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Abstract

Diffuse reflectance Spectroscopy is a non-invasive and real-time technique used both in
research and clinical studies for purposes such as identifying tumors and monitoring their
response to therapy. Here, a compact, cost-effective and portable experimental setup is
used in order to acquire the diffuse reflectance spectra from tissue-like liquid phantoms.
Two fiber optic probes with different source-detector separations are used for collecting the
diffuse light. A phantom preparation protocol is proposed in order to construct a dataset of
diffuse reflectance spectra from phantoms with different tissue chromophores compositions.
Nonlinear least-squares support vector machines (LS-SVM) regression technique within the
Multivariate analysis (MVA) framework is employed in order to extract the optical properties
of the tissue-like phantoms. Validation measurements of the liquid phantoms demonstrate a
higher prediction accuracy for larger number of training samples. Percentage error of <2%
is observed when testing 1 sample in both reduced scattering coefficient and blood volume
fraction models. The reduced scattering coefficient can be estimated with higher accuracy
in the models constructed with the data collected using both probes. Ways to improve the
regression models’ performance are proposed along with suggestions for future work.
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Symbols and Abbreviations

€ Margin of tolerance

& Extinction coefficient of chromophore 1
Y Regularization or scaling parameter
Ao Normalization wavelength

Hett Effective attenuation coefficient

Uq Absorption coefficient

U Scattering coefficient

T} Reduced scattering coefficient

\% Volume fraction

(0] Regression coefficient

o Fluence rate

p Photon density

o Radial basis function kernel width

G Molar concentration of chromophore 1

HbO, Oxy-hemoglobin
SO, Oxygen saturation
& Slack variable

buie Mie scattering power
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L Radiance

LIF Laser-induced fluorescence spectroscopy
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LS-SVM Least-squares support vector machines
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RTE
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Chapter 1

Introduction

1.1 Diffuse reflectance spectroscopy as an optical diagnos-

tic tool

Diffuse reflectance spectroscopy (DRS), also known as

elastic scattering spectroscopy, is a noninvasive spectro- Jber probe
scopic technique used in quantitative optical characteriza- o] | || Do

tion of tissue. The basic principle behind DRS is depicted 4

in Figure 1.1. Here a broadband light source with wave- J

length range from UV to NIR is irradiating the sample, N

followed by recording the reflected light after propagating AdS
through the sample. Using model-based techniques or sta-

tistical approaches such as multivariate analysis, optical
properties of the sample can be extracted from light distri-

bution in tissue that further leads to valuable diagnostics Fig. 1.1: Basic concept behind
information such as the health state of tissue. The two diffuse reflectance spectroscopy.
most important of these optical properties include scat-

tering (depending on size, density and refractive index variation within a tissue type) and
absorption (depending on tissue chromophore composition). Scattering, absorption and other

optical properties of the tissue are referred to in more details in section 2.1.

The DRS technique has been extensively used both in research and clinical studies for
purposes such as identifying tumors and monitoring their response to photodynamic therapy
(PDT) or radiotherapy for different cancer types such as breast [1-4], colon [5], prostate [6],
cervical [7] and lung [8, 9].



2 Introduction

1.2 Purpose and outline

Having precise knowledge of the optical properties of biological tissues leads to valuable
diagnostic information about the health state of the particular sample. For instance, the
amount of oxygen in cancerous cells is noticeably less than its healthy counterparts. In
this way, the response of a tumor to therapy can be evaluated that could form important
information for better prognosis of the treatment. The main goal of this thesis is investigating
methods that can extract the optical properties of tissues with an improved accuracy. Here
a DRS spectrum is obtained from liquid phantoms consisting of major chromophores that

mimic real biological tissues. The main aims of this work are:

* To present a literature study of the current state-of-art in diffuse reflectance spec-

troscopy for estimation of tissue chromophores based on regression analysis.
* To establish phantom preparation protocols for intralipid blood phantoms.

* To develop evaluation protocols for the estimation of tissue chromophores and scatter-

ing parameters using LS-SVM technique.

To this end, an overview of the tissue diagnostics field as well as the methodology and

obtained results are presented in this thesis in the following order:

Chapter 2 provides an overview of the theoretical aspects of this work required for better
understanding of the proceeding chapters. First, the fundamental light and tissue
interactions are explained followed by presenting the main methods used for simulating
the light propagation. The following discussion then introduces ways to extract the
optical properties of a medium by analysing the recorded signal. Lastly, data extraction
within the multivariate framework using both linear and nonlinear models and the

motivation for the approach chosen in this work are given.

Chapter 3 includes the experimental setup, the calibration technique and the phantom
preparation protocol used in this work. Next, implementation of the multivariate
analysis protocol based on LS-SVM is presented.

Chapter 4 provides the results obtained in evaluation of the simulated data as well experi-
mental measurements using LS-SVM regression analysis. Next, the errors between the
extracted optical properties of the prepared phantom and theoretically expected values

are elucidated for each particular model and evaluation technique.

Chapter 5 includes the discussion about the obtained results and suggests ways to improve

the regression models performances.
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Chapter 6 concludes this thesis by stating the most important aspects and findings with
respect to the original purpose of the work. In addition, suggestions for future studies

are given.



Chapter 2

Theoretical Background

2.1 Tissue optical properties

2.1.1 Scattering

Refractive index variation for different chromophores distribu-
tions results in scattering of the propagating light in the tissue
[10]. Scattering can be described using two parameters; namely,
scattering coefficient (t [cm_l]) and anisotropy factor (g). The
scattering coefficient is defined as the probability per unit length

for a scattering photon and the anisotropy factor is defined as
the average scattering direction. In turbid media, i.e. when the
Fig. 2.1: Graphical rep-  light propagation can be treated as diffuse, these two parameters
resentation of the rela-  can be combined to form a new parameter called the reduced

. /
tion between 41, and L. scattering coefficient (u/! [cm~1]) as:

py = (1—g)ps. 2.1)

Under the assumption that the tissue is composed of spherical particles of various sizes,
the reduced scattering coefficient can alternatively be defined based on Mie and Rayleigh

scatterings [11] as expressed in Equation 2.2:

W(R) = w/(Mie) + ! (Rayleigh)

A\ e AN\ (2.2)
:a((l—fRay)(%> +fRay<E) >7
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where a is the scaling factor, byge is the Mie scattering power, Ay is the normalization
wavelength and fray is the fraction of Rayleigh scattering. by is related to the particle
size of the tissue, with approximate mean values of 0.45 in fatty tissues and 1.09 in brain
tissues [12]. The wavelength of the propagating light and the assumed spheres sizes are
normally comparable and therefore making Mie the dominant form of scattering; however, in

the visible wavelength range Rayleigh scattering has a more considerable contribution.

In a liquid phantom consisting of diluted emulsion of intralipid as the scatterer, the

reduced scattering parameter has been estimated by Staveren et al. [13] as:

w(A)=C-[0.58(A/1um) —0.1]-0.32(A/1um) =24, (2.3)

where C [ml/1] denotes the concentration of 20%-intralipid in the phantom and A refers to
the light wavelength in um. This expression is particularly valid in liquid phantoms with
low concentrations of intralipid, where a more linear behavior exists between the intralipid

concentration and the reduced scattering coefficient [14].

