STR R6,[R4] ; set new current task TCB address

 LDMFD SP!,{R4}
 MSR SPSR_cxsf,R4

 MOV R0,SP
 ADD SP,SP,#(15*4)

 LDMFD R0,{R0-R12,LR,PC}^ ; Does not change mode
 NOP

Code section 12. Switching in a new task after the interrupt.

Why were not the registers just put the on the IRQ mode stack? The reason is
that putting the interrupted registers and program status directly on the task stack
allows for a quick task switch after having serviced the interrupt. This is required
if the ISR caused a change in which task wants to run. When inside the ISR, the
task switch is not done directly, where it would normally be, but is delayed until
after the ISR has finished, see Code section 12. Then, the id of the task that
wants to run can be found in OSPrioHighRdy, and the switch is just a matter of
loading the stored registers and program status from the stack of the new task.
Execution will resume wherever that task was running when it was interrupted.

 84

Also, the variables OSPrioCur and OSTCBCur will be updated to match the new cur-
rent task.

CORE_IrqHandler_L3
 ; OSIntNesting > 0
 LDMFD SP!,{R4} ; Get ISR mode from interrupt stack
 MSR SPSR_cxsf,R4 ; Move this mode to SPSR

 LDMFD SP,{R0-R12,LR}^ ; Load registers from interrupt stack
 ; to SYS registers
 NOP
 ADD SP,SP,#(14*4)
 LDMFD SP!,{PC}^ ; Load PC from interrupt stack to SYS
 ; register and switch SPSR to CPSR
 NOP

Code section 13. Returning to a previous interrupt.

When dealing with nested interrupts the system executes the code presented in
Code section 13. The first action is to restore the previous program status regis-
ter from the stack and store it in the SPSR. Followed by loading the SYS mode
registers with their stored values from the interrupt stack through the use of the ^
operator, this operator allows the system to write directly to the SYS registers.
The final actions before the switch are setting the stack pointer to a correct value
and load the previous program counter with the use of the ^ operator resulting in
that the CPSR is replaced with SPSR. The interrupted ISR can now continue to
execute.

CORE_IrqHandler_L4
 ; OSIntNesting == 0 && OSCtxSw == 0
 LDR R0,=OSTCBCur ; Get a ref to the stack pointer
 LDR R0,[R0] ; Read the address of the SP
 LDR R1,[R0] ; Read the SP
 ADD R2,R1,#(16*4) ; Update process stack pointer
 STR R2,[R0] ; Store the new SP on the process stack

 LDMFD R1!,{R4} ; Load process mode from top of stack
 ORR R5,R4,#0x80 ; No IRQs
 BIC R5,R5,#0x20 ; ARM mode
 MSR CPSR_cxsf,R5 ; Switch to process mode without IRQs
 MSR SPSR_cxsf,R4 ; Move process mode to SPSR

 LDMFD R1,{R0-R12,LR,PC}^ ; Load all registers from process stack
 ; and switch SPSR to CPSR
 NOP
;--------- QUIT_INT_NESTED - END ------

Code section 14. Switching in the previous task.

 85

The final execution path when exiting an interrupt is to continue running the pre-
vious task that was running before the interrupt occurred. The code used to re-
start the previous task is presented in Code section 14. The task’s registers are
saved on the task’s own stack and the stack pointer is accessed through the task
control block.

 86

Appendix V Configuring the µC/OS-II VOS port

In order to simplify configuring the parts of the system that handle memory allo-
cation, task declaration and stack sizes, a special configuration program was
made. This program, simply called config, takes a configuration file, and outputs
three files that are included in the µC/OS-II VOS port.

The first file, config_mempool.h, contains header information about the number of
memory pools, and their respective sizes, config_macros.h and core_handlers.c
use it. In core_handlers.c, this information is needed for debug output of the
status of the memory pool.

