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2 Introduction 

2.1 Goal and purpose 

The main goal of this master thesis was to switch the current real-time operating 
system that powers the Ericsson Bluetooth embedded platform (BEP).  

It is recommended that the reader of this master thesis have at least a basic un-
derstanding of real-time operating systems and embedded platforms to fully 
comprehend and profit from the contents. 

The reason for this was to evaluate if and how it could be done, and what prob-
lems one may encounter. Also, it would show if the intention of making the plat-
form portable had been successful or not. This could be useful for future applica-
tions in other hardware or software environments, allowing a greater flexibility 
and possibility to integrate the system with existing client products. 

The thesis was done in co-operation with Ericsson Technology Licensing. 

2.2 What we have done 

The work has mainly consisted of three parts: 

• Preparatory investigation of suitable operating systems for porting.  

• Adaptation of the system to interface with the new operating system. 

• Analysis of the performance differences of the two ports, and their implica-
tions. 

2.3 What we have learned 

• The principles of the Bluetooth protocol. 

• How an embedded application is designed and what its limitations are. 

• How real-time operating systems work, and differences between design prin-
ciples of such. 

• How to debug and examine an embedded application. 
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2.4 Requirements and constraints 

There are quite a few constraints placed on the work performed in the master 
thesis since it deals with an already existing technology that should be modified, 
not rebuilt. The main requirement is that the system has to be able to function in 
such a tightly planned hard real-time environment that BEP offers. But since it is 
designed for an embedded environment there is also a strict limit for how much 
memory that could be used by the system. 

Both of these requirements are dealt with by most real-time operating systems 
but there are other limitations placed on the system. It is necessary for the RTOS 
to function with the ARM7 processor architecture both in ARM and Thumb mode 
(see Appendix VII for details on the ARM architecture). The reason for this is that 
BEP has parts of it developed in assembly language that utilise both of these 
modes and the test environment use the ARM7 processor.  

The final requirements were that no changes should be made to the current de-
velopment environment and that the new operating system had to fit into the 
model of the system. The reason behind these requirements was that this master 
thesis should also try to discern any problems that could arise when working with 
a new real-time operating system. This meant that it was necessary to develop 
systems that support the existing functionality implemented in the virtual operat-
ing system (VOS) using the functions available in the new operating system. This 
requirement also prevented any changes to the programs used in the original de-
velopment environment. 

2.5 Investigated operating systems  

To implement the port, a target operating system had to be found first. Three fac-
tors were especially important: Real-time performance, compactness and avail-
ability. 

It was also necessary to gain basic knowledge of the existing operating system, 
OSE Epsilon, to know how to adapt the new operating system. The principle of 
the VOS is to require only very basic functionality from the operating system, 
thereby allowing many different operating systems. 

Our choice of target operating system finally fell on µC/OS-II, because of its sim-
plistic and efficient design and its royalty free license. 
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2.5.1 OSE Epsilon 
 

Supported target processors Siemens C166/167, ARM7/Thumb, NEC V85X, At-
mel AVR, Mitsubishi M16, 8051, 68HC11, Z80, 
64180 

Supported compilers Distributed as target specific assembly code 

Supported standards None 

Supplied as Assembly code 

Guaranteed maximum interrupt 
latency 

Hard real-time 

Scheduling policies Fixed priority preemptive scheduling (priority proc-
esses) + Round robin (background processes) 

Priority inversion avoidance 
mechanism 

None 

Nested interrupts Yes 

OSE Epsilon is a real-time operating system developed by Enea OSE AB. They 
also have a couple of other versions of their operating system but Epsilon is the 
smallest version. It is the main real-time operating system used by Ericsson and 
the platform currently used for the Ericsson Bluetooth stack. 

2.5.2 µC/OS-II 
 

Supported target processors x86, PowerPC, ARM, MIPS, StrongARM, NEC V850, 
Hitachi SH, and many more 

Supported compilers ANSI-C 

Supported standards None 

Supplied as Source 

Guaranteed maximum inter-
rupt latency 

Hard real-time 

Scheduling policies Fixed priority preemptive scheduling 

Priority inversion avoidance 
mechanism 

None 

Nested interrupts No 

µC/OS-II is a very small real-time operating system developed by Jean J. Lab-
rosse of Micriµm Incorporated. Its source code is openly available, and the terms 
of use are very advantageous. 
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2.5.3 eCos 
 

Supported target processors x86, PowerPC, ARM, MIPS, StrongARM, NEC 
V850, Hitachi SH, Panasonic AM3x, SPARC 

Supported compilers GCC (GNU) 

Supported standards EL/IX, ISO C, POSIX.1, µITRON 

Supplied as Object, source 

Guaranteed maximum interrupt 
latency 

Soft real-time 

Scheduling policies Prioritised FIFO, bitmap 

Priority inversion avoidance 
mechanism 

Priority inheritance, priority ceilings 

Nested interrupts Yes 

eCos is a highly configurable real-time operating system for deeply embedded 
applications, maintained by Red Hat. It is not an embedded Linux, though it of-
fers POSIX.11 compatibility, as well as an optional µITRON2 compatibility layer. 

eCos is also an open source initiative, and therefore free of charge. 

2.5.4 Nucleus PLUS 
 

Supported target processors x86, PowerPC, ARM, MIPS 

Supported compilers ANSI-C 

Supported Standards µITRON, OSEK 

Supplied as Source 

Guaranteed maximum interrupt 
latency 

Hard real-time 

Scheduling policies Prioritised FIFO 

Priority inversion avoidance 
mechanism 

Yes 

Nested interrupts Yes 

Nucleus PLUS is a royalty free, small and powerful RTOS from Accelerated 
Technology, optionally supporting µITRON or OSEK3. 

                                                      
1 Set of standards designed to provide application portability between Unix variants 
2 Application interface for real-time systems, widely used in the Japanese embedded market 
3 An RTOS interface standard used mainly in the vehicle manufacturing industry 
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2.5.5 VxWorks 
 

Supported target processors x86, PowerPC, ARM, MIPS, 68K, i960, SH, 
SPARC, NEC V8xx, M32 R/D, RAD6000, ST 20 

Supported compilers ANSI-C/C++ 

Supported Standards POSIX 1003.1b 

Supplied as Object 

Guaranteed maximum interrupt 
latency 

Hard real-time 

Scheduling policies Prioritised FIFO, round robin 

Priority inversion avoidance 
mechanism 

Yes 

Nested interrupts Yes 

VxWorks from Wind River Systems is the most widely used RTOS in the world, 
and is both scalable and efficient. 

2.6 Outline of the thesis 

A short description of the information presented in the chapters: 

In chapter 3 there is an introduction to the more important concepts necessary 
for understanding the contents of this report. The chapter is followed by an 
analysis of the Bluetooth specification and the Ericsson solution, focusing on ei-
ther real-time or memory constraints. This is followed by a short introduction and 
analysis of the three operating systems that were examined thoroughly, namely 
OSE Epsilon, eCos and µC/OS-II. After this introduction and analysis, a detailed 
description of the modifications that were necessary for the Ericsson solution to 
function with its new operating system, µC/OS-II, follows. The performance tests 
and their implications are presented and discussed in the next chapter, followed 
by a short description of the programs used. This is followed by the conclusions 
of the master thesis and finally there are the acknowledgements and references 
followed by a short glossary of important abbreviations. 

Following all these chapters are a number of appendices that are referenced 
from various parts of the report. 
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3 Background 

3.1 Real-time operating systems 
3.1.1 Introduction 

An operating system is basically the software needed to run applications, pro-
grams, on a computer system. This software includes process handling, hard-
ware drivers and memory handling, all those things that often are taken for 
granted when using modern computers. 

When real-world interaction becomes an issue, so do real-world time constraints. 
These constraints are most often of a temporal nature, it is necessary to com-
plete certain tasks within a certain time. When working with humans these inter-
actions often have constraints in the range of a few seconds, but when interact-
ing with other computer devices these timing constraints are reduced to very 
small units. 

For this reason, real-time operating systems contain certain basic primitives: 

• Prioritised processes/threads 

• Multileveled interrupts 

• Mutexes and semaphores 

3.1.2 Classification of a real-time operating system  

There are two basic types of real-time operating systems, hard and soft ones. 
The hard real-time systems are predictable; it is possible to guarantee maximum 
and minimum execution time for system calls, procedures, and interrupt laten-
cies. Hard real-time operating systems therefore have very high demands in 
terms of scheduling and interrupt handling. 

In soft real-time systems, the system only needs to behave in a consistent man-
ner, being allowed to fail to fulfil the time constraints from time to time. This lee-
way allows the system to employ somewhat less strict interrupt handling, and the 
scheduling can be done in a not so strict and predictable manner. 

Real-time operating systems can alternatively be grouped according to their in-
teraction with their surroundings. They can be either time or event driven, or in 
rare cases both. 
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An event driven real-time operating system reacts to events that occur during 
execution, and can modify the order of execution, while a time driven real-time 
operating system has a fixed execution schedule that is calculated before execu-
tion starts. 

3.1.3 Scheduling 

The scheduler plans the execution to ensure that the processes can fulfil their 
deadlines. However, the running process may be interrupted by a more important 
process, in which case the operating system has to be able to do a context 
switch, letting the more important process run. This is allowed only if at least one 
of the following conditions are met: 

• A clock tick interrupt has occurred. Clock tick interrupts occur when the system 
updates the time, and checks if any other task with a higher priority wants to 
run. 

• A running task performs a system call. 

• The interrupt handler orders a switch due to an external interrupt. 

The system can be divided into four distinct layers, see Figure 1. The bottom 
layer is the hardware that contains CPU, physical memory, a clock, and commu-
nication hardware. On top of this layer is the hardware adaptation layer, contain-
ing functionality for registers and interrupt handling. The real-time operating sys-
tem layer consists of functionality for scheduling, synchronisation and inter-
process communication. The highest layer consists of applications that run on 
the platform. 
 

Hardware 

Hardware Adaptation Layer 

Real-time operating system 

Application 

Figure 1. The structure of an embedded solution 
 
 

3.1.4 Internal components 

This section describes the internal components of a typical real-time operating 
system. Many of these components can also be found in standard operating sys-
tems. 
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3.1.4.1 Scheduling mechanism 

The scheduling mechanism plans the order in which the active processes are to 
execute. This planning can be done according to a variety of principles. The ba-
sic concept for all of them is that processes have a deadline to uphold. The two 
most common algorithms are rate monotonic scheduling and earliest deadline 
scheduling. Both of them have pros and cons. Rate monotonic scheduling has a 
stabile, predictable behaviour, but assumes that all tasks are independent. Earli-
est deadline scheduling is easy to implement and uses the CPU very efficiently, 
but may result in unpredictable behaviour if a task fails to meet its deadline. Both 
algorithms are designed to be used in an event driven operating system, where 
new processes are activated due to external events, and not according to a pre-
defined plan. 

3.1.4.2 Memory handler 

The memory handling system is responsible for the handling of dynamic memory, 
with the use of a central memory pool. When a process has finished using a 
memory portion, it returns it to the memory pool. To prevent memory fragmenta-
tion it is important to have a good algorithm for memory allocation, especially in 
small, embedded systems, where often the amount of available memory is very 
limited. 

3.1.4.3 Interrupt handler 

Interrupts can be activated from either hardware or software, and both have to be 
handled. This is taken care of by the interrupt handler, which can force context 
switches. If the priority of an interrupt is not high enough it will be discarded, and 
the running process will continue running. A discarded interrupt is dealt with ei-
ther by ignoring it, hoping that if the problem remains a new interrupt will occur, 
or delaying it until the executing processes has finished. When an interrupt is 
called, there is a short delay before the interrupt can start executing. This delay is 
called interrupt latency, and during this period the executing process is stored 
away and the new process, activated by the interrupt, is placed into memory 
ready to start executing. 

3.1.4.4 Clock 

An external clock generates ticks through hardware interrupts to the operating 
system, allowing it to update the internal clock. Processes used to measure time 
intervals and to set timers to activate after a certain amount of ticks can then use 
the internal clock. This is necessary if the operating system is designed to sup-
port periodical and sleeping processes. The precision of the clock has to be very 
good to prevent drift over long periods. 
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3.1.4.5 Error Handler 

The error handling consists of a central system that can handle exceptions from 
running processes and activate a suitable response. This response varies ac-
cording to the severity of the error encountered. Serious errors can cause the er-
ror handler to terminate the executing process or even freeze the entire system. 

3.1.4.6 Data access synchronisation 

Access to shared resources, such as memory areas or devices, can be con-
trolled using some kind of signalling device that prevents other processes from 
using that resource. This can be implemented in many different ways, but it is of-
ten implemented with semaphores or mutexes.  

It is necessary for a real-time operating system to prevent simultaneous access 
to resources because this might result in corrupted data.  

3.2 Embedded system 

An embedded system is a computer system that is integrated into a device, per-
forming a certain task. The size and complexity of both the computer system and 
its task may vary substantially, though generally it is a matter of small devices 
with very limited processing and memory capabilities. Furthermore, embedded 
systems often act in co-ordinance with external events and conditions, such as 
sensors and timers, rather than actual user interaction. 

3.3 Bluetooth 

Bluetooth is a wireless communications standard developed by the Bluetooth 
Special Interest Group (SIG). Its main focus is to provide wireless connectivity 
between any kind of electronic device, at a low price and easy access. To put it 
simple, Bluetooth reduces the need for cables and specific communication proto-
cols between devices, allowing everything to communicate with anything. 

Bluetooth powered units can communicate and send data or voice over the con-
nections. The existing standard is designed to support a multitude of different de-
vices including everything from headsets for mobile telephones to connecting 
computers to networks. 

In Bluetooth, there are masters and slaves. A master can have many slaves, and 
may also be the slave of another master. A master with slaves is called a pi-
conet. Several inter-connected piconets form a scatternet. 
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3.4 Bluetooth specification and the Ericsson solution 

The Ericsson Bluetooth solution for embedded systems is a hardware and soft-
ware platform, see Figure 2. The hardware contains the baseband controller 
block (EBC), a CPU, some RAM, some ROM, some flash memory and in-
put/output ports (UART and USB). Apart from the application, the software 
mainly consists of two parts: the Bluetooth stack and the operating system. To 
make a port of the stack as easy as possible, an interface layer (VOS and tem-
plates) is put between the two. All operating system calls from the stack are con-
sequently done through this layer. 

EBC 

Drivers 

Application 

LEGS 

L2CAP 

HCI 

LM 

Tem
plates

Other hardware

 
 
 
 
 
 
 
 
 
 
 

VOS 

 
 

OSE Software

Hardware

Figure 2. Schematics of the Ericsson Bluetooth platform, and its surrounding 
components, both hardware and software 

In a host solution where the Bluetooth device is not planned to run everything on 
its own processor the layout of the components is a bit different as shown in 
Figure 3. 
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Physical bus

HCI Firmware

EBC 

Drivers 

Higher  
Layers 

HCI Driver 

LM 
Tem

plates 

Other hardware

 
 
 
 

VOS 

OSE 

Host Software

Software

Hardware

Figure 3. Shows a schematic describing the host version of the Ericsson Blue-
tooth platform. 