2.1.2 Absorption

The absorption coefficient (u,(A) [cm~!]) of a tissue is defined as the absorption probability
of light per unit path length. It can be described as (A1) = ¥, &C;, where & [M~'cm™!]
is the extinction coefficient, C; [M] is the molar concentration of chromophore i. The main
absorbing chromophores in biological tissues at visible and near infrared regions are blood,
water and lipid. For this reason, the absorption coefficient can be described as the sum
of the absorption coefficients of each of these chromophores weighted by their respective

concentrations as shown in Equation 2.4:

Ha ()L) = Vblood HSlOOd (l) + Vwater uc\;vater(l) + Vlipid ‘ulllipid ()L ) 3 (24)
where V; is the volume fraction of the particular chromophore and p2'°°d, yaer and [,ngipid

refer to the absorption coefficients of the particular chromophores for 100% blood (assuming
150g Hb/1), 100% water and 100% lipid, respectively. Whole blood consists of hemoglobin
(Hb) and oxy-hemoglobin (HbO,) that are connected to each other with the oxygen saturation
parameter (SO,) as SO, = [HbO,|/[HbO;| + [Hb]. SO, value can vary from approximately
97% in arterial blood to 75% in venous blood [15].
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The absorption behavior of the main absorbing chromophores in tissue for wavelength
range of 500 nm to 1200 nm is depicted in Figure 2.2. Optical window or NIR window can
be seen in the wavelength range of 650 nm to 1000 nm. The propagating light penetrates
the deepest at this window, making scattering more dominant than absorption. Water and
lipid absorption coefficients slightly vary with temperature [16, 17], and therefore ensuring a

stable temperature during experimental studies is necessary.

10* :
Hb
HbO,
102 — — — Water | |

101 : : : : : :
500 600 700 800 900 1000 1100 1200

Wavelength (nm)

Fig. 2.2: Absorption coefficient of major blood chromophores with 100% volume frac-
tions [18].

2.2 Simulating the diffuse light

2.2.1 Forward Problem

Generally a forward problem refers to the mathematical description of a given phenomenon
using the laws of physics. In DRS, this consists of a model numerically describing the light
propagating in tissue with known optical properties. Four primary physical quantities con-
cerning formulating the diffuse light in a turbid media using a forward model are mentioned

below:

* Photon distribution N(7,§,¢) [I/m?sr] is the number of photons propagating in

direction § per unit volume per unit solid angle at position 7 [m] and time # [s].

 Radiance L(73§,t) = hveN(7,8,t) [W/m?st] is the radiant flux in direction § per
unit area per unit solid angle at position 7 and time ¢, where 4 is the Planck’s constant

[m%kg/s],v is light’s frequency [1/s] and c is the speed of light in tissue [m/s].
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* Fluence rate ®(7,t) = [ L(7,§,t)dw = hvep(7,t) [W/m?] is the power per unit
4

area at position 7 and time ¢, where p denotes the photon density [1/m?].

* Photon flux vector J(7,¢t) = [ L(7,§,t)3d® [W/m?]is the axial energy transfer of
4r
photons per unit area at position 7 and time ¢.

2.2.1.1 Radiative transport equation

The radiative transport equation (RTE), also known as
the radiative transfer equation, is the fundamental model
for formulating the light transport in turbid medium such

as biological tissues [19, 20]. The basis of derivation of

RTE equation lies in conservation of energy in a specific

direction § within a small volume V. Figure 2.3 shows 5

possible events that are taken into account in derivation . ) )
Fig. 2.3: Different scenarios

) ] for a photon travelling in a
numbers correspond to the particular event mentioned  ¢y411 volume V.

of RTE for a photon travelling in a small volume V. The

below:

1. Photon in direction § passing through the boundaries.

2. Photon in direction § absorbed.

3. Scattering of a photon in direction § into any other direction.
4. Scattering of a photon from any direction into direction §.

5. Photon emitted in direction § from the source.

Equation 2.5 takes into account these 5 events for describing the distribution of photons
travelling in a certain direction § within a small volume V. In short, photon losses occur due to
scattering into another direction and absorption, while photon gains are due to scattering from
another directions into beam direction § and radiation sources. Photon losses and gains can
be observed by the negative and positive signs in Equation 2.5, respectively. Each segment
number refers to the particular event mentioned above. Nonlinear effects, electromagnetic
wave properties (e.g. coherence, polarization) and particle characteristics (e.g. inelastic

collisions) are not considered when deriving the radiative transport equation.
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ON
/—dV :—/cNf.ﬁdA—/cuaNdV—/c/,LsNdV—i—
\%4

t
1 2 3
/cus/p(fl,s')N(fl)da)’dV+/qu, (2.5)
V.  4n 4
~ ~ - N’
4 5

where p(§',s’) is the scattering phase function characterizing the probability of scattering of
the travelling light from the direction §' to § with a solid angle dw’. ¢(7,$,1) describes the
light source at position 7 and time 7.

Rewriting Equation 2.5 in terms of radiance gives the Equation 2.6, which describes the

radiance variation in direction §, time ¢ and location 7 [19]:

1JL

—-— =hvg+ ,us/ p(§,8)Ldw’ —§- VL — psL — u,L. (2.6)
¢ at 41

Solving the Equation 2.6 for more advanced geometries is a non-trivial and computationally
demanding task. In fact, analytical solutions are only obtained for isotropic medium ! [21]
and simple geometries [22, 23]. Methods such as Monte Carlo simulations (MC) 2 and Finite

Element method (FEM)? are employed to solve the RTE.

Diffusion Equation

The diffusion equation (DE) is an approximation of the RTE commonly used for preliminarily
analysis of light propagation in tissues and in applications such as dosimetry (e.g. in Photo-
dynamic therapy), optical imaging and spectroscopy due to its high computational efficiency.
The number of independent variables in DE are reduced as directional dependency is omitted
during the course of derivation from RTE*. Here the radiance L is expanded into its first order
spherical harmonics and hence ensuring a nearly isotropic source (anisotropy factor g < 1).
The medium for which the diffusion approximation is valid, is assumed to be highly scattering

'Medium with uniform scattering of light in all directions.

ZProbabilistic technique widely used in analysing scenarios where there are many possible outcomes with
various contributing factors. More information about modeling of the light transport in tissue using MC
techniques can be found in [24].

3Numerical technique used to solve for boundary value problems. More information can be found in [25].

4A hand waving explanation of DE derivation is presented in this work. The detailed derivation of DE can
be found in Wang and Wu’s book on biomedical imaging [26].
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with u! > u,. This ensures a sufficient number of scattering events before losing photons
through a tissue boundary.

The diffusion theory is governed by the time-resolved Equation 2.7 that yields the fluence
rate (rather than the radiance as in the case of RTE). Here D is the diffusion coefficient and

qo(7,t) denotes an isotropic light source:

190P(7,1)
c ot

— V.[DF)VD(F,1)] + fa®(F,1) = go (7 1). 2.7)

By applying appropriate boundary conditions and defining the light source, one can find
unique solutions to Equation 2.7 for a specific geometry using the Green’s function [27].
For a semi-infinite slab shaped homogeneous medium, an analytical solution is obtained by
using a mirror-image approach. Where an isotropic point source (positive source) is placed
at the distance zp equal to one mean free path length into the medium and the image source
(negative source) is placed at the distance —2z;, — zo. An extrapolated boundary is defined
at —z;, to account for the Fresnel reflections due to refractive index mismatch between the
tissue and surrounding medium by ensuring zero fluence value at the boundary. Figure 2.4
shows the geometry of a semi-infinite slab shaped medium where the light is propagating

along the z-axis.

e Image source, z = -hb- zZ,

Extrapolated boundal'y, 7= _gb

Boundary,z=0

/ ° Photon source, z= z,
y

Y
z

= X

Fig. 2.4: The schematics of a semi-infinite slab shaped medium. Zero fluence is ensured
at the extrapolated boundary (dotted line plane) by placing the isotropic point source of
photons (black dot) and negative image source (white dot) at the height z = zo9 4 z;, above
and below the extrapolated boundary.
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The model for a point source in a semi-infinite geometry by Farrell et al. [28] is commonly
used for simulating the diffuse light within tissue as given in Equation 2.8:
Rlba(R).1(A).p) = =T (e ) SRR
I (TR AR e S 7 o8
1\ exp(— 12 :
+ (20 +225) <I~leff+ —) M} ’
r2 r5

where plefr = [3Ua (e + 1!]'/? is the effective attenuation coefficient, zo = (i, + )~ is

the location of an artificial isotropic photon source, i.e. the depth where the light has first

fully lost the direction at origin, r| = (z3+ p?) 1/2

is the distance between the photon source
and the collecting fiber and r» = [(zg + 22)% + p?]'/? is the distance between the image
source and the collecting fiber. The parameter z;, = 2AD denotes the extrapolated boundary
position, where D = [3(u, + /)]~ is the diffusion coefficient and A is the internal reflection
parameter that varies with the refractive index of the tissue and surrounding medium described
in Groenhuis et al. paper [29]. For a matched boundary, the internal reflection parameter is
equal to 1.