The second file, config_macros.h, contains five macros used exclusively in vos.c,
named DECLARE_MEMPOOL(), DECLARE_PROCESSES(), INIT_MEMPOOL(),
INIT_PROCESSES() and CHOOSE_MEMPOOL_INDEX(). They handle the declaration and
initialisation of the tasks and the memory pool control blocks. The last macro,
CHOOSE_MEMPOOL_INDEX(), is used to choose the appropriate memory pool control
block based on a requested memory chunk size. This way of using macros may
not be considered good programming style, but it makes it possible to make
changes to the configuration easily and in one place. The number of tasks and
memory pool control blocks is flexible, which would have been difficult to attain if
it were to be hard-coded in vos.c.

The third file, config_stack.s, is included by int_hdlr.s in the declaration of the
stacks used by the interrupt handling routines.

The configuration file, system.con, presently looks like this (with the exception of
task function names, which have been replaced by generic names):

Memory pool
===========

Max nbr: 256
Order is unimportant.

Chunk size Block count
(bytes)
#-------------------------------
mem 4 10
mem 8 5
mem 12 5
mem 20 10

 87

mem 56 10
mem 84 2
mem 124 2
mem 272 2

Processes
=========

Max nbr: 63
Order is unimportant, though prio must be unique.

Name of process func Prio Stack size Queue size
(0-62) (bytes) (elements)
#---
proc task_1 15 1600 200
proc task_2 4 400 80
proc task_3 3 460 20
proc task_4 5 300 20
proc task_5 13 400 20
proc task_6 11 600 20
proc task_7 10 800 20
proc task_8 9 500 150
proc task_9 8 500 20
proc task_10 7 600 20
proc task_11 2 500 20
proc task_12 0 400 20
proc task_13 6 340 20
proc task_14 12 240 20
proc task_15 14 280 250
proc task_16 16 1160 30
proc CORE_IdleHandler 17 200 1

Static stacks
=============

These are the stacks used in the interrupt handling.

Mode Stack size
(irq/sys) (bytes)
#------------------------------
stk irq 280
stk sys 1500

 88

Appendix VI Error codes from µC/OS-II

1 Introduction

When the old real-time kernel was removed from the system a lot of the old error
messages were replaced with new messages that cannot be interpreted by the
existing version of HCI Toolbox. We have assembled all the new error messages
that can be sent from the real-time kernel in this appendix. This appendix con-
tains information gathered from the chapters four, six and seven in [2].

2 µC/OS-II functions

Since this porting does not use all the available µC/OS-II functions is it not nec-
essary to describe all the different error codes that are available in µC/OS-II, this
document has focused on the error codes that can be expected from the func-
tions used in the port. The error messages are described by their defined name,
as presented in ucos_ii.h, and their respective numerical value with a short de-
scription of what the reasons are for this error.

2.1 OSMemCreate()

All the memory chunks are created and added to their respective memory pool
control blocks (MPCB) depending of their size during the start-up of µC/OS-II.
This function is performed with the OSMemCreate() function in µC/OS-II. The
MPCB that is created for each size of memory chunks will later be used too han-
dle all actions that are performed upon the memory chunks. But it is possible to
make flawed calls to this function by giving it parameters that cannot be used and
these calls may result in some of the following responses.

OS_MEM_INVALID_BLKS (111) - This error signal is sent if there is less than two
memory chunks declared for use by the MPCB. A MPCB must contain at least
two memory chunks otherwise is it only a variable.

OS_MEM_INVALID_SIZE (112) - The size of a memory chunk has to be able to con-
tain a memory pointer when it is not used to contain data. These memory point-
ers are used to keep track of the empty chunks, they will point to the next empty
chunk in the MPCB. The size of a memory pointer is four bytes in the existing
system.

OS_MEM_INVALID_PART (110) – This signal is sent if there are no free memory pool
control blocks left to control the memory chunks that are being created. There
has to be a memory pool control block for each size of the memory chunks.

