
STATISTICAL AND MACHINE
LEARNING METHODS FOR
CLASSIFICATION OF EPISODIC
MEMORY

DAMIR BASIC KNEZEVIC AND ALBIN

HEIMERSON

Master’s thesis
2018:E32

Faculty of Engineering
Centre for Mathematical Sciences
Mathematical Statistics

CEN
TRU

M
SCIEN

TIA
RU

M
M

A
TH

EM
A

TICA
RU

M

Master’s Theses in Mathematical Sciences 2018:E32
ISSN 1404-6342

LUTFMS-3346-2018

Mathematical Statistics
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/

Abstract

Multiple modern methods of statistical feature extraction and machine learning
are applied to classification of encoding and retrieval of episodic memories us-
ing electroencephalogram (EEG) recordings. Raw data, different time-frequency
methods, and multiclass common spatial patterns are used for statistical feature ex-
traction. For each type of feature extraction multiple machine learning algorithms
are tested and compared. Classification accuracies of up to 82 % are reached with
one-dimensional convolutional neural networks on raw data. It is found that more
complex and time-consuming classifiers generally improve the accuracy. However,
the features chosen are the main factor deciding the accuracy. A novel idea for de-
signing an encoding-retrieval classifier is discussed and implemented. In spite of
having multiple different designs, almost all classifier combinations involving the
retrieval data fail to reach significant classification levels.

3

Acknowledgements

Thanks to Mikael Johansson at the Department of Psychology, Bo Bernhardsson at
Department of Automatic Control and Maria Sandsten at the Division of Mathemat-
ical Statistics for all their help and support.

Thanks also to Mattias Ohlsson at the Department of Computational Biology
and Biological Physics, Johan Lindström at the Division of Mathematical Statistics,
and Johan Eker at the Department of Automatic Control for valuable discussion and
inspiration.

5

Contents

1. Introduction 9
1.1 Classification of memories . 9
1.2 The experiment . 11
1.3 A broader perspective . 12
1.4 Previous analysis of this data set 13
1.5 Contribution from this work . 14
1.6 Report outline . 15

2. Feature extraction 16
2.1 Time-frequency transformations 16
2.2 Common spatial patterns . 26

3. Machine learning 30
3.1 Support Vector Machines . 30
3.2 Decision trees . 31
3.3 Linear discriminant analysis . 31
3.4 Artificial Neural Networks . 32

4. Methods 41
4.1 Data set and pre-processing . 41
4.2 Experimental setup . 42

5. Results and discussion 48
5.1 Raw data with simple classifiers 48
5.2 Raw data with different neural networks 48
5.3 Time-Frequency transforms with 2D convolutional networks . . 51
5.4 Covariance with a simple classifier 52
5.5 Common Spatial Patterns with simple classifiers 53
5.6 Encoding and retrieval data swapped 54

6. Conclusions 58
7. Future ideas 60
Bibliography 61

7

1
Introduction

1.1 Classification of memories

The human body is immensely complex, and in its processing centre lies the ar-
guably most complex body part: the brain. We humans know more about galaxies
millions of light years away and particles a hundred million times smaller than the
wavelength of visible light than we do about the inner workings of the brain, but this
is not due to a lack of trying. From physicists trying to accurately model and predict
brain activity based on the electromagnetic pulses that constantly flow through the
neurons, to psychiatrists using behavioural patterns to treat psychological illnesses
and to improve the daily lives of many, there is no shortage of academics working on
understanding the brain. Somewhere between these extremes lies the field of cog-
nitive neuroscience, where the aim is to understand the specific neural mechanisms
by which mental processes occur. Being grounded in, among other topics, experi-
mental psychology, neurobiology, mathematics, and brain imaging techniques, it is
a very interdisciplinary field.

It is well known that some regions of the brain are responsible for some spe-
cific types of activities. For example, the visual cortex is located in the very back
of the head [C. Van Essen et al., 1992], and Wernicke’s area, one of the areas com-
monly associated with understanding speech, is located toward the back of the dom-
inant cerebral hemisphere (the left one in most right-handed individuals) [Gupta,
2014]. Different patterns of behaviour are said to be generated in certain parts of
the brain [Freeman, 1975], and research within the field of cognitive neuroscience
is often conducted using various imaging techniques in order to explore whether
certain parts of the brain are activated more than others when exposed to certain
stimuli. Two very common imaging techniques are electroencephalography (EEG)
and functional magnetic resonance imaging (fMRI).

EEG works by placing a set of electrodes, sometimes in a cap, on the scalp and
recording the voltage over the electrodes. Figure 1.1 show the electrode placement
used for our data and Figure 1.2 show a subject using an EEG cap. The working as-
sumption with this type of imaging is that measured voltage changes correlate with
heightened or altered activity. fMRI works by placing the subject in a very large ma-

9

Chapter 1. Introduction

Fp1 Fp2

F7
F3 Fz F4

F8

FC5 FC1FCz FC2 FC6

T7 C3 Cz C4 T8

CP5 CP1 CP2 CP6

P7
P3 Pz P4

P8

PO9

O1 O2

PO10

Iz

Figure 1.1 Locations of the sensors in the EEG cap.

Figure 1.2 An EEG cap with electrodes on a subject.

chine and asking them to lay very still while the machine measures the blood flow
in the brain. The working assumption when analysing fMRI data is that cognitive
activity correlates with a change in blood flow in that region [Dekker and Sijbers,
2005]. The main advantages of EEG over fMRI are that it is cheaper and has much
better time resolution—the voltages can be captured with a sampling time in the
order of milliseconds even with relatively inexpensive setups. fMRI machines typi-
cally cost more both to buy and to operate, and images are typically recorded every
1–10 seconds. fMRI, on the other hand, has much higher spatial resolution [Lystad
and Pollard, 2009]. Hundreds or thousands of pixels per image is not uncommon,

10

1.2 The experiment

while EEG setups typically have around 20–40 electrodes (although dense EEG
clusters of 128, 256, and up to 512 electrodes have been devised recently) [Ryyna-
nen et al., 2004]. Another disadvantage of EEG is that imaging is essentially limited
to the outermost parts of the brain—the cortex—while fMRI directly displays activ-
ity anywhere in the brain, three-dimensionally versus the two-dimensional surface
potential of EEG. Last but certainly not least, the signal-to-noise ratio is infamously
bad for EEG recordings, requiring careful pre-processing to remove signal artefacts
stemming from e.g. eye movement and blinking to get representative and usable
data [Ihalainen et al., 2015]. Nevertheless, the excellent temporal resolution and
inexpensive equipment are enough to encourage further use of the technology.

One practical issue with trying to analyse data from neurocognition experi-
ments, whether it be EEG or fMRI (or any other imaging technique) is that the
experiments are typically conducted by academics extremely specialised within
psychology, with surface knowledge about statistics, signal processing, and ma-
chine learning. As such, without an interdisciplinary drive, analysing the data can
be quite a cumbersome task. After reading a great many papers on computational
neuroscience, the psychologists designing the experiment often seem to have an
idea in mind about what should be happening in the brain, but easily and readily
interpretable data is an exception rather than a rule. Very often some sort of all-
encompassing toolbox (like FieldTrip for MATLAB [Oostenveld et al., 2011] or
MNE for Python [Larson et al., 2016]) is used. The toolboxes often contain ex-
tremely advanced and state-of-the-art techniques for feature extraction and classi-
fication which very often have high accuracy, but are not very easy to interpret. It
is comparably easy to choose features and classifiers based on what gives a high
classification accuracy, rather than designing a feature extraction scheme based on
models and existing theory. If the aforementioned scheme fails and something en-
tirely different produces much more appealing results, it can be tempting to use the
more succesful scheme and try to explain the results afterwards. This type of inves-
tigation has its merits, but for finding neural generators and furthering neurocog-
nitive research, the model-driven approach seems more useful. For us engineering
students interested in interdisciplinary research, a more interesting approach is for
the psychologist gathering the data to present their theory to the statistician or data
expert, who then converts the abstract concept into an interpretable feature extrac-
tion algorithm that is directly testable.

1.2 The experiment

The experiment from which the data is gathered was conducted by Inês Bramão
and Mikael Johansson at the Department of Psychology in Lund. A more thorough
description can be found in Section 4.1, but the paradigm is essentially this: dur-
ing the encoding phase, test subjects are exposed to an image from one of three
classes—faces of famous people, famous landmarks such as the Niagara Falls or

11

Chapter 1. Introduction

Figure 1.3 One trial (31 channels, 4 seconds) sampled to visualise the data. Each
channel corresponds to the data recorded from one sensor. The samples are, without
loss of generality, from a random trial of subject 5.

the Big Ben, or man-made objects such as a violin or a hammer—and we are to use
statistical feature extraction and machine learning techniques to predict, from data,
which type of image the subject was exposed to. It should be noted that the subjects
were not instructed to think of the category, but instead they were shown a word
that they were to couple to the image as a word-image pair. Later on, during the
retrieval phase, the subject was shown the same word and was instructed to recall
the image associated to that word in their head. The idea is that images from the
same categories should activate the same neural generators in the brain in a process
called ecphory [Waldhauser et al., 2016], and that this should serve as the main type
of feature that separates the classes. Our main aim, after (hopefully) successfully
classifying the images seen during the encoding phase, is to use the same algorithm
to classify on the retrieval phase with minimal or no alterations. If we succeed in
designing such a classifier, the features it extracts can be analysed with the aim
of finding the link between encoding and retrieval in a physical and psychological
framework. In Figure 1.3 we show a sample of what the data can look like.

1.3 A broader perspective

The aim of the experiment is mainly to see if EEG data, using machine learning and
feature extraction based on known neurocognition theory, is enough to distinguish
between three classes of images. Note that this problem is extremely difficult right
at the onset—not only are the subjects exposed to similar images at every stimulus,
but the three classes are very abstract as well. The theory is solid: apart from the
visual cortex being activated, the neural generators for the three different image
categories should be different. Also, the categories should activate generators on
different time scales which means that there are some temporal feature extraction

12

1.4 Previous analysis of this data set

possibilities there as well. However, the slightest loss of focus in subjects will show
clearly in the EEG, and due to reaction times varying even within subjects during
different stimuli, temporal feature extraction is not so straightforward.

When searching for articles related to EEG in journals and conferences related
to signal processing, statistics, and machine learning, we mostly came across arti-
cles treating brain-computer interfaces, and some connected to anomaly detection
and sleep EEG. Brain-computer interfaces (BCI) are, in general terms, computer
systems that interact with humans through direct measurements on the brain and
predictions made from those. Most of the authors in the BCI category seem to test
their algorithms on simulated movement, which means letting subjects imagine they
are moving e.g. their left or right arm, and the classifier is trained to distinguish be-
tween these two paradigms. We also explored anomaly detection but not the sleep
EEG application. The former field is concerned with detecting either psychic ill-
nesses like schizophrenia [Laton et al., 2014] or Alzheimer’s disease [Gómez et al.,
2017], or critical conditions like epileptic seizures [Boashash et al., 2015]. The BCI
experiments with simulated movement are isolated, simple classification tasks with
a clear left-right asymmetry [Rogers et al., 2004] where no level of abstraction is
needed from the classifier. Seizure detection is more a question of automation than
of developing novel features, since a visual inspection of EEG data shows rather
clearly whether the subject has experienced a seizure or not. Illness detection is ar-
guably harder and not so clear-cut, but is nevertheless a question of distinguishing
normal from abnormal. In the experiment central to this thesis, the three classes are
extremely similar and it is completely impossible to see visually from the EEG data
to which class the data belongs.

As engineering students, we are entering mostly uncharted territory. The prob-
lem at hand is extremely difficult, but nevertheless important to develop answers
to. Extracting features related to activation of neural generators could perhaps be
applied directly to BCI or illness detection as a general feature extraction method,
as long as the theory of generators in cognition holds. We also firmly believe that
promoting and encouraging interdisciplinary research and cooperation is beneficial
to all parties.

