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Abstract 
 
The main purpose of this thesis is to give a basic understanding of the GMV 
portfolio theory and the problematics that arise when using the sample 
covariance matrix as the only parameter. The reason for this is the amount 
of estimation error that tends to increase as the sample covariance matrix 
goes to a higher dimension. In an attempt to reduce the amount of error, an 
alternative approach based on sector indices is introduced, which gives new 
and interesting results. This is a useful approach, since we are explaining the 
chosen stocks with fewer time series, a smaller dimension of covariance 
matrix needs to be estimated. This thesis lay the ground for this basic 
strategy, however, before any more profound conclusions can be drawn, 
further investigations have to be made.  
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1 Introduction  
 
Diversification is an important part of portfolio theory and risk analysis. The 
main idea is that the dependence between different financial assets within a 
portfolio should be as small as possible to minimize the risk. There are 
many different methods to diversify your portfolio that are commonly used 
in finance, for example to diversify over different business sectors. This 
theory is useful, as stocks within the same branch tend to show high signs of 
dependence. With this knowledge, the investor is put in front of some 
dilemmas, primarily how to pick the best suitable stocks within each branch, 
but also how to weight the portfolio wealth. The problems with stock 
picking, can simply be solved by investing in whole sectors. For the latter, 
modern portfolio theory (MPT), introduced by Markowitz (1952), is an 
effective approach to find the optimal way to weight the portfolio, i.e. to 
maximize the expected return at a given level of risk. The concept is 
straightforward and easy to assimilate. The only needed parameters are the 
portfolio assets means, variances and covariances, which makes this 
approach quite simple.  
 
One important part of the MPT is the Global Minimum Variance (GMV) 
theory, which is the optimal portfolio in the concept of risk. The 
calculations of the GMV theory are basic and the only needed parameter is 
the covariance matrix based on the assets returns, i.e. if the true covariance 
matrix is available, investors can find the portfolio with the smallest 
variance possible. However, when calculations are based on samples of 
historical asset returns, the covariance matrix is not given and need to be 
estimated. That is easily done with the sample covariance matrix, but not 
without some major flaws. As Jobson and Korkie (1980) concluded, the 
sample covariance matrix contains a high amount of estimation error. This 
leads to an uncertainty if the GMV portfolio, based on the sample 
covariance matrix, actually is the portfolio with the least amount of 
variance. Because of these problematics, Ledoit and Wolf (2004) 
established a technique to shrink the covariance matrix, and therefore the 
error, with some good results.  
  
In this thesis these problematics are described and an alternative and simpler 
approach based on sector indices is developed. The basic idea is to shrink 
the dimension of the sample covariance matrix, and therefore hopefully the 
amount of error. Sector indices are a compound of companies active in the 
same branch. As a complement to calculate the GMV portfolio over a high 
amount of stocks, with the need of a high dimensional sample covariance 
matrix, one can explain the same stocks with indices. With this approach, 
fewer time series are needed, which leads to a lower dimension of the 
sample covariance matrix and hopefully less amount of estimation error. 
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There are some questions that we are especially interested in analyzing.  
 

1. Can one show, by the usage of sector indices, an alternative 
approach to the original GMV-strategy, with smaller amount of 
estimation error but still well diversified?  

2. How much does the estimation error of the sample covariance matrix 
influence the portfolio risk level?  

 
To be able to answer these questions, three different strategies is produced 
and compared with a simple test. The data set are based on Swedish market 
data, containing daily index- and stock returns in the time span of 2015 and 
2016, which is divided in to two parts; the first for calculating the GMV 
portfolios and the second to test and compare their risk level after 
investment. Additionally, for closer analytical purposes, a data simulation is 
made as well. With this approach, we are able to get a deeper knowledge of 
the dilemma in estimating the covariance matrix. 
 
This thesis is organized as follows. In section two we describe the data set. 
Section three contains a deeper description of the used theory. In the fourth 
section the method is presented, followed up by the results and the 
conclusion in the fifth respectively sixth section. 
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2 Data  
 
The index data are collected from the webpage of the Swedish stock 
exchange, Nasdaq OMX Nordic. These financial instruments are provided 
for analytical purposes and cannot be traded.  The sample data ranging from 
17 of June 2015 to 15 of April 2016, and contains a total of 187 daily 
observations. The reason for this time span is that one of the stocks, Nordax, 
were IPOed the 17 of June 2015. The indices that will be used in this study 
are summoned in Table 1 below.  
 

TABLE 1 – SECTOR INDICES 
Index Symbol Abbreviation 
Bank GI SX8300GI Bank 
Forestry and Paper GI SX1730GI FaP 
Mining GI SX1770GI Mining 
 
The indices are so called gross index, which means that dividends are 
included in the index series. The formula for the index calculations, 
provided from the OMX Nordic, is found in the Appendix A.  
 
The companies within each index are represented in Table 2 below.  

 
TABLE 2 – STOCKS WITHIN EACH SECTOR 

Bank GI FaP GI Mining GI 
Nordea Bank Arctic Paper Boliden 
Nordax Group  BillerudKorsnäs Endomines 
SEB A Bergs Timber B Lucara Diamond Corp 
SEB C Holmen A Lundin Gold 
Sv. Handelsbanken A Holmen B NGEx Resourses  
Sv. Handelsbanken B  Munksjö Oyj Nordic Mines 
Swedbank A Rottneros Semafo 
 Stora Enso A  
 Stora Enso R  
 
The data are brought from the homepage of Handelsbanken and is daily 
closing prices, adjusted for splits and dividends, from 17 of June to 15 of 
April 2016.  As in the case of the indices, there are 187 observations.  
 
The closing prices for some stocks are not declared for all trading days 
during this time span. If some dates are missing for one stock, this day have 
been deleted for all the assets in the data.  
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3 Theory 
3.1 Logarithmic returns 
 
To be able to compare different financial assets we will transform the time 
series of price changes into logarithmic returns. Due to the fact that one 
cannot invest in the indices described in Table 1 above, we will call these 
logarithmic quasi-returns.  
 