3.4.1 Link Manager 

The link manager is the lowest software layer in the stack. It controls the usage 
of the common channel, connections of new slaves and searches for available 
units. It also implements security for the data transferred through encryption and 
controls how to portion packets between the master and the slaves on the com-
mon channel. 

The physical channel is divided into equally sized time frames of 1,250 µs each. 
Each frame is divided into two slots, which hence are 625 µs each. The master in 
a connection uses the first slot in each frame to send data and the second slot to 
receive data from the slaves. 

This layer is very tightly coupled with the Ericsson baseband controller, EBC. It is 
the main product developed by Ericsson Technology Licensing, EBT. 

3.4.2 Host Control Interface 

The host control interface implements a uniform interface for accessing the lower 
layers of the Bluetooth stack. This layer is divided into two parts when imple-
menting a host based solution. The commands can be transferred over some 
kind of physical medium e.g. USB, RS-232. 

3.4.3 Higher layers 

The function of the higher layers is to implement the services that are necessary 
for the different roles that the Bluetooth device can be used in.  
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In what is called the embedded solution, the higher layers are a part of the soft-
ware running on the same CPU and using the same memory. This usually puts 
higher demands on the available resources and may result in changes to the op-
erating system used in the solution. 

3.5 Communication links 

There are two defined types of links that can be established between master and 
slave unit: 

• Synchronous Connection-Oriented link (SCO link) 

• Asynchronous Connection-Less link (ACL link) 

3.5.1 SCO link 

This link is designed for time-bounded information, e.g. voice communication be-
tween a master and a specific slave in a piconet. The master can have a maxi-
mum of three different SCO links established at the same time to either one or 
several different slaves.  

All the SCO links are point-to-point and maintained by using reserved slots at 
regular intervals, adherence to the protocol is therefore important so that a re-
served slot is not used for another type of communication thereby losing the link. 
No data sent over the link is repeated. There is not even a retransmission system 
for lost data packets. Slots not reserved for the SCO link can be used for other 
types of communication between Bluetooth units. 

In an SCO link is it always possible for a slave to send data to the master as a 
response to a message from the master, unless it was directed to another slave 
unit. 

3.5.2 ACL link 

The ACL link is used for point-to-multipoint communication in a piconet. It is pos-
sible to create an ACL link to a slave that is already involved in an SCO link by 
using the slots that are not already reserved. In contrast to the SCO link there 
may only exist one ACL link between a master and a slave.  

Data transferred over an ACL link is most of the time protected by a retransmis-
sion system that assures data integrity. Communication from a slave to the mas-
ter is only allowed if the slave was addressed directly by the master. Packets 
sent without being addressed to a specific slave is considered to be a broadcast 
and is read by all the slaves connected to the piconet. 
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4 Analysis of the Bluetooth specification 

4.1 Introduction 

Ideally, we would do a white box analysis of the existing system, determining tim-
ing requirements and limitations. Due to insufficient documentation on the high 
and mid level design, though, this was not feasible. We instead performed a 
black box analysis of the existing timing constraints in the Ericsson solution.  

4.2 Timing requirements 
4.2.1 Timing requirements in the general Bluetooth specification 

The current specifications for Bluetooth do not contain any demands concerning 
software latencies in the system. The only existing constraints concern the hard-
ware supporting the software system. The radio system has a ±10 µs long win-
dow for receiving data. This prevents minor clock mismatches from disturbing the 
system.  

However, the time limits in the hardware propagate to the software in the Erics-
son solution. Therefore, a short description of the different transmission time lim-
its is given. 

RX slot 

1250 µs

625 µs

TX slot 
±10 µs 

Figure 4. The time limits of the Bluetooth protocol 

The Bluetooth protocol sends and receives information in frames. Each frame is 
divided into two slots, one TX slot and one RX slot. During the TX slot the unit 
can send data and during the RX slot it can receive data. Each slot is 625 µs long 
and a frame is therefore 1,250 µs long. For a master, the first slot is TX and the 
second RX. For slaves, the order is reversed. 
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4.2.2 Timing requirements in the Ericsson solution 

In the Ericsson solution, the transmission system for the hardware consists of 
two small buffers, one for sending packets and one for packets to be sent next. 
The reception system is similar, but with one buffer for receiving packets and one 
buffer for previously received packets. 

It is possible to decide packet type and create the specific packet during a period 
of 1,250 µs but it is much easier to plan and create packets for a longer time pe-
riod. The reason for this is that voice transfers are made with SCO packets and 
these have a fixed interval. A SCO packet has to be sent every third frame if the 
system is not to lose quality. Voice communication usually continues during long 
periods of time, at least when time is measured in µs. But if the delay between 
incoming data and its outgoing response is too long, the system loses much 
flexibility. The ability to plan ahead also removes some sensitivity concerning in-
terrupts but the system is still sensitive for interrupts when it comes to writing 
new data into the buffer. 

4.3 Memory requirements 
4.3.1 Memory requirements in the general Bluetooth specification 

There are none. 

4.3.2 Memory requirements in the Ericsson solution 

The existing Ericsson solution that we used was developed on Lydia boards us-
ing the Irma C circuit. This development environment is equipped with 56 kB of 
RAM and another 512 kB of flash memory. The entire system with real-time op-
erating system and processes for controlling the Bluetooth system has to function 
without any extra memory space. This place high demands on the memory foot-
print of a new operating system. The existing real-time operating system kernel, 
Enea’s OSE Epsilon, fulfils the demands by implementing only the most impor-
tant features. It has the following features: 

• inter-process communication 

• dynamic memory management 

• error handling 

• hardware and software interrupts 

• timer interrupts (alarms) 

 20



• synchronisation mechanisms 

• pre-emptive process scheduling 

The Ericsson solution of the implementation of the Bluetooth stack should not be 
affected by the used real-time operating system. The solution to this problem is a 
layer around the real-time operating system called core.  

4.4 Core 
4.4.1 Introduction 

The core layer, described in [6], contains all the functionality that is necessary to 
run the Bluetooth stack. It contains a couple of different modules each imple-
mented to handle one specific function for the stack. This design was chosen to 
make the system portable because no changes have to be made to the stack 
when the operating system is changed. Nevertheless, a few of the modules in the 
core have to be updated and the templates modified to work with the new operat-
ing system. 

The modules VOS, IRQ, handler control, power management, timer, clock and 
cache are contained in the core layer. 
 

4.4.2 VOS 

The virtual operating system acts as an interface between the operating system’s 
services and the Bluetooth stack. This module and the operating system have to 
be configured for specific applications. This configuration is done with the tem-
plate module, which is not a part of the core. 

Drivers and applications use the functions offered by VOS in order to simplify 
porting of the implementation to another operating system, since operating sys-
tem specific commands are only used within VOS, and not scattered all over the 
entire code. When porting the system the procedures implemented in VOS have 
to be rewritten to use the new functions presented by the new real-time operating 
system. This is based on the hypothesis that a new real-time operating system is 
very similar to the existing system and has comparable functions.  

4.4.3 IRQ 

The interrupt handling module handles interrupts from the hardware and supports 
nested interrupts with different levels of priority. By supporting nested interrupts, 
this module allows interrupts with a higher priority to execute immediately. 
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Procedures that are called at a certain interrupt are called interrupt service rou-
tines. They are registered in this module. 

No changes should be done to the interrupt handler when porting to another op-
erating system, because all modifications will be found in templates. 

4.4.4 Handler Control 

This implementation of core supports a group of handlers that are controlled from 
this module. Different processes register handler events, triggering the registered 
handler when the events occur. A couple of examples of different handlers are 
the following 

• Error handler is called when an error occurs in another module in the core or 
directly from the RTOS through the VOS. 

• Send handler is used to debug the system in runtime and triggers when mod-
ules send messages. 

• Trace handler is used for output of debug text. 

• Event handler is used to log important events. 

• Idle handler is the process that runs when the system enters idle mode. 
 

4.4.5 Power Management 

This module contains methods for controlling the power consumption through ac-
tivating and deactivating different parts of the hardware. The module depends on 
the VOS, IRQ and timer modules and must be modified if the necessary func-
tions used by VOS are not available in the new operating system.  

4.4.6 Timer 

This module contains the functionality to measure time and create alarms that 
perform specified procedure calls after a set period. It also contains information 
about how long time has passed since the latest system reset. 

4.4.7 Clock 

The clock module handles the different hardware clocks available in the system 
and controls the frequency of the CPU. Through this module it is possible to ac-
cess the different hardware clocks and set their frequency. 
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4.4.8 Cache 

This module handles the cache memory available in the hardware through ini-
tialisation and configuration of the cache. 

4.5 RTOS 

This is not exactly a module in the same sense as the other parts of the core, it is 
the heart that powers the core. This module contains functionality for process 
scheduling, dynamic memory handling, inter-process communication and data 
synchronisation. 

When exchanging the RTOS is it important that the new system is not too com-
plex with many modules and that the drivers are independent from the kernel. 
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5 OSE Epsilon for ARM 

This chapter will present and discuss the different results that have been investi-
gated and presented in [3] and give an insight into the current operating system 
used by Ericsson Technology Licensing in their Bluetooth solution. This report 
also contains measurements of the different times that were considered critical to 
the performance of the existing solution based on OSE Epsilon. 

5.1 Problems 

The only major problem with OSE Epsilon is the fact that the code is not avail-
able for analysis since a program generates it and it does not contain any com-
ments. All data about how the internal functions work in the operating system has 
to be mapped through experiments. 

5.2 Interrupt handling 

The interrupt handling implemented for OSE Epsilon handles nested interrupts 
with five different levels of priority, an interrupt with a higher priority can super-
sede a lower prioritised. If nested interrupts occur the system stores all registers 
used by the previous interrupt on a special stack. This stack has enough room to 
store one set of registers for each level of priority. If a task is interrupted the reg-
isters are saved in the task’s control block making it easy to locate them after-
wards. 

The functionality for this is located in a few assembly macros that exist in the file 
osarm.mac. The macros are INIT_INT_NESTED() and QUIT_INT_NESTED().  

5.3 Memory handling 

Memory handling in OSE Epsilon is based on lists containing memory chunks of 
different sizes. These memory chunks are not created at initialisation but created 
later, out of a large memory pool, when they are needed. The disadvantage of 
this is that it may result in a slightly longer time to allocate a new memory chunk 
since it has to be created. The advantage is that the setup time during system 
initialisation should be shorter and it also gives a greater flexibility since it is not 
necessary to know the exact number of the different memory chunks that will be 
used. 

There is a hidden header in front of the allocated memory area that contains 14 
bytes of data. Most of the fields are two bytes in length except the first field that is 
four bytes long and the last field that is only one byte long. This header contains 
the following fields: 
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•  Next This field contains a 32-bit value that is used as a pointer to the 
next memory chunk. 

• Owner Defines the owner of the memory chunk, a value of zero means 
that OSE Epsilon owns the chunk. 

• Size This field contains the memory chunk size that was requested by 
VOS_Alloc(). 

• Head A field that describes in which memory size group the chunk is reg-
istered. 

• Sender Contains the identifier of the task that sent this memory chunk to 
another task. It is set to zero when the memory is allocated. 

• Sig_no A number that relates to the memory chunk when it is used as a 
signal. 

• Data The head of the memory chunk that can be used by the different 
tasks to store data in. This field is only one byte in length. 

5.4 Timing 

OSE Epsilon fulfils the demands that are placed on it regarding the time critical 
sections. This was proven in [3]. 

5.4.1 Interrupt service times  

Presented in the report are details about the interrupt latencies where a value of 
40 – 45 µs is presented for the total delay from the hardware as well as the oper-
ating system. OSE Epsilon uses 30 – 35 µs to load the interrupt registers and 
perform a context switch. Hardware and sections of the code that are locked from 
interrupts use the rest of the time. The longest time it takes for completing an in-
terrupt service routine is 330 µs. This has been presented in [3] when describing 
a reception of a RD interrupt. A RD interrupt means that the system has received 
an ACL data packet. The most common interrupt is the timer interrupt and it 
takes a total time of 260 µs to execute this interrupt service routine in the setup 
used in [3].  

5.4.2 Scheduling  

The case presented for performing a pre-scheduling is two timer interrupts, one 
to start the scheduler and one to start the EBC transfer, followed by the maximal 
processing time necessary and the time necessary for transfer the results to the 
EBC. This amounts to 260 µs used for the timer interrupt and 1750 µs for the 
processing of the next sequence of packets sent, resulting in a total of 2010 µs 
used. This sequence of actions should be performed over a time period of eight 
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frames, each frame is 1250 µs, giving a total of 10 000 µs available. This leaves 
an amount of 7990 µs for interrupt handling and other actions that may disturb 
the process. 

Based on the results in the report the worst type of interrupt to service is the in-
terrupt for receiving ACL data, that takes 330 µs to process, and the interrupt for 
transmitting ACL data, that takes 250 µs to process. There may be one of each 
of these interrupts during a frame. This result in a maximum of eight interrupts of 
each type during the pre-scheduling. Handling these interrupts take a total of 8 * 
(330 µs + 250 µs), that is 4640 µs used for the interrupts, leaving a total of 3350 
µs to use for other applications during these eight frames. During the last frame, 
that writes the scheduled data to the available hardware registers, 260 µs is used 
for the timer interrupt activating the write function and another 260 µs is used for 
writing the data. The remaining 730 µs are left for handling other interrupts and 
necessary applications. The same worst case of receiving and transmitting ACL 
data applies to this situation and results in another 330 µs + 250 µs used for in-
terrupts handling, this leaves 150 µs for other uses in this frame. 

When the entire system use a common CPU, as in an embedded solution, it is 
necessary to add all other interrupts that may occur. Interrupts from the UART or 
USB for data transfers are not considered in this and the system only has a total 
of 3350 µs left to use for these interrupts during scheduling and 150 µs during 
the frame when writing the scheduled data to hardware. This results in a very 
small amount of time left in the final frame for anything else than writing the data 
which means that writing the data to the hardware has to have a very high priority 
so that it is not delayed. If the writing of the next sequence of scheduled frames 
are delayed so that it does not happen during the planned frame this will result in 
difficulties since the system will transmit erroneous packets.  
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6 eCos 

6.1 Introduction 

eCos (Embedded Configurable Operating System) was the first contestant to be 
evaluated for the position of replacing OSE Epsilon in the embedded Bluetooth 
software in this project. It has a number of advantages and characteristics. It is 

• Free of charge for both development and commercial use  

• Designed to be highly modular and easily configurable, making it possible to 
include only the parts that you need 

• Compatible with many interface standards, such as µITRON, EL/IX, and of 
course ANSI-C 

• Open source, developed and maintained by a large number of people around 
the world. This may be considered both an advantage and a disadvantage: 

- It has a key role in the pricing policy, people work for free 

- It is constantly and quickly updated if any problems arise 

But, 

- It may end up becoming inconsistent 

- It tends to be poorly documented 

6.1.1 Configuration layout 

To make configuration as easy as possible, a special configuration tool is pro-
vided. This tool presents the internal elements of the eCos real-time operating 
system in a graphical way too improve the feeling of control for the user. It is 
easy to find and understand the variables that need changes with this GUI 
(shown in Figure 5), but it also hides a lot of information from the user. 
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Figure 5 The configuration tool used by eCos. 