Despite the simplicity of applying the DE, there are some considerations that need to be
made prior to its application. The fluence rate can be best measured deep into the tissue away
from the light source, however in order for the DE to be valid an adequately large distance
between observation point and the source is required [30]. Additionally, the assumption
of having isotropic media only allows obtaining the analytical solutions for simple probe-
sample geometries (e.g. a slab) with homogeneous optical properties. Lastly, neglecting
the absorption effects can be problematic in the case of highly vascularized tumors and
for applications such as bioluminescent and fluorescent imaging (due to the relatively high
absorption of the bioluminscence markers and fluorescent proteins in the wavelength range
of 400 to 600 nm).

2.3 Quantification of chromophores

Accurate extraction of tissue optical properties from the experimentally obtained DRS spectra
is not a trivial task. Model-based approaches are commonly used for this purpose where the
light distribution within the sample is mathematically modeled (e.g. using DE) and then fitted
to the experimental data. However, as explained before, there are certain limitations involved
with these models. More accurate and versatile methods have been investigated to overcome
these limitations both empirically and experimentally. Examples include Inverse-MC models

[31] and more sophisticated probe configurations [32-34]. An alternative approach is using
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a lookup table-based inverse model (LUT) constructed experimentally from calibration
standard phantoms where optical properties are extracted by iterative fitting of the reflectance
signals [35, 36]. LUT has the advantage of independency from light propagation models
without the need of altering the conventional measurement probe geometries; however, it is
very computationally demanding. A more recent and less explored technique is using the
multivariate analysis (MVA) tool that enables both regression and classification studies. In

this work, optical data extraction within the MVA framework is investigated.

2.3.1 Inverse problem

Generally, an inverse problem describes situations where the solution is known but not the
question. In DRS this refers to the process of extracting attributes of the tissue properties
from diffuse reflectance spectra. The performance of an inverse model is evaluated by how
accurate the tissue properties are assessed with minimum amount of residuals between the
spectra and the forward model. The relation between a model and measurement data with

respect to forward and inverse models are depicted in Figure 2.5.

Forward Modeling

Properties _* Observations

water

R n

vblaod vlipid

S a

-—

Inverse Modeling

Fig. 2.5: The relation between the model properties and the measurement data in forward
and inverse modelling.
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2.3.1.1 Model-based inverse problem

In a model-based inverse problem, the diffuse re- S

flectance is first calculated using a forward model @iﬁ@
such as the diffusion equation or Monte Carlo M
simulations. Figure 2.6 shows the steps involved Forward model < —

in a general model-based inverse problem. A

v
forward model describing the obtained data d @d diff@
(calibrated)
\, /o

for parameter m being sought, e.g. a particular

|

|

|

|

|

|

|

- |
chromophore concentration, can be denoted by @mm@ |
— :
|

|

G(m). The minimization for a linear problem is
computed using the least-squares objective func- NO 777777
tion. The function obtains the best fit for model

parameter m that leads to Q closest to zero in

Extract values

Equation 2.9:

_ 2
Q= |ld=G(m)|". (2.9) Fig. 2.6: A model-based inverse

problem flow chart.

2.4 Multivariate analysis

Multivariate analysis (MVA) is a statistical modern data analysis tool with the ability to
perform multiple variable analysis at the same time. One distinguishing characteristic of
MVA, when analysing systems comprising of several variables, is its ability to group a set
of factors and assign them to their respective observation. Both regression (dependence)
and classification (independence) analysis can be performed within the MVA framework.
In regression analysis (also known as function estimation), there is a relationship between
different variables of the system whereas the opposite holds for the classification case. In
function estimation, a prediction model is constructed for a certain variable sought capable
of evaluating unknown datasets. Different multivariate methodologies can be classified based
on the linearity state of the input to predictor space transformation. Figure 2.7 shows an
example of linear and nonlinear classification of the data in input space. Main techniques
with linear transformation are principal component analysis (PCA) and partial least-squares
regression (PLS); whereas, both linear and nonlinear transformation can be performed in
support vector machines (SVM). One form of SVM is least-squares support vector machines
(LS-SVM) that is the multivariate technique used in this work. In this section an overview of

these techniques is given.
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(@) (b)

Fig. 2.7: Decision boundary for (a) Linearly separable data and (b) Nonlinearly separable
data in 2-case classification problems.

2.4.1 Principal component analysis

Principal component analysis (PCA) is a statistical non-parametric method commonly used
for data reduction. It operates on the basis of orthogonal linear transformation, where the
observation data is converted into a set of linearly uncorrelated variables called principal
components or loadings. These principle components are placed in decreasing order of
variance with the condition of being orthogonal to the preceding component. PCA can only
be used for classification and prediction purposes when combined with a discrimination

algorithm.

2.4.2 Partial least-squares

Partial least-squares (PLS) regression is a statistical method that operates on the basis of
data transformation into a new space named the predictor space that contains the linear
combinations of the original data obtained. Unlike PCA, PLS takes the relation between
data into account by finding the maximum correlation between spectral observations. These
correlations are used to form a prediction model by finding the predictive relationship between
variables. The two main goals here are minimizing the response predictor variation errors and
prediction variation errors. In other words, the prediction model performs the transformation
using a linear function capable of explaining the maximum number of variations in each
response, as well as having the ability to be used for predicting a new set of data.

In a problem with the goal of examining the fundamental relations between observation
data and a dependent variable, the input data is X = [{xi j}} and the quantity to be

mxn

predicted is ¥ = [{y,}} . For DRS of a set of samples, n denotes the number of spectral
mx

observations for each sample and m denotes the number of samples.



14 Theoretical Background

2.4.3 Support vector machine

Support vector machine (SVM) is a powerful MVA tool first introduced by Vapnik [37] in
1995. It is comprised of a number of machine learning algorithms enabling nonlinear analysis
of data. Both classification and regression studies can be performed using SVM on datasets
with linear or nonlinear distributions. The relation between the input regressors (x) and the

dependent variable (y) in SVM estimation is expressed in Equation 2.10:
y=0o!xi+b, (2.10)

where @ denotes the regression coefficient or weight vector from the training dataset and
b denotes the bias. The training set consists of N data points ({x,y}" ), where x; € R?
and y; € RY are the i-th input and output pattern, respectively. For a nonlinear dataset the
general idea is to map the original feature space to a higher-dimensional feature space, where
the training set is separable. This ability makes SVM ideal for analysing phenomena with
intrinsic nonlinear properties, such as the light transport within diffuse media. Various
researchers have examined the effectiveness of using SVM for tissue diagnostics purposes.
It has been proven to be successful in differentiating lesion from healthy cells in breast
cancer using diffuse reflectance spectroscopy and fluorescence spectra at multiple excitation
wavelengths [38], throat cancer and oral cavity cancer using laser-induced fluorescence (LIF)
spectroscopy [39, 40], colonic, head and neck tissues using near-infrared Raman spectroscopy

[41, 42] and in detection of brain tumours using magnetic resonance spectroscopy [43, 44].