The definition of logarithmic returns is the following: 
 

 𝑟" = log '(
'()*

= log 𝑃" − log 𝑃"-.   (1) 
 
where  𝑃" is the price at time t and 𝑃"-. is the price at time t-1. 
 
We are looking into N column vectors of assets over T rows of daily 
observations. Therefore, 𝑹 = [𝒓.	 …	𝒓4]  denotes an TxN dimensional 
matrix of asset log returns.  
 

3.2 Modern portfolio theory 
 
As pointed out earlier Markowitz (1952) laid the ground for today’s modern 
portfolio theory. With the usage of multivariate data and the jointly normal 
distribution assumption, the only needed parameters are the mean, variance 
and covariance of the assets within the portfolio.  
 
An efficient portfolio is the one that maximizes the expected return at a 
given level of risk, measured as variance, i.e. at all the different levels of 
risk, there is an efficient portfolio. Together, these portfolios form the 
efficient frontier. The portfolio on the left tip of the efficient frontier goes 
by the name, Global Minimum Variance portfolio. The GMV has an 
important ability compared to the rest of the efficient portfolios, namely, it 
is completely calculated of the covariance matrix, when the rest of the 
portfolios take the expected returns into account as well.  
 
So why is this important? Due to the fact that neither the mean, variance, 
nor the covariance is given; it needs to be estimated. If the investor does not 
have a better guess, an estimation based on historical data is commonly 
used. Consequently, the theory is built upon past economic events. Due to 
the efficient market hypothesis, all assets are priced accordingly to the 
available news, i.e. all future returns will be random and therefore hard to 
estimate. The covariance matrix, however, is easier to estimate. Risky assets 
tend to continue to show high amount of volatility and vice versa. If the 
investor thinks that the past volatility is going to continue together with 
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similar dependence between the stocks, the covariance matrix is a quite 
good estimation. But, as concluded in the introduction, the covariance 
matrix is not estimated without error. On this subject, Chopra and Ziemba 
(1993) as well as Frahm (2004), concluded that the main problematic arises 
when estimating the expected return rather than the covariance matrix. 
However, in this thesis we will mainly focus on the latter. 
 

3.3 Global minimum variance portfolio  
 
The core idea of the GMV theory is to find the asset weights that minimize 
the portfolio variance, given the assets covariance matrix. There are no 
constraints, therefore, negative weights might appear, i.e. short sales are 
allowed. Furthermore, there are no restrictions in how much wealth that will 
be invested in each asset and no transactions cost are taken into account.  
 
As Ruppert and Matteson (2015) stated, quadratic programming of the 
GMV will be easily calculated. The minimization problem is the following:  
 
 𝒘789 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝒘?∑𝒘;𝒘?𝟏4 = 1 , (2) 

 
 
where 𝒘 = 𝑤.,… ,𝑤4 ?  is a vector of portfolio weights and 𝟏4  is a N 
dimensional vector of ones.  
 
By the usage of the Lagrange multiplier, the problem of finding the optimal 
𝒘 is easily solved,  
 
 𝐿 𝒘, 𝜆 = 	𝒘?∑𝒘 + 	𝜆 𝒘?𝟏4 − 1 , (3) 
 
 
where 𝜆 is a constant.  
 
Derive the Lagrange formula with respect to 𝒘 and 𝜆: 
 
 
 0 =

𝜕𝐿 𝒘, 𝜆
𝜕𝒘 = 	2∑𝒘 + 𝟏4𝜆 (4) 

 
and 
 
 
 0 = 	

𝜕𝐿 𝒘, 𝜆
𝜕𝜆 = 		𝒘?𝟏4 − 1. 

(5) 

 
 
Then use the formula (4) to solve 𝒘, 
 

 𝒘 = −
𝜆∑-.𝟏4

2 . (6) 
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Multiply formula (6) with 𝟏4?  on both sides, use the equality of 1 in formula 
(5) and solve 𝜆, 
 
 

1 = 	−
𝜆𝟏4?∑-.𝟏4

2 ⟺ 		𝜆 = 	−2 ⋅
1

𝟏4?∑-.𝟏4
	. (7) 

 
 
Solve 𝒘 by substitute 𝜆 back to formula (6): 
 

 𝒘 = −
1
2 ∙ −2 ⋅

∑-.𝟏4
𝟏4?∑-.𝟏4

	=
∑-.𝟏4
𝟏4?∑-.𝟏4

	. (8) 

 
 
The vector of global minimum weights, 𝒘789 = 𝑤789,.	, … , 𝑤789,4)

?
,  

that minimize the variance for a given covariance matrix are the following:  
 

 𝒘789 =
∑-.𝟏4
𝟏4?∑-.𝟏4

	. (9) 

  
   
and the global minimum variance of the portfolio is calculated through, 
 
 𝜎RST = 𝒘789

? ∑𝒘789 . (10) 
 
The GMV portfolio return is calculated through  
 
 𝑹789 = 𝑹𝒘789	, (11) 
 
where 𝑹 = [𝒓. …	𝒓4]   is a matrix of TxN asset returns. If the true 
covariance matrix is available, the weights, 𝒘789 , will be fixed, i.e. the 
only variability in 𝑹789 appears due to the randomness of the returns, 𝑹.  
 
 The presented formulas presume that the true ∑  is known. As 
pointed out in the introduction, when using samples of historical data, the 
true covariance matrix will not be available. Therefore, the covariance 
matrix needs to be estimated. This is easily done with the sample covariance 
matrix,  
 
 

𝑺 =
1

𝑁 − 1 𝒓W − 𝒓 𝒓W − 𝒓 ?
4

WX.

. 
 