Each configuration is based on a number of packages. Some base packages are 
required, depending on the target platform. The only platform dependent pack-
ages are the Hardware Abstraction Layer (HAL) packages. For convenience, 
packages are grouped together in pre-defined template setups. Once a platform 
and a template have been chosen, the configuration tool allows for modifications 
of defined parameters. 

The packages are defined in a number of text files, written in a TCL-based script 
language called Component Definition Language (CDL). 

6.2 Problems encountered 
6.2.1 Compilation 

Although eCos is supposed to be very open and portable, its ties with the GNU 
compiler and utilities remain strong. eCos relies on many non-ANSI features of 
the GNU C++ compiler, making compilation with ARM’s tools difficult. A few of 
the language extensions that are provided by the GNU C++ compiler were added 
specifically to support eCos. The first of these extensions is constructor priority 
ordering which gives the possibility to decide in which order static objects are 
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created through the use of the __attribute__ mechanism. This feature makes it 
possible to e.g. create a scheduler object before the system creates any thread 
objects. Another extension is selective linking that allows the user to only import 
specific sections and not an entire library when a part of the application needs to 
use an external function or variable.  

This is a problem when working with the ARM Development Suite since it does 
not support these features that are necessary to compile eCos correctly. There 
are two different ways of handling this problem. The first solution is to restructure 
and rewrite the code in eCos so that the use of these special extensions is un-
necessary. Even if it would be possible to modify the eCos code in this way, it 
would be out of scope for this project, and would make integration of new ver-
sions of the operating system difficult. 

The second solution to this problem is that the ARM Development Suite allows 
import of compiled object files in various formats, including the ones preferred by 
the GNU tools; ELF and XCOFF. This makes it possible to compile the eCos 
code with the GNU compiler into object files, and by including header files for the 
Bluetooth core code, making it available in the ARM environment. The core code 
could then be compiled with ARM’s compiler, and linked together using its linker 
into a complete flashable executable. 

This solution has other problems that were encountered after a few short tests. 
As it turns out, even though object file formats are compatible, there are differ-
ences when it comes to the basic routines such as division and modulo, which 
are called differently in the GNU object files. It may be possible to remedy this by 
altering the files, but for now, it remains an unsolved puzzle. 

It would most likely be possible to compile the Ericsson Bluetooth stack using the 
GNU tools, and thereby permitting eCos to be used as the operating system. But 
since all development is done using ARM’s tools, and will continue to be done 
using them, this option is somewhat uninteresting from Ericsson’s point of view. 

6.2.2 Configuration 

In its specifications, eCos defines clearly the difference between the hardware 
abstraction layer and the operating system modules. In reality, though, separat-
ing them is hard work. Since very little peripheral interaction is required in the 
application, most of the hardware abstraction layer is unnecessary.  
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7 µC/OS-II 

7.1 Introduction 

The second real-time operating system that was tested was µC/OS-II, version 
2.04, from Micriµm Incorporated, owned by Jean J. Labrosse. This is not exactly 
a real-time operating system, it is more of a real-time kernel and therefore con-
tains less unnecessary functions for the project.  

The advantages with µC/OS-II are many but a short list of the most important 
ones are: 

• Available code. All code for the real-time kernel is available and modifiable so 
that it works on the intended system. A lot of different ports are available from 
the homepage. 

• FAA (Federal Aviation Authority) certification. The real-time kernel has been 
certified for use by safety critical systems in aviation and medical products. 
This proves that µC/OS-II is a very robust real-time operating system. 

• Small footprint. Depending on the processor it is possible to reduce the foot-
print of µC/OS-II to around 2KB of code and 200 bytes of data, excluding the 
stacks.  

• Execution time. Most functions in µC/OS-II have a constant and deterministic 
execution time. The execution time does not depend on the number of running 
processes. 

• Available functions. Supports pre-emptive real-time scheduling and has a mul-
titasking kernel. It also contains the functions for semaphores, messaging, 
task management, time management and fixed size memory management. 

7.2 Problems 

All systems contain a few problematic features that have to be handled and 
µC/OS-II was not an exception to this. A few of the limitations may result in prob-
lems later during development of the Bluetooth system. This chapter will give a 
short description of the areas where µC/OS-II differs from OSE Epsilon and what 
may cause problems that will affect the porting of the virtual operating system 
layer. 
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7.2.1 Priorities 

There is a maximum of 63 tasks in µC/OS-II excluding the idle task. This limit is 
the result of how priorities are implemented in µC/OS-II. Another problem with 
the current implementation of priorities in µC/OS-II is that it does not allow multi-
ple tasks to share a priority level. In the OSE Epsilon implementation of the sys-
tem this feature of shared priorities levels is used by the different tasks. The rea-
son for these limitations is that the priorities are implemented with a table with 64 
places available and the lowest priority is used by the operating system for the 
idle task. 

7.2.2 Messaging 

In µC/OS-II, there is no record of which process sent a certain message. This is 
required by VOS, so it is necessary to add such a reference in the VOS layer it-
self. Consequently, this causes some raised complexity of the VOS layer. 

7.2.3 Memory allocation 

Memory handling is based on fixed size memory chunks so that the system has a 
certain amount of memory chunks of each size. This requires a good understand-
ing of how many chunks the different tasks need and how large these chunks 
need to be. When the tasks free these allocated chunks it is important to return 
them to the correct memory handler. This requires that either VOS or the task 
remember from which memory handler each chunk is allocated. 

7.2.4 Stack handling 

In OSE Epsilon, the configuration file handles creation and initialisation of the 
necessary stacks. This is not the case in µC/OS-II, since this is a much more 
simplistic operating system to work with and therefore requires more work during 
initialisation. It is necessary to declare and initialise all stacks used by the system 
e.g. the main thread stack and interrupt stacks. To reduce the complexity of stack 
creation the initialisation for all the interrupt stacks are placed in the same file, 
int_hdlr.s, a part of the core system and the rest of the stacks are initialised by 
the macro DECLARE_PROCESSES() found in config_macros.h. This macro is used by 
the function VOS_Init() found in vos.c. 

7.2.5 Interrupt handling 

There is no interrupt handler delivered with the µC/OS-II source since its imple-
mentation will differ too much depending on which platform that is used. There is 
instead a second layer, a hardware abstraction layer, which contains the inter-
face to the hardware, a so-called port. The available interrupt handler from Lee 
Dunbar’s porting to the ARM7Thumb processor did not support nested interrupts, 
which resulted in a need to design and implement a new interrupt handler, to use 
with µC/OS-II, that can handle nested interrupts. 
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8 Porting VOS to µC/OS-II 

8.1 Introduction 

The porting of VOS consisted of making it rely on µC/OS-II rather than OSE Epsi-
lon. During this porting, a couple of problems were encountered and solved. 
They are summarised in the following sections. 

8.1.1  Code organisation 

The current implementation of the system contains the VOS interface that should 
be the only part of the system that utilises the variables and functions in the real-
time operating system that powers the system. Unfortunately this is not com-
pletely true as both usb.c and core.c contains references to specific OSE Epsilon 
commands and variables. In the new implementation that uses µC/OS-II instead 
of OSE Epsilon this has been changed so that core.c only uses variables and 
functions available in vos.c and vos.h. The problem with usb.c is that it uses 
semaphores and that there is no support in vos.c for semaphores and therefore 
either has to be added to the virtual operating system or rewritten so that usb.c 
uses the messaging system available in µC/OS-II. Therefore, USB support has 
been left out for the moment. 

Function names that begin with OS, such as OSStart() or OSMemCreate() are al-
ways µC/OS-II functions. Functions that are a part of the Bluetooth system are 
named in the style of CORE_Start(), VOS_Alloc() and so on depending on from 
which module they are. 

8.1.2 Memory Allocation 

In µC/OS-II, the memory allocation is semi-dynamic, in a way that prevents frag-
mentation and assures a deterministic allocation time. A fixed memory area is 
defined, and a special "memory pool control block" handles how much of this 
memory area is used. The memory area is divided in a number of equally sized 
and indivisible memory chunks that are returned to the caller upon allocation re-
quests to the controlling memory pool control block. The way the adaptation to 
the VOS allocation and de-allocation is done, a number of memory pool control 
blocks are created, each with a certain memory chunk size. Currently, there are 
eight such memory pool control blocks, set according to Table 1. 

When returning an allocated memory chunk to the µC/OS-II memory pool control 
block (MPCB), it is necessary to provide a reference to the memory pool control 
block from which the chunk was retrieved. In order to make this work with the 
VOS_Free() function, which only takes a pointer to the allocated memory chunk, 
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the index number for the memory pool control block is placed in a hidden header, 
in front of the memory chunk, as shown in Figure 6. 

 

Unused 
MPCB 
index 

ID field Data field Header 

Figure 6. Description of a memory chunk. 
 

 Number of 
chunks 

Size of chunk + 
header 

Memory 
usage 

Block Handler 1 10 4 + 4 80 

Block Handler 2 5 8 + 4 60 

Block Handler 3 5 12 + 4 80 

Block Handler 4 10 20 + 4 240 

Block Handler 5 10 56 + 4 600 

Block Handler 6 2 84 + 4 176 

Block Handler 7 2 124 + 4 256 

Block Handler 8 2 272 + 4 552 

Total amount of memory used 2044 

Table 1. Specification of the available memory chunks. 
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Tests have been done to verify that this is indeed the memory distribution 
needed when running the stack with a reasonable use case. There are some ex-
tra chunks for each size, to ensure that the system works in somewhat more ex-
treme cases. The test results are presented in 9.3.3. 

The overhead of four bytes for each memory chunk is a bit on the high side but it 
is unfortunately necessary since the memory chunks have to stay word aligned. 
In the current implementation only two of the four bytes will ever be used. OSE 
Epsilon, on the other hand, uses 16 bytes, so four bytes is actually quite slim. 

8.1.3 Configuration 

In order to allow simple configuration of memory pool size distributions, stack 
sizes and process setup, VOS and core use a couple of header files, created 
with a small configuration program. This program reads the file system.con and 
creates two header files named config_mempool.h and config_macros.h, which 
are used by VOS to initialise the memory pool and the tasks, and an additional 
file called config_stacks.s. The last file config_stacks.s is used by int_hdlr.s to 
set the correct sizes for the interrupt stacks. 

ID field Data field Header 

Empty Identifies the 
sender 

MPCB 
index

Figure 7. Description of a memory chunk, including the sender identifier. 

8.1.4 Message handling 

It is important for VOS to be able to identify from which process a message was 
sent. This presented a problem since there is no support from µC/OS-II when 
dealing with this problem. The problem is solved by using one of the bytes avail-
able in the header (there are three unused bytes left since only one byte is used 
for describing the MPCB) to store the priority of the sending task, see Figure 7. 
Since there may not exist more than one task at each priority level the priority 
can be used to identify a single task. With a maximum of 64 different priorities 
one byte is enough to store this information.   
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In OSE Epsilon, each task is associated with a message queue, which is re-
flected in the way VOS_Send() only takes the receiver task id as destination pa-
rameter. In µC/OS-II, there is no direct connection between tasks and message 
queues. Tasks can therefore receive messages from any queue, and any num-
ber of queues can be created. In the VOS adaptation though, an array consisting 
of pointers to the queue control blocks is created, linking each task with exactly 
one unique queue. 

8.1.5 Synchronisation 

There are neither semaphores nor mutexes in VOS. Synchronisation between 
tasks is created through signals sent between them and not through blocking ac-
cess to shared resources. This solution removes the need for time slicing be-
tween tasks since they cannot be allowed to compete for resources. There is in-
stead a form of co-operative multitasking based on signals.  

The only exception to this is the interrupts. Interrupts can happen at any time and 
it is not possible to guarantee that a task is not using a shared resource at the 
time of an interrupt. It is therefore possible to disable all interrupts to prevent 
them from disturbing the system when it accesses shared resources. 

8.1.6 Limitations 

During implementation a few limitations in µC/OS-II were found. They were not 
serious and could easily be solved, in the worst case through some extra coding.  

The following limitations were solved during implementation: 

• During allocation of memory it is necessary for VOS to know which MPCB to 
access for receiving a memory chunk of the correct size. 

• During deallocation of memory chunks it is necessary for VOS to know from 
which MPCB the chunk was allocated. 

• It is not necessary for OSE Epsilon to know the exact number of memory 
chunks for each size since they are dynamically created during memory allo-
cation. In µC/OS-II it is necessary to know how many memory chunks that are 
needed of the different sizes since it has to be set during start-up. 

• The amount of space for signals has to be set before the system is started. 
Each task has a limited amount of space for received signals. The amount has 
been set by tests. 

• There is no support for tasks sharing the same priority. The previous solution 
with OSE Epsilon allowed several tasks to share a priority but in the µC/OS-II 
implementation the priorities were rearranged so that a priority only is used by 
one task.  
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The following limitations are still left in the final system: 

• There cannot be more than 63 tasks. This is due to the fact that the table that 
handles priorities only contains 64 positions and the lowest priority is reserved 
for the idle task.  

• It is necessary to know the maximum amount of memory chunks of each size 
that the system uses at the same time. This information is used to create the 
configuration files and prevents crashes due to insufficient amount of memory 
chunks. 

8.2 Modifications made to VOS 

This section contains an in depth description of the changes that were made to 
the virtual operating system. It is divided into subsections describing the different 
services that VOS provides. 

8.2.1 Memory allocation and deallocation 

8.2.1.1 VOS_Alloc 

This function receives a parameter to know how much memory space the calling 
process needs to allocate. The most important steps are shown in Code section 
1. It returns a pointer to a memory chunk of the requested size, or larger if the 
most efficient size was not available, by making a call to the corresponding 
memory pool control block. Any errors that are encountered by the call to the 
µC/OS-II function OSMemGet() are handled by a call to VOS_Error(). The final ac-
tion stores a reference in the hidden header describing from which memory pool 
control block the memory chunk was taken. 

 
/* Choose memory block from the requested size */ 
if        (ulSize <= MEMPOOL_BLOCK0_SIZE && 
           aptMemPool[0]->OSMemNFree > 0) { 
  memCtlBlockIndex = 0; 
} else if (ulSize <= MEMPOOL_BLOCK1_SIZE && 
           aptMemPool[1]->OSMemNFree > 0) { 
  memCtlBlockIndex = 1; 
 
  ... 
 