Linear SVM classification

The optimal classifier for a data distribution case with more than one possible solution can
be determined using SVM (Figure 2.7a). This is achieved by creating a hyperplane that
performs the classification linearly. The decision boundaries of the hyperplane consist of
lines meeting an input data point x; from each class as depicted in Figure 2.8. The points
situated on the decision boundaries (marked with x) are called support vectors. In a 2-class
problem, —1 or +1 label is assigned to each class (y € {+1,—1}) and the classifier is defined
as y; = sign[w’ x; + b]. Depending on the separability of data points, SVM uses hard or soft
margins. Figure 2.8a shows an example of data classification by defining hard margins. Here
the data points are linearly separable and the decision boundaries are located at data points x;

that lead to y = 0. The optimal classifier is obtained by maximizing the margin width p that
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is equal to 2/||@|| °. The optimization problem can be made convex by minimizing 3 ||®?||

instead of maximizing 2/||®|| as written in Equation 2.11 [45]:

PSR S
minimize —=| @~ ||
2 (2.11)

subjectto yi(@'x;+b) > 1, VA.

In the case of noisy datasets, the classifier defined by hard margins can mistake the real
data with noise. In such situations, over-fitting occurs even though the classifier appears
to be defined correctly. This problem is addressed in SVM by defining soft margins with
a slack variable &; assigned to the misclassified points as shown in Figure 2.8b. The new

optimization function accounting for these points is defined in Equation 2.12 as:

N IS
minimize —||@°||+v) &
2 ,_Zl (2.12)

subject to yi(wa,- +b)>1-¢&, &>0,

where ¥ denotes the regularization or scaling parameter representing the distance between
the closest points within different classification classes. Parameter ¥ is a tuning parameter
used for governing the balance between the training error minimization and smoothness.
The slack parameter &; defines the distance between the misclassified data points and their
respective decision boundary.

(@) (b)

Fig. 2.8: Linear classifier defined in SVM by (a) hard margins and (b) soft margins.

The optimization problems defined in Equations 2.11 and 2.12 can be solved using the

Lagrange dual problem. In this method, the optimization function is first written in its

o] = Vool .
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Lagrangian form followed by construction of the dual optimization problem. In the dual
optimization form, the problem is expressed with respect to only one variable (the Lagrange
multiplier). In this way, the problem’s complexity will be only dependant on the number
of data points and not on the dimension of the feature space. The detailed mathematical
procedure for the derivation of the Lagrange dual problem for Equation 2.12 is presented in

Appendix A.

Nonlinear SVM classification

The principle of SVM classification for data that is not linearly separable in input space is
depicted in Figure 2.9. Here a linear separation hyperplane is created that embeds the data in
input space (x; € R?) with d =2 to a feature space of higher dimension (®(x;) € R, d’ > d)
with d’ = 3.

®: RSR

(x1,%2) > (21,22,23)

i Input space

Feature space
o d(@)
o0 @) @)
I::> D(A)D(A) @) >(®)
DA ) (@)
Oh) | O(A) @)
o(A)
D(A)
i D(4)

s
Fig. 2.9: Transition from input space to feature space for SVM nonlinear classification.

The main advantage of creating this hyperplane is simplifying the solution since a
nonlinear operation in input space is equivalent to a linear operation in feature space. The
mapping is done using an appropriate kernel function. A kernel function performs the
transformation by calculating the dot product of the input space data (R?) in feature space
(R?") without having the input data transformed to higher dimensions first [46]. In this way
the optimisation is achieved independently of the dimensionality of the feature space. The
typical kernel functions used in nonlinear SVM are presented in Table 2.1, where parameter
o denotes the Radial basis function (RBF) kernel width.

Choosing the optimal kernel function is a nontrivial task. In practice this is a trial

and error procedure with experimenting different kernel types and optimizing their pa-
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Table 2.1: Main kernel types used in nonlinear SVM.

Kernel function Formula Remarks
Linear K(xj,x;) = q)(xi)T‘p(xj)
Polynomial K(xi,xj) = (14+@(x;) @ (x;))? d>0

Radial basis function (RBF)

D) — 2 _ )
(i.e. Gaussian) K(x;,x;) = exp(¥[lxi —x||7) Y 1/20

rameters. However, it is generally recommended to start with using a Gaussian kernel
and fine-tuning the classification parameters [47]. The general form of the classifier is
y = sign[¥Y | a:yiK (x;,x;) + b], where K (x;,x;) specifies the kernel function applied and ¢
is the Lagrangian multiplier that denotes positive real constants called the support values.
The data points corresponding to these support values are called support vectors with the

same analogy as the case of linear SVM.

Nonlinear SVM regression

In the SVM regression task, the model is constructed by fitting model parameters to a training
dataset. The model’s task is to make a prediction at new points based on the training dataset.
A similar analogy to SVM classification exists in regression problems with the main idea
to define a hyperplane that maximizes the margin with the least possible error. The training
algorithm in a regression task is relatively more complicated due to having many possible
outcomes.

The optimization problem in nonlinear SVM regression as given in Equation 2.13 is
defined similarly to the classification task with a new parameter € [48]. The parameter €
denotes the margin of tolerance, i.e. the range of the true predictions, with a value equal to

zero for a perfect prediction.

N I S
minimize —||@°||+v) &
2 ,_Zl ’ (2.13)

subject to yi(@ xi+b) > 1—(E+g), &>0
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2.4.3.1 Least-squares support vector machines

The memory demand in support vector machines increases
for solving the optimization tasks in larger scale problems. 4
Least-squares support vector machines (LS-SVM) introduced
by Suykens and Vandewalle in 1999 [49] addresses this issue
by reformulating the optimization problem in such a way that

it can be solved using linear equations. More specifically, the

inequality constraint in Equation 2.12 is replaced with equality A X

and the slack parameter &; is replaced with a sum squared error __, .
Fig. 2.10: Graphical repre-

sentation of error parame-
classifier to the misclassified point as shown in Figure 2.10. {erg & in SVM and ¢; in LS-

The mathematical modifications in LS-SVM is presented in  SVM.
Equation 2.14 as:

cost function (SSE) el-z. The parameter e; is the distance from

N TN B S
minimize —|@°||+ =7 ) e;

subject to  y;(@0!x;+b) =1—e;.

In order to solve this problem, first the optimization function is written in it’s Lagrangian
form as in the case of nonlinear SVM. Whereas, in the next step a set of linear equations are
constructed instead of defining the dual optimization problem. The detailed mathematical
procedure used in the derivation of the linear equations is presented in Appendix A. The
general form of a LS-SVM function estimator is YV | a;y;K(x;,x;) + b, where K (x;,x;)
specifies the kernel function applied and ¢; is the Lagrangian multiplier denoting the support
values. These two values are proportionally related to each other. In LS-SVM, all the
Lagrangian multipliers are nonzero, whereas in the standard SVM case o; values are mostly

equal to zero.

A LS-SVM regressor model is defined by determining the best combination of hyperpa-
rameters as in the SVM case. These hyperparameters include the regularization parameter
Y assigned to minimize e;, while avoiding overfitting, and the kernel parameters of the
particular kernel function used (e.g. ¢ in RBF kernel). The process of choosing the right
kernel in LS-SVM is the trial and error procedure similar to SVM. The input (X) and output
data matrices (Y) in LS-SVM have the same structure as in PLS. The classical method for
determining the hyperparameters giving the best model performance is the cross-validation

method discussed in the last part of this chapter.
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Utilizing LS-SVM for data analysis in tissue diagnostics is an approach recently explored
in tissue analysis. Luts et al. [50] investigated the performance of LS-SVM based approach in
identifying brain tumors using a combination of MRI and MRSI. The multivariate technique
provided noticeably more accurate performance in comparison with linear discriminant
analysis technique. In conjunction with DRS, Barman et al. studied using a LS-SVM
regression algorithm for tissue optical properties extraction for the first time in 2011[51].
Two LS-SVM regression models pt! and p, were constructed from 24 tissue-like liquid
phantoms comprised of polystyrene microspheres, ink and water. In addition, they compared
three techniques of PLS, LUT and LS-SVM together. It was found that LS-SVM gives the
best prediction accuracy with the fastest response. In 2014, Xie et al. used LS-SVM for
performing validation measurements on 270 liquid phantoms made of different concentrations
of water, intralipid, bovine blood and protoporphyrin IX (PpIX) [32]. Three LS-SVM
regression models were constructed and tested with 2-fold cross-validation in order to predict
1)), blood and PpIX parameters in phantoms with mean prediction errors of 3%, <5% and
5%, respectively. In addition, LS-SVM classification was performed on in-vivo skin tumors

with 100% accuracy in distinguishing the healthy cells from lesion.