(12) 

 
Replacing the true covariance matrix in equation- (9) and (10) with the 
sample counterpart give us the following formulas: 
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 𝒘789 =
𝑺-.𝟏4
𝟏4? 𝑺-𝟏𝟏4

 (13) 

  
and 
 
 𝑠789T = 𝒘789

? 𝑺𝒘789 , (14) 
 
 
which are the estimated parameters. The portfolio return is calculated in the 
same way as in formula (11), but now with the estimated weights, 
 
 𝑹789 = 𝑹𝒘789	. (15) 
 
Because of the usage of the sample covariance matrix,  𝒘789 is no longer 
fixed but random, i.e. the variability in 𝑹789	 appears from both the 
randomness in 𝑹 as well as in 𝒘789. 
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4 Method  
 
This section is divided into two parts; the first describes the approaches that 
the analysis is built upon, Swedish market data and simulated data. In the 
second part, a deeper review of the strategies structure can be found. 

4.1 Approaches 

4.1.1 Approach 1 – Swedish market asset data 
 
As stated in the data-section above, there are a total of 187 daily 
observations. The first 123 observations of logarithmic returns, covering the 
17 of June to 31 of December 2015, are used to calculate the different GMV 
portfolios. The remaining 65 dates, covering 1 of January to 15 of April 
2016, are the test data, which give us an insight in the portfolios imaginary 
performances 

4.1.2 Approach 2 – Simulated data 
 
As described in the introduction, the true covariance matrix is not available 
when using a sample of historical returns. This uncertainty makes the 
measurement of estimation error in the sample covariance matrix a complex 
problem. To get a deeper knowledge of this dilemma, we simulate 
multivariate normally distributed data with the Swedish market data as the 
true parameters, i.e. the estimated-means and covariance matrix conducted 
in sector 4.1.1, is now the population- means and covariance matrix. By the 
use of the mvrnorm function located in the MASS package in R, we are able 
to simulate the requested data set.  
 
250 daily returns, equivalent to a trading year, are simulated and used to 
calculate the different strategies, explained in section 4.2 below. To test the 
portfolios imaginary performances, an additional sample of 250 daily 
returns are drawn and invested in. Because of the randomness in the 
simulation, this procedure is repeated 20 times. 

4.1.2.1 Simulated sector indices  
 
We use the assumptions of joint normally distribution and i.i.d (independent 
and individually distributed) assets to simulate three index series with the 
same mean- and covariance structure as the Swedish market index data.  
 

𝕐 = [𝕪.	𝕪T	𝕪\] → 𝑁
𝜇𝒀*
𝜇𝒀T
𝜇𝒀\

	, 𝚺𝒀.,T,\  

 
where 𝕐 is a matrix of Tx3 dimensional matrix of logarithmic quasi-returns. 
𝜇𝒀a  and 	𝚺𝒀.,T,\ are the true-means and covariance matrix for the Swedish 
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market sector indices. Due to these parameters, the estimated indices should 
approximately agree with the ones observed in the true data.  
 

4.1.2.2 Simulated stocks 
 
To be able to simulate the stocks, the same theory is used as in section 
4.1.2.1, but with the parameters of the 23 stocks summarized in Table 2.  
 

𝕏 = [𝕩. 	…	𝕩T\] → 𝑁
𝜇d*
⋮

𝜇dT\
	, 𝚺𝑿.,..,T\  

 
where 𝕏 is a matrix of dimension Tx23. Just like in the simulation of the 
sector indices, the Swedish stock data means and covariance matrix is now 
the true parameters. The R-script used for this simulation is presented in 
Appendix C.  
 

4.2 Portfolio strategies 
 
We will describe two different GMV strategies; one based on indices and 
the other on stocks. The GMV portfolios weights are based on the sample 
covariance matrix, estimated on the logarithmic returns of previous year. 
For comparison reasons, a third strategy, with equally weighted weights, 
will be produced as well.  
 

4.2.1 Strategy 1 – GMV portfolio based on indices 
 
The first strategy is based on the GMV theory, calculated on sector indices. 
To begin with, 𝒀 = [𝒚.	𝒚T	𝒚\]	is an Tx3 dimensional matrix of sector index 
logarithmic quasi-returns. With formula (12) the sample covariance matrix, 
𝑺h, of the three indices are estimated. Based on this parameter, the GMV 
portfolio weights are calculated with formula (13): 
  
 

𝒘'.i,j = 	
𝑺h-.𝟏4
𝟏4? 𝑺h-𝟏𝟏4

	, 
(16) 

 
where 𝑃1h, j stands for portfolio 1, approach j.  
 
One need to invest in the underlying stocks, as sector indices are issued for 
analytical purposes and, therefore, cannot be invested in directly. We want 
the strategy as simple as possible, which means that the stocks are weighted 
equally within each index. This is done by dividing the sector indices 
weights, 𝒘'.i.j, with the amount of stocks within each index. The vector of 
weights containing all the stocks is described as,  𝒘'.k,j . The portfolio 
variance is calculated with an alternative to formula (14), 
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 𝑠'.,jT = 𝒘'.k,j

𝑻 𝑺d𝒘'.k,j	,  (17) 
 
where 𝑺d  is the sample covariance matrix estimated on the underlying 
stocks. 
 To calculate the estimated portfolio return, formula (15) is used, 
 
 𝑹'.,j = 𝑹d𝒘'.k,j	, (18) 
 
where 𝑹d is the returns of the stocks during the test period.   
 