} else if (ulSize <= MEMPOOL_BLOCK7_SIZE && 
           aptMemPool[7]->OSMemNFree > 0) { 
  memCtlBlockIndex = 7; 
} 
 
/* Allocate a memory chunk */ 
ptPointer = (void *) OSMemGet(aptMemPool[memCtlBlockIndex], &err); 
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  ... Error handling 
 
/* Put a four byte padding before the allocated memory */ 
*((uint32 *) ptPointer) = 
                     (uint32) ((0xFF << 8) | memCtlBlockIndex); 
 
/* Move the pointer four bytes */ 
ptPointer = (void *) ((uint32 *) ptPointer + 1); 
 
return ptPointer; 

Code section 1. The code used for memory allocation. 

The actual selection of memory pool control block is done in the macro 
CHOOSE_MEMPOOL_INDEX(), found in config_mempool.h, but is displayed in its pre-
processed form for readability. 

8.2.1.2 VOS_Free 

This function receives a pointer to the used memory chunk and returns it to the 
pool of available memory. The code is shown in Code section 2. Information 
about which memory pool control block it should be returned to is stored in the 
header that is placed in front of the memory chunk.  Without the information 
stored in this header it would not be possible to make a correct function call to 
the µC/OS-II function OSMemPut(). 

 
/* Get a pointer to the padding */ 
ptPad = (uint32 *) (((uint32 *) *ppMem) - 1); 
 
/* Get the memory block index from the padding */ 
blockIndex = (uint8) (*ptPad & 0xFF); 
 
/* Free the allocated memory */ 
OSMemPut((OS_MEM *) aptMemPool[blockIndex], (void *) ptPad); 

Code section 2. The code used for deallocation. 

8.2.2 Time management 

This is not used by VOS and therefore should not be implemented. 

In µC/OS-II time is monitored by the use of time ticks. These ticks are used for 
the functionality of delaying a task a set amount of time. This functionality will not 
be used by the existing implementation of the system since it utilises the func-
tionality of the timer component when the need for time management is encoun-
tered.  
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8.2.3 Process information 

8.2.3.1 VOS_CurrentProcess 

This function returns an identifier for the running task. The identifier is the same 
as the priority of the task since there cannot be more than one task for each pri-
ority. The only code, outside of vos.c, that utilises this function is located in 
core.c and it is used when handling logging and error information. 

If the system is handling an interrupt and is currently inside an IRS when there is 
a call to the function it returns a value of 0xFF. 

8.2.4 Message transfer 

8.2.4.1 VOS_Send 

This function has two parameters, a pointer to the message and a task identifier 
(the priority of the receiving task) describing the receiving task. The essential 
code of this function is presented in Code section 3. It stores the task identifier 
inside the hidden header placed in front of the memory chunk used for the signal. 
This identifier is also used for locating the correct message queue to place the 
signal in. After the message is posted in the message queue the function checks 
for any errors and if found makes a call to VOS_Error(). 

 
if (OSIntNesting == 0) { 
    /* Set sender thread id in the padding word (see figure in VOS_Alloc) */ 
    *((uint32 *) ((uint32) *ppMsg - 4)) &= (OSPrioCur << 8) | 0xFFFF00FF; 
  } 
 
  /* Will work since tProcess is the priority */ 
  pEvCtlBlk = aptECBMap[tProcess]; 
  if (pEvCtlBlk != NULL) 
  { 
    /* Send the message */ 
    err = OSQPost(pEvCtlBlk, *ppMsg); 
 
    /* Handle any returned error codes*/ 
    if (err != OS_NO_ERR) 
    { 
      VOS_Error(err); 
    } 
  } 

Code section 3. Sending a message. 
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8.2.4.2 VOS_Receive 

This function searches for the oldest received message to the calling task. When 
a call is made to the function VOS_ReceiveList() it stores the ignored messages 
in a special list.  

The message returned by this function could either be from the list of previously 
ignored messages or, if that list is empty, from the message queue connected to 
the task. If no message is found the function will wait forever for a message to 
arrive but such a situation cannot occur since this is a message driven system. 
As shown in Code section 4 the priority of the running process is used as an in-
dex to find the correct message queue to check. 

 
/* Retrieve the id (priority) of the running process. */ 
tCurrentProcess = (VOS_TProcess)OSPrioCur; 
 
… 
 
/* Wait for a message, may change running process */ 
/* MAX_INT used for timeout and this may result in a long wait*/ 
ptTempMsg = 
  (VOS_TMessageHeader*) OSQPend(aptECBMap[tCurrentProcess], 
                                0, &err); 

Code section 4. Receiving a message. 

8.2.4.3 VOS_ReceiveList 

This function searches for messages sent to the calling task that fulfils the pa-
rameters sent to this function. The parameters consist of a list of the message 
identifiers that are acceptable and the number of identifiers sent in the list. It 
searches through the previously ignored messages and if none of these match 
the list it starts checking the message queue connected to the task until it locates 
a correct message. Any message that does not fulfil the parameters is ignored 
and added to the list of ignored messages. The first message that matches one 
of the identifiers in the list is returned to the caller of this function. If the function 
cannot locate a matching message it will continue to wait until such a message is 
received. 

8.2.4.4 VOS_Sender 

This function returns the identifier of the sending task for the message that is 
sent as a parameter to the function. The identifier for the sender is located in the 
header and is the same as the priority of the sending task. 
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/* Get the full value of the word size padding */ 
pad = *((uint32 *) ((int32) pMsg - 1)); 
 
/* Return the second least significant byte. */ 
/* This is the sender priority */ 
return (VOS_TProcess) (pad >> 8) & 0x000000FF; 

Code section 5. How to access information about the sender of the message. 

8.2.5 Critical sections 

8.2.5.1 VOS_EnterCritical 

There is no support added in VOS for any advanced handling of resource alloca-
tion and deallocation with e.g. mutexes or semaphores. The system implemented 
is instead based on only one available critical resource. Taking this resource 
locks the system so that it does not send any interrupts to the interrupt handler. 
This is done through the use of the IRQ mask described in Appendix I. 

8.2.5.2 VOS_ExitCritical 

Reactivates the system so that it can once again reach the interrupt handler with 
interrupts from the system, restoring the IRQ mask as described in Appendix I.  

8.2.6 Error handling 

8.2.6.1 VOS_Error  

This function receives errors from the entire operating system and relays them to 
the error handler implemented in core. The error structure that is sent to the error 
handler contains information about the error code, which process that created the 
error, and a reference to the stack pointer of the process. The error codes are 
listed in either core_error.h or driver_error.h depending on where they origi-
nate. Errors that originate from within µC/OS-II have their error codes listed in 
ucos_ii.h and they have a value between 0-130 depending on which function in 
µC/OS-II that created the error. 

All errors sent to CORE_ErrorHandler() will be transferred to the 
SIGLOG_ErrorHandler() that sends the data about the error to the communication 
port used for testing the system. Both functions prevent the system from continue 
to run so that the system has to go through a hardware reset before it is fully 
functional again.  

All the possible error codes returned by this function are presented in Appendix 
VI. 
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8.2.7 Start-up and activation 

8.2.7.1 VOS_Init 

This function initialises all the necessary components used by the different tasks. 
Each available priority has its message queue and message pool, for storing ig-
nored messages, created. Both of these message-handling devices are then ini-
tialised. The memory pool control blocks and the tasks are also created and ini-
tialised with the macros found in the file config_macros.h. 

Everything that was previously done in the OSE Epsilon for ARM file osarmcon.s, 
generated from the configuration file osarm.con, is now done in VOS. More spe-
cifically, it is done in VOS_Init().  

8.3 Other CORE modifications 
8.3.1 Interrupt handling 

The new system contains two different stacks used by the interrupt handler. The 
information stored in the registers when an interrupt occurs is stored in the inter-
rupt register stack. During an interrupt it is necessary to have a stack that can be 
used by the interrupt to store temporary data and this is done on the interrupt 
stack. The reason for the two stacks is that the system supports nested inter-
rupts4 and has to switch mode for this to function and this result in problems with 
the stack pointer. The simplest way of handling the stack pointer is to save the 
registers in one stack and temporary variables on another stack. 

The two stacks have different needs regarding size since the interrupt register 
stack needs a total of 280 bytes, 56 bytes for storing all the data from the regis-
ters and it need to be able to store five complete sets of registers. The reason for 
five sets of registers is that one set is from the interrupted task and four sets from 
the maximum times an interrupt can be suspended by an interrupt with a higher 
priority. The interrupt stack also need quite a lot of space and is not as easy to 
calculate since it needs to be able to store the maximum use of the stack for 
each interrupt priority level.  

8.3.2 Boot sequence 

The boot sequence, starting from the label BOOT_Entry has had some minor 
changes. Generally, it does the same thing as the OSE port: 

                                                      

4 Nested interrupts means that interrupts can suspend other interrupts of a lower priority. There-
fore allowing a nested structure where there may exist many different interrupts that need to run 
before the system can leave the interrupt phase and continue with the running task. 
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• Platform dependent memory initialisation by setting the wait states5 and the 
type of memory used. 

• Code copying from flash to RAM. If the code resides in flash, it needs to be 
copied to RAM in order to run. 

• Variable initialisation. Some variables may have set initial values. These need 
to be copied to the right location in the RAM. All other variables are set to zero 
in the same fashion. 

8.3.2.1 Stack initialisation 

During the boot sequence, the memory area designated as the interrupt stack is 
used as stack. Once the tasks has started, after calling OSStart() in os_core.c, 
this stack is overwritten, since it is no longer needed. 

Each task has its own stack, defined in C code upon creation. Task creation is 
done by VOS_Init() found in vos.c and the memory areas for the stacks are also 
declared there. The actual declarations are done with the help of a macro called 
DECLARE_PROCESSES(), from a generated h-file based on the desired number of 
tasks and stack sizes for each of them. Initialisation is done the same way with 
the macro INIT_PROCESSES(). The configuration of these macros is covered in 
Appendix V. 

                                                      
5 A wait state is a delay of one or more clock cycles added to the processor's instruction execu-
tion time to allow it to communicate with slow external devices 
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9 Performance tests  

9.1 Execution time 
9.1.1 Introduction 

In order to assess the performance of the µC/OS-II port, measurements of crucial 
parts of the system were made. How do the differences in implementation affect 
the time needed to perform certain tasks, and how does that in turn affect the ful-
filment of the real-time demands? 

9.1.2 Method 

To measure the time needed for the different operations, a digital oscilloscope in 
conjunction with binary values to a couple of LEDs on the development board 
were used. Writing to a certain memory address sets these LEDs. The way this 
can be used to measure the time is as follows: When the region that is to be 
measured is entered, the value of an LED is set, and when the region is exited, 
the value is unset. The oscilloscope, with probes connected to the LEDs, can 
then measure the time passed quite accurately. 

Using this method of measurement does however cause some additional time for 
setting and unsetting the values of the pins. In order to get an accurate value, 
this additional time must be measured separately and subtracted.  

9.1.3 Results 

9.1.3.1 Critical regions 

These are basically the same implementation, since the original handling of criti-
cal regions in the ARM/THUMB port of µC/OS-II was replaced with the one used 
in the OSE port, in order to allow nested interrupts to work the way it is assumed 
in the system. See Appendix III and Appendix IV for more on this. 

 µC/OS-II OSE Epsilon 

VOS_EnterCritical() 7.44 µs 8.84 µs

VOS_ExitCritical() 8.04 µs 12.24 µs

Table 2. Measured times for entering and exiting critical regions 
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The improvements in handling of critical regions in the µC/OS-II port are due to 
two minor modifications: 

• The variable uiVosCriticalCounter (defined in vos.c) and the variable 
IRQ_LOCK_COUNTER were joined into one. They both have the same meaning, 
and by only increasing one counter it was possible to reduce the amount of 
code. The reduction in code has given a slight decrease in execution time. 

• In the assembly function arm_unlock(), a lock was made before the unlock as 
a precaution. This lock was removed, since such precautions are unneces-
sary when the lock states have been verified by asserts. 

9.1.3.2 Memory allocation 

The allocation and de-allocation (freeing) of dynamic memory is also an impor-
tant time consuming part of the operating system. It is something that is closely 
coupled with message passing, since the messages need to be dynamically de-
clared. 

 µC/OS-II OSE Epsilon 

VOS_Alloc(272) 53.4 µs 50.8 µs

VOS_Alloc(4) 48.2 µs 46.8 µs

VOS_Free(272) 28.4 µs 49.8 µs

VOS_Free(4) 28.4 µs 48.6 µs

Table 3. Measured times for allocating and de-allocating dynamic memory. The 
values in parentheses indicate the number of bytes requested 

OSE is slightly faster when allocating, but significantly slower when de-allocating. 
This may be due to differences in the memory pool data structures, OSE may 
need to step through a list to put back a memory chunk. 

The differences when allocating a large block in contrast to a small one are more 
or less equal. The time consumed by the µC/OS-II function OSMemGet() is in itself 
always constant, but the selection of suitable memory pool control block in VOS 
is not (see 8.1.2). 

 48



9.1.3.3 Message passing 

The message passing is one of the central parts of the system, and a quick re-
sponse time is very important for the overall performance. 

The performance tests were made in the following way. First, the two VOS func-
tions VOS_Send() and VOS_Receive() were measured isolated, so that these times 
could be compared to those in the more complex scenarios below. Isolated 
means that there is no task switch involved when sending, and no waiting done 
when receiving. This is done by first doing a VOS_Send() to the current process, 
and after that a VOS_Receive(). The sending does not cause a task switch, since 
the current task evidently is the highest priority task ready, and no one is ready to 
receive the message since it was sent to itself. The receive function does not 
wait, since there most certainly is a message waiting. 

In order to include the time for the task switches, two scenarios were devised. 

• Sending a message to higher priority task causes the sending task to be pre-
empted, and the higher priority task to resume running, given that it was wait-
ing for a message. The two tasks in question were hci_commander (priority 15 
in the µC/OS-II port, priority 11 in the OSE Epsilon port) and hci_transport 
(priority 4 and 3). 

• Sending a message to a lower priority task does not result in a task switch, 
even if the receiver task is waiting for a message. Eventually, the lower prior-
ity task will get to run, and handle the message. This will of course take a 
while, and that duration is included in the measured time. The two tasks in 
question in were lm_connection (priority 11 in the µC/OS-II port, priority 7 in 
the OSE port) and lm_supervision (priority 13 and 8). 