Cross-validation methods

Cross-validation (CV) is a technique frequently

used in performance evaluation of a regression |l- Randomize the training points.
2. Partition the training points into k folds.

model. The prediction accuracy of a model built 3 Forie 1
. Fori=1,.. k:
from a training dataset is estimated using a testing

. cq . . ¢ Train the regressor using the data points
dataset, 1.e. validation dataset. Here instead of us- ) g ) g P
in the remaining k — 1 folds.

ing the entire dataset for training the model, part « Test the regressor on the data points in
of the dataset (known data) is used for training and fold i.
the remaining part (unknown data) is used as a test- | * Determine the estimation error in fold i.

ing dataset to evaluate the model performance. In |4. Return the combined estimation error.

this way, problems such as overfitting or hypothe-
ses suggested by the dataset consisting of various Fig. 2.11: k-fold CV algorithm for tun-
parameters are avoided. In a k-fold CV, the obser- ing a LS-SVM regression model.
vation data is randomly partitioned into k subsets

with equal sizes, having k — 1 training subsets and retaining one as the testing subset. The
cross-validation process is iterated until all partitions are used as the testing subset. The
advantage of using a k-fold CV is that each data point is tested at least once regardless of how
the dataset partitioning is done. For k equal to the number of samples, a special type of CV is

constructed named leave-one-out cross-validation (LOOCYV). In LOOCYV all measurements
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except one are included in the training subset with the remaining one being used as the testing
subset. The cross-validation process is iterated until each measurement has been placed in
the testing subset once.

In addition to using CV methods for evaluating the LS-SVM regression model perfor-
mance, these methods are used for tuning the optimization parameters when constructing the
model. The The algorithm of a k-fold CV technique used for defining the regression model
is presented in Figure 2.11. The estimation error of each trial is computed and combined in
order to determine the model accuracy.
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Methods

3.1 Instruments and software

3.1.1 Diffuse reflectance spectroscopy system

Optical system

The diffuse reflectance spectrum is obtained using the optical setup shown in Figure 3.1.
The setup consists of a tungsten halogen broadband light source with an integrated shutter
(Ocean Optics, HL.-2000), a fiber optic probe, two spectrometers with CCD array detectors
(Ocean Optics, USB4000) and a computer. Wavelength calibration is done by assigning a
wavelength value to each pixel of the CCD array detectors. The fiber optics probe tip is

Spectrometer

»
e
mﬁber probe

Light source

Liquid ;umtom

Spectrometer

Fig. 3.1: Schematic diagram of the optical setup for the diffuse reflectance spectroscopy.
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held perpendicularly in contact with the liquid phantom’s surface. One of the spectrometers,
referred to as the reference spectrometer, records the lamp spectrum and its background.
The second spectrometer, referred to as the measurement spectrometer, records the reflected
light’s spectrum of the sample and its background using the fiber optic probe. The lamp
operates on TTL mode so that the lamp/sample spectra are collected when the shutter is open,
and the respective background spectra are collected when the shutter is closed. In this way,
data calibration can be performed in such a way that the resulting spectrum is independent of
the temporal fluctuations in the lamp intensity. Obtaining the background spectra is necessary
in order to account for the dark current and electric offsets of the detectors. In order to
minimize the background noise level, the ambient light is suppressed as much as possible by
shielding the phantom container and taking measurements at a dark laboratory. Lastly, the

DRS spectrum is obtained by calibrating the measured signal as explained in the Section 3.3.

Fiber optic probes

A fiber optic probe is a collection of optical fibers each used either for delivering or collecting
the light. Depending on the arrangement of the fibers, different source detector distances can
be achieved. Two fiber optic probes with different source-detector separations (SDS) are

used in this work as depicted in Figure 3.2.

Fig. 3.2: Schematics of the cross-sections of the two fiber optic probes used in obtaining
the diffuse signal. A red circle highlights the location of the illuminating fiber optic, a
blue circle highlights the location of the collecting fiber optic and a gray circle indicates
an unused fiber optic in the probe.

* The first probe used (Avantes, Reflection Probe (FCR-7IR400-2-ME)) consists of
six collecting fibers in a circular arrangement and a single illumination fiber located
at the center, bundled together into a steel tube. The collecting fiber is coupled to

the measurement spectrometer and the illuminating fibers deliver the light from light
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source. The distance between the centers of the illumination and collecting fibers is

equal to 0.48 mm in this probe.

» The second probe used is a custom built probe consisting of four fibers, one placed at
the center of the geometry and the other three located adjacent to it. The customized
design of this probe enables achieving different source-detector separations depending
on which fibers are used for illuminating and collecting the light. In the arrangement
shown in Figure 3.2, source-detector separation of 2.0 mm is achieved by choosing the
fibers located furthest apart from each other for illumination and collection purposes.
Using this probe with a larger SDS makes it possible to look deeper into the tissue,

where absorption phenomena are more pronounced.

Software

The broadband light source is controlled by a custom MATLAB program that acquires and
plots the signals from the two reference and measurement spectrometers as well as their
respective backgrounds. The exposure times of the two spectrometers and the number of

signal acquisitions can be modified using the program’s interface.

3.2 Phantom Preparation Protocol

Varying the blood volume and scattering

Phantom experiments are carried out in order to construct the dataset used for evaluating the
performance of the multivariate regression models. To this end, tissue-like liquid phantoms
are prepared by pipetting different amounts of the major chromophores existing in a biological
tissue. Each phantom consists of a unique composition of water, bovine blood (purchased
from a local supermarket) and intralipid (Sigma-Aldrich, 1141; 20% emulsion). 81 phantoms
consisting of (1%, 2%, 3%, 4%, 5%, 6%, 1%, 8% and 9% , v:v) intralipid and (1%, 2%, 3%,
4% and 5%, 6%, 7%, 8% and 9%, v:v) blood are prepared for the DRS measurements using
the optical fiber probe with short SDS. 54 phantoms consisting of (1%, 2%, 3%, 4%, 5%,
6%, 7%, 8% and 9% , v:v) intralipid and (0.05%, 1%, 2%, 3%, 4% and 5%, v:v) blood are
prepared for the DRS measurements using the optical fiber probe with long SDS. The volume
fraction of water is then calculated for each sample in such a way that the sum of the volume
fractions of blood, intralipid and water add up to 100%. Phantoms are prepared in glass vials
covered in black tape with the purpose of reducing the background noise. Prior to the DR

spectrum acquisition, each phantom is sonicated for 2 to 3 minutes in order to disperse the
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solution. It can be assumed that there is no temperature variation between different phantoms

as all measurements are carried out in room temperature.

Varying the scatterer

Mixtures of varying amounts of intralipid and water are prepared for calibration purposes
as discussed in Section 3.3. Measurements were done using the two probes for total of 3
phantoms consisting of (2%, 4%, 6%, v:v) intralipid.