4.2.2 Strategy 2 – GMV portfolio based on stocks 
 
The second strategy is the well-documented method of global minimum 
variance portfolio.  𝑿 = [𝒙. 	…	𝒙T\]	  is a Tx23 dimensional matrix of 
logarithmic stock returns. From this matrix, a sample covariance matrix 𝑺d 
will be estimated. With formula (13) explained in section 3.3, the vector of 
weights is calculated,  
 
 

𝒘'T,j = 	
𝑺d-.𝟏4
𝟏4? 𝑺d-𝟏𝟏4

	. 
(19) 

  
The portfolio variance is calculated with formula (14),  
 
 𝑠'T,jT = 𝒘'T,j

? 𝑺d𝒘'T,j	, (20) 
   
and the return of the portfolio during the test period is calculated with, 
 
 𝑹'T,j = 𝑹d𝒘'T,j	. (21) 
 

4.2.3 Strategy 3 – Equally weighted portfolio 
 
One of the most basic strategies is to weight the portfolio equally over all 
assets. This method is a good comparison to the other two strategies, 
mentioned above, since the weights is not estimated from a covariance 
matrix. The portfolio variance is calculated in a similar way as in formula 
(14),  
 
 𝑠'\,jT = 𝒘'\,j

𝑻 𝑺d𝒘'\,j	, (22) 
   
and the portfolio return during the test period with formula (15) 
 
 𝑹'\,j = 𝑹d𝒘'\,j	. (23) 
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5.1 Results based on the Swedish financial market 
5.1.1 Strategy 1 – GMV portfolio based on indices 
 
The first strategy is based on the three sector indices presented in Table 1. 
From these time series, a 3x3 dimensional covariance is estimated. More 
precisely, \no

T
 = 6 parameters are projected. The estimated covariance- and 

correlation matrix (within the brackets) is summoned in Table 3.  
 

TABLE 3 – SAMPLE COVARIANCE- AND CORRELATION MATRIX - INDICES 
 Bank GI FaP GI Mining GI 
Bank GI 2.24e-04 (1.000) 1.78e-04 (0.703) 1.80e-04 (0.578) 
FaP GI 1.78e-04 (0.703) 2.69e-04 (1.000) 2.12e-04 (0.640) 
Mining GI 1.80e-04 (0.578) 2.12e-04 (0.640) 4.07e-04 (1.000) 
 
The GMV portfolio based on indices is calculated with formula (16), the 
only used parameter is the sample covariance matrix in Table 3. The 
portfolio weights are presented in Table 4.  
 

TABLE 4 – GMV PORTFOLIO WEIGHTS BASED ON INDICES 
Index Weight Amount of stocks 
Bank  0.55942522  7 
FaP  0.34489314 9 
Mining  0.09568163 7 
Sum 1 23 

  
Given the sample covariance matrix, estimated on the indices logarithmic 
quasi-returns during 2015, these are the approximated weights that 
minimize the portfolio variance. As described in section 4.2.1, it is not 
optional to invest in the given indices, therefore one must invest in the 
underlying stocks. After dividing the sector weights equally over the stocks 
within each index, 0.07991789 is invested in each bank stock, 0.03832146 
and 0.0136688 in each FaP - respectively mining stock. The variance of this 
portfolio is calculated with formula (17), 𝑠'.,.T = 𝒘'.,.

𝑻 𝑺d𝒘'.,. = 1.59e-04.  

5.1.2 Strategy 2 – GMV portfolio based on stocks 
 
The second strategy is based on the GMV theory, calculated on all 23 stocks 
presented in Table 2. The estimated covariance matrix is of dimension 
23x23, which means that T\nTo

T
= 276	variance- and covariance parameters 

is projected. To give an insight of the dependence between the stocks during 
the 2015 time span, a correlation plot is available in Figure 1.  By the usage 
of the estimated covariance matrix, the GMV portfolio weights are 
calculated with formula (19) and summoned in Table 5. The used R-script 
for these calculations is available in Appendix C.  
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Figure 1- Correlation plot based on stocks 

 
 

TABLE 5 – GMV PORTFOLIO WEIGHTS BASED ON STOCKS 
Stocks Weights 
Nordea Bank 0.0678160822 
SEB A -0.2380888769 
SEB C 0.3699257467 
Sv. Handelsbanken A 0.0061393756 
Sv. Handelsbanken B  0.0721963906 
Swedbank A 0.0705114280 
Nordax 0.0974433857 
Arctic Paper -0.0082195891 
BillerudKorsnäs -0.0588709108 
Bergs Timber B 0.1020064476 
Holmen A 0.1810335428 
Holmen B 0.2803494868 
Munksjö Oyj 0.0705727350 
Rottneros -0.0057310324 
Stora Enso A 0.0737609819 
Stora Enso R -0.1608781712 
Boliden -0.0683863720 
Endomines 0.0009383792 
Lucara Diamond Corp -0.0114819299 
Lundin Gold 0.0912409261 
NGEx Resourses  0.0083663966 
Nordic Mines -0.0028104056 
Semafo 0.0621659831 
Sum    1 
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Given the estimated covariance matrix, this is approximately the optimal 
way to weight your portfolio to minimize the risk. By the usage of these 
weights and the sample covariance matrix, the minimized portfolio variance 
is calculated with formula (20), 𝑠'T,.T = 𝒘'T,.

? 𝑺d𝒘'T,.	= 7.19e-05.  

5.1.3 Strategy 3 – Equally weighted portfolio  
 
The third strategy is the simplest. The weights are equally distributed over 
all the underlying stocks. This means that .

T\
= 0.04347826, is invested in 

each asset. The portfolio variance is calculated with formula (22),  
𝑠'\,.T = 𝒘'\,.

𝑻 𝑺d𝒘'\,. =	2.17e-04. 

5.1.4 Comparison 
 
As described in section 4.1.1, 65 daily stock returns during 2016 are used to 
calculate respectively portfolio return, 𝑹'W,. . The variance of the daily 
portfolio returns for the three strategies during the test period is presented in 
Table 7. For a graphical view, the portfolio returns are plotted in Figure 2 
 

TABLE 7 – COMPARISON OF VARIANCES, BEFORE AND AFTER THE TEST 
 Portfolio returns 

variance, Var(𝑹𝑷𝒊,𝟏) 
𝒔𝑷𝒊,𝟏𝟐  Difference % change 

Strategy 1 1.76e-04  1.59e-04 1.7e-05	 ≈ + 10.7 % 
Strategy 2 1.21e-04  7.19e-05 4.9e-05	 ≈ + 68.3 % 
Strategy 3 1.24e-04  2.17e-04 -9.3e-05 ≈ - 42.9 % 

 
For comparison reasons, the portfolio variance based on historical data, 
𝑠'W,.T , and the difference between the figures are presented in Table 7 as 
well.  
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Figure 2- Strategy comparison 

5.2 Results based on simulated data 
 
By the second approach, described under section 4.1.2, three jointly normal 
distributed index series are simulated. The used parameters are the Swedish 
market indices means presented in Table 14 and the covariance matrix 
summarized in Table 3. From the simulated index time series, the means 
and the sample covariance matrix are estimated and summoned in Table 8 
respectively 9.  
 