1.4 Previous analysis of this data set

The experiment was carried out and has been analysed by Bramão and Johans-
son [Bramão and Johansson, Submitted for publication, 2018], but an even earlier
version of a similar paradigm was carried out in 2005 [Polyn et al., 2005]. In Polyn’s
paper, the data is collected using fMRI with a sampling frequency of around 0.56 Hz
(one sample every 1.8 seconds), and the motivation for the later paper was that clas-
sification is supposed to be faster than that. Indeed, they found evidence of classi-
fication between categories after no more than about 170 milliseconds, during the
early perceptual stages of encoding. Both studies, however, found evidence of re-

13

Chapter 1. Introduction

trieval taking a longer time than encoding, and classifying power becoming evident
significantly later for the retrieval stage of the experiment.

The same data that we use has been analysed in a course project at Lund Univer-
sity, a Bachelor’s Thesis [Dalin-Volsing, 2015], a Master’s Thesis [Heyden, 2016],
a Licentiate Thesis [Anderson, 2017], and of course by Bramão and Johansson. The
work done by Dalin-Volsing is quite limited in scope and aims to use a certain type
of multitaper spectrogram (see Section 2.1) as the only feature extraction method.
Heyden limits himself to the raw data and uses analysis of variance (ANOVA) meth-
ods to reduce the number of features and then uses quite a simple type of classifier
to distinguish the three classes. Anderson aims to derive optimal covariance esti-
mates with the assumption that the EEG is a locally stationary process. In [Bramão
and Johansson, Submitted for publication, 2018], the authors use the wavelet trans-
form channel-wise on the EEG data to extract features, perform feature reduction
using ANOVA and then classify with a support vector machine, a last step similar
to Heyden’s work.

1.5 Contribution from this work

As we see this project, it is split up into two fairly distinct parts: pre-processing
and feature extraction, and classification. We aim to explore both aspects of the
problem, and propose novel ideas in both areas based on experience gathered during
our studies.

For pre-processing and feature extraction, we try to seek inspiration from the
two engineering-heavy EEG analysing fields that we have come across: abnormality
detection and BCI.

The researchers working on improving abnormality methods typically use time-
frequency methods, where the frequency components of a signal are attempted to be
visualised over time. It has been suggested that this is a natural course of action since
EEG signals are non-stationary, and thus their frequency characteristics change
over time [Boashash et al., 2015]. The wavelet transform [Daubechies, 2006] ap-
pears regularly in articles both in signal processing journals and neurophysiology
journals. The classification step is often some type of statistical feature extraction
step [Boashash and Ouelha, 2018], heavy downsampling, and/or ANOVA feature re-
duction step [Bramão and Johansson, Submitted for publication, 2018], followed by
classifying with a simple linear support vector machine (SVM) or something simi-
lar. We explore some standard time-frequency techniques, not limiting ourselves to
the wavelet transform, and classify them using 2-D convolutional neural networks,
which are state-of-the art classifying algorithms that are very popular for images.

BCI researchers often use features extracted from spatial patterns in the EEG.
Common algorithms include principal component analysis (PCA), independent
component analysis (ICA), and common spatial patterns (CSP) [Jing and Yun,
2017]. We extract features using a multiclass CSP algorithm that turns out to be

14

1.6 Report outline

equivalent to a type of ICA [Grosse-Wentrup and Buss, 2008], and perform the
classifying step using both support vector machines and multilayer perceptron net-
works. Both of these algorithms are chosen due to CSP outputting a relatively small
amount of features compared to the transform images (the order of magnitude being
100 for CSP and about 1 million for the time-frequency transforms), and as such we
do not need the same complexity in the classifiers.

1.6 Report outline

Chapter 2 focuses on giving a short mathematical introduction and motivation for
time-frequency analysis and CSP. Chapter 3 introduces the machine learning algo-
rithms used in the thesis. Chapter 4 describes the methods used for classifying data
and provides parameter details about the tests, the results of which are presented in
Chapter 5. Finally, a discussion reflecting on the results and ideas for future inves-
tigations is presented in Chapter 6.

15

2
Feature extraction

2.1 Time-frequency transformations

A standard technique within EEG data feature extraction and classification is to use
the frequency information that the temporal data provides. A common way to ex-
tract spectral information in a signal is to use the Fourier transform. The Fourier
transform of the signal x(t) has a few different definitions all being used in paral-
lel [Boashash, 2013], one of them being

X(f) =
∫

∞

−∞

x(t)e−i2π f t dt. (2.1)

The resulting function X(f) is in general complex and its modulus and argument
describe the power and phase of each frequency in the signal, respectively. In many
cases the Fourier transform provides enough information, especially about periodic
signals, to perform accurate signal classification (if that is the goal). In the case of
EEG data, however, the Fourier transform fails in one key aspect: the signal to be
transformed is assumed to be stationary. This means that the frequency information
in the signal is assumed to stay constant for the entire time it is collected. In the
study at hand, where a subject is exposed to a stimulus during the time data is
collected, it is very clear that the signal is not stationary, and it is well known that the
background EEG itself is not stationary even when subjects’ environments remain
unchanged [H. Jansen et al., 1981; Pardey et al., 1996; Kaplan et al., 2005]. An
illustration of what happens when the non-stationarity of a signal is not taken into
account can be seen in Figure 2.1.

A natural next step is to consider time-frequency analysis, a field where the aim
is to simultaneously extract both time and frequency information. The main topic
which drives the field forward is a version of the well-known uncertainty principle,
which states that perfect resolution cannot be attained both in time and frequency
simultaneously—there is a compromise. This makes sense because frequency esti-
mation is very closely related to period length. More periods gives better frequency
estimation, but also a larger signal length which results in a lower temporal reso-
lution. At its core, time-frequency estimation aims to exploit structure in the data

16

2.1 Time-frequency transformations

Figure 2.1 Illustration of the shortcomings of the periodogram,
∣∣X(f)

∣∣2. a) is
a plot of a chirp signal—a periodic signal with (in this case) linearly increasing
frequency—and b) shows an impulse. It turns out that the periodograms c) and d)
are identical, because all of the information separating the two transforms is hidden
in the phase. The phase, in turn, is rarely shown. The image is borrowed from [Sand-
sten, 2018] with the author’s permission.

to reduce the effect of the compromise. Indeed, time-frequency methods have been
fairly widely used to study EEG data but mostly in detection of abnormalities, such
as epilepsy or schizophrenia. [Rutkowski et al., 2013; Roach and Mathalon, 2008;
Muthuswamy and Thakor, 1998]

Short-time Fourier transform and spectrogram
One way to perform time-frequency analysis is by extracting parts of the time signal
and evaluating multiple Fourier transforms. The partial time signal is extracted by
multiplication with a window function h(t) that is typically symmetric, has com-
pact support, tapers off toward the ends of its support, and is normalised such
that

∫
∞

−∞

∣∣h(t)∣∣2 dt = 1. The short-time Fourier transform (STFT) is then defined
as [Sandsten, 2018]

X(t, f) =
∫

∞

−∞

x(t1)h∗(t1− t)e−i2π f t1 dt1 (2.2)

where ∗ denotes the complex conjugate. The spectrogram, which is sometimes seen
as a built-in function in certain audio analysis software such as e.g. Audacity and
Transcribe!, is simply defined as

17

Chapter 2. Feature extraction

Figure 2.2 These images show the short-time Fourier transform (STFT) of the
same signals as in Figure 2.1. Here it is clear, even from the absolute value alone,
that the signals have very different frequency content. The image is borrowed
from [Sandsten, 2018] with the author’s permission.

Sx(t, f) =
∣∣X(t, f)

∣∣2. (2.3)

The benefits of showing the frequency content as a function of time are illustrated
in Figure 2.2, as compared to the shortcomings of the Fourier transform and peri-
odogram in Figure 2.1. The spectrogram is good for visualising many signals and it
is simple to implement, which is probably why it is included in for example audio

18

2.1 Time-frequency transformations

-4 -3 -2 -1 0 1 2 3 4

-1

-0.5

0

0.5

1

Figure 2.3 Standard Morlet wavelet [Daubechies, 1992].

analysis software, but the volatility to changes in window length and shortcomings
in frequency resolution inspire the search for better time-frequency visualisation
tools.

Wavelet transform
The wavelet transform (or wavelet decomposition) has been used within the subject
of extracting features from EEG for a long time and with considerable success [Haz-
arika et al., 1997]. The idea behind the wavelet transform is to use a specific type of
scaleable window in the STFT. The family of windows is typically defined as

ha,b(t) = |a|−1/2 h
(

t−b
a

)
(2.4)

and is typically called the wavelet family [Grossmann and Morlet, 1984;
Daubechies, 1993]. The definition of the continuous wavelet transform of the
signal x(t) is then

Xω(a,b) =
∫

∞

−∞

x(t)h∗a,b(t)dt (2.5)

where the parameters a and b are interpreted as approximate frequencies and time
centers, respectively [Daubechies, 1992]. A common type of wavelet is the Morlet
wavelet, as illustrated in Figure 2.3, where the mother wavelet h(t) is an exponential
plane wave windowed by a Gaussian, or

h(t) =
(

e−i f t − e−
1
2 f 2
)

e−
1
2 t2

, (2.6)

scaleable and moveable with the constants a and b from (2.4) [Daubechies, 1992]
and the frequency f as a constant. In practice, the parameter is usually chosen as

19

Chapter 2. Feature extraction

Figure 2.4 Comparison between continuous wavelet transform and spectrogram
(Hann window, length 32 samples) for a linear chirp signal (Fs = 512) windowed by a
Gaussian pulse. While the spectrogram shows an evenness in time and frequency, the
wavelet transform is clearly more diffuse at the higher than at the lower frequencies.

f = 5 and the imaginary part is largely ignored, so a version of this expression that
occurs regularly is

h(t) = e−
1
2 t2

cos(5t). (2.7)

Nevertheless, the idea is that by changing the frequency of the wavelet (while keep-
ing the power constant) and convolving it repeatedly with the signal in time, a mea-
sure of the power of those frequencies over time can be attained and shown in a
figure. Essentially, the wavelet is a band-pass filter [Mallat, 1989].

A double-edged sword inherent to the wavelet transform is that higher-
frequency wavelets (that is, when the scaling parameter a is small) are naturally
more narrow and thus have better time resolution and poorer frequency reso-
lution [Daubechies, 2006]. An illustration of this phenomenon can be seen in
Figure 2.4, and a schematic of the change in resolution with parameter choice is
shown in Figure 2.5. Where the STFT has the spectrogram, the continuous wavelet
transform has the scalogram. It is similarly defined as

Sω(a,b) =
∣∣Xω(a,b)

∣∣2 (2.8)

and the main difference is that the approximate frequencies in the scalogram are
on a logarithmic axis instead of a linear one. Unsurprisingly, the wavelet transform
is preferred to the STFT for applications where resolving high frequencies well in
time is more important than resolving low frequencies. Whether EEG data fits this
criterion is up to debate and depends on the application, but it cannot be denied that
it is a useful tool for feature extraction.

20

2.1 Time-frequency transformations

Figure 2.5 A schematic illustrating the trade-off between time and frequency res-
olution in the wavelet transform. As the value of the scaling parameter a increases,
the time resolution decreases while the frequency (or angular frequency, omega)
resolution increases, and vice versa. As such, the wavelet transform is well suited
for capturing for example transient high-frequency phenomena. Image downloaded
from [Continuous Wavelet Transform. N.d.]

Wigner distribution
The Wigner distribution serves as a general base tool in time-frequency analysis
and is in some sense a generalisation of the spectrogram. The Wigner distribution
Wx(t, f) of a signal x(t) is defined as

Wx(t, f) =
∫

∞

−∞

x
(
t + τ

2

)
x∗
(
t− τ

2

)
e−i2π f τ dτ. (2.9)

The factor
rx(t,τ) = x

(
t + τ

2

)
x∗
(
t− τ

2

)
(2.10)

can be identified as the instantaneous autocorrelation function, or IAF, so this ex-
pression is closely related to the time-varying power spectral density

Sx(t, f) =
∫

∞

−∞

E
[
rx(t,τ)

]
e−i2π f τ dτ, (2.11)

known from theory on stochastic processes [Lindgren et al., 2014].