3.3 Data calibration

The data collected by the spectrometers need to be calibrated in order to obtain a diffuse
reflectance spectrum independent of the background noise, light source intensity level,
spectral sensitivity etc. A self-calibrating method similar to the one described by Yu et.al.
[52] is used here, where the phantom spectrum is normalised with respect to another spectrum
using a calibration factor (CF). In order to obtain the CF, DRS measurement is carried out on
an intralipid-water solution, i.e. intralipid bath, or a reflectance standard, i.e. puck. Obtaining
a reflectance measurement is necessary in order to account for the spectral shape of the light
source and the spectral sensitivity of the detectors. For these reasons, scattering properties
are usually measured with respect to a reference spectrum collected from an intralipid-water
solution or a reference standard. The calibration factor is then calculated using Equation 3.1:

IL/puck __ yIL/puck lam
I Ibkg .amp

— €Xp
CF = ( [lamp Ilamp ) ’ ( IL/puck )’ (3.1
" “bkg texp

where I"M/Puck and Ilgﬁglp refer to the spectra collected by the measurement spectrometer from
Lamp
bkg

refer to the spectra collected by the reference spectrometer from the lamp and its background,

: IL/puck 1 .
respectively. texp  and texp’ denote the exposure times of the measurement and reference

the calibration sample (intralipid or puck) and its background, respectively. I“¥™P and I

spectrometers, respectively. The diffuse reflectance spectrum acquired from the phantom is

calculated in the same manner as:

[phantom _ Ig{(lamom tlamp
T (i), (3.2)
Ilamp | amp tphantom
bkg exp

R =
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Finally the calibrated spectrum is calculated as:

R

Rcalibrated = ﬁ (33)

There are fundamental differences between using lipid-water solutions or reflectance
standards as reference measurements for calculating the calibration factor. In this work, these
two methods are compared with each other in order to achieve a more accurate and flexible
calibration technique. For reasons explained below, the reference measurements from the

reflectance standard is utilized for calibration of all the diffuse spectra.

Calibration using lipid-water solutions

Diffuse spectra are collected from intalipid-water solutions consisting of 2%, 4% and 6%
lipid to be used as the reflectance spectra. In Figure 3.3a, the DR spectra of 3 phantoms
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Fig. 3.3: Calibration of three phantoms using intralipid-water solution with (a) 6%
intralipid and (b) 2%, 4% and 6% amounts of intralipid corresponding to the intralipid
concentration present in the particular liquid phantom.

consisting of 2% blood plus 2% intralipid, 2% blood plus 4% intralipid and 2% blood plus 6%
intralipid are calibrated using the spectrum of an intralipid-water solution with 6% intralipid.
A decrease in the signal is observed at longer wavelengths due to the scattering behavior of
intralipid. A more significant decay is present for larger differences between the amount of
intralipids in the liquid phantoms and the intralipid-water solutions. In Figure 3.3b, the 3
phantoms consisting of 2% blood plus 2% intralipid, 2% blood plus 4% intralipid and 2%
blood plus 6% intralipid are calibrated using 3 intralipid-water solutions consisting of 2%,

4% and 6% intralipid, respectively. The calibrated spectra have converged with a more subtle
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decay at longer wavelengths. This can be explained by having matching amounts of intralipid
in the liquid phantoms and the intralipid-water solutions.

In general, intalipid-water solutions with strong scattering and as low absorption as
possible are preferred to be used as the reference spectra. The advantage of using an
intralipid-water solution for calibrating the DR signals is having the same measurement
geometry as the tissue-like phantoms, i.e. the reflected light is recorded after penetrating
through the reference material. On the other hand, the reduction in intensity at higher
wavelengths makes intralipid not an ideal scattering reference. This decay is less significant
when the DR spectrum is calibrated using an intralipid-water solution with the same amount
of intralipid as the liquid phantom. However, this is not a feasible solution specially with

large number of unknown samples.

Calibration using reflectance standards

A white plastic with 5 cm diameter providing a highly Lambertian
surface is used for the reflectance standard, as shown in Figure 3.4.
The puck reflects the light uniformly by picking up the lamp spec-
trum with a reflectance value close to 1. The measurement geometry
here is different compared to the DR spectra acquisition from the

liquid phantoms, i.e. the light scattered from the puck surface is
collected at different distances from the source. The DR spectra is Fig. 3.4: The puck
acquired at various heights with the probe held perpendicularly at a used for data calibra-
distance above the reflectance standard. At 2 mm height, the signal tion.

with highest intensity is obtained.

Figure 3.5 shows the calibrated spectra of 3 phantoms with different scatterer concentra-
tions using the puck reference spectrum at 2 mm height. It can be observed that the decay
existing at higher wavelengths when using intralipid-water solutions is not present here. This
is because the puck’s reflectance behavior is not spectrally dependant. The advantage of using
a puck for reference measurements is that all the phantoms regardless of their compositions
can be calibrated using only one reference spectrum. Using one CF in order to calibrate
the DR spectra of all the liquid phantoms is preferred for creating a more robust dataset
for LS-SVM analysis. The important factor when constructing the dataset for LS-SVM
regression is that both the training and testing subsets must have been calibrated in a similar
way. For these reasons, all the DR spectra of the tissue-like phantoms are calibrated using

the puck reflectance spectra at 2 mm.
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Fig. 3.5: Phantoms with different amount of intralipid and blood calibrated using the

reflectance standard.

3.4 Extraction of the optical properties

34.1 LS-SVM

LS-SVM algorithm for the purpose of assess-
ing the chromophore concentrations within
the multivariate analysis framework is used
in this work. Regression analysis is done
with the diffuse reflectance spectra for differ-
ent tissue-like phantoms as input regressors
(X) and the reduced scattering coefficient at
700 nm (u;(700)) and blood volume frac-
tion (Vpiood) Of the particular phantoms as
the dependent variables (Y). There is a need
to construct an individual model for each
dependent variable that is going to be inves-
tigated. The reason for not constructing a
model based on the intralipid volume frac-
tion is the rather constant absorption behav-
ior of the intralipid in the wavelength range

of 500 nm to 900 nm as shown in Figure 2.2.
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ﬂ
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Fig. 3.6: Different steps involved in
LSSVM analysis.

The steps taken in order to predict new values using the constructed regression model are

depicted in Figure 3.6. A model structure is formed by defining different parameters such

as the input regressors (X) and their dependant variables (Y'), the Kernel function type and
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the optimization parameters ¢ and Y. The dimensionality of the model is defined by the
number of columns in the matrix X. In order to evaluate the models’ performance, the dataset
is divided into two training and testing subsets. The training subset is used to build the
regression model and the testing subset is used as validation data for evaluating the model
by estimating the prediction error. The optimization of the model parameters is done using
LOOCYV method as in this way each datapoint is used both for building and testing the model.
Two regression models for p)(700) and Vpjeoq are constructed using Gaussian (RBF) kernel
function. The training and testing experimental datasets have been normalized with respected
to the mean value of each individual spectrum. Three different cross validation techniques are
used in order to test the performance of the prediction models, namely LOOCYV, 9-fold/6-fold
CV and 2-fold CV.

Datasets

* Experimental dataset

— The diffuse reflectance spectra of 81 phantoms collected using the short SDS
optical fiber probe.

— The diffuse reflectance spectra of 54 phantoms collected using the long SDS
optical fiber probe.

» Simulation dataset The diffuse reflectance spectra for the set of phantoms mixed in
the experimental part for the short SDS probe is synthetically calculated using the
diffusion equation for a semi-infinite geometry expressed in Equation 2.8. The reduced
scattering coefficient of each phantom at 700 nm is calculated using the Equation 2.3.
A total of 81 phantoms consisting of (1%, 2%, 3%, 4%, 5%, 6%, 7%, 8% and 9% ,
v:v) intralipid and (1%, 2%, 3%, 4% and 5%, 6%, 7%, 8% and 9%, v:v) blood are
simulated. The water concentration and oxygenation values are kept constant at 80%
and the SDS is set as 0.5 mm.