TABLE 8 – MEANS OF SIMULATED INDICES 
Stocks  Mean 
Simulated Bank Index 1.24e-03 
Simulated FaP Index 3.20e-03 
Simulated Mining Index 1.08e-04 

 
TABLE 9 – COVARIANCE- AND CORRELATION MATRIX BASED ON 

SIMULATED INDICES 
 Simulated Bank 

Index 
Simulated FaP 
Index 

Simulated Mining 
Index 

Simulated Bank 
Index 

2.40e-04 (1.000) 1.87e-04 (0.730) 1.92e-04 (0.614) 

Simulated FaP 
Index 

1.87e-04 (0.730) 2.75e-04 (1.000) 2.26e-04 (0.672) 

Simulated 
Mining Index 

1.92e-04 (0.614) 2.26e-04 (0.672) 4.10e-04 (1.000) 
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In a similar way, as explained in section 4.1.2.2, the stocks are simulated 
with the parameters from the market stock data. Descriptive data are 
summoned in Table 16 and a correlation plot over the simulated stocks can 
be found in Figure 3.  
 

5.2.1 Strategy 1 – GMV portfolio based on simulated index 
 
By the usage of the covariance matrix presented in Table 9 and formula 
(16), the GMV portfolio of the simulated indices is calculated. The results 
are summoned in Table 10 below. For comparison, the GMV weights 
calculated on the market data in section 5.1.1 are presented as well. These 
weights can be analyzed as non-random calculated from the true covariance 
matrix, as mentioned in section 3.3 above.  
 

TABLE 10 – WEIGHTS BASED ON SIMULATED INDICES 
Index Weight (Simulated) Weight (Table 4) Amount of 

stocks 
Bank simulated 0.59865864 0.55942522  7 
FaP simulated 0.32977838 0.34489314 9 
Mining simulated 0.07156298 0.09568163 7 
Sum 1 1 23 
 
Similar to the calculations in section 5.1.1, the sector weights are divided 
upon the amount of underlying stocks. This means that 0.08552266 is 
invested in each simulated bank stock, 0.03664204 and 0.01022328 in each 
FaP respectively mining stock. The variance is calculated with formula (17), 
𝑠'.,TT = 𝒘'.,T

𝑻 𝑺𝕏𝒘'.,T = 1.46e-04. 

 

5.2.2 Strategy 2 – GMV portfolio based on simulated stocks  
 
From the time series of simulated stock returns, the covariance matrix is 
estimated and used for calculating the GMV weights. The result is 
summoned in Table 11 below. For comparison, the GMV portfolio weights 
calculated in section 5.1.2 are presented as well.   
 
The variance of the GMV portfolio based on stocks, weighted as in Table 
11, is calculated with formula (20), with the following result,  
𝑠'T,TT = 𝒘'T,T

? 𝑺𝕏𝒘'T,T= 5.67e-05. 

5.2.3 Strategy 3 – Equally weighted portfolio 
 
The equally weighted portfolio is as simply calculated as under section 
5.1.3, i.e. 0.04347826	will be invested in each stock. With formula (22) the 
portfolio variance is calculated, 𝑠'\,TT = 𝒘'\,T

𝑻 𝑺𝕏𝒘'\,T = 2.07e-04. 
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Figure 3 - Correlation plot based on simulated stocks 

 
 

TABLE 11 – WEIGHTS BASED ON SIMULATED STOCKS 
Stocks   Weights Weights (Table 5) 
Nordea Bank 0.027742700 0.0678160822 
SEB A -0.253680577 -0.2380888769 
SEB C 0.281396824 0.3699257467 
Sv. Handelsbanken A 0.038397908 0.0061393756 
Sv. Handelsbanken B  0.065093903 0.0721963906 
Swedbank A 0.206114228 0.0705114280 
Nordax 0.111264314 0.0974433857 
Arctic Paper -0.022241441 -0.0082195891 
BillerudKorsnäs -0.077835609 -0.0588709108 
Bergs Timber B 0.130234666 0.1020064476 
Holmen A 0.202204455 0.1810335428 
Holmen B 0.228173711 0.2803494868 
Munksjö Oyj 0.074752109 0.0705727350 
Rottneros 0.036779476 -0.0057310324 
Stora Enso A 0.066076449 0.0737609819 
Stora Enso R -0.170731853 -0.1608781712 
Boliden -0.079883851 -0.0683863720 
Endomines -0.005109171 0.0009383792 
Lucara Diamond Corp -0.021904246 -0.0114819299 
Lundin Gold 0.076869232 0.0912409261 
NGEx Resourses  0.004190067 0.0083663966 
Nordic Mines -0.003503245 -0.0028104056 
Semafo 0.085599949 0.0621659831 
Sum   1            1 
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5.2.4 Comparison  
To approximate respectively portfolio return 𝑹'W,T = 𝑹𝕏𝒘'W,T

? , an additional 
simulation of 250 daily stock returns, with the same parameters as the 
Swedish market stock data, are made, which is also described in in section 
4.1.2. Due to the randomness in the simulation, this test is repeated 20 times.  
To get an approximation of the portfolio return variance over this test 
period, the mean and standard deviation of the test data are calculated and 
summoned in Table 12 below.  
 

TABLE 12 – MEAN AND STANDARD DEVIATION OF THE ESTIMATED 
PORTFOLIO VARIANCE 

Strategy Mean of variances Standard deviation  
GMV Indices 1.53e-4 1.048e-05 
GMV Stocks 7.53e-05 5.44e-06 
Equally 2.17e-04 1.36e-05 

 
For comparison reasons the first column of Table 12 are presented in Table 
13, together with the expected portfolio variance and the difference between 
the measurements.  
 