 89

2.2 OSMemGet()

The function VOS_Alloc() uses this function to get a pointer to a memory chunk.
The function needs to know from which MPCB to get a memory chunk, but that is
handled internally in VOS_Alloc() and will not demand anything from the user of
VOS. There has been a small change to the original behaviour of VOS_Alloc() so
that if a certain size of memory chunks are depleted the next, larger, MPCB is
called to get a memory chunk.

OS_MEM_NO_FREE_BLKS (113) – This signal informs the user that there are no avail-
able chunks left in any MPCB that handles memory chunks of the wanted size or
larger.

2.3 OSMemPut()

When a memory chunk is no longer used it should be returned to the pool of free
memory chunks in its MPCB and that is done by VOS_Free() using the µC/OS-II
function OSMemPut().

OS_MEM_FULL (114) - This error message happens if someone tries to free more
memory chunks to a MPCB than has been allocated for it by OSMemGet(). The
most common cause for this signal is if all memory chunks of this MPCB has al-
ready been deallocated.

2.4 OSQCreate()

This function is used by the macros created when initialising the system during
start-up, in VOS_Init(). But this function does not return any error messages nei-
ther to the user nor to the system.

2.5 OSQPend()

This function is used in both VOS_Receive() and VOS_ReceiveList(). The call to
this function contains a maximum time that the function can wait for a response
and information about from which queue the message should be retrieved.

OS_ERR_EVENT_TYPE (1) - The call has not been made to a message queue. It has
been sent to some other type of event handler. This error should not be able to
occur since there are no other types of event handlers implemented in this port-
ing.

OS_ERR_PEND_ISR (2) - If an ISR tries to retrieve a message and there is no mes-
sage for it to get it will result in this error since an ISR should not stop and wait
for other actions in the system.

 90

OS_TIMEOUT (10) – This signal is sent if there did not come a message within the
given time frame specified in the call of the function. This error code should never
be encountered since the timeout functionality is disabled.

2.6 OSQPost()

When a task wants to send a signal to another task the function VOS_Send() is
used. This function uses the OSQPost() function from µC/OS-II with extra informa-
tion, that is retrieved and declared by VOS_Send(), about which message queue
that is used by a given task.

OS_ERR_EVENT_TYPE (1) - This error is the result of trying to place it in an event
handler that is not a message queue. This error code should not be able to occur
since there are no other type of event handlers implemented in the existing port-
ing.

OS_Q_FULL (30) – This signal is used if there is no room for more messages in the
recipient’s queue. The maximum amount of messages in the queue to a task is
set in the configuration file that is used to create the DECLARE_PROCESS() macro.

2.7 OSTaskCreate()

This function is used by VOS_Init() during the initiation of the system. It is used
by the macro INIT_PROCESSES(). The following errors can be the result of flawed
parameters sent to this function, but a user should never encounter these errors
since they are neither handled nor presented by the macro.

OS_PRIO_INVALID (42) - This error code is returned if the priority of the task is
lower than that of the lowest eligible priority. The lowest priority for any given task
is set in the file os_cfg.h with the variable OS_LOWEST_PRIO.

OS_PRIO_EXIST (40) - This error signal informs the users that the used priority has
already been selected for another task.

OS_NO_MORE_TCB (70) - This error code is returned to OSTaskCreate() by the func-
tion OSTCBInit() if there are no empty task control blocks left to use for a task ini-
tialisation.

 91

 92

Appendix VII The ARM architecture

1 Introduction

This appendix will summarise the information presented in the first three chapters
in [5]. This information facilitates understanding of the problems encountered
when dealing with interrupts and task switches, and how certain architectural is-
sues affect the way the system is implemented.

2 Registers

R0-R12 The R0 to R12 are general purpose registers that are intended for just
about anything. Certain call conventions apply to the use of these reg-
isters when dealing with compiled code though.

Link Register (LR) The link register stores the return address in a branch-with-
link call (BL), allowing execution of procedures.

Stack Pointer (SP) The stack pointer is intended to hold the address of the cur-
rent stack top or bottom, depending on stack growth direc-
tion. The THUMB calls PUSH and POP use the SP implic-
itly, other instructions need to have it specified explicitly.