Cross-terms The definition of the Wigner distribution contains a product of the
signal with itself due to the IAF (disregarding for a moment a time shift and conju-
gate operator). If the signal x can be expressed as a sum of two (or more) signals,
the product will introduce terms that are products between the same signals, called
auto-terms, and products between different signals, called cross-terms. Both the
auto-terms and the cross-terms as well as a comparison between the Wigner distri-
bution and the spectrogram can be seen in Figure 2.6. Since real life signals most

21

Chapter 2. Feature extraction

Figure 2.6 Comparison between Wigner distribution and spectrogram (Hann win-
dow, length 32) for a sum of three periodic signals windowed in time, as shown in the
left image. The components are better localised in time and frequency in the Wigner
distribution, but there are cross-terms between the true components that obstruct the
interpretation of the time-frequency distribution.

likely will not be expressible through a single component, cross-terms will often
show up in Wigner distributions of these types of signals. Large parts of the field
of time-frequency analysis deal with suppressing the cross-terms that arise in the
Wigner distribution.

Hilbert transform For discrete data, the integral in (2.9) has to be replaced by a
summation, which in itself contains a discrete Fourier transform (DFT). The dis-
crete Fourier transform does not only introduce aliasing for frequency components
between −0.25 and 0.25 (for frequencies normalised between −0.5 and 0.5), but
also cross-terms between aliased terms and original terms. A nice way to solve this
problem is by calculating the Wigner distribution for the Hilbert transform of the
signal, also known as the analytic signal z(n), defined as

z(n) = X(0)+2
N/2−1

∑
k=0

X(k)ei 2π
N nk (2.12)

where X is the DFT of the original signal x(n) and N is the signal length (assumed
to be a power of 2) [Chan and Ho, 1990]. Essentially, the Hilbert transform removes
the negative frequencies from the original signal, expanding the range of frequen-
cies that can reliably be portrayed in the Wigner distribution to ±0.5.

22

2.1 Time-frequency transformations

Ambiguity function
The ambiguity function is defined as the Fourier transform of the Wigner distribu-
tion, both in time and frequency. The frequency domain becomes a time-lag domain
(τ domain) and the time domain becomes a frequency-lag domain (ν or Doppler-
lag domain) after transformation. The ambiguity domain is therefore sometimes
referred to as the (ν ,τ) domain. Correspondingly there are four domains, but (t, f)
and (ν ,τ) are the ones that are most commonly used. The ambiguity function of the
analytic signal z(t) is defined as

Az(ν ,τ) =
∫

∞

−∞

z
(
t + τ

2

)
z∗
(
t− τ

2

)
e−i2πνt dt. (2.13)

There are some well-grounded reasons for wanting to use the ambiguity domain.
One is that, due to the two variables in the ambiguity function both being based
on lag and not absolute times or frequencies, a signal can be time-shifted and
frequency-shifted and remain unchanged in the ambiguity domain. Since the sub-
jects in the study from which our data is gathered intrinsically have different re-
sponse times to stimuli, a time-dependent feature extraction algorithm may have
troubles simply because the event-related potentials in the subjects’ EEG are oc-
curring at slightly different times in each trial and between subjects. A similar case
can be made for frequency variations between trials and subjects, but this is slightly
more difficult to motivate.

Another reason for using the ambiguity function is that auto-terms tend to end
up near the origin in the ambiguity function, while cross-terms tend to end up away
from the origin after transformation. This can then be exploited by multiplying the
ambiguity function with a function that has large values near the origin and small
values otherwise, preferably where the cross-terms are expected to end up in the
ambiguity domain. This type of function, which is a 2-D low-pass filter, is called an
ambiguity kernel. The process of removing cross-terms using an ambiguity kernel
is illustrated in Figure 2.7. Much of the research today is dedicated to developing
kernels that keep essential parts of the Wigner distribution constant, e.g. the en-
ergy, while providing adequate cross-term suppression. A novel strategy is using
the cross-terms for classification instead of the auto-terms, but most research is still
aimed toward finding better ways of resolving the spectrum in the (t, f) domain and
visualising it as well as possible.

Ambiguity kernels The filtered ambiguity function can be expressed as

AF
z (ν ,τ) =

∫
∞

−∞

z
(
t + τ

2

)
z∗
(
t− τ

2

)
φ(ν ,τ)e−i2πνt dt (2.14)

where φ(ν ,τ) is known as the ambiguity kernel. Applying the whole transformation
back to the (t, f) domain, the filtered Wigner distribution C(t, f) ends up being

C(t, f) =
∫

∞

−∞

∫
∞

−∞

∫
∞

−∞

z
(
u+ τ

2

)
z∗
(
u− τ

2

)
φ(ν ,τ)ei2π(νt− f τ−νu) dudτ dν (2.15)

23

Chapter 2. Feature extraction

Figure 2.7 Illustration of the usefulness of ambiguity kernels. The plot in the up-
per left shows the same Wigner distribution as in Figure 2.6. The upper right image
shows the same signal but in the ambiguity domain. The cross-terms can be seen as
components away from the origin, in the middle of the figure. The plot in the lower
left shows the Choi-Williams kernel [Choi and Williams, 1989], a common kernel
function that works well at suppressing cross-terms between components simultane-
ously separated in both time and frequency. If two components appear at either the
same time or the same frequency, this kernel will not work as well. The final image
illustrates the resulting time-frequency distribution after filtering. The cross-terms
are gone and we are left with an image that retains the well-resolved components
and eliminates the unwanted cross-terms.

and C(t, f) is said to belong to Cohen’s class (or the quadratic, or bilinear class) of
time-frequency distributions [Cohen, 1989]. If Φ(t, f) is the transform of φ(ν ,τ)
and ∗

t
∗
f

is the two-dimensional convolution in both time and frequency, then C(t, f)

can be rewritten as

C(t, f) =Wz(t, f)∗
t
∗
f
Φ(t, f), (2.16)

illustrating that Φ(t, f) can be interpreted as a smoothing filter for the Wigner distri-
bution of the analytic signal z(t). By analysing the ambiguity function, it is possible
to remove cross-terms in a systematic fashion by designing an appropriate kernel.
Discussions of desirable kernel properties can be found throughout literature [Jeong
and Williams, 1992].

The spectrogram reinterpreted If the time-lag kernel ρ(t,τ) is defined as

ρ(t,τ) =
∫

∞

−∞

φ(ν ,τ)ei2πνt dν , (2.17)

24

2.1 Time-frequency transformations

then (2.15) can be rewritten as

C(t, f) =
∫

∞

−∞

∫
∞

−∞

z
(
u+ τ

2

)
z∗
(
u− τ

2

)
ρ(t−u,τ)e−i2π f τ dudτ. (2.18)

The definition of the spectrogram from (2.3) can in turn be rewritten as

Sz(t, f) =
∣∣∣∣∫ ∞

−∞

z(t1)h∗(t1− t)e−i2π f t1 dt1

∣∣∣∣2
=

(∫
∞

−∞

z(t1)h∗(t1− t)e−i2π f t1 dt1

)(∫
∞

−∞

z(t2)h∗(t1− t)e−i2π f t2 dt2

)
=
[
t1 = u+ τ

2 ; t2 = u− τ

2

]
=
∫

∞

−∞

∫
∞

−∞

z
(
u+ τ

2

)
z∗
(
u− τ

2

)
h∗
(
u+ τ

2 − t
)
h
(
u− τ

2 − t
)
e−i2π f τ dudτ

(2.19)

and it is simple to identify

ρ(t,τ) = h∗
(
−t + τ

2

)
h
(
−t− τ

2

)
(2.20)

as the ambiguity kernel resulting in the spectrogram. This means that the spec-
trogram belongs to Cohen’s class of time-frequency distributions, as well as the
fact that the window function chosen in the spectrogram can both be analysed as
a smoothing kernel and, in the same vein as before, designed cleverly to suppress
cross-terms. In the case of the window h being a Hann window [Oppenheim and
Schafer, 2009] with a specific length, the resulting kernel is very narrow and origin-
centric, effectively resulting in low resolution in frequency and time but virtually no
cross-terms.

Multitaper spectrograms When doing conventional time-frequency analysis, a
common problem is that realisations (or trials) are very noisy—especially EEG—
and thus the spectrum estimate may vary greatly between realisations. A method for
tackling this is multitaper spectral estimation, which is done by estimating multiple
spectra using statistically independent window functions. By averaging the spectra
at the end, multiple independent estimates are obtained from only one realisation,
so as to tackle the high variance problem with a relatively low price in bias [Xu
et al., 1999]. Some common tapers used in multitaper estimation are the Slepian
sequences (or discrete prolate spherical sequences) |ν(k)

n (N,W)| which are defined,
for each k = 0,1, . . . ,N−1, as the solutions to the system of equations

N−1

∑
m=0

sin
(
2πW (n−m)

)
π(n−m)

ν
(k)
m (N,W) = λk(N,W)ν

(k)
m (N,W) (2.21)

for n = 0,±1,±2, . . . where W is the chosen bandwidth and N is the number of
windows [Slepian, 1978].

25

Chapter 2. Feature extraction

2.2 Common spatial patterns

The analysis of common spatial patterns (CSP) is another very common feature ex-
traction method within EEG classification. While transform-based methods mostly
deal with extracting as much information as possible from the EEG signals them-
selves, CSP takes on the approach of differentiating the signals based on similar-
ities between signals across different channels. This has become one of the most
common statistical feature extraction methods specifically for BCI-related research,
while the community that focuses on anomaly and illness detection typically sticks
to transform-based methods, even though the paper introducing the CSP method
was applied to detecting neurological patients [J. Koles et al., 1990]. An advantage
of CSP is that it finds similarities between channels, but the main disadvantage is
that all temporal information is sacrificed in order to do so.

Essentially, the CSP algorithm does the following:

1. Estimate the covariance between all channels for each trial.

2. Create one covariance matrix for each class using the training data.

3. Simultaneously diagonalise (exactly for the two-class case and approximately
for more than two classes) the class covariance matrices.

4. Use the eigenvectors corresponding to the largest or smallest ratio of eigen-
values between the covariance matrices as features for that class.

5. Classify validation/test data based on these features using some machine
learning algorithm.

Each of these steps can be subtly changed and optimised for the problem at hand.

The two-class CSP problem
The main working assumption in CSP feature extraction is that information on
which type of image the subject saw in each trial is encoded in variance changes
of the EEG, and that, for each subject and class, the information-bearing compo-
nents of the EEG originate in the same brain regions across trials [Grosse-Wentrup,
2008]. In essence, it is assumed that variance-based feature extraction can classify
the EEG data.

Assume there are two classes, c1 and c2, to be distinguished in the data x, and
that classification is limited to one subject for now. Since it is assumed that each
class has a specific covariance pattern, let Rx|ci be the covariance matrix of the class
ci. The composite covariance matrix is introduced as

Rc = Rx|c1 +Rx|c2 (2.22)

which can in turn be orthogonally diagonalised by

Rc = PcΛΛΛPT
c (2.23)

26

2.2 Common spatial patterns

since the covariance matrix is symmetric. Now introduce the whitening transforma-
tion

W = ΛΛΛ
−1/2PT

c (2.24)

which whitens Rc by

WRcWT = I. (2.25)

The point of this is that the transformed matrices Sx|c1 = WRx|c1WT and Sx|c2 =

WRx|c2WT share the same eigenvectors, since Sx|c1 +Sx|c2 = WRcW = I [Fuku-
naga, 1990], i.e. if Sx|c1 is decomposed by

Sx|c1 = UΨΨΨx|c1UT , (2.26)

then

Sx|c2 = UΨΨΨx|c2UT , (2.27)

where

ΨΨΨx|c1 +ΨΨΨx|c2 = I. (2.28)

Not only does this hold, but the eigenvalues to Sx|c1 on the diagonal of ΨΨΨx|c1 are in
falling order such that

ΨΨΨx|c1,1 > ΨΨΨx|c1,2 > · · ·> ΨΨΨx|c1,P (2.29)

and consequently

ΨΨΨx|c2,1 < ΨΨΨx|c2,2 < · · ·< ΨΨΨx|c2,P. (2.30)

The purpose of performing feature extraction using CSP is to find the eigenvectors
with the largest or smallest ratios between eigenvalues, because they will discrim-
inate maximally between the two classes in the variance sense. The feature extrac-
tion step itself is done by extracting the m first and last columns of U (into, say,
Û) and projecting the data matrix X ∈ RP×N (where P is the number of channels
and N the number of samples in each trial) such that the features X̂ ∈ R2m×N will
be [Müller-Gerking et al., 1999]

X̂ = ÛT WX. (2.31)

Interestingly, the aim of the authors describing this algorithm is also to classify into
three classes, but they use a one against one scheme to do so. It has been shown
that this type of scheme can yield worse results than direct multiclass CSP [Grosse-
Wentrup and Buss, 2008], but this will be covered in the section below on CSP with
more than two classes.