TABLE 13 – COMPARISON OF VARIANCES, BEFORE AND AFTER THE TEST 
Strategy Mean of variances 𝒔𝑷𝒊,𝟐𝟐  Difference % change 
Strategy 1 1.53e-04 1.46e-04 7.00e-06 ≈	+ 4.79 % 
Strategy 2 7.53e-05 5.67e-05 1.86e-05 ≈ + 32.8 % 
Strategy 3 2.17e-04 2.07e-04 1.00e-05 ≈ + 4.83 % 
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6. Conclusion 
 
To begin with, it is important to clarify that we are mainly interested in how 
accurate respectively strategy estimate variance, i.e. how much the expected 
variance calculated on historical returns before the investment differ from 
the actual, measured as the portfolio variance after the investment.  
 
The results based on the Swedish market data gives the reader an idea of the 
dilemma that arise when using the sample covariance matrix as the base in 
the GMV theory. In Table 7, the results of the portfolio variances are 
summarized and compared. It is clear that the second strategy, GMV 
portfolio based on stocks, presented in column 2 in Table 7, shows the least 
amount of variance beforehand. It seems like a superior strategy, compared 
to the other portfolios. However, we expect that this is an overoptimistic 
figure that will arise in reality, due to the randomness in the weights as well 
as the returns. Therefore, a simple test is produced to verify the portfolios 
imaginary return during the first 65 trading days of 2016. The test results, 
presented as the portfolios return variance, are summarized in the first 
column of Table 7. The variance for the second portfolio has increased with 
68 % and is now slightly better than the other two. The first strategy, based 
on indices, shows a smaller increase in variance, but is still rather close to 
the expected variance. Even though this is an interesting result, further 
research has to be done, as the sample size is quite small and the result 
could be of randomness.  
 
To straight out some of these uncertainties, we simulate index- and stock 
data, with the parameters of the Swedish market data as the base, i.e. the 
simulated data have approximately the same structure as the true market 
data, analyzed in the first part of the result section above. To get an idea of 
the accuracy in the simulation, a couple of comparisons are available in the 
result section. First of all, when comparing Table 3 and 9, the sample 
covariance matrix structure based on indices looks quite alike. The 
differences between the matrices lead to some small changes in the GMV 
portfolio weights, presented in Table 10. A similar structure appears for the 
simulated stocks. Due to the high-dimensional covariance matrix, a 
correlation plot is presented instead. When comparing Figure 1 and 3 it is 
quite clear that the dependence in the simulated stocks are similar to the 
counterpart in the market data. As the indices, there is a small difference 
between the weights calculated on market stock data and the simulated 
counterpart presented in Table11, i.e. differences in the sample covariance 
matrix leads to differences in the weights. This is one of the conclusions that 
are important to understand as an investor, since the true covariance matrix 
is unknown, estimation error in the sample covariance matrix leads to an 
error in the subsequent weights.  
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The pros with this simulation method is that the true covariance matrix now 
is given, therefore we will be able to get a better perspective of the amount 
of error in the estimator. When analyzing the imaginary investment strategy, 
based on the average of the annual portfolio variance during a 20-year time 
span, interesting results are obtained. In Table 13 the portfolio variances are 
summoned and compared. The expected portfolio variance, 𝑠'W,TT , is based 
on 250 historical simulated stock returns. Similarly to the previous 
approach, the second strategy is superior the other two beforehand. In the 
first column of Table 13, the average variances during the test period are 
presented. The portfolio variance for the second strategy has increased with 
32 %, but it is still the best in the concept of risk minimizing. The other two 
strategies show a small increase in variance, approximately 5 % each. 
During these simulated, quite optimal conditions. The second strategy does 
not contain as much error as in the Swedish market analysis. However, 
compared to the other portfolios, it shows the highest amount of difference.   
  
So can one show, by the usage of sector indices, an alternative approach to 
the original GMV-strategy, with smaller amount of estimation error but still 
well diversified?  Yes, we were actually able to find some interesting 
results. Due to the high amount of estimation error in the high-dimensional 
sample covariance matrix, what seemed like a superior strategy beforehand 
did not perform quite as well in reality. The first strategy, based on sector 
indices shows smaller amount of error than the second portfolio, based on 
stocks. However, for any deeper conclusions further investigations have to 
be made.  
  
How much does the estimation error of the covariance matrix influence the 
portfolio risk level? This question is difficult to answer, as the true 
covariance matrix is not known. An approximation is given in Table 13, 
however, one cannot draw to much conclusions from this due to randomness 
in the simulation. What we can conclude though, is that the dimension of 
the sample covariance matrix influences the amount of estimation error. 
  
One might argue that, even though there are some estimation error in the 
GMV strategy based on stocks, it is still a better approach that the other two 
strategies. Therefore, some important facts need to be stated in the concept 
of transaction costs. First of all, the fees of shorting are high, compared to 
brokerage when going long, which obviously is negative for the second 
strategy in this thesis. Second of all, some of the stocks might not even be 
available for shorting. With that said, negative weights in the first strategy, 
based on indices, is possible as well. However, this will appear less 
frequently due to the fact that there is smaller dependence between sectors 
than stocks.  
  
As stated in the introduction, the basic idea with this thesis is to highlight 
the dilemmas that arise when using the sample covariance matrix and to 
introduce an alternative approach based on sector indices. To be able to 
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draw any deeper conclusions from this, further investigations need to be 
done. Here are some suggestions for future analysis within this subject. 
  
 First of all, in the simulation of the data, the jointly normally distribution is 
assumed, i.e. the simulated data is normally distributed, which is clear when 
analyzing the skewness and kurtosis in Table 16. But, as is commonly 
known, financial assets are not Gaussian distributed. Due to the clusters of 
high volatility, the distribution of assets is much more heavy tailed than 
during the normal distribution. This is clear when analyzing the market data 
used in this thesis as well. As can be seen in table 14, most of the assets 
skewness and kurtosis differs from the values of 0 respectively 3, which are 
the normally distributed values of these parameters. For a more veridical 
result, a heavier tailed distribution should be considered. However, for what 
we try to prove in this thesis, is quite a good approximation.  
  