Both scenarios were defined as the first occurrence of the situation after a con-
nection to a slave has been made, in order to make the results comparable. 
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 µC/OS-II OSE Epsilon 

VOS_Send(), no switch 43.8 µs 111.8 µs

VOS_Receive(), no wait 35.8 µs 55.8 µs

Send+receive, to higher 
priority process 

140.0 µs 180.0 µs

Send+receive, to lower 
priority process 

705.0 µs 720.0 µs

Table 4. Measured times for message passing 

The reason why the VOS_Send() takes so much more time in the OSE port than in 
the µC/OS-II port may be that they have different kinds of data structures han-
dling the states of the tasks (waiting, ready, running, dormant). In µC/OS-II, task 
states are handled using the thread priority as identifier in a number of arrays 
and matrices, making the determination of which task is the highest ready and 
which tasks are waiting for messages in certain queues a quick and efficient op-
eration. OSE may do this differently, but in turn allows several tasks to share the 
same priority, and thereby allows time sliced background tasks, which is not 
used. 

9.1.3.4 Interrupt handling 

Many time critical operations in a real-time system are initiated by an interrupt, 
either because of a timer or external events. Therefore, a quick response time is 
important when handling interrupts. 

Also, it is important that the handling of an interrupt service routine does not take 
too long, since this will delay all other execution. This is, however, more a con-
cern for the designer of the interrupt service routine than of the routines that han-
dle them. 

Only the preamble6 of the interrupt handling is listed, since that is what causes 
most the interrupt latency, and therefore is of most interest. Comparing the inter-
rupt handling that is done after the interrupt service routine has finished would be 
interesting too, but was left out because of its complexity and lack of time. 

                                                      
6 The preamble is the part of the interrupt that saves information from the registers and prepares 
the system. It does not contain the time spent deciding which interrupt to start since this time is 
the same for both versions. 
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 µC/OS-II OSE Epsilon 

Preamble, non nested 14.2 µs 4.3 µs

Preamble, nested 9.4 µs 2.7 µs

Table 5. Measured times for preparing for a interrupt service routine to run 

As seen in Table 5, the OSE port is considerably faster at handling interrupts. 
This is due to differences in the way the task information is stored at switches. 
The solution in the ARM/THUMB port of µC/OS-II uses the task stacks to store 
the saved registers and status. OSE Epsilon stores this in a special area allo-
cated for each task, which makes switching simpler but requires a bit more 
memory. See Appendix II for details on task switching and stack handling in the 
µC/OS-II port. 

9.1.4 Conclusion 

All in all, the µC/OS-II port and the OSE port perform equally well. This is mostly 
because they are very similar in concept, at least in the parts used by the VOS. 

The µC/OS-II port is in fact generally faster, though the lengthy preamble in the 
interrupt handling may be a cause for concern. Improvements can possibly be 
made by simplifying the access to the saved task registers and status in the 
ARM/THUMB port of µC/OS-II. 

The implications of these differences do not seem to affect the ability to meet the 
real-time demands. 

9.2 Pre-scheduling performance 

The performance of pre-scheduling is crucial when it comes to fulfilling the real-
time constraints of the system. Tests were therefore conducted to examine how 
the change of operating system affected the time consumed handling the pre-
scheduling. 

9.2.1 Method 

The tests were conducted in the following way. Upon entry in the pre-scheduling 
function a LED is turned on, and upon exit it is turned off again. The time used by 
interrupts is also included in the measurement so the results show the real exe-
cution time for the pre-scheduler. 
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It is possible to see how the execution time differs by using the average function 
on the oscilloscope. It measures the latest 128 time periods where the LED was 
active and summarises this data into a diagram. See Figure 9 and Figure 10 for 
such images displaying the execution time distribution for OSE Epsilon and 
µC/OS-II respectively. 

9.2.2 Results 

The system was measured when it was transmitting DM1 packets over an ACL 
link, other types of data packets were tested but discarded since there was an 
obvious trend showing that DM1 packets placed a maximal strain on the system. 

The images shown in Figure 9 and Figure 10 may need a short explanation. The 
horizontal axis represents the execution time for the pre-scheduling and the ver-
tical axis displays the percentage of the executions that were running for as long 
as the horizontal axis indicates at that position. Both of the plots presented share 
the same scale for the vertical and horizontal axes to ease comparisons. The 
sudden edges in the diagrams shows that many executions took about the same 
time to complete, most probably due to a fix number of execution paths depend-
ing on the pre-scheduling needs. The slopes after the sudden edges are caused 
by delays of one sort or another, including interrupt handling. 

Displayed in Figure 9 is the time distribution for pre-scheduling using OSE Epsi-
lon. There are three important execution times that are shown in the diagram, the 
fastest execution time is 400 µs. This is true for approximately 18% of the times 
that pre-scheduling is performed. Almost a third of all executions finished after 
500 µs and a total of 60% of the executions have finished after 1680 µs.  The 
longest execution in this diagram took 2240 µs, but longer samples have been 
observed. 

1680 µs

500 µs 

400 µs 

Figure 9. The distribution of time spent pre-scheduling when running OSE Epsi-
lon during high-load data transfer. 
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Showed in Figure 10 are the results from using µC/OS-II when running the pre-
scheduling.  The similarities between the diagrams are remarkable and show al-
most the same pattern. The only significant difference between them is that there 
is a small delay for a small percentage of the samples at the 1680 µs time limit. 

1680 µs

500 µs 

400 µs 

Figure 10. The distribution of time spent pre-scheduling when running µC/OS-II 
during high-load data transfer. 

9.2.3 Conclusions 

The scenario studied in both cases was chosen in order to press the system 
hard, pumping a continuous stream of data. However, it is not a worst case sce-
nario since it was not possible to guarantee constant interrupts. However, it 
shows the performance during a high-load usage scenario. 

As seen in the figures, there are no significant differences in the performance, 
the µC/OS-II port is insignificantly slower at times. The differences discussed in 
the previous section are apparently not affecting the overall performance. 

9.3 Memory usage 
9.3.1 Introduction 

Another area of concern was the usage of available memory. It is important to 
keep the footprint of the operating system as small as possible. A sequence of 
tests was performed to see how many memory chunks of the different sizes that 
were necessary. 

9.3.2 Method 

The use of the memory chunks is measured by a small modification to the 
VOS_Alloc() and VOS_Free() functions. They use a small two-dimensional matrix 
to keep both the current number of allocated memory chunks, from all the avail-
able MPCBs, and the maximum number of chunks used for each MPCB. 
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The system then sends data between two Bluetooth units over an ACL link with 
different packet types. After the system has been transmitting data at the maxi-
mum speed for a short moment the values of the matrix are checked. 

This test is not performed with the system running in flash which will affect the 
speed with which it can perform different actions but this should not affect the 
use of memory chunks since they are not time dependent. 

9.3.3 Results 

The memory usage was tested with both data medium rate packets (DM) that 
contain CRC for the data payload and data high rate packets (DH) that does not 
contain any CRC for the data payload. The number following the type of packet is 
the number of time slots a packet may cover. The values in Table 6 display the 
maximum number of memory chunks of different sizes that are used simultane-
ously by the system. 

As shown in Table 2 there are not very large differences between the different 
types of packets. It is very interesting, though, to see that not a single memory 
chunk of with a size of 84 bytes is ever allocated during ACL data transfer. 

The system’s worst case is when DM1 packets transfer data, at that point it uses 
the maximum amount of memory chunks. The theoretical worst case for the 
amount of memory used is then 1112 bytes and the best case is for either DM5 
or DH1 that both use in their worst case scenarios 988 bytes. 
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Available Size DM1 DM3 DM5 DH1 DH3 DH5 

10 4 5 5 5 5 5 5 

5 8 3 3 3 3 3 3 

5 12 5 5 4 4 5 4 

10 20 3 3 3 3 3 3 

10 56 5 4 3 3 4 4 

2 84 0 0 0 0 0 0 

2 124 1 1 1 1 1 1 

2 272 2 2 2 2 2 2 

Table 6. Results of the memory usage test with different data packets. 

9.3.4 Conclusion 

Since the system will use a larger memory chunk if the most efficient size is not 
available are there no problems with the distribution of the smaller memory 
chunks. But there may be problems with the largest memory chunks since there 
may arise an unexpected need from the system to allocate a lot of these large 
chunks.  

However, at the present there is no reason to be alarmed by the use of memory 
chunks in the system. Rather the opposite is true, there may be a possibility to 
reduce the amount of available memory chunks but there might be unforeseen 
situations that demand a higher memory usage so the overhead should be left 
untouched since it does not affect the system in a negative way. 
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10 Tools used 

Here follows a short presentation of the tools that were used during the work of 
this porting of the BEP to µC/OS-II. 

10.1 Trace32 

Trace32 is a program developed by Lauterbach Datentechnik GmbH. The pro-
gram, when used together with an in-circuit-debugger, allows the user to see how 
the code behaves on the test board. It is possible to look at the registers in the 
CPU as well as the code in the memory. This tool was very helpful during debug-
ging and testing due to the insight it gave to the inner workings of the code. 

The program supports special features and can retrieve internal statistical infor-
mation from µC/OS-II, but only when used with the 68HC08 processor, and OSE 
Epsilon, when used on ARM7. 

10.2 ARM Software Development Tool 

The ARM Software Development Tool (SDT) is a program used to handle a soft-
ware project. It deals with compilation, assembling and linking, as well as sets 
parameters organised in different build variants. For example, a build variant can 
be configured to include debug code or have different output formats, allowing 
execution in either Trace32 or directly on the board. 

10.3 Config 

The configuration program was written in C and compiled with GCC. It is a very 
simple program that translates a configuration file into several macros and save 
these in a couple of h-files, used at compilation. For further information see 
Appendix V. 
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11 Conclusion 

11.1 The choice of operating system 

The operating system chosen for the port, µC/OS-II, is conceptually very similar 
to OSE Epsilon, the operating system that it replaced.  

In a way, this may have made the results of the thesis less significant. Replacing 
it with a fundamentally different operating system would have proved the level of 
flexibility of the stack and how it would have to be changed in order to function 
under this new environment. But then again, the thesis had to be finished within 
reasonable time. 

Other interesting operating systems that were not selected are Nucleus and 
VxWorks. The main reason behind not selecting any of them was that they were 
introduced quite late in the project, but we still did a quick examination of how 
they relate to µC/OS-II. 

11.2 The portability of the Ericsson Bluetooth stack 

The version of the stack that was used when porting has proven to be well de-
signed for portability. 

However, one issue was discovered during the project. It concerns how the sys-
tem prevents an involuntary rescheduling by blocking all the interrupts. This may 
result in problems with operating systems that contain support for running parallel 
processes. It presents no problem with the current system since it is designed for 
a host solution. Possible operating systems for porting are primarily those that 
are used by the system as a library of functions, incorporated into the executable, 
thereby allowing only the stack to run on the system. These types of operating 
systems are commonly known as micro-kernels. 

If another type of operating system is selected this will modify the basis of the 
system in such a way that a redesign might be necessary to introduce time slic-
ing so that the operating system's functions do not starve. This is outside the 
scope of this master thesis but might be considered for further analysis by Erics-
son Technology Licensing. 

11.3 VOS requirements and limitations 

• No resource synchronisation. There is no explicit resource protection mecha-
nism incorporated in VOS since there are no semaphores or mutexes. These 
mechanisms are not necessary if there are no situations where two tasks si-
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multaneously wants to access a resource, but it requires a more careful sys-
tem design. 

• No time slicing. There is no support for automatic time slicing between proc-
esses in VOS. This complicates the selection of new operating systems be-
cause there should not be any need for simultaneous tasks. A solution to this 
is to use micro-kernels that can be incorporated into the system and that do 
not need running tasks. 

• Preemptive scheduling. It is necessary to check each time a signal is sent if 
the receiving task is waiting for a signal and if the receiving task has a higher 
priority if so a task switch takes place. This is due to the fact that the system 
only can have one processes running at a time and the signal works like a to-
ken where the task holding the token may execute. 

• Minimal functional requirements. There are very few operating systems that 
do not support the very basic functionality necessary for implementing VOS. It 
only needs the following functions: 

- Signalling service with queues. The tasks need some basic support for 
sending signals and a possibility to store several signals before they are 
processed. 

- Memory handling. The basic functionality of allocating and freeing memory 
is of course necessary. 

- Unique addressing of tasks. All tasks need a unique address so that they 
can be identified and selected. 

- Prioritised task scheduling. The tasks need priorities and functionality in 
the operating system to decide which task that should be allowed to run.  

- Interrupt handling for nested interrupts. Support for at least five levels of 
nested interrupts is also necessary to handle the current implementation. 

11.4 Time requirements 

The real time demand placed on the current system requires that all time limits 
be kept. This limits the possible operating system candidates to only hard real-
time operating systems. As shown previously in Chapter 9 there are some minor 
differences between the two implementations but they both work without any 
problems.  
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The most time critical part of the system is the scheduling of how to handle the 
next couple of slots, i.e. when to send or receive data. We were not able to de-
tect any differences between the system running OSE Epsilon and µC/OS-II 
when measuring these values. The differences in interrupt latency between the 
two operating systems (see 9.1.3.4) have had almost no effect on the system. 
The reason for this is that the µC/OS-II version of VOS saves a lot of time when 
handling signals. Sending and receiving signals is somewhat faster compared to 
the solution based on OSE Epsilon (see 9.1.3.3). The same is also true for allo-
cating and freeing the memory used by the signals (see 9.1.3.2). 

The conclusion when looking back at the test results is that there are no prob-
lems for VOS to handle the scheduling independently of whether it is OSE Epsi-
lon or µC/OS-II that powers it. The behaviour of the execution time of the sched-
uling task has not given us any reasons for concern. 

11.5 General implementation experiences 

After having adapted the system to µC/OS-II, our main experiences regarding 
porting of the Ericsson Bluetooth stack have been these: 

• The adaptation of VOS is fairly easy, once you are aware of its requirements 
and how these differ from the behaviour of the target operating system. Most 
operating systems have mechanisms similar to those in OSE Epsilon that are 
used by VOS, so at this level adaptation to most operating systems should be 
possible. The risk, though, is that too much of what should be part of the op-
erating system is put in the VOS, making it less virtual than it ought to be.  