27

Chapter 2. Feature extraction

Covariance matrix estimation
In the previous part, it was assumed that there is a covariance matrix Rx|ci for the i th

class. These matrices need to be estimated from data. If the data matrix is X∈RP×N

for some trial, the covariance matrix is

R = E
[
XXT

]
(2.32)

where E[·] denotes the expected value. Naturally, the expected covariance matrix is
unknown, but it can be estimated by

R̂ = XXT (2.33)

for a specific trial. In the original paper [J. Koles et al., 1990] it is suggested that
normalisation of the covariance matrix with its trace is needed, but in more recent
studies [Grosse-Wentrup and Buss, 2008; Blankertz et al., 2008] it is not done.
Furthermore, it is suggested that trace normalisation can have a negative impact on
pattern ordering [Larson et al., 2016].

However, the covariance matrix estimation is not finished there. The covariance
matrix estimates need to be combined to form i “mean” estimates R̂x|ci . If there are
Mi trials for one given subject and class i, the estimate suggested in the original CSP
paper is simply the mean covariance matrix

R̂x|ci =
1

Mi

Mi

∑
k=1

R̂x|ci,k (2.34)

where R̂x|ci,k is the estimated covariance matrix of the k th trial of class i. The MNE-
Python toolbox [Larson et al., 2016] defaults to another type of “mean” covariance
matrix estimation, where the Mi trials Xi,k are horizontally concatenated into a large
data matrix Xi ∈RP×NMi from which the covariance is estimated using the standard
formula (Eq. (2.33)). In our tests this combined covariance estimate proved to yield
better results, so this estimation technique is used if nothing else is stated.

The combining of the covariance matrices from the test data is largely glossed
over in literature, but a group of researchers is developing a toolbox for estimation
using Riemannian geometry [Barachant et al., 2010] and a handful of other meth-
ods have been suggested. A number of covariance averaging techniques have been
compared [Yger et al., 2015], and it was found that the Riemannian metric slightly
outperforms the Euclidean metric for low channel numbers, while the Euclidean
metric is best for large channel numbers (large being defined as 60 or more).

CSP with more than two classes
Since the original CSP algorithm depends heavily on eigenvectors on opposite sides
of a matrix distinguishing between two classes, the extension to multiple classes is

28

2.2 Common spatial patterns

not obvious. The problem of extending classification (and, in this case, feature ex-
traction) is not entirely uncommon, however. Common schemes for circumventing
the two-class limitation are for example one against one or one against all classifi-
cation, see Section 3.1 on support vector machines. Schemes of these types make
sense and are relatively easy to implement, but the complexity often grows quickly
with the number of classes, and especially if large networks are trained, the com-
putational cost can quickly become unbearable. Moreover, the final step of pooling
the various classifications into one guess is often based on heuristics and is hard to
support theoretically, motivating the search for algorithms that do multiclass feature
extraction or classification in one step.

The first algorithm for direct multiclass CSP seems to have been presented in
2008 [Grosse-Wentrup and Buss, 2008]. It is based on identifying that the original
CSP algorithm maximises an approximation of the mutual information between
EEG components and classes, which in turn can be generalised to the multiclass
problem. The concept of mutual information is well known in information theory,
and appears once in a while in independent component analysis (ICA). It turns
out that the algorithm suggested in that article, joint approximate diagonalisation
(JAD) by maximising the same approximation of mutual information, is equivalent
to ICA. The novelty in the article is that they provide a method for choosing the
M independent components of greatest interest for discriminating between classes
in order to minimise the classification error. Whether this approach gives better
results or not is unclear, but it should definitely reduce computational complexity
and simplify interpretation (being one set of spatial patterns instead of three for each
combination of one against one or one against all).

29

3
Machine learning

Machine learning is a very broad field and we will limit this section to discussing
some specific types of supervised learning that have been used during this project.

The goal of any supervised learning scheme is to find a model that maps a set of
inputs to outputs in a way such that the model approximates the underlying function.
To get an idea of how good this approximation is, we usually split the training data
into two sets: training and test. The model generalises well if it scores well on the
test set after training on the training set [Russell and Norvig, 2003].

3.1 Support Vector Machines

The support vector machine (SVM) is one of the most popular approaches for off-
the-shelf supervised learning. One of the reasons why they are popular is that they
usually generalise well even without domain specific knowledge. This is because
they create a maximum margin separator, which means they find the boundary that
has the largest possible distance to example points. It creates a linear hyperplane
that separates the data, but using kernels the data can be embedded in a higher
dimensional space that might not be linearly separable in the original space. This
allows for flexibility to represent complex functions while still being resistant to
overfitting.

One key insight of the SVMs is that they only consider the points closest to the
boundary. This is clever since by choosing the margin furthest away from examples
seen so far they attempt to optimise the generalisation loss rather than the empirical
loss [Russell and Norvig, 2003].

Multiclass classification
SVMs can only classify between two classes but there are methods to extend this to
many classes.

One against one This type of scheme uses one classifier for each pair of classes.
When classifying, the class with the most votes wins.

30

3.2 Decision trees

x1 > 3

Class 1
False

x3 < 0

x1 > 7

Class 2
False

Class 3
True

False

Class 2
True

True

Figure 3.1 Example decision tree; xi are inputs and the prediction of the class is
the output.

One against all This scheme instead uses one classifier for each class. The data is
split into the current class versus the rest for each classifier.

3.2 Decision trees

Training a decision tree (see Figure 3.1 for example) involves building the tree that
maximises the information gain in each branching. Every deciding node will be
based on a single parameter: the parameter that makes the children as “pure” (i.e.
as low entropy) as possible [Russell and Norvig, 2003]. The decision tree is a very
simple yet versatile algorithm that is often used in ensembles to turn its ability to
overfit into an advantage. The errors for ensembles are based on subtracting the
average errors made by the individual classifiers from the average variance of the
classifiers, i.e. we want classifiers that are accurate but disagree with each other
[Ohlsson, 2017]. Decision trees are good for this since we can have arbitrary ac-
curacy depending on the depth we allow for the tree, and they vary considerably if
they are trained on slightly different data.

Bagging This is an ensemble technique that creates new data sets by drawing
samples from the original set. Data is drawn according to a uniformly random dis-
tribution with replacement to make learners train on different data sets.

Boosting This is an ensemble technique that weights the sample data points de-
pending on how well they were classified by the previous learner. Thus, new learners
will be more focused on data that previous classifiers did not manage to classify.

3.3 Linear discriminant analysis

Linear discriminant analysis (LDA) is a method of projecting the input space onto
a lower dimensional space with good class-separability. It is similar to PCA, but
where PCA looks for the component axis that maximises variance, LDA maximises
component axis for class separation [Martínez and Kak, 2001]. Mathematically this
is done by defining the:

31

Chapter 3. Machine learning

1. within-class scatter matrix as

Sw =
c

∑
j=1

N j

∑
i=1

(x j
i −µ j)(x

j
i −µ j)

T
(3.1)

where x j
i is the i th sample of class j, µ j is the mean of class j, c is the number

of classes and N j the number of samples in class j, and the

2. between-class scatter matrix as

Sb =
c

∑
j=1

(µ j−µ)(µ j−µ)T (3.2)

where µ is the mean of all classes.

To separate the classes we want to maximise the between-class measure while
minimising the within-class measure. One way to do this is to maximise the ra-
tio det |Sb|

det |Sw| [Martínez and Kak, 2001]. We used the implementation in scikit-learn
[Pedregosa et al., 2011].

3.4 Artificial Neural Networks

Some of the early efforts to create artificial neural networks (ANNs) were inspired
by the hypothesis that mental activity is nothing but electrochemical signals in a net-
work of cells. This has later split into two disciplines: computational neuroscience
that tries to model the brain to gain a better understanding of it, and a discipline that
focuses more on the abstract and mathematical properties of ANNs that can be used
in AI, such as the ability to process and learn from a very wide array of data [Russell
and Norvig, 2003].

The basic component of any ANN is the neuron. A simple mathematical model
for the neuron is h j = φ(∑n

i=0 wi, jxi +b) where h j is the output of the neuron, φ is
the activation function, xi is the i th input, wi, j is the weight of the connection from
input i and b is a bias weight. The bias is usually incorporated into the network by
adding a neuron with unit value in the previous layer (see Figure 3.2). The neurons
are then connected in a network with some designated inputs and outputs and the
signal is propagated from the input to the output by gradually calculating these sums
and activation functions [Russell and Norvig, 2003].

There are two general types of artificial neural networks: feed forward networks
(also know as multilayer perceptrons, MLPs) and recurrent networks. MLPs are
built by layers of nodes and all data only travels in one direction layer by layer.
Recurrent networks have loops in the connections and can thus depend on data
from previous passes through the network. We will make use of both and give a
more detailed introduction to the specific types we use later on.

32

3.4 Artificial Neural Networks

h0
01

h0
1x1

h0
2x2

h0
3x3

h1
01

h1
1

h1
2

h1
3

h1
4

h2
1

y1

h2
2

y2

Hidden
layer

ω1
i, j ω2

j,k
Input
layer

Output
layer

Figure 3.2 Neural network with one hidden layer. All layers except the output layer
have a bias node with value 1.

Cost function
To be able to train a network we need to define what the target is and define a
measure of how large the current error is. A cost function takes the predicted values
yk together with the target values dk and produces a value for the current error.

The best cost function will vary depending on the type of problem, i.e. regres-
sion and classification problems will typically use different types of cost functions.
The functions are commonly derived from the maximum likelihood principle [Ohls-
son, 2017].

Mean Squared Error A cost function that is commonly used when working on
regression problems is the mean squared error. The assumption is typically that
the labels are measurements of the underlying function with some Gaussian noise
added. The whole cost function E is

E(y) =
1
2

n

∑
k=1

(yk−dk)
2 (3.3)

Categorical crossentropy This is a cost function that is commonly used when
working on classification problems where we interpret the output as class probabil-
ities. It works for 1-out-of-C coding on classification problems with C classes. It is
most often used with the softmax activation function after the last layer to make the
output class probabilities (see Eq. (3.8)) [Ohlsson, 2017; Chollet et al., 2015].

E(y) =−
n

∑
k=1

dk logyk (3.4)

33

Chapter 3. Machine learning

Gradient based learning
Training an ANN with gradient descent is very similar to training other models with
the exception that the non-linearities in the activation function cause the cost func-
tion to become non-convex. Both linear and logistic regression as well as SVMs
have global convergence—a guarantee we do not have for ANNs. Instead of using a
linear equation solver to find the minimum we rather employ an iterative approach
where the weights are updated in the direction of the negative gradient. This will find
a minimum of the cost function, though it might not be the global minimum [Good-
fellow et al., 2016]. The vanilla gradient update equation is

ω j,k← ω j,k−η · ∂E
∂ω j,k

(3.5)

where η is the learning rate.

Backpropagation
Updating the weights in the last layer seems easy enough since the cost is defined
for actual labels and predicted values, both of which we have. How do we then
update weights in the middle of the network where there are no pre-defined labels?