Something else that might be of interest is to develop the first strategy even 
more. By the usage of the GMV theory, one could diversify within each 
index as well as between them. The shortcoming with this approach is of 
course the increasing amount of estimation error that might appear, due to 
the need of more sample covariance matrices.  
  
Last of all, one need to point out the fact that the amount of stocks used in 
this thesis is quite small. In reality is not unusual to calculate the GMV 
portfolio of a market as a whole. One extreme example is the SP500, which 
contains of 500 large US stocks. The sample covariance matrix of this index 
would be of dimension 500x500 which means that 125 250 parameters need 
to be estimated, i.e. a whole lot of estimation error. It would be of interest to 
analyze how respectively strategy would perform in a situation like that.  
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Appendix 
 
Appendix A 
 
The indices we analyze are taking the dividends into account and are called 
Gross Total Return (GTR) index. To calculate the index, the following 
formula is used: 
 

𝐺𝑇𝑅	𝐼" = 𝐺𝑇𝑅	𝐼"-.𝑥
𝑃𝑅	𝐼" + 𝐼𝐷𝑃	𝐼"

𝑃𝑅	𝐼"-.
 

 
 
𝐺𝑇𝑅	𝐼" = Gross Total Return Index value at time (t) 
𝐺𝑇𝑅	𝐼"-.= Gross Total Return Index Value at time (t-1)  
𝑃𝑅	𝐼"= Price Return Index Value at time (t) 
𝑃𝑅	𝐼"-.= Price Return Index Value at time (t-1)  
𝐼𝐷𝑃	𝐼"= Index dividen 
 
 
There are some variables that need some further explanation: 
 

𝑃𝑅	𝐼" =
𝑃𝑅	𝐼𝑛𝑑𝑒𝑥	𝑀𝑎𝑟𝑘𝑒𝑡	𝑉𝑎𝑙𝑢𝑒"

𝑃𝑅	𝐼𝑛𝑑𝑒𝑥	𝐷𝑖𝑣𝑖𝑠𝑜𝑟"
 

 

𝑃𝑅	𝐼𝑛𝑑𝑒𝑥	𝑀𝑎𝑟𝑘𝑒𝑡	𝑉𝑎𝑙𝑢𝑒" = 	 𝑞W," ∗ 𝑝W," ∗ 𝑟W,"

�

"X.

 

 
𝑞W,"= Number of shares (i) applied in the index at time (t) 
𝑝W,"= Price in quote currency of a security (i) at time (t)  
𝑟W,"= Foreign exchange rate to convert Index Share (i) quote currency into 
Index currency at time (t). 
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Appendix B 
 
A short summation of the descriptive data over the asset log returns follows 
below.  
 

TABLE 14 – DESCRIPTIVE STATISTICS, 18 OF JUNE TO 31 OF DECEMBER 
2015 

Assets Mean Sd Min Max Skewness Kurtosis 
Bank       
Nord B -9.13e-04 0.0166 -0.0383 0.0526 0.5455 3.9179 
SEB A -1.21e-03 0.0165 -0.0512 0.0566 0.4148 4.2514 
SEB C -8.58e-04 0.0146 -0.0404 0.0629 0.8682 6.0966 
SHB A -6.08e-04 0.0178 -0.0618 0.0548 0.0740 4.6057 
SHB B  -1.61e-04 0.0153 -0.0348 0.0534 0.4784 3.8109 
Swed A -1.52e-04 0.0154 -0.0503 0.0478 0.3770 4.3413 
Nordax 1.22e-03 0.0229 -0.0482 0.0905 0.9580 4.6397 
FaP       
AP 1.19e-03 0.0373 -0.1335 0.1040 -0.2098 5.2929 
BK 1.70e-03 0.0207 -0.0558 0.1253 1.5849 12.4928 
Bergs Tim -1.12e-03 0.0232 -0.0438 0.0891 1.2995 5.9526 
Holmen A 7.81e-04 0.0201 -0.0593 0.0552 0.2569 3.2985 
Holmen B 6.69e-04 0.0148 -0.0499 0.0364 -0.0547 3.4577 
Munksjö  -3.57e-04 0.0226 -0.0846 0.0523 -0.4649 4.4488 
Rottneros 3.53e-03 0.0317 -0.0735 0.1061 0.5683 3.9554 
SE A -5.51e-04 0.0233 -0.0737 0.0752 0.0259 3.8423 
SE R -5.22e-04 0.0236 -0.0847 0.0685 -0.2479 4.2392 
Mining       
Boliden -8.03e-04 0.0294 -0.0791 0.1213 0.9562 6.2110 
Endomines 2.76e-03 0.0885 -0.4595 0.5465 0.9172 19.6148 
LD Cor 9.23e-05 0.0376 -0.1019 0.2649 2.6026 22.2528 
LG -7.16e-04 0.0207 -0.0490 0.0753 0.4607 3.8422 
NGEx  -3.25e-03 0.0557 -0.0983 0.4115 3.4247 26.5486 
Nor Mine 6.36e-04 0.1709 -0.4990 0.8575 2.2642 13.0380 
Semafo -4.81e-04 0.0366 -0.0996 0.0937 0.0700 3.5539 
Index       
Bank GI -7.42e-04 0.0155 -0.0455 0.0489 0.4900 4.3768 
FaP GI 9.99e-04 0.0164 -0.0512 0.0662 0.3539 4.8156 
Mining GI -6.30e-04 0.0202 -0.0433 0.0658 0.5927 3.8414 
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TABLE 15 – DESCRIPTIVE STATISTICS, 1 OF JANUARY TO 15 OF APRIL 2016 
Assets Mean Sd Min Max Skewness Kurtosis 
Bank       
Nord B -0.00278 0.0210 -0.0583 0.0427 -0.1340 3.2239 
SEB A -0.00153 0.0244 -0.0818 0.0866 0.1260 5.5951 
SEB C -0.00047 0.0191 -0.0449 0.0606 0.12422 3.6320 
SHB A -0.00143 0.0227 -0.0646 0.0558 -0.0956 3.3100 
SHB B  0.00083 0.0192 -0.0477 0.0490 -0.2113 3.5069 
Swed A -0.00155 0.0222 -0.0585 0.0514 -0.0320 3.4227 
Nordax -0.00210 0.0262 -0.0827 0.0911 0.3471 5.5239 
FaP       
AP 0.00093 0.0234 -0.0519 0.0547 -0.0422 2.8038 
BK -0.00325 0.0199 -0.0567 0.0565 0.0261 3.4853 
Bergs Tim -0.00148 0.0251 -0.0566 0.0815 0.8150 4.6248 
Holmen A 0.00040 0.0216 -0.0505 0.0531 -0.1494 3.1546 
Holmen B -0.00023 0.0160 -0.0350 0.0357 -0.0523 2.5179 
Munksjö  0.00027 0.0216 -0.0771 0.0455 -1.0161 5.6512 
Rottneros -0.00458 0.0351 -0.2076 0.0793 -2.8278 18.8743 
SE A 0.00088 0.0253 -0.0580 0.0523 -0.0983 2.8854 
SE R -0.00105 0.0249 -0.0759 0.0565 -0.4621 3.7050 
Mining       
Boliden -0.00113 0.0350 -0.0741 0.0864 0.1718 2.6933 
Endomines 0.00000 0.0753 -0.1823 0.3285 1.4783 8.4815 
LD Cor 0.00569 0.0204 -0.0473 0.0479 -0.1293 2.4226 
LG 0.00619 0.0456 -0.1583 0.2011 0.7748 9.3541 
NGEx  0.00144 0.0382 -0.1004 0.1449 0.5775 5.4894 
Nor Mine -0.00047 0.0619 -0.2059 0.2020 0.4265 6.5422 
Semafo 0.00474 0.0462 -0.0844 0.1289 0.4706 2.9386 
 