• It is important to know the underlying limitations of the operating system. If 
some part requires modification, the adaptation may take much longer than 
anticipated, especially if your knowledge of the platform is limited. This was 
our problem when adapting the interrupt handler and context switch. In retro-
spect, the work needed to be done there would have discouraged us from us-
ing µC/OS-II if we had known it all from the start. Having to modify the operat-
ing system should not be a part of the porting. 
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14 Glossary 

14.1 Abbreviations 

ACL Asynchronous Connection-Less 

ANSI American National Standards Institute 

BEP Bluetooth Embedded Platform 

CPU Central Processing Unit 

CRC Cyclic Redundancy Check 

EBC Ericsson Bluetooth Core 

EBT Ericsson Technology Licensing AB 

ECB Event Control Block 

eCos Embedded Configurable Operating System 

FS Frame Scheduler 

GCC GNU (GNU’s Not Unix) C Compiler 

GUI Graphical User Interface 

HAL Hardware Abstraction Layer 

HCI Host Control Interface 

L2CAP Logical Link Control and Adaption Protocol 

LM Link Manager 

MPCB Memory Pool Control Block 

RAM Random Access Memory 
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ROM Read-Only Memory 

RTOS Real Time Operating System 

RX Receive 

SCO Synchronous Connection-Oriented 

SIG Special Interest Group 

TX Transmit 

UART Universal Asynchronous Receiver/Transmitter 

USB Universal Serial Bus 

VOS Virtual Operating System 

µITRON Micro Industrial TRON (The Real-time Operating system Nu-
cleus) 
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Appendix I The IRQ mask 

This appendix describes how the problem with prioritised interrupts is solved with 
the help of a combination of hardware and software. The original architecture did 
not support prioritised interrupts because it only had one flag that could activate 
or deactivate interrupts. 

In order to stop certain interrupts from coming, there is a hardware IRQ mask im-
plemented. There is also the I flag, which is part of the Program Status Register 
(PSR), disabling all interrupts if set to one. 

0 
0 
1 
1 
0 
1 
1 

I flag

Exception vector 
(software) 

Mask 

Figure 11. The passage of an IRQ 

To retrieve the current mask, the content of rIRQ_MASK is read. The bit posi-
tions in the mask correspond to the different interrupts. Position zero, the least 
significant bit, corresponds to interrupt number zero, position one to interrupt 
one, and so on. A bit set to zero in a position means that the interrupt is passed 
on, a bit set to one means that it gets blocked, as shown in Figure 11. 

To set bits in the mask, you write to rIRQ_SETMASK. Only the bits set to one have 
any effect on the mask, the bits already set to one in the mask are kept even if 
the new bit value in the data written to rIRQ_SETMASK is a zero. Theoretically, this 
correspond to rIRQ_MASK |= rIRQ_SETMASK. 

To turn off bits in the mask, you write to rIRQ_CLRMASK. Only the bits set to one 
have any effect, though in this case, they turn off bits in the mask. This corre-
sponds theoretically to rIRQ_MASK &= ~rIRQ_CLRMASK. 

To allow a temporary change of the mask, normally to disallow all interrupts, the 
current mask is always stored in the variable IRQ_SHADOW_REGISTER. 
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Similarly, to simplify shutting off all interrupts, the variable IRQ_SHADOW_MASK_REG 
contains the value needed to pass to rIRQ_SETMASK in order to turn off all inter-
rupts. 

 1000010000001
|         1000
 1000010001001

Figure 12. An example of how to set the IRQ mask 

Example: The mask is 0x1081, which is 1000010000001 binary. This means that 
all interrupts except number zero, number seven and number twelve pass 
through. If you want to disallow number three too, you write 0x8 to rIRQ_SETMASK, 
making the new mask become 1000010001001 (see Figure 12). 
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Appendix II General information about task and inter-
rupt handling 

One of the most important parts of an operating system is the handling of tasks 
and interrupts. They have many aspects in common, so they are best described 
together. 

These things are part of the platform specific parts of µC/OS-II, which under-
standably is not covered very thoroughly in Labrosse's book [2]. This port is 
based on the µC/OS-II ARM-Thumb port done by Lee Dunbar [4]. 

1 Task switches 

The task switching scheme in µC/OS-II is a co-operative one. The term co-
operative refers to the fact that the tasks voluntarily enter a waiting state allowing 
another ready task to run. Therefore, µC/OS-II would not be a good choice of op-
erating system if you were to implement a system that has several "competing" 
tasks. In the Bluetooth stack, however, all tasks work together for one common 
goal, and all task switching is based on passing of signals. This makes µC/OS-II 
a perfect candidate, being the slim and efficient operating system that it is. 

Most task switches are caused by a call to OSSched(), which in the µC/OS-II VOS 
implementation is in turn always called from OSQPost() or OSQPend(). A detailed 
view on OSSched() can be found in Appendix III and Code section 7.  

It seems that the way Labrosse describes a task switch does not correspond with 
the way the implementation of the task switch is done in the ARM port of µC/OS-
II. Labrosse describes how the call to OS_TASK_SW() in OSSched() should only set a 
flag, and let the actual task switch be handled by a periodic ISR. In the ARM port 
though, the task switch is done directly in OS_TASK_SW(). The latter is probably 
more efficient, since it would switch directly, and not when the next periodic inter-
rupt occurs. 

2 Interrupt Service Routines 

The handling of which ISR is to run, and the setting of the IRQ mask is done in 
the core module. ISR's are registered and unregistered with IRQ_RegisterIsr() 
and IRQ_UnregisterIsr() respectively. 

The code of all ports contains sections that are called critical regions, this means 
that the entire region has to be finished before the task is allowed to be post-
poned by the system. This is implemented by deactivating the interrupts during 
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these regions. A postponed task is a task that is going to be switched, and a task 
switch that is not called by the running task is the result of an interrupt. Unfortu-
nately, this complicates time slicing since it is the result of a periodic timer inter-
rupt service routine that interrupts a running task to determine which task that is 
the most suited to run in that particular time slice. 

However, time slicing is not at all part of the task model in µC/OS-II, and is not 
used by the Bluetooth stack either. The µC/OS-II task model does however sup-
port letting tasks sleep for a certain period of time (a certain number of ticks), but 
this is not implemented in our port, since it is not used in the Bluetooth stack and 
would only require excessive processing. Implementing this functionality would 
consist of assigning an ISR to a periodic interrupt (timer interrupt), and letting this 
ISR call the µC/OS-II function OSTimeTick(). Also, the constant OS_TICKS_PER_SEC 
in os_cfg.h would have to be adjusted to match the interval of the timer interrupt. 
The actual task switch would then be done after having finished the ISR, which is 
described in more detail below. 

3 Idle task 

There is an idle task defined by µC/OS-II, but it will never get to run, since there 
is another idle task in the Bluetooth stack (which does in fact handle important 
functionality). This hinders the µC/OS-II statistics functions to work properly, 
since they rely on the amount of time the µC/OS-II idle task gets to run. 

Since the extra idle task defined in µC/OS-II has no other purpose than statistics 
it is not important for the system. The effects of that it will not be allowed to exe-
cute are marginal and will only affect measuring systems in µC/OS-II that are not 
used. 

4 The stack 

When a task stops running, either voluntarily (e.g. when waiting for a signal) or 
by an interrupt, its register values and program status are put on the task stack, 
as shown in Figure 13. For a more detailed description of the registers, see 
Appendix VII. 
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Figure 13. The stack setup used when saving processor registers and program 
status at a task switch.  

The return address, marked RET in Figure 13, is the point where the task will 
continue running once it is its turn to resume running. The link register, marked 
LR in Figure 13, is the point where the task will return to after a call to a subrou-
tine has finished. In the case of an ordinary task switch, i.e. a call to OSSched(), 
LR and RET will both be the same address, the instruction after the call to 
OS_TASK_SW(). In the case of a task having been interrupted by an interrupt, it is 
important to keep the LR of the task and at the same time know the return point, 
since the task may very well be in a position where it is about to use its LR. 

5 Scenario: A normal task switch 

A task sends a message to another task: 

• VOS_Send() is called. It takes a pointer to the message to send, and the task id 
of the receiver task (which in µC/OS-II is equal to its priority). 

• With the help of an array, containing pointers to the message queue control 
blocks of each process (indexed by the task id), a call to OSQPost() is made. 
OSQPost() needs to know to which queue the message is to be sent to, so it 
needs a reference to the corresponding message queue control block. 

• It is determined in OSQPost() which task that is the highest ready. This situation 
may have changed if a higher priority task was waiting for a message from the 
queue to which a message was just sent. 
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• After having calculated which task that has the highest priority and is ready to 
run, a call to OSSched() is made. 

• OSSched() is called, meaning that the task is in a position where it has changed 
the condition of which task is the highest ready. This is either a result of a task 
entering a waiting state by making a call to the function VOS_Receive() or 
VOS_ReceiveList(), or a task sending a message to a task with a higher prior-
ity. 

• OS_TASK_SW() is called. It stores the values of the program status and the other 
registers on the stack of current task (see Figure 13). The value of the current 
stack pointer is put in the task control block, so that it can be retrieved once 
this task gets to run again. The variables OSPrioHighRdy and OSTCBHighRdy, cal-
culated by OSSched(), now contain priority and pointer to the task control block 
of the new task to run. The new stack pointer is retrieved from the task control 
block that belongs to the task with the highest priority, and the program status 
and registers are popped from this stack. Finally, a jump to the address where 
the task was interrupted is done, upon which its old program status is also re-
stored. 

• There are at this point three possible situations: 

- The task that is started have been running earlier but reached a position 
where it made a call to OSSched(). The task will now continue to run from 
this same point. 

- It is the first time the task gets to run. It will then start running at the ad-
dress of the function that is declared to be the main task function. 

- The task was interrupted by an interrupt. It will then continue running wher-
ever it was interrupted.  

6 Scenario: Interrupt handling 
• Something, either hardware or software causes an interrupt to be generated. 

In the ARM architecture, an interrupt always leads to the following course of 
action: 

- IRQ mode is entered. This means that anything you do to LR, SP, or SPSR 
will not affect the interrupted mode. At start-up, the SP in IRQ mode is set 
to point to the correct memory area. 

- The address of the point where the program was running when the inter-
rupt occurred is stored in LR. 
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- The program counter position is set to address 0x18. This is in the area 
known as the exception vector. On this address there is a jump instruction 
leading to CORE_IrqHandler(). 

• In CORE_IrqHandler(), the first step is to determine if it is a nested interrupt. 
Looking at the value of the variable INT_LEVEL does this. At the same time, 
the value of this variable is increased. 

• There is one major difference between handling a nested interrupt and a non-
nested one: When not nested, the program status register and processor reg-
isters are stored on the stack of the interrupted task. This allows for an easy 
switch to take place after the interrupt has been handled. When nested, the 
processor registers and program status are instead stored on the IRQ mode 
stack. If they were to be stored on the task stack, each task stack would have 
to be big enough to have room for the registers of the worst-case nesting 
situation. 

• After having stored the necessary information, the µC/OS-II variable 
OSIntNesting is increased with one. OSIntNesting is used in several places to 
tell whether an ISR is currently being serviced. It is essentially the same as 
INT_LEVEL, but to avoid having to change the µC/OS-II code, they were both 
left as they were. 

• Next, a switch is done to SYS mode, in which the procedure IRQ_ISR() is 
called. In SYS mode, the ISR has its own stack, specially designated to be 
used by ISR handling only. In both the IRQ mode and the SYS mode, the I flag 
of the PSR is set to one, disabling interrupts. IRQ_ISR() will decide whether to 
unset the I flag when calling the assigned ISR procedure, depending on the 
priority of the IRQ. 

• The ISR may have done some changes to the signal queue, i.e. done a 
VOS_Send(). For this reason, a check of the tasks signal queues are done right 
after the ISR has finished, by doing a call to OSIntExit(). OSIntExit() will up-
date OSPrioHighRdy and OSTCBHighRdy to reflect this new situation. 

• At this point, there are three possible branches of execution: 

- If the interrupt is nested, the processor registers and program status are 
simply retrieved from the IRQ stack, and execution is resumed inside the 
interrupted ISR. 

- If the interrupt was not nested, and the ISR did not cause any change in 
the task signal queues, the processor registers and program status are re-
trieved from the stack of the interrupted task, and execution is resumed 
where it was interrupted. 
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- If the interrupt was not nested, but the ISR caused a change in the task 
signalling state, the highest priority task ready will become the new current 
task. This means in fact just that the processor registers and program 
status are retrieved from the stack of this new current task, and that execu-
tion will resume wherever that task was running when it was interrupted. 
Also, the variables OSPrioCur and OSTCBCur will be updated to match the 
new current task. 
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Appendix III Implementation issues concerning task 
and interrupt handling 

1 Nested interrupts 

Dunbar's port does not allow nested interrupts, and is in many aspects therefore 
fundamentally different from the original OSE Epsilon solution. Most importantly, 
because of this, the critical sections use the I flag as interrupt prevention in Dun-
bar’s solution. This has had to be changed, to avoid the following situation: 

If a critical section were to be exited while in an ISR, it would allow new interrupts 
to occur, even though this may not have been what was intended.  

The OSE Epsilon version of IRQ_ISR() is currently based on disabling the inter-
rupts by setting the IRQ mask to disallow any interrupts. The current interrupt 
enabling mask is stored in software, as IRQ_SHADOW_REGISTER, which enables the 
function to restore the mask as it was before entering the critical region. 

One way to implement Dunbar’s solution is to use the µC/OS-II variable 
OSIntNesting that contains the current IRQ nesting level. A zero means that the 
system currently is not handling an interrupt. If one desperately would like to use 
the I flag as critical region lock, it would be necessary not to unset it while in an 
ISR that should not be interrupted. 

The solution implemented in the µC/OS-II port does not use Dunbar’s solution 
using the I flag it uses instead the OSE Epsilon solution with the IRQ mask. This 
has meant that some small changes, to the upper level µC/OS-II code, had to be 
made to the port Lee Dunbar has created for running on ARM/Thumb architec-
ture.  

2 Problems with OSSched() 

There are no problems when using the OSSched() in conjunction with the I flag as 
a controller of the critical regions. The I flag is stored in the PSR and all tasks 
have a separate PSR, entering a critical region in one task will not affect another 
task. The original code, see Code section 6, performs an OS_ENTER_CRITICAL() 
when the task starts a task switch and ends with an OS_EXIT_CRITICAL() when the 
task is later switched in again. 
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However, when using the IRQ mask, whether to allow an IRQ or not is not a part 
of the program status and will affect all tasks. Therefore, if this scheme is used, 
no interrupts will be allowed between the points where OS_ENTER_CRITICAL() and 
OS_EXIT_CRITICAL() are called. This solution will not work since it prevents inter-
rupts to happen after a task switch unless the new task makes a call to 
OS_EXIT_CRITICAL() when it starts running. 

 
void OSSched (void) 
{ 
    extern void OS_TASK_SW(void); 
    INT8U y; 
 
    OS_ENTER_CRITICAL(); 
    if ((OSLockNesting | OSIntNesting) == 0) { 
        y             = OSUnMapTbl[OSRdyGrp]; 
        OSPrioHighRdy = (INT8U)((y << 3) + OSUnMapTbl[OSRdyTbl[y]]); 
        if (OSPrioHighRdy != OSPrioCur) { 
            OSTCBHighRdy = OSTCBPrioTbl[OSPrioHighRdy]; 
            OSCtxSwCtr++; 
            OS_TASK_SW(); 
        } 
    } 
    OS_EXIT_CRITICAL(); 
} 

Code section 6. The original contents of OSSched() 
 

To solve this, a call to OS_EXIT_CRITICAL() is done in OS_TASK_SW() if one is in a 
critical region, as determined by the value of IRQ_LOCK_COUNTER. 