Software

Off-line data analysis for extraction of the optical properties using LS-SVM technique is
performed in the Matlab® environment. The MATLAB toolbox StatLSSVM [53] is used for
performing the regressing analysis and tuning the regression parameters kernel width ¢ and

regularization parameter 7.
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Results

4.1 Datasets

The input dataset affects the performance of the constructed regression model. The general
shape of the diffuse reflectance spectra varies depending on the type of the forward model
used theoretically or the SDS of the fiber optic probe used experimentally. Figures 4.1, 4.2
and 4.3 show the DR spectra for added (a) absorber and (b) scatterer for the simulation,
short SDS and long SDS datasets, respectively. The reduced scattering coefficient regression
model is built using the DR spectra in the order of added absorber. Whereas, the blood

volume fraction model is built using the DR spectra in the order of added scatterer.
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Fig. 4.1: Diffuse reflectance spectra simulated using the diffusion coefficient for (a)
different amounts of blood and 5% intralipid and (b) different amounts of intralipid and
4% blood.
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Fig. 4.2: Diffuse reflectance spectra collected using the short SDS fiber optic probe for

(a) added absorber and (b) added scatterer.
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Fig. 4.3: Diffuse reflectance spectra collected using the long SDS fiber optic probe for

(a) added absorber and (b) added scatterer.
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4.2 LS-SVM data extraction

In this section the prediction model performances for the three datasets are evaluated and
compared to eachother using cross-validation techniques of LOOCYV, 9-fold CV (/6-fold
CV) and 2-fold CV. In the simulation dataset, 2-fold CV corresponds to using 41 samples
for training and 40 samples for validation. In the short SDS dataset, LOOCV corresponds
to using 80 samples for training and 1 sample for validation, 9-fold CV corresponds to
72 samples for training and 9 samples for validation and lastly, 2-fold CV corresponds
to using 41 samples for training and 40 samples for validation. In the long SDS dataset,
LOOCYV corresponds to using 53 samples for training and 1 sample for validation, 9-fold CV
corresponds to 49 samples for training and 5 samples for validation, 6-fold CV corresponds
to 45 samples for training and 9 samples for validation and lastly, 2-fold CV corresponds
to using 27 samples for training and 27 samples for validation. Figures 4.4, 4.5 and 4.7
depict the difference between the true and predicted models for the simulation, short SDS
and long SDS datasets, respectively. Figures 4.6 and 4.8 compare the percentage errors of
the predicted parameters using different validation techniques for the experimental datasets.

4.2.1 Evaluation of simulation dataset
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Fig. 4.4: Performance of the simulated prediction models for (a) reduced scattering
coefficient at 700 nm and (b) blood volume fraction using 2-fold CV technique. The
dashed line indicates the diagonal of best prediction, the red dots indicate the predicted
points and the errorbars show the mean difference between the true and predicted values.
R is the correlation coefficient between the true and predicted values.

4.2.2 Evaluation of experimental datasets
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Fig. 4.5: Performance of the short SDS prediction models for (a-c) reduced scattering
coefficient at 700 nm and (d-f) blood volume fraction using different CV techniques. The
dashed line indicates the diagonal of best prediction, the red dots indicate the predicted
points and the errorbars show the mean difference between the true and predicted values.

R is the correlation coefficient between the true and predicted values.
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Fig. 4.6: Prediction error of the long SDS regression models for (a) reduced scattering
coefficient at 700 nm and (b) blood volume fraction using different CV techniques. The
bars indicate the mean percentage error (100 - |True — Predicted| /True) of the predicted
values for the respective model parameter and the applied cross-validation technique.
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Fig. 4.7: Performance of the long SDS prediction models for (a-c) reduced scattering
coefficient at 700 nm and (d-f) blood volume fraction using different CV techniques. The
dashed line indicates the diagonal of best prediction, the red dots indicate the predicted
points and the errorbars show the mean difference between the true and predicted values.
R is the correlation coefficient between the true and predicted values.
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coefficient at 700 nm and (b) blood volume fraction using different CV techniques. The
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values for the respective model parameter and the applied cross-validation technique.
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4.2.3 Summary of models’ performances

The mean percentage errors of the models evaluated using the three different CV techniques
are presented in Table 4.1. Table 4.2 contains the correlation coefficient of the models

evaluated using the three different CV techniques presented tabularly for an easier comparison.

Table 4.1: The mean percentage error of the regression models for short SDS and long
SDS datasets.

Mean percentage error [%]

Regression model LOOCV 9-fold/6-fold CV  2-fold CV

Intralipid 0.6626 2.0363 3.5719
Short SDS 1004 1.8023 12.872 15.736

Intralipid 2.1343 47242 7.9765
Long SDS g, 0d 1.1891 6.8550 14.173

Table 4.2: The correlation coefficient of the regression models for short SDS and long
SDS datasets.

Correlation coefficient

Regression model LOOCV 9-fold/6-fold CV  2-fold CV

Intralipid 0.9999 0.9999 0.9983
Short SDS Blood 0.9995 0.9960 0.9682
Long SDS Intralipid 0.9997 0.9974 0.9916

Blood 0.9999 0.9941 0.9807




Chapter 5
Discussions

The SNR value of the signal at different wavelengths determine the wavelength range that
can be used. In this way, wavelength range of 500 nm to 900 nm is selected for the short
SDS probe dataset, 600 nm to 900 nm for the long SDS probe dataset and 500 nm to 1200
nm for the simulation dataset since there are no limitations imposed by the measurement
instruments’ sensitivities. In addition, the SNR value is used as a guidance in choosing the
range which the chromophores can be varied. For instance, the signal taken with a long
SDS probe becomes very noisy and loses its significance with higher amounts of blood
concentration; hence, the range of 0.05% to 5% is chosen for blood in this dataset.

Figure 4.4 shows a prediction accuracy close to 100% for the blood volume fraction
and reduced scattering coefficient regression models built using the simulated dataset and
evaluated by 2-fold CV technique. The result suggests the LS-SVM as a very powerful tool,
specially in cases where the spectra are obtained under identical conditions free from any
sources of error. For the experimental datasets, the models performances vary noticeably
depending on the validation technique used, i.e. the number of samples used for training
compared to the number of samples used for testing. In this way, higher prediction accuracy
is observed for LOOCYV, 9-fold CV (/6-fold CV) and 2-fold CV in descending order (Table
4.1). Percentage error of <2% is observed when testing 1 sample in both reduced scattering
coefficient and blood volume fraction models. In addition, the reduced scattering coefficient
models show a better performance compared to the blood volume fraction models both for
the short and long SDS datasets. This is explained by the more unique behavior of the DR
spectra for different amounts of intralipid when comparing the spectral intensities of the
phantoms with varying intralipid concentration (Figures 4.2b and 4.3b) with phantoms with
varying blood concentration (Figures 4.2a and 4.3a).

Comparing the reduced scattering coefficient regression models for the two datasets, a

relatively better performance is observed for the short SDS dataset. This can be due to having
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a larger wavelength range (500 nm-900 nm compared to 600 nm-900 nm) and higher number
of samples (81 to 54) compared to the long SDS dataset. There are prominent spectral
features existing in the 500 nm to 600 nm wavelength range that can positively contribute
to the model performance. In addition, each particular intralipid concentration is repeated
9 times for different amounts of blood in the short SDS dataset rather than 6 times. On the
other hand for the blood volume fraction regression models, a slightly better performance is
observed for the longer SDS dataset despite having a smaller wavelength range. Here, having
fewer number of samples is not a relevant factor as each particular blood concentration is
repeated 9 times for different amounts of intralipid. This higher prediction accuracy might
be explained by the fact that the spectral intensities for the phantoms are more separated for
the long SDS (Figure 4.3a) compared to the short SDS datasets where only subtle differences
are seen in the intensities (Figure 4.2a).