Due to the fact that one invests in the stocks, the indices performances 
during 2016 is not of interest.  
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TABLE 16 – DESCRIPTIVE STATISTICS OVER SIMULATED ASSET DATA 
Assets Mean Sd Min Max Skewness Kurtosis 
Bank       
Nord B 7.37e-04 0.0159 -0.0482 0.0506 0.0979 3.3395 
SEB A 1.07e-03 0.0156 -0.0449 0.0481 -0.0485 3.0714 
SEB C 4.70e-04 0.0139 -0.0403 0.0360 -0.0694 2.7038 
SHB A 7.24e-04 0.0176 -0.0683 0.0502 -0.2045 4.1059 
SHB B  2.72e-05 0.0159 -0.0590 0.0550 -0.0924 4.0089 
Swed A 1.44e-03 0.0152 -0.0420 0.0483 -0.0514 3.1131 
Nordax -1.37e-03 0.0224 -0.0650 0.0677 0.2661 3.2344 
FaP       
AP 3.66e-03 0.0373  -0.1039 0.1030 0.0711 2.6995 
BK 2.01e-03 0.0212 -0.0686 0.0551 -0.2167 3.3665 
Bergs Tim -9.99e-04 0.0226 -0.0768 0.0754 0.1176 3.2119 
Holmen A 3.30e-04 0.0193 -0.0441 0.0631 0.1616 2.9218 
Holmen B 1.23e-03 0.0148 -0.0403 0.0553 0.1438 3.5157 
Munksjö  1.67e-03 0.0237 -0.0778 0.0692 -0.0856 3.2482 
Rottneros 2.03e-03 0.0302 -0.0769 0.0765 -0.0915 2.7200 
SE A 2.25e-03 0.0243 -0.0672 0.0831 -0.0514 3.1207 
SE R 1.41e-03 0.0235 -0.0690 0.0718 -0.1305 3.2376 
Mining       
Boliden 1.09e-03 0.0282 -0.0816 0.0759 -0.1738 3.0361 
Endo -4.50e-03 0.0953 -0.2785 0.2508 0.0282 2.9637 
LD Cor 1.62e-03 0.0343 -0.0940 0.1138 0.0126 3.2785 
LG -8.93e-04 0.0205 -0.0585 0.0561 -0.1814 3.0375 
NGEx  -3.70e-03 0.0558 -0.1418 0.1800 0.0566 2.8878 
Nor Mine -2.18e-02 0.1785 -0.5372 0.5965 -0.0230 3.0678 
Semafo 4.44e-03 0.0383 -0.0878 0.1147 0.1045 2.7975 
Index       
Bank GI 1.24e-03 0.0154 -0.0437 0.0525 0.1099 3.4324 
FaP GI 3.19e-03 0.0166 -0.0431 0.0529 0.2902 3.2350 
Mining GI 1.08e-04 0.0202 -0.0610 0.0505 -0.1742 3.0461 

 
 



  26 

Appendix C 
 
The used software is R for Mac OS X, version 3.2.1. Except the standard 
packages, the following packages have been used, 
 
moments  (version 0.14)  
corrplot  (version 0.73) 
MASS   (version 7.3-45) 
PortfolioAnalytics (version 1.0.3636) 
 
 

R-script 
 
Code over the calculations of the GMV portfolio based on stocks.   
 
## 
wstocks2015 = solve(cov(Completematrix2))%*%matrix(rep(1,23),23,1) 
%*%solve(t(matrix(rep(1,23), 23, 1)) %*%solve(cov(Completematrix2)) 
%*% matrix(rep(1,23), 23, 1)) 
 
MVstocks2015 = t(wstocks2015)%*% cov(Completematrix2)%*% 
wstocks2015 
## 
 
To be able to simulate the jointly normally distributed stock data, the 
following code is used: 
 
## 
library(MASS) 
 
SimStocks = mvrnorm(n = 250, mu=Stockmean, Sigma=cov( 
Completematrix2), tol = 1e-6, empirical = FALSE, EISPACK = FALSE) 
## 