The answer is to use backpropagation. The algorithm works by saving the values
for every node when the forward pass is done. Then, starting from the last layer,
the cost is calculated and propagated backwards through the net. All intermediate
updates can be calculated with the chain rule following Equation (3.5). The whole
process looks as follows [Ohlsson, 2017]:

1. Choose an input µ and set

h0
k = xk(µ), ∀k

2. Propagate the signal forward in the network by

hm
i = φ

m
i

∑
j

ω
m
ji h

m−1
j

, ∀i,m

3. Calculate “deltas” for the output layer M

δ
M
i = φ

′

∑
j

ω
M
ji hM−1

j

(di(µ)−hM
i

)
4. Calculate “deltas” for the remaining layers by propagating the error back-

wards

δ
m−1
i = φ

′

∑
j

ω
m−1
ji hm−2

j

∑
j

ω
m
i j δ

m
j

34

3.4 Artificial Neural Networks

for m = M,M−1, . . . ,2

5. Update the weights

∆ω
m
i j = ηδ

m
i hm−1

j

ω
m
i j (t +1) = ω

m
i j (t)+∆ω

m
i j

6. Repeat for next input.

One problem that arises for certain types of networks when trained with back-
propagation is that the gradient vanishes exponentially with the depth of the net-
work [Hochreiter and Schmidhuber, 1997; Bengio et al., 1994]. This happens since
there is a chain of multiplying derivatives of activation functions when the error
is propagated up through the layers. The absolute value of derivatives of activa-
tion functions is commonly less than one, resulting in the vanishing gradient. If the
size of the gradient is instead larger than one, the opposite problem with exploding
gradients will arise.

A vanishing gradient is common for both convolutional networks, that usually
depend on many layers of encoding features, and recurrent networks, that can be
very deep when unfolded if there are many time-steps in the sequence. There are
methods for avoiding this problem and some specific solutions for the different
networks will be presented in the coming sections.

Activation functions
Activation functions are needed to introduce a non-linearity in the network. Without
them the network is only a linear classifier no matter how deep it is made [Russell
and Norvig, 2003]. It has been proven that feed forward networks, with a single
hidden layer and some weak conditions on the activation function, are universal
approximators if there are enough nodes [Hornik, 1991].

Rectified linear unit (ReLU) is one of the standard activation functions for deep
learning. The ReLU activation function is defined as

ReLU(x) =

{
x, x > 0
0, x≤ 0

(3.6)

One of the main advantages of ReLU is that it avoids the vanishing gradient problem
by having its derivative be 1 for any positive input. This will however shift the mean
activation to be positive, since any output from the function is either positive or zero.
A shift in mean activation can pose some problems; if a unit has a non-zero mean
activation it will act as a bias towards the next layer. If the average over such units
in a layer does not cancel out, training will cause a bias shift for units in the next
layer. Less bias shift will cause the learning to speed up [Clevert et al., 2015] and
therefore we want to bring the mean activation closer to zero.

35

Chapter 3. Machine learning

Figure 3.3 ReLU, LReLU and ELU activation functions.

Leaky ReLU and Parametric ReLU A proposed fix for the non-zero mean acti-
vation is to replace the negative part with a linear function, know as Leaky ReLU
(LReLU). They have been shown superior to ReLUs in both learning speed and per-
formance [Maas et al., 2013]. A generalized version, Parametric ReLU (PReLU),
where the slope is a trainable parameter, has later been suggested [He et al., 2015].
PReLUs have shown good performance on image data sets where the learning be-
haviour is better than with ReLUs [He et al., 2015].

Exponential Linear Unit LReLU and PReLU suffer from a different problem
though, they no longer ensure a noise-robust deactivation state [Clevert et al., 2015].
The same study also suggests a new activation function, Exponential Linear Units
(ELU), with negative values to allow a mean activation close to zero, but at the same
time saturate to a negative value with decreasing input. This model will encode the
presence of a phenomenon and to what degree, but not quantitatively model the
absence of it. This results in a model with a noise-robust deactivation state.

ELU is defined for α > 0 as

ELU(x) =

{
x, x > 0
α(ex−1), x≤ 0

(3.7)

See Figure 3.3 for comparison of the different functions.

Softmax We also have the activation function softmax that is used in multiclass
classification. It is most often used in the last layer to ensure the output probabilities
yk are in the range [0,1] and fulfil ∑k yk = 1 [Ohlsson, 2017].

softmax(x)i =
exi

∑k exk
(3.8)

Batch normalisation
It has long been known that normalising input to zero mean and unit variance re-
duces training times [LeCun et al., 1998]. Intuitively, if there were no extreme out-
liers in the input space, the weights would not have to vary as much to minimise the

36

3.4 Artificial Neural Networks

error, and the distance between the random initialisation and the minimum would
on average be closer.

Following this there is a technique known as batch normalisation [Ioffe and
Szegedy, 2015]. The idea is that since the output of every layer acts as input for the
next layer, we normalise between every layer. This is not done over all weights at
the same time, but rather over every mini-batch that the network is trained on.

Passing a mini-batch B = x1..xm of input values xi through the algorithm pro-
duces an output yi according to:

µB←
1
m

m

∑
i=1

xi

σ
2
B ←

1
m

m

∑
i=1

(xi−µB)
2

x̂i←
xi−µB√

σ2
B + ε

yi← γ x̂i +β ≡ BNγ,β (xi)

where γ and β are trainable parameters and ε is a small constant used for numerical
stability.

Inserting this directly into state of the art models for image recognition shows
improved accuracy and training times. Batch normalisation could also allow for
other modifications such as removing dropout layers and increasing learning rates
with little to no loss in accuracy [Ioffe and Szegedy, 2015]. This would further
improve training times.

Data augmentation
One straightforward way of reducing overfitting and improving classification in
most machine learning applications is to get more data to train on. This may not
always be easy, as for example in our case. Data augmentation is a technique suc-
cessfully used on image data sets with a low number of samples [Krizhevsky et al.,
2012]. The images are artificially altered in a label preserving way to enlarge the
data set.

For images this can entail zooming, skewing, translating, mirroring, adding
noise, changing color intensities and many other techniques.

For EEG data it is slightly harder to know what is label preserving, but we reason
that adding Gaussian noise should be one good option (the data is already full of
noise) and using a small random offset in time could be a second option (slightly
different reaction times among subjects over trials).

Long short term memory
Long short term memory (LSTM) networks, originally introduced in [Hochreiter
and Schmidhuber, 1997], are a type of recurrent neural networks. The problem with

37

Chapter 3. Machine learning

ct

CEC unit

× ht×

×

ft Forget Gate

itInput Gate otOutput Gate

xt

xt xt

xt

Figure 3.4 There are a few different versions of LSTM units. This is an example
of a peephole unit where the gates have direct access to ct .

simple recurrent networks is that the error signals propagating back through time
tend to vanish from many derivatives of activation functions being multiplied to-
gether [Ohlsson, 2017]. The solution that is introduced with LSTMs is that the error
signal is forced to stay constant by the architecture of the units and the training algo-
rithm. Therefore LSTMs are good at bridging information over larger times without
losing any short time lag capabilities.

The internals of an LSTM unit revolve around a self-connected linear unit
(known as the constant error carousel, CEC) with gates that control information
flow to and from it. The input gate unit is there to protect the memory contents
from irrelevant noise. Similarly the output gate unit is there to protect the output
from memory content that is irrelevant at the moment. There is also a forget gate
unit that controls how much of the memory stays [Gers and Schmidhuber, 2001].
Figure 3.4 show a sample of a single peephole unit, this is where the gates have
direct access to the CEC.

Convolutional neural networks
Convolutional neural networks (CNNs) typically consist of several convolutional,
pooling and dropout layers with a few fully connected layers at the end. They are
very good when there is local dependence in the data which is used to compute
higher order features in following layers. They also have far fewer weights than
fully connected models with the same number of hidden neurons which will make
them easier to train while still allowing for complex functions.

38

3.4 Artificial Neural Networks

A common way to visualise what is happening in convolutional networks is
through studying the filters. The higher values in the filter encode the spatial ar-
rangement of important features and when plotted as an image the features are easily
visualised [Goodfellow et al., 2016].

Convolutional layers Convolutional layers are the core idea behind CNNs. They
consist of filters sliding over the input to extract local features for use in the next
layer. This results in some important properties such as sparse interactions, param-
eter sharing and equivariant representations [Goodfellow et al., 2016].

Sparse interactions mean that every node only interacts with a few of the nodes
in the input. This allows for fewer parameters in the network and improves both
statistical efficiency and memory requirements.

Parameter sharing further reduces the storage size of the parameters by having
many nodes share the same weights.

Convolutions are equivariant to translations, but not necessarily to all transfor-
mations.

For example, if we have 31 channels of 512 time instances we might have 10 1D
filters of width 64. However, every filter is a combination of the current window over
all channels at the same time. Thus there will be 10 filters of size 31×64 creating
10 “channels” of output with 512 time instances each. On the contrary, if we wanted
the same input and output sizes for a fully connected network we would have around
31 ·512 ·10 ·512≈ 8 ·107 parameters, which is a few orders of magnitude more.

Pooling layers Pooling is a way of summarising the output of neighbouring
groups in the same filter map. This subsampling will make the network less sen-
sitive to small displacements of features, since positions of features are “blurred”
when the subsampling is done. This also helps with reducing the size of the data and
allowing more feature filters while still keeping the number of weights down [Good-
fellow et al., 2016].

For example, if we have 31 channels of 512 time instances we might have a filter
of size 4 which scans over each channel and results in vk

i = max(qk
4i..4i+3). Here k is

the channel, 0≤ i < 128 is the window position, q the original data of size 31×512
and v the subsampled data of size 31×128.

Dropout This technique was introduced to improve generalisation error in large
networks [Hinton et al., 2012]. It can be seen as an effective regularizer by forcing
the network to not use brittle co-adaptations of hidden units. It works by randomly
shutting off units with a probability r during training, while letting all units be part
of prediction. Since this will result in fewer weights feeding into a unit the value
is scaled by 1

1−r during training. This can also be seen as randomly training an
ensemble of networks with a different number of units in the hidden layers. This
will allow us to use larger models without overfitting, at the cost of longer training
times [Dahl et al., 2013].

39

Chapter 3. Machine learning

The feedforward equation during training will be

hm
j = φ

(
1

1− r ∑
i

hm−1
i qm−1

i ω
m
i j

)
(3.9)

where qqqm is a binary mask for layer m with entries drawn from Bernoulli(1− r).

Fully connected layer After the convolutional layers there is often a fully con-
nected layer (or a few) to provide the final classification from the features that have
been extracted.

40

4
Methods

4.1 Data set and pre-processing

The EEG data used in this work is from a study performed at Department of Psy-
chology in Lund by Mikael Johansson and Inês Bramão [Bramão and Johansson,
Submitted for publication, 2018]. The study was conducted in a Faraday cage using
a Neuroscan Grael amplifier from 31 Ag/AgCl scalp electrodes.

There were 36 subjects, both female and male, divided equally in two groups
of 18 for the visual and verbal task. They were all native Swedish speakers without
any known neurological or psychiatric disorders. Subjects were asked to look at pic-
tures from three classes (encoding or study phase) and later remember information
about the pictures (retrieval or test phase), see Figure 4.1. The classes were faces of
famous people, famous landmarks such as the Niagara Falls and man-made objects
such as a violin or a hammer.

The study phase was the same for both tasks. The subjects were looking at a
screen where they were shown a word for 2.5 s, an image for 2.5 s, and both together
for 2.5 s. The 2.5 s of only seeing the image was the data used for training.

The test phase presents the word from study, after which the subject responds
with the class of the corresponding picture. If the subject is correct on the class the
visual task presents the image together with a mirrored version while the verbal task
asks for the name of the person/place/object in the image. If the class was wrong,
no such task was given and the test proceeded. The data used for classification is
the word presented in the start of the test phase.