In Barman’s study [51], mean percentage error of 0.8% was found for the reduced
scattering coefficient model and 3.77% for the absorption coefficient regression model, by
applying LOOCYV technique to the dataset constructed using 24 DR spectra from liquid
phantoms comprising of polystyrene microspheres, ink and water. In Xie’ study [32],
percentage error of 3% was found for the reduced scattering coefficient model and 4% the
blood volume fraction model, by applying 2-fold CV technique to the dataset constructed
using 270 DR spectra from liquid phantoms comprising of water, 9 different amounts of
PpIX, 6 different amounts of intralipid and 5 different amounts of bovine blood. In both
studies the model for the reduced scattering coefficient showed a better performance. The
better prediction accuracy in Xie’s work can be explained by using a much larger dataset and

employing a higher performance detection unit in the DRS experimental setup.

Varying the oxygenation level of a phantom changes the spectral behavior of the DR
signal. When the models were tested using an spectra with a different oxygenation level and
known chromophore compositions, the regression models failed. This result confirmed that
in a LS-SVM evaluation protocol both the training and testing datasets must have the same
nature, i.e. obtained in a similar manner.

The robustness of the regression models can be improved by increasing the number of
samples, using a larger wavelength range and ensuring that all measurements are carried
out in an identical manner (e.g., the precision in pipetting, duration of sonicating, the
probe’s placement in the liquid phantom, the blood’s age and the background noise). The
experimental setup used in this study is using rather cost-effective spectrometers. Using
spectrometers with higher dynamic range can improve the quality of measurement data. In

this way, spectra with higher signal to noise ratio are obtained and a larger wavelength range
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can be probed. This is specially true in the case of long SDS probe where the intensity is

generally weaker and more prone to noise.



Chapter 6

Conclusions and Outlook

6.1 Conclusions

In summary, this work has encompassed the development and testing of an evaluation
protocol that utilizes LS-SVM. Literature study of the current state-of-art in using diffuse
reflectance spectroscopy for estimation of tissue chromophores based on regression analysis
was presented. Phantom preparation protocols for liquid intralipid blood phantoms were
established. Finally, evaluation protocols for the estimation of tissue chromophores and
scattering parameters were established using LS-SVM technique. Two regression models
were created for the reduced scattering coefficient and the blood volume fraction using three
datasets: simulated and experimental, collected using a short and a long SDS probe. The
simulated models demonstrated a very high prediction accuracy when evaluated with 2-fold
CV method. For the experimental datasets, three cross-validation techniques of LOOCYV,
9-fold CV (/6-fold CV) and 2-fold CV were applied to each model and the correlation
coefficients between the true and predicted data with range of 0.96 to 0.99 were achieved.
The level of percentage error decreases noticeably with using a higher number of samples
for training the model. Percentage error of <2% is observed when testing 1 sample in both
reduced scattering coefficient and blood volume fraction models. In addition, it was found
that the reduced scattering coefficient regression models have a relatively better performance
compared to the blood volume fraction regression model in both datasets. The blood volume
fraction model for the long SDS gave a slightly better performance as opposed to the short
SDS model. In general, the spectral shape of the initial dataset, the number of samples used
for training and the robustness of the detection system used affect the performance of the

constructed regression model.
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6.2 Outlook

The obtained results suggest a promising outlook for in-vivo studies of using LS-SVM
technique in order to extract the biological tissue optical properties. The final goal with
this study is to create an evaluation protocol using a true prospective dataset from liquid
phantoms mimicking the optical characteristics of the biological tissue with an as good
as possible agreement. Ways to construct an improved dataset include varying the tissue
chromophores with shorter intervals, selecting the variation range boundaries close to real
life biological tissue values, using a higher quality blood and taking the measurements using
a more robust setup. If the sought-after parameter is not known, regression LS-SVM would
not be the appropriate evaluation method since the prediction accuracy will be unknown.
Moreover, classification studies for differentiating different types of biological tissues from
each other as well as differentiating the healthy from cancerous tissue using DRS can be
done. Constructing a dataset with varying oxygenation will be specially valuable for in-vivo
studies, since the amount of oxygen in a healthy tissue differs from a cancerous tissue as well
as during different stages of therapy.
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Appendix A

Solving the optimization problem

A.1 Nonlinear support vector machines (SVM)

The optimization problem for non-separable data distribution in the SVM is defined in
Equation A.1. This optimization problem can be solved using the Lagrange dual problem.
In this method first the optimization function is written in it’s Lagrangian form £. Next
the conditions for £’s optimality are examined in order to construct the dual optimization
problem (quadratic programming problem) where the optimization is done with respect to

only one variable (The Lagrange multiplier).

1 N
J(w,b —||w? ;
312% (@,6,8) = Sl ||+YZi§

A.l
subject to y,-(a)Tx,- +b)>1-§ A1)
& >0.
The Lagrangian of the optimization problem is defined in Equation A.2 with Lagrange
multipliers o; and B; (i =1,...,N), where @; > 0 due the inequality constraint

S(a)?b,é,a,ﬁ) =J(,b, 5 Zal{yl (@ q)(xl)+b _1+51 Zﬁlél (A.2)
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In order to solve for @, b and & parameters, the partial derivatives of Lagrangian are found

and set to zero. In other words, £ is minimized with respect to @, b and &.

3—320 — 0=YN, ay®(x)
K=0 - YN 09=0
§—§:0 = 0<<+4o, i=1,...N

After substituting the above relations back into the Lagrangian Equation A.2 and simplifying
it, we obtain
1 N N
S(w,b,é,a,ﬁ) = _E Z yiyj<x,~7xj>(x,~aj—|— Z q;.
i,j=1 i,j=1

The dual optimization problem can then be constructed, where the original minimization
problem with respect to ®, b and & parameters in Equation A.1 is rewritten in the form of
a maximization problem with respect to the Lagrange multiplier a;. Here The dot product
between two inputs x; and x; is replaced with an appropriate Kernel function K (x;,x;) using
the "Kernel trick".

1N S
max Qo) = — 2 Z iy K (xi,xj) o0 + Z &
i,j=1 i,j=1
N
A3
subject to Z ayi =0 o
i,j=1

0< <+, i=1,..,N.

A.2 Least-squares support vector machines (LS-SVM)

The optimization problem in LS-SVM is defined in Equation A.1. In order to solve this
problem first the optimization function is written in it’s Lagrangian form £ as in the case of
nonlinear SVM. Whereas, in the next step a set of linear equations are constructed instead of

defining the dual optimization problem.

. | PPN LA
ar)nllall Jrs(w,b,e) = §||CO ||+§Y;€i

(A4)
subject to yi(@ x;+b)=1—e;.

The Lagrangian for Equation A.4 is constructed in the same way as the nonlinear SVM. The

parameter ¢; is the Lagrange multipliers that does not necessarily need to be positive due to
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the equality constraint

N
L(w,b,e;0) =Tps(w,b,e) — Y ai{yi(@" P(x;) +b) — 1 +e;}. (A.5)
i=1

Next, the partial derivatives of £ are found and set to zero in order to solve for w, b, e; and

(07N
(o
5%=0 = 0=YY aydx)
?9_?:0 — Z?]zlai%‘:o
g—izo - a;=ve, i=1,...N
9L 0 = e ®(x)+b]—1+e =0, i=1,..,N

\ Jdo;

A set of linear equations are constructed as:

I 0 0o|-2T 0) 0
0 0 o|-Y"T b 0
= , (A.6)
0 0 yI| —I e 0
ZYI\O a 1

with — Z=[®(x;) y1:...;P0ew) yw]
Y = [y15...5)n]
T=[1;..51]

e=ler;...;en]

o=|ar;...;on].

After eliminating @ and e in Equation set A.6, the following is obtained:
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