This way, the critical region is always exited before switching to a task. Also, 
worth adding, a task could not possibly be inside a critical region at the moment 
of task switch, since that is part of the definition of a critical region. The stretch of 
code between the call to OS_EXIT_CRITICAL() and the actual switch to the pro-
gram counter position of the new task is protected from interrupts by having the I 
flag set. It will however be reset when switching to the new task, since its PSR is 
restored from the SPSR at the jump. SPSR is set when fetching the processor 
registers and program status from the task stack. 

Consequently, OSSched() is altered so that OS_EXIT_CRITICAL() is only called if no 
task switch was performed, see Code section 7. 

 
void OSSched (void) 
{ 
    extern void OS_TASK_SW(void); 
    INT8U y; 
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    OS_ENTER_CRITICAL(); 
    if ((OSLockNesting | OSIntNesting) == 0) { 
        y             = OSUnMapTbl[OSRdyGrp]; 
        OSPrioHighRdy = (INT8U)((y << 3) + OSUnMapTbl[OSRdyTbl[y]]); 
        if (OSPrioHighRdy != OSPrioCur) { 
            OSTCBHighRdy = OSTCBPrioTbl[OSPrioHighRdy]; 
            OSCtxSwCtr++; 
            OS_TASK_SW(); 
        } else { 
            OS_EXIT_CRITICAL(); 
        } 
    } else { 
        OS_EXIT_CRITICAL(); 
    } 
    OS_EXIT_CRITICAL(); 
} 

Code section 7. The modified contents of OSSched() 

 79



 

 80



Appendix IV How CORE_IrqHandler() works 

The assembly function CORE_IrqHandler() handles IRQ's, and is called directly 
from the exception vector. It can be divided into three sections: 

• Context saving of current task 

• Call to ISR handler 

• Context loading for the task about to continue running 

The context saving and loading is described in Appendix II, in the section de-
scribing the stack. 

In the first section, there are two possible branches of execution. The first one 
handles non-nested interrupts, i.e. interrupts that have occurred during normal 
task execution. The second one handles nested interrupts, where the execution 
of another ISR has been interrupted by an interrupt. Interrupts can interrupt one 
another according to their priorities, a higher priority ISR can interrupt a lower 
priority ISR. 

In the third section, where the return to the interrupted context is done, there are 
three branches of execution. One handles the most common case, where task 
execution has been interrupted by an interrupt, and that same task is resumed. 
The other handles the case where the ISR that has just finished caused another 
task to be the highest priority task ready to run. This results in the task with the 
highest priority to be resumed. The third case is where an interrupt was inter-
rupted by another interrupt that is resumed. 

 
CORE_IrqHandler 
; --------- INIT_INT_NESTED - BEGIN ------ 
        SUB     LR,LR,#4             ; LR-4 gives point of interruption 
        STMFD   SP!,{R0-R3}          ; Push R0-R3, so we can use them 
 
        LDR     R2,=OSIntNesting     ; OSIntNesting++ 
        LDRB    R3,[R2] 
        ADD     R3,R3,#1 
        STRB    R3,[R2] 
 
        CMP     R3,#1 
        BGT     CORE_IrqHandler_L1 
 
        ; OSIntNesting == 1 
        MRS     R3,CPSR 
        MRS     R1,SPSR 
        ORR     R1,R1,#0x80          ; No IRQs 
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        BIC     R1,R1,#0x20          ; ARM mode 
        MSR     CPSR_cxsf,R1 
        MOV     R2,LR 
        MOV     R0,SP 
        MSR     CPSR_cxsf,R3 
 
        STMFD   R0!,{LR}             ; Put return address on process stack 
        STMFD   R0!,{R2}             ; Put old mode LR on process stack 
        MOV     LR,R0                ; Use LR instead of R0 as i-stack pointer 
        LDMFD   SP!,{R0-R3}          ; Restore R0-R3 
 
        STMFD   LR!,{R0-R12}         ; Save old mode registers 
        MRS     R0,SPSR              ; Save old state 
        STMFD   LR!,{R0} 
        LDR     R0,=OSTCBCur         ; Update process stack pointer 
        LDR     R0,[R0] 
        STR     LR,[R0] 
 
        B CORE_IrqHandler_L2 

Code section 8. Describing the first part of the CORE_IrqHandler(). 

The tricky thing here, as seen in the first conditional part of CORE_IrqHandler(), 
see Code section 8, is how to get hold of the stack pointer of the current task. 
CORE_IrqHandler() is called when an interrupt occurs, and is automatically in IRQ 
mode, with the address of the interruption point in LR, and the program status 
(CPSR) at that time in SPSR. Since LR and SP are banked, there is no direct 
way of getting hold of a SP or LR in another mode. The ^ operator can only re-
trieve USR/SYS registers, and in this setup, only SVC mode gets interrupted at 
the lowest nesting level. The solution is a quick switch to the mode that was inter-
rupted, store its LR and SP on R0 and R2, and return to IRQ mode. Once the 
stack pointer is retrieved, the registers can be placed on the task stack. 

 
CORE_IrqHandler_L1 
        ; INT_LEVEL > 1 
        LDMFD   SP!,{R0-R3}          ; Restore R0-R3 
        STMFD   SP!,{LR}             ; Save return address 
        SUB     SP,SP,#(14*4) 
        STMIA   SP,{R0-R12,LR}^      ; Save old mode registers 
        MRS     R0,SPSR              ; Save old state 
        STMFD   SP!,{R0} 
 
CORE_IrqHandler_L2 
        MSR     cpsr_c,#0x9F         ; enter SYS mode, no IRQs 
 

Code section 9. Storing the registers due to a nested interrupt. 

When handling a nested interrupt, see Code section 9, the same data needs to 
be stored as when handling a non-nested interrupt. Since the ISRs always run in 
SYS mode, they are accessible through the ^ operator, and putting them on the 
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stack is very simple. The stack used, in this case, is the IRQ mode stack. The 
IRQ stack is only used to store these register and program status values (apart 
from the temporary use in the beginning of the interrupt handling routine). 

Once these values are stored, a switch to SYS mode is done, and the ISR gets 
to use the SYS mode stack. All ISRs share the same stack, but since they use it 
in a "linear" fashion, that is not a problem. By linear it is meant that each ISR that 
use the stack, i.e. push data onto it, will pop all data from the stack before it 
ends. This guarantee that the position of the stack pointer will be the same when 
the ISR is finished as it was when it started. So even if an ISR get interrupted by 
another interrupt, when it gets turn to run again, the stack is just as it was when 
the ISR was interrupted. 

 
;--------- INIT_INT_NESTED - END ------ 
 
        BL      IRQ_ISR              ; Call the ISR handler (c code) 
 
        BL      OSIntExit            ; Notify uC/OS 
;--------- QUIT_INT_NESTED - BEGIN ------ 
 
        MSR     cpsr_c,#0x92         ; IRQ mode, no IRQs 

Code section 10. The call to IRQ_ISR() and notifications sent to µC/OS-II. 

 
        LDR     R0,=OSIntNesting 
        LDRB    R1,[R0] 
        CMP     R1,#0 
        BNE     CORE_IrqHandler_L3 
 
        ; OSIntNesting == 0 
 
        LDR     R0,=OSCtxSw 
        LDRB    R1,[R0] 
        CMP     R1,#0 
        BEQ     CORE_IrqHandler_L4 
 
        ; OSCtxSw == 1 
        MOV     R1,#0 
        STRB    R1,[R0] 
 
 

Code section 11. Check for nested interrupts and if a context switch is neces-
sary. 

After the ISR has been handled a check is made to decide which of the three 
execution branches that is to be followed. The first check is made to the variable 
OSIntNesting after it has been decreased by one. There are nested interrupts if 
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the variable OSIntNesting does not equal zero and a branch to Code section 13 
is done, where the system restores the previous interrupt.  

If there are no nested interrupts a check is made to see if something changed 
during the ISR, concerning which ready task that has the highest priority. There 
is a branch to Code section 14, where the old task is restored, if the variable 
OSCtxSw is set to zero otherwise the system continues with Code section 12 and 
replaces the running task with the new higher prioritised task. 

 
        ; Swap in next process 
        MSR     cpsr_c,#0x93         ; SVC mode, no IRQs 
 
        ; Change the id of the current task 
        ; and save previous id 
        LDR     R4,=OSPrioCur 
        LDR     R6,=OSPrioPrev 
        LDRB    R5,[R4] 
        STRB    R5,[R6] 
        LDR     R5,=OSPrioHighRdy 
        LDRB    R5,[R5] 
        STRB    R5,[R4] 
 
        ; Get highest priority task TCB address 
        LDR     R4,=OSTCBCur 
        LDR     R6,=OSTCBHighRdy 
        LDR     R6,[R6] 
        LDR     SP,[R6]              ; get new task's stack pointer 
 
        ; OSTCBCur = OSTCBHighRdy 
        STR     R6,[R4]              ; set new current task TCB address 
 
        LDMFD   SP!,{R4} 
        MSR     SPSR_cxsf,R4 
 
        MOV     R0,SP 
        ADD     SP,SP,#(15*4) 
 
        LDMFD   R0,{R0-R12,LR,PC}^   ; Does not change mode 
        NOP 

Code section 12. Switching in a new task after the interrupt. 

Why were not the registers just put the on the IRQ mode stack? The reason is 
that putting the interrupted registers and program status directly on the task stack 
allows for a quick task switch after having serviced the interrupt. This is required 
if the ISR caused a change in which task wants to run. When inside the ISR, the 
task switch is not done directly, where it would normally be, but is delayed until 
after the ISR has finished, see Code section 12. Then, the id of the task that 
wants to run can be found in OSPrioHighRdy, and the switch is just a matter of 
loading the stored registers and program status from the stack of the new task. 
Execution will resume wherever that task was running when it was interrupted. 
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Also, the variables OSPrioCur and OSTCBCur will be updated to match the new cur-
rent task. 

 
CORE_IrqHandler_L3 
        ; OSIntNesting > 0 
        LDMFD   SP!,{R4}             ; Get ISR mode from interrupt stack 
        MSR     SPSR_cxsf,R4         ; Move this mode to SPSR 
 
        LDMFD   SP,{R0-R12,LR}^      ; Load registers from interrupt stack 
                                     ; to SYS registers 
        NOP 
        ADD     SP,SP,#(14*4) 
        LDMFD   SP!,{PC}^            ; Load PC from interrupt stack to SYS 
                                     ; register and switch SPSR to CPSR 
        NOP 

Code section 13. Returning to a previous interrupt. 

When dealing with nested interrupts the system executes the code presented in 
Code section 13. The first action is to restore the previous program status regis-
ter from the stack and store it in the SPSR. Followed by loading the SYS mode 
registers with their stored values from the interrupt stack through the use of the ^ 
operator, this operator allows the system to write directly to the SYS registers. 
The final actions before the switch are setting the stack pointer to a correct value 
and load the previous program counter with the use of the ^ operator resulting in 
that the CPSR is replaced with SPSR. The interrupted ISR can now continue to 
execute.  

 
CORE_IrqHandler_L4 
        ; OSIntNesting == 0 && OSCtxSw == 0 
        LDR     R0,=OSTCBCur         ; Get a ref to the stack pointer 
        LDR     R0,[R0]              ; Read the address of the SP 
        LDR     R1,[R0]              ; Read the SP 
        ADD     R2,R1,#(16*4)        ; Update process stack pointer 
        STR     R2,[R0]              ; Store the new SP on the process stack 
 
        LDMFD   R1!,{R4}             ; Load process mode from top of stack 
        ORR     R5,R4,#0x80          ; No IRQs 
        BIC     R5,R5,#0x20          ; ARM mode 
        MSR     CPSR_cxsf,R5         ; Switch to process mode without IRQs 
        MSR     SPSR_cxsf,R4         ; Move process mode to SPSR 
 
        LDMFD   R1,{R0-R12,LR,PC}^   ; Load all registers from process stack 
                                     ; and switch SPSR to CPSR 
        NOP 
;--------- QUIT_INT_NESTED - END ------ 

Code section 14. Switching in the previous task. 
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The final execution path when exiting an interrupt is to continue running the pre-
vious task that was running before the interrupt occurred. The code used to re-
start the previous task is presented in Code section 14. The task’s registers are 
saved on the task’s own stack and the stack pointer is accessed through the task 
control block.  
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Appendix V Configuring the µC/OS-II VOS port 

In order to simplify configuring the parts of the system that handle memory allo-
cation, task declaration and stack sizes, a special configuration program was 
made. This program, simply called config, takes a configuration file, and outputs 
three files that are included in the µC/OS-II VOS port. 

The first file, config_mempool.h, contains header information about the number of 
memory pools, and their respective sizes, config_macros.h and core_handlers.c 
use it. In core_handlers.c, this information is needed for debug output of the 
status of the memory pool. 

The second file, config_macros.h, contains five macros used exclusively in vos.c, 
named DECLARE_MEMPOOL(), DECLARE_PROCESSES(), INIT_MEMPOOL(), 
INIT_PROCESSES() and CHOOSE_MEMPOOL_INDEX(). They handle the declaration and 
initialisation of the tasks and the memory pool control blocks. The last macro, 
CHOOSE_MEMPOOL_INDEX(), is used to choose the appropriate memory pool control 
block based on a requested memory chunk size. This way of using macros may 
not be considered good programming style, but it makes it possible to make 
changes to the configuration easily and in one place. The number of tasks and 
memory pool control blocks is flexible, which would have been difficult to attain if 
it were to be hard-coded in vos.c. 

The third file, config_stack.s, is included by int_hdlr.s in the declaration of the 
stacks used by the interrupt handling routines. 

The configuration file, system.con, presently looks like this (with the exception of 
task function names, which have been replaced by generic names): 

 
################################################################# 
# 
#  Memory pool 
#  =========== 
# 
#  Max nbr: 256 
#  Order is unimportant. 
# 
#       Chunk size  Block count 
#       (bytes) 
#------------------------------- 
mem     4           10 
mem     8           5 
mem     12          5 
mem     20          10 
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mem     56          10 
mem     84          2 
mem     124         2 
mem     272         2 
 
 
################################################################ 
# 
#  Processes 
#  ========= 
# 
#  Max nbr: 63 
#  Order is unimportant, though prio must be unique. 
# 
#       Name of process func    Prio    Stack size  Queue size 
#                               (0-62)  (bytes)     (elements) 
#--------------------------------------------------------------- 
proc    task_1                  15      1600        200 
proc    task_2                  4       400         80 
proc    task_3                  3       460         20 
proc    task_4                  5       300         20 
proc    task_5                  13      400         20 
proc    task_6                  11      600         20 
proc    task_7                  10      800         20 
proc    task_8                  9       500         150 
proc    task_9                  8       500         20 
proc    task_10                 7       600         20 
proc    task_11                 2       500         20 
proc    task_12                 0       400         20 
proc    task_13                 6       340         20 
proc    task_14                 12      240         20 
proc    task_15                 14      280         250 
proc    task_16                 16      1160        30 
proc    CORE_IdleHandler        17      200         1 
 
 
################################################################# 
# 
#  Static stacks 
#  ============= 
# 
#  These are the stacks used in the interrupt handling. 
# 
#       Mode        Stack size 
#       (irq/sys)   (bytes) 
#------------------------------ 
stk     irq         280 
stk     sys         1500 
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Appendix VI Error codes from µC/OS-II 

1 Introduction 

When the old real-time kernel was removed from the system a lot of the old error 
messages were replaced with new messages that cannot be interpreted by the 
existing version of HCI Toolbox. We have assembled all the new error messages 
that can be sent from the real-time kernel in this appendix. This appendix con-
tains information gathered from the chapters four, six and seven in [2]. 