Program Counter (PC) The program counter contains the current execution
address. Jumps can be made by changing its value.

Current Program Status Register (CPSR) The current program status register
contains the program status informa-
tion. See section 4 below for more in-
formation.

Saved Program Status Register (SPSR) The saved program status register
contains the last program status in-
formation, used to facilitate switching
modes or flags.

3 ARM and THUMB execution

There are two subsets of the ARM architecture instruction set. The so called
ARM instructions use the full 32-bit values while THUMB instructions only use
16-bit values.

 93

The advantages of using only 16-bit instructions are evident when working with a
16-bit data bus, since it only needs one data transfer to move an entire command
and not two transfers. It also reduces the amount of memory used since com-
mands only take half as much space when reduced to 16-bit values. The THUMB
instruction set is however a subset of the full set of ARM instructions and is not
as powerful.

Another difference between the two different instruction sets is the fact that the
THUMB instruction set only has access to the eight lowest hardware registers,
R0 to R7. Another limitation to the thumb instructions is that they cannot directly
modify or access the current program status register or the saved program status
register.

A switch from ARM execution mode to THUMB execution mode is made with the
BX command. If the least significant bit in the branch target address is set to one,
a switch will be performed, and the system will assume all following instructions
to be THUMB instructions. If the least bit in the branch target address it is set to
zero there will be no change and the system will continue to interpret the instruc-
tions as 32-bit instructions.

A switch in the other direction, from THUMB to ARM, happens when an excep-
tion occurs before the system starts to execute the exception handler. Informa-
tion about from which mode the jump to the exception handler came is stored in
the saved program status register. This information is saved so that when the re-
turn is performed the instructions will be interpreted correctly.

4 Program status register

There are two different hardware registers called current program status register
and saved program status register. These registers contain the following fields:

Flags field – this 8-bit field contains the four flags N, Z, C and V (Negative, Zero,
Carry and oVerflow). These flags are changed by logical and arithmetic opera-
tions and can later be tested to see if a following instruction should be performed.

Status field – this field is not used in this version of the ARM architecture.

Extension field – this field is not used in this version of the ARM architecture.

Control field – this 8-bit field contains three control bits that only can be changed
in privileged mode. These bits can disable interrupts and indicates what type of
instructions that the system is running. There are also five bits used for deter-
mine which mode that the processor operates in. The effects and differences be-
tween these modes will be described later.

 94

When the processor switches mode the old program status register is saved in
SPSR.

There are three different reasons for modifying the CPSR, setting the conditional
flags to a known value, enable or disable interrupts and changing processor
mode.

5 Processor modes

The ARM architecture contains seven different processor modes. All but the user
mode are so called privileged modes, where the possibility to change mode or
processor state exists. The intention of the architecture design is that normal
program execution should use the user mode, and operating system functions
should use the privileged modes.

All modes have their own LR (Link Register), SP (Stack Pointer), CPSR (Current
Program Status Register) and SPSR (Saved Program Status Register). The ex-
ception is user mode and system mode, who share all registers. Also, there is no
SPSR in USR mode, since mode changes are not allowed.

5.1 User mode (USR)

This is the default mode, which does not allow changing the mode nor processor
state.

In the current system, user mode is not used. The mode used for normal execu-
tion is instead supervisor mode (SVC).

5.2 Interrupt request mode (IRQ)

When an interrupt occurs, address 0x18 is called, and IRQ mode is automatically
entered. From 0x18, a call to the interrupt handler is done.

In IRQ mode, and all modes that can occur as a result of an exception, the pro-
gram counter at the point of interruption is put in the LR of the new mode, and
the program status is put in SPSR of the new mode. This way, both the position
and the state of the execution can be resumed once the exception has been
handled.

Interrupts can be disabled using the I flag in the program status register, or by
setting the IRQ mask. See for Appendix I more on this subject.