The data was pre-processed in FieldTrip, a MATLAB toolbox for EEG and MEG
analysis. It was downsampled from 2048 Hz to 512 Hz and divided into epochs of
4 s, −1.5 s to 2.5 s relative to the onset of the image in study and the onset of the
word in test.

Eye movement and other muscular activity can introduce artefacts in the data
and needs to be analysed and removed. The EEG data was physically inspected
for artefacts from muscular activity or other activity not related to eye movement
which were manually removed. Artefacts from eye movements were removed by

41

Chapter 4. Methods

Figure 4.1 (A) shows the encoding phase where subjects looked at word and pic-
ture pairs. This phase is identical for both the visual and verbal task and the EEG
signals from when the picture was presented alone (outlined in green) is the data
used for training. (B) shows the retrieval phase. For both tasks the subjects are first
asked to retrieve the category of the picture from the word. The visual task was then
to determine which of two mirrored images was the original one. The verbal task was
then to name what was in the picture. The data used for classification was the EEG
signals from the word being presented, also outlined in green. (C) shows examples
of images from the different classes (faces, landmarks and objects). The image is
borrowed from [Bramão and Johansson, Submitted for publication, 2018] with the
authors’ permission.

using independent component analysis. Trials were also visually inspected and any
trials with residual artefacts were removed.

4.2 Experimental setup

For the machine learning we used GPU nodes on LUNARC, a scientific computing
cluster in Lund. This yielded an increase in speed of around 10 times compared
to running on the CPU nodes when testing with some deeper networks, while for
smaller networks it could run slower.

We ran TensorFlow [Martín Abadi et al., 2015] with Keras [Chollet et al., 2015]
on top for the neural networks. For other machine learning approaches we used
implementations from scikit-learn [Pedregosa et al., 2011] and MATLAB.

For feature extraction/transformations we used mne-python [Larson et al., 2016]
and MATLAB—both existing tools in MATLAB and some tools that were written

42

4.2 Experimental setup

during the project.
We used the data from the 18 subjects in the visual task, both encoding and re-

trieval, for all the accuracies presented in results. To estimate generalisation perfor-
mance of the models we used 10-fold cross validation. This is a method to estimate
generalisation performance over all the data by splitting the data in ten parts. Over
ten iterations training is done on nine of them while testing is done on the remaining
one, and the generalisation performance is approximated to be the average of the ten
values of the classification accuracy. This is what is later called encoding accuracy.
We also present results for retrieval accuracy which is a model trained on data from
the encoding phase and tested on data from the retrieval phase.

When using any measure of the performance of the models we always run the
risk of finding a model that fits extra well to the current data under this measure. This
is also true for cross-validation, and over many iterations of improving a model we
will most likely introduce some type of bias towards this measure into the structure
of the model. To test if this was the case for us we only ran the models on the visual
encoding data while improving them, then in the end we ran the model on the verbal
encoding data with similar results. From the results of this test we concluded that
we did not have any significant bias in the model selection and that our estimate of
the generalisation performance of the model was still good.

Simple classifiers
We ran a few simple classifiers on the different transformations of the data that
we generated. We did not change the parameters for the classifiers significantly;
instead we were interested in using these initial training experiments as a quick
search for which transforms contained good information and thus were worth testing
with more advanced classifiers. Before classification, no matter what transform has
been done, every trial is stacked to be a 1D vector. A trial is what corresponds to
31 channels of 2049 time instances in the original data. The input data was cut
from 0 s to 1 s relative to onset if not otherwise stated. This was done to reduce
the dimension of the input space by removing data that we assumed did not contain
much information. Additionally, if decimation is mentioned, the data is low-pass
filtered and downsampled using the decimate function in MATLAB. This operation
also serves to reduce the input space by removing the highest frequencies, which we
assume to contain little or no information useful for classification.

The SVMs used have the basic implementation with a linear kernel from MAT-
LAB and scikit-learn. We tried using regularisation but did not see much of a dif-
ference other than in computation time, so the data in the results is from classifiers
without regularisation.

The LDAs used have the basic implementation from MATLAB and scikit-learn
[Pedregosa et al., 2011].

The decision trees use the basic implementation from MATLAB. We also test
ensembles of trees with either bagging or boosting to increase the model complexity.

43

Chapter 4. Methods

Table 4.1 Design of the LSTM net that generalised the best. We tried varying the
parameters and structure of the network. Return sequences is a setting in Keras that
switches between only returning the last value or the entire predicted sequence. This
network has approximately 70000 trainable parameters.

Layer Nodes Additional settings

LSTM 70 return sequences
Dropout — 0.4
LSTM 70 —

Dropout — 0.3
Dense 15 tanh
Dense 3 softmax

Long Short Term Memory
The LSTM network was our first idea for a neural network to try. They are well
known and well used for time series data which seemed like a perfect fit. See Table
4.1 for the layout of the net. The input data was cut in time from 0 s to 1.5 s (768
time instances in total). This is intentionally slightly longer than what was used in
the simple classfiers, partly because these are a bit more complex and can probably
better handle more data. The other reason is that we ran some tests where we got
lower accuracy for both the full four seconds of data as well as only one second of
data. Therefore we went with 1.5 seconds as the standard data length for the neural
networks and CSP algorithms.

1D convolutional network
The 1D convolutional networks (CNN1D) were our second idea; see Table 4.2 for
the layout of the net. The thought was that we might not want the full history of the
temporal data in the way that LSTM can encode, but rather just have a dependence
on the nearest neighbours in time. The networks were fine tuned by testing and
gathering inspiration from papers on similar problems. The input data was cut in
time from 0 s to 1.5 s (768 time instances in total). It was also normalised over trials
and time for each subject separately (average and variance over channels are 0 and
1 for every subject, respectively).

The two first layers are for data augmentation; the first creates a random offset
in the data while the second adds Gaussian noise.

When decimation is used, the data is low-pass filtered and downsampled in
scipy’s decimate function.

EEGNet
The EEGNet was implemented according to the original EEGNet paper [Lawhern
et al., 2016]. This net was also fed with data that was cut from 0 s to 1.5 s. This
network has around 5000 trainable parameters.

44

4.2 Experimental setup

Table 4.2 Design of the 1D convolutional network we used. This is the “base”
CNN1D network, and in our results we compare this to similar networks were we
vary parameters. This network has approximately 90000 trainable parameters. The
layer names correspond to existing layers in the Keras library, except for the offset
layer which we wrote ourselves.

Layer Nodes Additional settings

Offset slice 630 randomly from 768
GaussianNoise ~0.01

Conv1D 30 filter size 64, causal padding
BatchNormalisation

Activation ELU
AveragePool1D pool size 2

Dropout 0.2

Conv1D 15 filter size 32, causal padding
BatchNormalisation

Activation ELU
AveragePool1D pool size 2

Dropout 0.3

Conv1D 10 filter size 16, causal padding
BatchNormalisation

Activation ELU
AveragePool1D pool size 2

Dropout 0.4

Flatten
Dense 15

BatchNormalisation
Activation tanh

Dense 3 softmax

45

Chapter 4. Methods

Table 4.3 Design of the first 2D convolutional network net we ran on the trans-
formations. The second version of the net (CNN2D—v2) had filters of size (8, 4)
instead and had pooling of size (4, 4). The layer names correspond to existing layers
in the Keras library.

Layer Nodes Additional settings

Conv2D 4 filter size (4, 8), same padding
Activation ELU

AveragePool2D pool size (2, 4)
Dropout 0.2

Conv2D 8 filter size (4, 8), same padding
Activation ELU

AveragePool2D pool size (2, 4)
Dropout 0.3

Conv2D 16 filter size (4, 8), same padding
Activation ELU

AveragePool2D pool size (2, 2)
Dropout 0.3

Flatten
Dense 15 tanh, L1 reg=0.01
Dense 3 softmax

2D convolutional network
Using a 2D convolutional network (CNN2D) on time-frequency distributions is not
really something we have seen other people do. There is some work done on spec-
trograms, and to our knowledge, one paper which tests it for the Wigner distribution
[Brynolfsson and Sandsten, 2017]. We reason that there is local dependence in time
and most likely also some local dependencies in frequency. The time-frequency
transforms result in 31 channels of 2D matrices, very similar to RGB images that
have multiple color channels of 2D matrices, i.e. we can treat them with the same or
similar 2D convolution tools that are developed for images. We tried two versions
of a network since the different transforms created matrices of varying shape. The
first version is in Table 4.3 while the second version (CNN2D—v2) was the same
except the filters were of size (8, 4) and pooling of size (4, 4).

Time-frequency transforms
For the time-frequency transformations there are a handful of parameters to con-
sider. The data being transformed was cut from 0 s to 1.5 s (768 time instances)
and decimated with a factor 4 with MATLAB’s decimate function. The sampling

46

4.2 Experimental setup

frequency parameter was thus chosen as Fs = 128 Hz. The window length, both for
the single Hann window in the spectrogram and the Slepian windows in the mul-
titaper spectrogram, were chosen to be L = 32 samples long, or 250 milliseconds.
Some tests were done with L = 8 or 62.5 ms windows with lower accuracy. The
number of FFT points was chosen as 512, which is the smallest power of two that
surpasses double the signal length, 2 ·768/4 = 384 samples, or one and a half sec-
ond of downsampled data after onset. The Slepian windows were calculated using
dpss in MATLAB with NW=3 and the last three windows discarded. In the Wigner
and ambiguity tests, no special kernels were applied.

Common spatial patterns
The common spatial patterns algorithm was run on data in the interval 0 s to 1.5 s
relative to onset. We tried varying a number of parameters. The default settings are
concatenated covariance estimation, no trace normalisation, and four independent
components. We tried the algorithm with trace normalisation, epoch covariance es-
timation, and also with eight components. See the part on covariance matrix esti-
mation in Section 2.2 for more details.

Significance of results
It is tempting to simply assume that all classification errors are binomially dis-
tributed with p = 1

3 and to set up a confidence interval based on this assump-
tion. However, due to the 10-fold cross-validation scheme this assumption is not
so obvious, and there are several articles indicating that this is a very bad idea [Re-
faeilzadeh et al., 2009; Lacoste et al., 2012; Bouckaert and Frank, 2004]. For any
pair of training-validation procedures in a 10-fold cross-validation scheme, eight
out of the ten folds will be used for training in both. This is the main argument
for the classification errors not simply being independent and identically distributed
over the whole cross-validation scheme.

There are multiple alternatives to the simple hypothesis test, many of which are
described in a very thorough work published in 2003 [Nadeau and Bengio, 2003].
One of the schemes is based on bootstrap—by randomly permuting the class la-
bels and retraining the network repeated times, we can obtain a sample from the
distribution of the cross-validation accuracy. Then we can estimate an approximate
confidence interval from this data and compare it to the cross-validation accuracy
obtained from training the network on the correct class labels. Unfortunately, for a
few of the slower neural networks such as EEGNet and CNN2D, we have not had
time to do significance testing. These networks can take around 5–15 hours for run-
ning one 10-fold cross-validation, so running every one of them a sufficent amount
for a good confidence interval would take more time than we had at hand.

47

5
Results and discussion

5.1 Raw data with simple classifiers

Table 5.1 The main test on raw data with simple classifiers. We tried other deci-
mation factors, producing similar results. Overall, decimation does not change much
for these classifiers, but some algorithms are definitely more successful than others.

Classifier Data Encoding acc. Retrieval acc.

SVM Raw cut 0.74 0.34
LDA Raw cut 0.77 0.34
Tree Raw cut 0.48 0.33

Trees with bagging Raw cut 0.66 0.34
Trees with boosting Raw cut 0.69 0.34

SVM Raw cut, 16x deci. 0.75 0.34
LDA Raw cut, 16x deci. 0.74 0.34
Tree Raw cut, 16x deci. 0.52 0.34

Trees with bagging Raw cut, 16x deci. 0.69 0.34
Trees with boosting Raw cut, 16x deci. 0.71 0.34

The results in Table 5.1 are slightly surprising, since these accuracies are extremely
high compared to how unsophisticated the method is. All of the classifiers perform
similarly or slightly better after decimating the data by up to a factor of 16, indicat-
ing that there is a lot of redundancy in the high frequencies of the data.