2 µC/OS-II functions 

Since this porting does not use all the available µC/OS-II functions is it not nec-
essary to describe all the different error codes that are available in µC/OS-II, this 
document has focused on the error codes that can be expected from the func-
tions used in the port. The error messages are described by their defined name, 
as presented in ucos_ii.h, and their respective numerical value with a short de-
scription of what the reasons are for this error.  

2.1 OSMemCreate() 

All the memory chunks are created and added to their respective memory pool 
control blocks (MPCB) depending of their size during the start-up of µC/OS-II. 
This function is performed with the OSMemCreate() function in µC/OS-II. The 
MPCB that is created for each size of memory chunks will later be used too han-
dle all actions that are performed upon the memory chunks. But it is possible to 
make flawed calls to this function by giving it parameters that cannot be used and 
these calls may result in some of the following responses. 

OS_MEM_INVALID_BLKS (111) - This error signal is sent if there is less than two 
memory chunks declared for use by the MPCB. A MPCB must contain at least 
two memory chunks otherwise is it only a variable. 

OS_MEM_INVALID_SIZE (112) - The size of a memory chunk has to be able to con-
tain a memory pointer when it is not used to contain data. These memory point-
ers are used to keep track of the empty chunks, they will point to the next empty 
chunk in the MPCB. The size of a memory pointer is four bytes in the existing 
system. 

OS_MEM_INVALID_PART (110) – This signal is sent if there are no free memory pool 
control blocks left to control the memory chunks that are being created. There 
has to be a memory pool control block for each size of the memory chunks. 
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2.2 OSMemGet() 

The function VOS_Alloc() uses this function to get a pointer to a memory chunk. 
The function needs to know from which MPCB to get a memory chunk, but that is 
handled internally in VOS_Alloc() and will not demand anything from the user of 
VOS. There has been a small change to the original behaviour of VOS_Alloc() so 
that if a certain size of memory chunks are depleted the next, larger, MPCB is 
called to get a memory chunk. 

OS_MEM_NO_FREE_BLKS (113) – This signal informs the user that there are no avail-
able chunks left in any MPCB that handles memory chunks of the wanted size or 
larger. 

2.3 OSMemPut() 

When a memory chunk is no longer used it should be returned to the pool of free 
memory chunks in its MPCB and that is done by VOS_Free() using the µC/OS-II 
function OSMemPut(). 

OS_MEM_FULL (114) - This error message happens if someone tries to free more 
memory chunks to a MPCB than has been allocated for it by OSMemGet(). The 
most common cause for this signal is if all memory chunks of this MPCB has al-
ready been deallocated. 

2.4 OSQCreate() 

This function is used by the macros created when initialising the system during 
start-up, in VOS_Init(). But this function does not return any error messages nei-
ther to the user nor to the system. 

2.5 OSQPend() 

This function is used in both VOS_Receive() and VOS_ReceiveList(). The call to 
this function contains a maximum time that the function can wait for a response 
and information about from which queue the message should be retrieved. 

OS_ERR_EVENT_TYPE (1) - The call has not been made to a message queue. It has 
been sent to some other type of event handler. This error should not be able to 
occur since there are no other types of event handlers implemented in this port-
ing. 

OS_ERR_PEND_ISR (2) - If an ISR tries to retrieve a message and there is no mes-
sage for it to get it will result in this error since an ISR should not stop and wait 
for other actions in the system. 
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OS_TIMEOUT (10) – This signal is sent if there did not come a message within the 
given time frame specified in the call of the function. This error code should never 
be encountered since the timeout functionality is disabled.  

2.6 OSQPost() 

When a task wants to send a signal to another task the function VOS_Send() is 
used. This function uses the OSQPost() function from µC/OS-II with extra informa-
tion, that is retrieved and declared by VOS_Send(), about which message queue 
that is used by a given task. 

OS_ERR_EVENT_TYPE (1) - This error is the result of trying to place it in an event 
handler that is not a message queue. This error code should not be able to occur 
since there are no other type of event handlers implemented in the existing port-
ing. 

OS_Q_FULL (30) – This signal is used if there is no room for more messages in the 
recipient’s queue. The maximum amount of messages in the queue to a task is 
set in the configuration file that is used to create the DECLARE_PROCESS() macro. 

2.7 OSTaskCreate() 

This function is used by VOS_Init() during the initiation of the system. It is used 
by the macro INIT_PROCESSES(). The following errors can be the result of flawed 
parameters sent to this function, but a user should never encounter these errors 
since they are neither handled nor presented by the macro.  

OS_PRIO_INVALID (42) - This error code is returned if the priority of the task is 
lower than that of the lowest eligible priority. The lowest priority for any given task 
is set in the file os_cfg.h with the variable OS_LOWEST_PRIO. 

OS_PRIO_EXIST (40) - This error signal informs the users that the used priority has 
already been selected for another task. 

OS_NO_MORE_TCB (70) - This error code is returned to OSTaskCreate() by the func-
tion OSTCBInit() if there are no empty task control blocks left to use for a task ini-
tialisation. 
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Appendix VII The ARM architecture 

1 Introduction 

This appendix will summarise the information presented in the first three chapters 
in [5]. This information facilitates understanding of the problems encountered 
when dealing with interrupts and task switches, and how certain architectural is-
sues affect the way the system is implemented. 

2 Registers 

R0-R12 The R0 to R12 are general purpose registers that are intended for just 
about anything. Certain call conventions apply to the use of these reg-
isters when dealing with compiled code though. 

Link Register (LR) The link register stores the return address in a branch-with-
link call (BL), allowing execution of procedures. 

Stack Pointer (SP) The stack pointer is intended to hold the address of the cur-
rent stack top or bottom, depending on stack growth direc-
tion. The THUMB calls PUSH and POP use the SP implic-
itly, other instructions need to have it specified explicitly. 

Program Counter (PC) The program counter contains the current execution 
address. Jumps can be made by changing its value. 

Current Program Status Register (CPSR) The current program status register 
contains the program status informa-
tion. See section 4 below for more in-
formation. 

Saved Program Status Register (SPSR) The saved program status register 
contains the last program status in-
formation, used to facilitate switching 
modes or flags. 

3 ARM and THUMB execution 

There are two subsets of the ARM architecture instruction set. The so called 
ARM instructions use the full 32-bit values while THUMB instructions only use 
16-bit values.  
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The advantages of using only 16-bit instructions are evident when working with a 
16-bit data bus, since it only needs one data transfer to move an entire command 
and not two transfers. It also reduces the amount of memory used since com-
mands only take half as much space when reduced to 16-bit values. The THUMB 
instruction set is however a subset of the full set of ARM instructions and is not 
as powerful. 

Another difference between the two different instruction sets is the fact that the 
THUMB instruction set only has access to the eight lowest hardware registers, 
R0 to R7. Another limitation to the thumb instructions is that they cannot directly 
modify or access the current program status register or the saved program status 
register. 

A switch from ARM execution mode to THUMB execution mode is made with the 
BX command. If the least significant bit in the branch target address is set to one, 
a switch will be performed, and the system will assume all following instructions 
to be THUMB instructions. If the least bit in the branch target address it is set to 
zero there will be no change and the system will continue to interpret the instruc-
tions as 32-bit instructions.  

A switch in the other direction, from THUMB to ARM, happens when an excep-
tion occurs before the system starts to execute the exception handler. Informa-
tion about from which mode the jump to the exception handler came is stored in 
the saved program status register. This information is saved so that when the re-
turn is performed the instructions will be interpreted correctly.  

4 Program status register 

There are two different hardware registers called current program status register 
and saved program status register. These registers contain the following fields: 

Flags field – this 8-bit field contains the four flags N, Z, C and V (Negative, Zero, 
Carry and oVerflow). These flags are changed by logical and arithmetic opera-
tions and can later be tested to see if a following instruction should be performed.  

Status field – this field is not used in this version of the ARM architecture. 

Extension field – this field is not used in this version of the ARM architecture. 

Control field – this 8-bit field contains three control bits that only can be changed 
in privileged mode. These bits can disable interrupts and indicates what type of 
instructions that the system is running. There are also five bits used for deter-
mine which mode that the processor operates in. The effects and differences be-
tween these modes will be described later. 
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When the processor switches mode the old program status register is saved in 
SPSR. 

There are three different reasons for modifying the CPSR, setting the conditional 
flags to a known value, enable or disable interrupts and changing processor 
mode. 

5 Processor modes 

The ARM architecture contains seven different processor modes. All but the user 
mode are so called privileged modes, where the possibility to change mode or 
processor state exists. The intention of the architecture design is that normal 
program execution should use the user mode, and operating system functions 
should use the privileged modes. 

All modes have their own LR (Link Register), SP (Stack Pointer), CPSR (Current 
Program Status Register) and SPSR (Saved Program Status Register). The ex-
ception is user mode and system mode, who share all registers. Also, there is no 
SPSR in USR mode, since mode changes are not allowed. 

5.1 User mode (USR) 

This is the default mode, which does not allow changing the mode nor processor 
state. 

In the current system, user mode is not used. The mode used for normal execu-
tion is instead supervisor mode (SVC). 

5.2 Interrupt request mode (IRQ) 

When an interrupt occurs, address 0x18 is called, and IRQ mode is automatically 
entered. From 0x18, a call to the interrupt handler is done. 

In IRQ mode, and all modes that can occur as a result of an exception, the pro-
gram counter at the point of interruption is put in the LR of the new mode, and 
the program status is put in SPSR of the new mode. This way, both the position 
and the state of the execution can be resumed once the exception has been 
handled. 

Interrupts can be disabled using the I flag in the program status register, or by 
setting the IRQ mask. See for Appendix I more on this subject. 
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5.3 Fast interrupt request mode (FIQ) 

FIQ mode is a high priority interrupt request mode, intended for small and inde-
pendent functions. FIQ mode has a separate set of register for R8 to R12. This 
makes it possible to do fast processing without having to save registers on the 
stack. It is also possible to save values between interrupt calls without being 
forced to save it in memory and later restore the data. 

Fast interrupt requests can be disabled using the F flag in the program status 
register. 

5.4 Supervisor mode (SVC) 

The supervisor mode is a general purpose privileged processor mode. In the cur-
rent system, it is used to for general task execution. 

5.5 Abort mode (ABT) 

Abort mode can be used to implement virtual memory, which is not used in the 
current system. 

5.6 Undefined mode (UND) 

If an instruction cannot be interpreted, or is out of context, a call to address 0x4 is 
done, and the processor mode is automatically changed to undefined mode. This 
processor mode is very rarely used. 

5.7 System mode (SYS) 

System mode is in fact the same mode as user mode, except that it is privileged. 

In the current system, system mode is used when handling interrupt service rou-
tines. 
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Appendix VIII Files 

These are the files that contain µC/OS-II, the parts of core that are port specific, 
and the low-level implementations of task and interrupt handling. 
 

includes.h - Common µC/OS-II header file. 
os_arm.c - ARM/THUMB specific µC/OS-II code. 
os_arm.h  - ARM/THUMB specific µC/OS-II definitions. 
os_armaux.h - ARM/THUMB specific µC/OS-II definitions. 
os_cfg.h - µC/OS-II configuration constants. 
os_core.c - Base µC/OS-II functions for intialisation 

and task scheduling. 
os_cpu.h - ARM/THUMB specific µC/OS-II definitions.  
os_mbox.c - µC/OS-II mailbox functions. 
os_mem.c - µC/OS-II memory pool functions. 
os_q.c - µC/OS-II queue functions. 
os_sem.c - µC/OS-II semaphore functions 
os_task.c - µC/OS-II task initialisation and 

configuration functions. 
os_time.c - µC/OS-II tick and delay functions. 
ucos_ii.c - Main µC/OS-II file that includes all non 

platform specific code files (os_core.c, 
os_mbox.c, os_mem.c, os_q.c, os_sem.c, 
os_task.c, os_time.c). 

ucos_ii.h - µC/OS-II configuration constants and 
structs. 

core\ 
  core\exp\ 
    core.h - Core module header file. 
    core_cache.h - Core module header file. 
    core_clock.h - Core module header file. 
    core_debug.h - Core module header file. 
    core_error.h - Core module header file. 
    core_fiq.h - Core module header file. 
    core_irq.h - Core module header file. 
    core_msg.h - Core module header file. 
    core_power.h - Core module header file. 
    core_support.h - Core module header file. 
    core_timer.h - Core module header file. 
    core_types.h - Core module header file. 
    core_version.h - Core module header file. 
    vos.h - Macro and type definitions needed when 

using the VOS. 
  core\src\ 
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    core.c - Core handlers, including the core idle task 
function. 

    critical.s - Critical region functions. 
    int_hdlr.s - Low level interrupt handling and task 

switching functions. Also defines the 
stacks used in th interrupt handling. 

    vos.c - VOS implementation that uses µC/OS-II. 
    core\src\config\ 
      config_macros.h - Defines macros needed to declare and 

initialise tasks and mempool in vos.c. 
Automatically generated by the config 
program. 

      config_mempool.h - Defines constants and declarations needed 
to use access the memory pool. 
Automatically generated by the config 
program. 

      config_stacks.s - Defines the sizes for the stacks used by 
the interrupt handling, and is included in 
int_hdlr.s. Automatically generated by the 
config program. 

  core\system\ 
    boot.s - Contains the boot entry point, from where 

everything is started. Calls CORE_Start() 
in start.c. 

    core_config.c - Declares structures needed in vos.c, based 
on core_config.h. 

    core_config.h - Defines system constants. 
    core_handlers.c - Contains core handler functions for SIGLOG 

output. 
    except.s - Contains the exception vector. 
    fiq_hdlr.s - Contains the FIQ handler, included in 

except.s. 
    lm_install.c - Configures the LM, called at start-up. 
    start.c - Contains CORE_Start(), which intialises 

core and µC/OS-II. 
    start_hdlr.c - Contains the core start handler. 
    swi_hdlr.s - Contains the SWI handler. 
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