 95

5.3 Fast interrupt request mode (FIQ)

FIQ mode is a high priority interrupt request mode, intended for small and inde-
pendent functions. FIQ mode has a separate set of register for R8 to R12. This
makes it possible to do fast processing without having to save registers on the
stack. It is also possible to save values between interrupt calls without being
forced to save it in memory and later restore the data.

Fast interrupt requests can be disabled using the F flag in the program status
register.

5.4 Supervisor mode (SVC)

The supervisor mode is a general purpose privileged processor mode. In the cur-
rent system, it is used to for general task execution.

5.5 Abort mode (ABT)

Abort mode can be used to implement virtual memory, which is not used in the
current system.

5.6 Undefined mode (UND)

If an instruction cannot be interpreted, or is out of context, a call to address 0x4 is
done, and the processor mode is automatically changed to undefined mode. This
processor mode is very rarely used.

5.7 System mode (SYS)

System mode is in fact the same mode as user mode, except that it is privileged.

In the current system, system mode is used when handling interrupt service rou-
tines.

 96

Appendix VIII Files

These are the files that contain µC/OS-II, the parts of core that are port specific,
and the low-level implementations of task and interrupt handling.

includes.h - Common µC/OS-II header file.
os_arm.c - ARM/THUMB specific µC/OS-II code.
os_arm.h - ARM/THUMB specific µC/OS-II definitions.
os_armaux.h - ARM/THUMB specific µC/OS-II definitions.
os_cfg.h - µC/OS-II configuration constants.
os_core.c - Base µC/OS-II functions for intialisation

and task scheduling.
os_cpu.h - ARM/THUMB specific µC/OS-II definitions.
os_mbox.c - µC/OS-II mailbox functions.
os_mem.c - µC/OS-II memory pool functions.
os_q.c - µC/OS-II queue functions.
os_sem.c - µC/OS-II semaphore functions
os_task.c - µC/OS-II task initialisation and

configuration functions.
os_time.c - µC/OS-II tick and delay functions.
ucos_ii.c - Main µC/OS-II file that includes all non

platform specific code files (os_core.c,
os_mbox.c, os_mem.c, os_q.c, os_sem.c,
os_task.c, os_time.c).

ucos_ii.h - µC/OS-II configuration constants and
structs.

core\
 core\exp\
 core.h - Core module header file.
 core_cache.h - Core module header file.
 core_clock.h - Core module header file.
 core_debug.h - Core module header file.
 core_error.h - Core module header file.
 core_fiq.h - Core module header file.
 core_irq.h - Core module header file.
 core_msg.h - Core module header file.
 core_power.h - Core module header file.
 core_support.h - Core module header file.
 core_timer.h - Core module header file.
 core_types.h - Core module header file.
 core_version.h - Core module header file.
 vos.h - Macro and type definitions needed when

using the VOS.
 core\src\

 97

 core.c - Core handlers, including the core idle task
function.

 critical.s - Critical region functions.
 int_hdlr.s - Low level interrupt handling and task

switching functions. Also defines the
stacks used in th interrupt handling.

 vos.c - VOS implementation that uses µC/OS-II.
 core\src\config\
 config_macros.h - Defines macros needed to declare and

initialise tasks and mempool in vos.c.
Automatically generated by the config
program.

 config_mempool.h - Defines constants and declarations needed
to use access the memory pool.
Automatically generated by the config
program.

 config_stacks.s - Defines the sizes for the stacks used by
the interrupt handling, and is included in
int_hdlr.s. Automatically generated by the
config program.

 core\system\
 boot.s - Contains the boot entry point, from where

everything is started. Calls CORE_Start()
in start.c.

 core_config.c - Declares structures needed in vos.c, based
on core_config.h.

 core_config.h - Defines system constants.
 core_handlers.c - Contains core handler functions for SIGLOG

output.
 except.s - Contains the exception vector.
 fiq_hdlr.s - Contains the FIQ handler, included in

except.s.
 lm_install.c - Configures the LM, called at start-up.
 start.c - Contains CORE_Start(), which intialises

core and µC/OS-II.
 start_hdlr.c - Contains the core start handler.
 swi_hdlr.s - Contains the SWI handler.