5.2 Raw data with different neural networks

LSTMs gave decent results when we started out, but they did not generalise as well
for every subject when we started running 10-fold cross-validation.

The CNN1D networks did much better which might show that the local patterns
are more important than a full temporal dependence. We still get semi-deep net-

48

5.2 Raw data with different neural networks

Table 5.2 Some of the more successful and interesting neural networks we ran on
raw data. We tested how the components of the network affected performance by
running the base CNN1D with and without them. See table 4.2 for base CNN1D
implementation.

Classifier Data Encoding acc. Retrieval acc.

LSTM Raw cut 0.41 0.33
CNN1D Raw cut 0.79 0.35
CNN1D Raw full data 0.77 0.35

CNN1D, no data aug. Raw cut 0.82 0.35
CNN1D, no batchnorm Raw cut 0.76 0.34

CNN1D, PReLU Raw cut 0.77 0.34
CNN1D, MaxPool Raw cut 0.79 0.34

CNN1D, no data aug. Raw cut, 4x deci. 0.79 0.35
CNN1D, no data aug. Raw cut, 16x deci. 0.79 0.35

CNN1D, 3 spread channels Raw cut 0.50 0.33
CNN1D, 3 top channels Raw cut 0.63 0.34
CNN1D, 7 top channels Raw cut 0.75 0.35

EEGNet Raw cut 0.75 0.34

works to find complex features but with far fewer parameters to train. Based on the
idea to interpret convolutional networks for images through their filters, we tried that
on the CNN1D networks as seen in Figure 5.1. However, as the 1D-data is noisy and
not very intuitive, the filters themselves were hard to interpret and we were not able
to discern any specific features in them. This led us to instead average the weights in
the filters of the first layer over all dimensions but the channels, see Figure 5.2. The
idea is that larger weights in general means they encode more important features
and larger weights in general means more important features in that channel. The
high activity (and perceived importance) of the channels in the back of the head is
similar to findings in previous work, but also very reasonable since the visual cortex
is located there. When training a network on only three spread out channels (PO10,
T7, Fp2) we get an accuracy of 50 %, while training on the top three channels (P8,
PO9, PO10) gave an accuracy of 63 % (see Table 5.2). This seems to confirm that
the channels in the back are more important, and when training on all the seven
channels in the back (P7, P8, PO9, PO10, O1, O2, Iz) we got 75 % accuracy. So
while that is good classification from only a quarter of the channels, there is still
data with additional classifying power in the remaining channels.

Also worth mentioning is that EEGNet got an accuracy of 75 % without any
tuning of the hyperparameters from our side. The EEGNet use many of the same
techniques as we use, but structure the network slightly differently to reduce the
number of weights.

Looking at Figure 5.3 we see that CNN1D on encoding data classify with high-

49

Chapter 5. Results and discussion

Figure 5.1 10 filters from the first convolutional layer of a CNN1D network trained
on channel P8 for subject 5 in the visual task.

est accuracy around 200–300 milliseconds post stimulus onset. Comparing this to
Figure 5.4, which shows the classification accuracy on retrieval data after train-
ing on encoding data in different time bins, we notice that the best classification is
delayed. It seems like there is highest classification accuracy around 800–1000 mil-
liseconds for both the training and classification bins, but as the histogram on the
right shows, the classification accuracies overall are evenly distributed around the
mean classification accuracy, 33.23 %. This indicates that, on average, the clas-
sification accuracies are no better than random guesses, even though some cases
technically are. We believe that it would be inaccurate to make the claim that cer-
tain time intervals hold more classification power than others, although we have not
conducted a formal hypothesis test. Figure 5.6 shows a similar test where the classi-
fication accuracies are similarly distributed but there is even less of a pattern in the
time-dependent classification.

50

5.3 Time-Frequency transforms with 2D convolutional networks

Fp1Fp1 Fp2Fp2

F7F7
F3F3 FzFz F4F4

F8F8

FC5FC5 FC1FC1 FCzFCz FC2FC2 FC6FC6

T7T7 C3C3 CzCz C4C4 T8T8

CP5CP5 CP1CP1 CP2CP2 CP6CP6

P7P7
P3P3 PzPz P4P4

P8P8

PO9PO9

O1O1 O2O2

PO10PO10

IzIz

0.0205

0.021

0.0215

0.022

Figure 5.2 Average absolute filter-weights for every channel in the first layer of a
CNN1D network. The weights are generated from 10 repeated runs on 18 subjects
with 10-fold cross-validation, sum over kernels of length 64 for 30 filters. If we look
at the distribution of how large the average absolute weights are for every channel,
there are 14 in the lower quarter and 5 in the upper quarter. The CNN1D network
trained on only the 3 channels with highest average weights got 63 % accuracy, see
Table 5.2.

Figure 5.3 10-fold cross-validation accuracy for CNN1D networks on binned en-
coding data. Each classifier was trained on bins of 240 consecutive time instances
(469 ms) with the distances between the midpoints of each bin being 60 time in-
stances (117 ms). That means every classifier is trained on data that stretches from
234 ms before to 234 ms after the time on the x-axis.

5.3 Time-Frequency transforms with 2D convolutional
networks

Neural networks can be shown to be universal approximators if enough nodes are
used, i.e. any transform of the data should not be necessary for a neural net’s ability
to encode the data (no new information is added, just transformed). Even though

51

Chapter 5. Results and discussion

0.3 0.31 0.32 0.33 0.34 0.35 0.36

0

10

20

30

40

50

60

Figure 5.4 (Left) Classification accuracy for CNN1D networks trained on binned
encoding data and tested on binned retrieval data. Each classifier was trained on bins
of 240 consecutive time instances (469 ms) from the encoding data with the distances
between the midpoints of each bin being 60 time instances (117 ms). Testing was
done in the same fashion with bins of size 240 time instances and a distance of 60
time instances in between, but now using the retrieval data. (Right) Histogram over
all the values in the matrix. The mean classification accuracy is 33.23 %.

they are theoretically not needed, transforms might be important for the simple rea-
son that having too many nodes/parameters is not feasible in practice. We are only
working with about 180 data points (trials) per subject so if we can have fewer
parameters to train while still being able to encode the data it will help with for
example reducing training times and avoiding overfitting.

The transformations with CNN2D networks seemed good but never fully
reached the same accuracy as the 1D on the raw data, as we can see in Table 5.3.
This is something we would have liked to spend more time on since we think the
transformations might be able to give more interesting and more interpretable fea-
tures than raw data. The one big problem is that the transforms are very big in size
and take very long time to train on which makes them much more cumbersome to
work with. On a broader scale, however, the method of 2D convolutional neural
networks seems very promising since current classifying methods within the field
are often based on simpler classifiers and further feature extraction methods for di-
mensionality reduction. 2D convolutional neural networks are an essential tool for
object detection and classification in the image analysis community, but it seems
like the time-frequency community is lagging behind slightly. We believe that these
types of networks could be the future of classification using time-frequency distri-
butions; it seems too good to not explore further.

5.4 Covariance with a simple classifier

We created covariance matrices, see Eq. (2.33), for every trial on every subject to
study how different parts of the brain had similar activities. We can see this as an ex-
tremely primitive version of CSP, which should theoretically also exploit patterns in

52

5.5 Common Spatial Patterns with simple classifiers

Table 5.3 The result of running CNN2D networks on high resolution time-
frequency transforms. See table 4.3 for the network design. The value shown for
every transform is from the network that resulted in the highest encoding accuracy.

Classifier Data Encoding acc. Retrieval acc.

CNN2D—v2 Spectrogram 0.62 0.32
CNN2D Wavelet 0.69 0.35

CNN2D—v2 Wigner 0.63 0.33
CNN2D—v2 Ambiguity 0.64 0.32

CNN2D Slepian 0.60 0.33

the covariance between channels. We did not gain as much insight as we hoped, but
Table 5.4 shows that an SVM has 51 % classification accuracy, so there is informa-
tion to distinguish the classes in the covariance. In Figure 5.5 we show the average
correlation on subject 5 for all channels. It seems that there is high correlation for
channels close to each other, which is expected.

Table 5.4 Accuracy of SVM classifier on covariance data.

Classifier Data Encoding acc. Retrieval acc.

SVM Channel covariance 0.51 0.33

Fp1 Fp2 F7 F3 Fz F4 F8 FC5FC1FCzFC2FC6 T7 C3 Cz C4 T8 CP5CP1CP2CP6 P7 P3 Pz P4 P8 PO9 O1 O2PO10 Iz

Iz
PO10

O2
O1

PO9
P8
P4
Pz
P3
P7

CP6
CP2
CP1
CP5

T8
C4
Cz
C3
T7

FC6
FC2
FCz
FC1
FC5

F8
F4
Fz
F3
F7

Fp2
Fp1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.5 Average correlation over all trials for subject 5 on the visual test.

5.5 Common Spatial Patterns with simple classifiers

CSP-based classification is a promising strategy, but unfortunately it did not really
rival the other methods in this test, as Table 5.5 shows. It should be mentioned

53

Chapter 5. Results and discussion

that CSP has a large amount of exchangeable algorithms and estimators. Essentially
every step of CSP can be exchanged for an alternative method while keeping every-
thing else the same and testing the performance. As an example, the simple class
covariance matrix estimation technique was proposed at the latest in 1990, and since
then an almost innumerable amount of alternative algorithms have been proposed to
do it in a better way. The method used in this work is more or less the default setting
for CSP in the MNE-Python toolbox. The results were not really overwhelming but
definitely significantly above guessing the class, and with for example more mod-
ern covariance estimation and a fine-tuned neural network the CSP-based algorithm
could definitely be comparable to the other methods. Another, arguably “softer”,
reason for investigating this method further is that the features stemming from this
algorithm, in the form of spatial patterns, are nicely set up for interpretation as they
show which patterns separate classes the most.

It really seems like the CSP method is invariant to changes both in covariance
estimation method and classifying algorithm. If anything, the encoding accuracy
is slightly higher for a larger amount of components as seen in Table 5.5, but the
improvement is minimal. The retrieval accuracy stays at a steady 33–34 % for all
classifiers, just like all tests so far. It is surprising and slightly disappointing that
simple channel covariance fed into an SVM as seen in Section 5.4 produces as good
results as this method. However, this version of CSP is also the most primitive,
and arguably, more sophisticated CSP algorithms should probably be tested before
discarding this method completely.

Figure 5.6 shows the results from training classifiers on CSP features from
smaller time bins in encoding data and sequentially using those to classify on time
bins in the retrieval data. Much like Figure 5.4 there seems to be no significant
correlation between the different times the algorithms train or classify. Everything
seems to be nicely distributed around 33.3 %.

Figures 5.7 and 5.8 show the first spatial pattern (that is, the one with the high-
est classifying power) for Subject 5 and averaged over subjects, respectively. Our
expectation was that there would be similarities and a steady evolution over time
for the different components, but this definitely does not seem to be the case. It is
possible that CSP does not provide meaningfully interpretable features at this level
of classification, even though it has been used to a great extent in BCI literature.

5.6 Encoding and retrieval data swapped

One conclusion that is clear and unmistakable is that none of the networks manage
to classify the retrieval data at all after training on the encoding data. As explained
in chapter 1, some of the generators activating during encoding should also activate
during retrieval, but there are probably more since there is more stimulation in the
visual cortex. A novel idea for finding mutual features and training a good classifier
is to try the reverse problem—training on retrieval and classifying on encoding. Un-

54

5.6 Encoding and retrieval data swapped

Table 5.5 Encoding and retrieval accuracies on CSP transformed data with simple
classifiers. The different parameter options are explained in Section 4.2.

Classifier Data Encoding acc. Retrieval acc.