 98

	Contents
	Introduction
	Goal and purpose
	What we have done
	What we have learned
	Requirements and constraints
	Investigated operating systems
	OSE Epsilon
	µC/OS-II
	eCos
	Nucleus PLUS
	VxWorks

	Outline of the thesis

	Background
	Real-time operating systems
	Introduction
	Classification of a real-time operating system
	Scheduling
	Internal components
	Scheduling mechanism
	Memory handler
	Interrupt handler
	Clock
	Error Handler
	Data access synchronisation

	Embedded system
	Bluetooth
	Bluetooth specification and the Ericsson solution
	Link Manager
	Host Control Interface
	Higher layers

	Communication links
	SCO link
	ACL link

	Analysis of the Bluetooth specification
	Introduction
	Timing requirements
	Timing requirements in the general Bluetooth specification
	Timing requirements in the Ericsson solution

	Memory requirements
	Memory requirements in the general Bluetooth specification
	Memory requirements in the Ericsson solution

	Core
	Introduction
	VOS
	IRQ
	Handler Control
	Power Management
	Timer
	Clock
	Cache

	RTOS

	OSE Epsilon for ARM
	Problems
	Interrupt handling
	Memory handling
	Timing
	Interrupt service times
	Scheduling

	eCos
	Introduction
	Configuration layout

	Problems encountered
	Compilation
	Configuration

	µC/OS-II
	Introduction
	Problems
	Priorities
	Messaging
	Memory allocation
	Stack handling
	Interrupt handling

	Porting VOS to µC/OS-II
	Introduction
	Code organisation
	Memory Allocation
	Configuration
	Message handling
	Synchronisation
	Limitations

	Modifications made to VOS
	Memory allocation and deallocation
	VOS_Alloc
	VOS_Free

	Time management
	Process information
	VOS_CurrentProcess

	Message transfer
	VOS_Send
	VOS_Receive
	VOS_ReceiveList
	VOS_Sender

	Critical sections
	VOS_EnterCritical
	VOS_ExitCritical

	Error handling
	VOS_Error

	Start-up and activation
	VOS_Init

	Other CORE modifications
	Interrupt handling
	Boot sequence
	Stack initialisation

	Performance tests
	Execution time
	Introduction
	Method
	Results
	Critical regions
	Memory allocation
	Message passing
	Interrupt handling

	Conclusion

	Pre-scheduling performance
	Method
	Results
	Conclusions

	Memory usage
	Introduction
	Method
	Results
	Conclusion

	Tools used
	Trace32
	ARM Software Development Tool
	Config

	Conclusion
	The choice of operating system
	The portability of the Ericsson Bluetooth stack
	VOS requirements and limitations
	Time requirements
	General implementation experiences

	Acknowledgements
	References
	Glossary
	Abbreviations

	The IRQ mask
	General information about task and interrupt handling
	Task switches
	Interrupt Service Routines
	Idle task
	The stack
	Scenario: A normal task switch
	Scenario: Interrupt handling

	Implementation issues concerning task and interrupt handling
	Nested interrupts
	Problems with OSSched()

	How CORE_IrqHandler() works
	Configuring the µC/OS-II VOS port
	Error codes from µC/OS-II
	Introduction
	µC/OS-II functions
	OSMemCreate()
	OSMemGet()
	OSMemPut()
	OSQCreate()
	OSQPend()
	OSQPost()
	OSTaskCreate()

	The ARM architecture
	Introduction
	Registers
	ARM and THUMB execution
	Program status register
	Processor modes
	User mode (USR)
	Interrupt request mode (IRQ)
	Fast interrupt request mode (FIQ)
	Supervisor mode (SVC)
	Abort mode (ABT)
	Undefined mode (UND)
	System mode (SYS)

	Files