LDA CSP 0.48 0.33
SVM CSP 0.48 0.33
MLP CSP 0.47 0.33
LDA CSP with norm. trace 0.49 0.34
SVM CSP with norm. trace 0.47 0.33
MLP CSP with norm. trace 0.48 0.34
LDA CSP with epoch cov. est. 0.47 0.34
SVM CSP with epoch cov. est. 0.48 0.34
MLP CSP with epoch cov. est. 0.47 0.33
LDA CSP, 8 components 0.51 0.34
SVM CSP, 8 components 0.49 0.34
MLP CSP, 8 components 0.51 0.33

0.3 0.31 0.32 0.33 0.34 0.35 0.36

0

10

20

30

40

50

60

Figure 5.6 (Left) Classification accuracy for CNN1D networks trained on binned
encoding data tested on binned retrieval data. Each classifier was trained on bins of
240 consecutive time instances (469 ms) from the encoding data with the distances
between the midpoints of each bin being 60 time instances (117 ms). Testing was
done in the same fashion with bins of size 240 time instances and a distance of 60
time instances in between, but now using the retrieval data. Both the retrieval and
encoding data went through CSP before going into the classifier. (Right) Histogram
over all the values in the matrix. The mean classification accuracy is 33.22 %.

fortunately, for this exact data set, this turned out to be unfruitful. Table 5.6 shows
the results of a “reverse” test, and the test accuracies on the retrieval data are not
significantly higher than guessing the class. More interesting, however, is that the
validation accuracies on the retrieval data are not significantly better than guessing,
either. This seems to indicate that the retrieval data is extremely hard, if not im-
possible, to decode and classify in the first place, even with very general methods
which work very successfully on encoding data. Despite these results, the method
of “reversing” the encoding-retrieval classification paradigm would be interesting

55

Chapter 5. Results and discussion

Figure 5.7 The first CSP component in different time bins for subject 5. The num-
ber above CSP0 is the time in ms relative to onset of image. The data for every
image is 100 time instances (192 ms) and the images have 20 time instances (39 ms)
between them.

Figure 5.8 The first common spacial pattern over time, average of all subjects.
The time is in ms relative to onset of image. The data for every image is 100 time
instances (192 ms) and the images have 20 time instances (39 ms) between them.

to investigate further.

56

5.6 Encoding and retrieval data swapped

Table 5.6 Classifiers trained on the retrieval data from the visual task with 10-fold
cross-validation (first number) and then predicting on the encoding data from the
visual task (second number). This was to see if there is any structure to the retrieval
data at all, and if this structure would be more basic or general and thus have more
common parts with encoding data than when training on encoding and testing on
retrieval. However, since all of these numbers seem to be no different from randomly
guessing, there seems to be barely any structure at all in the retrieval data.

Classifier Data 10-fold cross validation Accuracy when testing
on retrieval data on encoding data

SVM Raw cut 0.34 0.33
CNN1D Raw cut 0.32 0.34
EEGNet Raw cut 0.34 0.34
CNN2D Wavelet 0.31 0.32

57

6
Conclusions

We have investigated a multitude of feature extraction methods and classification
networks. Some of them classify based on the raw EEG time data over the scalp
(sometimes decimated or cut), some of them utilise time-frequency distributions,
and some only use variance changes across channels. Simply looking at validation
accuracies we see that higher values come from methods that utilise the time depen-
dency in some way, with 1D convolutional networks reaching 82 % accuracy on the
raw data. Qualitatively, however, it seems like decimation with factors up to 16 does
not change the validation accuracy much, indicating that the highest frequencies do
not really add much information about which type of image the subject was shown.

Time-frequency distributions as a feature extraction method worked decently,
reaching an average validation accuracy of almost 70 % over all subjects, but not
as well as the raw data. The common spatial patterns algorithm had an even lower
validation accuracy, staying at around 50 % for most choices of parameters.

A common theme for all classifying schemes was that the test accuracy was not
significantly higher than guessing for any combination of features and networks.
The low accuracy could be interpreted as the classifiers being too strict or over-
trained. However, since we tried training and classifying on retrieval data with no
luck, we deem the retrieval data to be the source of low test accuracy rather than
overfitting.

The main difficulty in this work was that it is not immediately obvious which
class the trial belongs to from just looking at raw data. In contrast, in e.g. speech
recognition in sound recordings or object detection in images, an expert (or in some
cases even laymen) can directly say what the correct answer is with a proper dis-
play method (i.e. playback of sound recordings or visualisation of images), and the
aim is rather to teach the computer to experience what we are experiencing. We
are essentially fumbling in the dark, looking for features, and for this reason the
method with the best validation accuracy is not necessarily the one to keep testing.
CSP seems promising due to the ease of visualising the components of maximum
class separation directly. Since all experiments show that time-dependent features
are important, the relatively new field of time-dependent common spatial patterns
(TDCSP) could be a more valuable step forward than pruning the raw data to get

58

Chapter 6. Conclusions

a higher validation accuracy from the admittedly reliable 1D convolutional neu-
ral networks. The theory that fewer neural generators should activate in the brain
during retrieval than encoding legitimises the “reversing” scheme where classifiers
are trained on retrieval data and tested on encoding as a novel way of extracting
common features between the two paradigms.

59

7
Future ideas

This can probably be said for most investigations of this type, but there are a great
many tweaks to the algorithms that we would like to test but did not find the time
to. For example, further refining the CNN2D parameters to get better accuracies
for this type of EEG data seems like an especially good idea since it has proven
to be a reliable method for image analysis in similar fields. Also, variations on the
basic CSP algorithm, such as filter bank common spatial patterns (FBCSP), time-
dependent common spatial patterns (TDCSP), and common spatio-spectral patterns
(CSSP) among others, would definitely be interesting to implement since we believe
that the biggest drawback of the CSP algorithm as implemented in this work lacks
temporal and spectral information. Testing some type of spatial covariance model
from the field of spatial statistics to incorporate spatial dependence would also be
interesting, and with both dense EEG setups and better noise suppression/artefact
detection, methods from spatial statistics could prove useful to this type of data as
well as fMRI, where it is already used today.

It could be interesting to investigate different methods of encoding the spatial
dependence of the channels, maybe create an interpolation of values to get a spa-
tial matrix (good for convolutional networks) that evolves through time (good for
LSTM) and create a convolutional network with LSTM units for training. Explor-
ing more ensemble-techniques to combine many classifiers could probably push the
accuracy more, but would not give new insights into the interpretation of the data.

60

Bibliography

Anderson, R. (2017). Modelling and Inference using Locally Stationary Processes:
Biomedical applications. Licentiate Thesis. Lund University, Faculty of Sci-
ence, Centre for Mathematical Sciences, Mathematical Statistics. URL: http:
/ / portal . research . lu . se / portal / files / 35026341 / thesis _
Anderson.pdf.

Barachant, A., S. Bonnet, M. Congedo, and C. Jutten (2010). “Riemannian geome-
try applied to BCI classification”. In: Vigneron, V. et al. (Eds.). Latent Variable
Analysis and Signal Separation. Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 629–636. ISBN: 978-3-642-15995-4.

Bengio, Y., P. Simard, and P. Frasconi (1994). “Learning long-term dependencies
with gradient descent is difficult”. IEEE transactions on neural networks 5:2,
pp. 157–166.

Blankertz, B., R. Tomioka, S. Lemm, M. Kawanabe, and K.-R. Müller (2008). “Op-
timizing spatial filters for robust EEG single-trial analysis”. 25, pp. 41–56.

Boashash, B. (2013). Time-Frequency Signal Analysis and Processing: A Compre-
hensive Review. Academic Press. ISBN: 9780123984999.

Boashash, B., G. Azemi, and N. A. Khan (2015). “Principles of time-frequency
feature extraction for change detection in non-stationary signals: applications to
newborn EEG abnormality detection”. Pattern Recognition 48:3, pp. 616–627.
ISSN: 0031-3203. DOI: https://doi.org/10.1016/j.patcog.2014.08.
016. URL: http://www.sciencedirect.com/science/article/pii/
S0031320314003306.

Boashash, B. and S. Ouelha (2018). “Designing high-resolution time-frequency and
time-scale distributions for the analysis and classification of non-stationary sig-
nals: a tutorial review with a comparison of features performance”. Digital Sig-
nal Processing 77. Digital Signal Processing & SoftwareX - Joint Special Issue
on Reproducible Research in Signal Processing, pp. 120–152. ISSN: 1051-2004.
DOI: https://doi.org/10.1016/j.dsp.2017.07.015. URL: http://
www.sciencedirect.com/science/article/pii/S1051200417301653.

61

Bibliography

Bouckaert, R. R. and E. Frank (2004). “Evaluating the replicability of significance
tests for comparing learning algorithms”. In: Dai, H. et al. (Eds.). Advances
in Knowledge Discovery and Data Mining. Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 3–12. ISBN: 978-3-540-24775-3.

Bramão, I. and M. Johansson (Submitted for publication, 2018). “Neural pattern
classification tracks transfer-appropriate processing in episodic memory”.

Brynolfsson, J. and M. Sandsten (2017). “Classification of one-dimensional non-
stationary signals using the Wigner-Ville distribution in convolutional neural
networks”. In: 2017 25th European Signal Processing Conference (EUSIPCO),
pp. 326–330. DOI: 10.23919/EUSIPCO.2017.8081222.

C. Van Essen, D., C. H. Anderson, and D. Felleman (1992). “Information processing
in the primate visual system: an integrated systems perspective”. 255, pp. 419–
23.

Chan, S.-C. and K.-L. Ho (1990). “Efficient computation of the discrete Wigner-
Ville distribution”. In: IEEE International Symposium on Circuits and Systems,
2165–2168 vol.3. DOI: 10.1109/ISCAS.1990.112263.

Choi, H. I. and W. J. Williams (1989). “Improved time-frequency representation
of multicomponent signals using exponential kernels”. IEEE Transactions on
Acoustics, Speech, and Signal Processing 37:6, pp. 862–871. ISSN: 0096-3518.
DOI: 10.1109/ASSP.1989.28057.

Chollet, F. et al. (2015). Keras. https://keras.io.
Clevert, D.-A., T. Unterthiner, and S. Hochreiter (2015). “Fast and accurate

deep network learning by exponential linear units (elus)”. arXiv preprint
arXiv:1511.07289.

Cohen, L. (1989). “Time-frequency distributions–a review”. Proceedings of the
IEEE 77:7, pp. 941–981. ISSN: 0018-9219. DOI: 10.1109/5.30749.

Continuous Wavelet Transform. (N.d.). Online. Accessed: 2018-05-21. URL:
https://archive.cnx.org/contents/bcd60908-bf21-452c-bbd1-
57bbb8074594@15/continuous-wavelet-transform#uncertainty.

Dahl, G. E., T. N. Sainath, and G. E. Hinton (2013). “Improving deep neural
networks for LVCSR using rectified linear units and dropout”. In: Acoustics,
Speech and Signal Processing (ICASSP), 2013 IEEE International Conference
on. IEEE, pp. 8609–8613.

Dalin-Volsing, S. (2015). Classification of Semantic Memories Using Multita-
per Spectral Estimation. Bachelor’s Thesis. Centre for Mathematical Sciences,
Mathematical Statistics, Lund University, Sweden.

Daubechies, I. (2006). “The wavelet transform, time-frequency localization and sig-
nal analysis”. IEEE Trans. Inf. Theor. 36:5, pp. 961–1005. ISSN: 0018-9448.
DOI: 10.1109/18.57199. URL: https://doi.org/10.1109/18.57199.

62

Bibliography

Daubechies, I. (1992). Ten Lectures on Wavelets. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA. ISBN: 0-89871-274-2.

Daubechies, I. (1993). “Orthonormal bases of compactly supported wavelets II:
variations on a theme”. SIAM J. Math. Anal. 24:2, pp. 499–519. ISSN: 0036-
1410. DOI: 10.1137/0524031. URL: http://dx.doi.org/10.1137/
0524031.

Dekker, A. J. den and J. Sijbers (2005). “Advanced image processing in magnetic
resonance imaging”. In: Landini, L. (Ed.). Series: Signal Processing and Com-
munications. Vol. 27. ISBN: 0824725425. Marcel Dekker. Chap. 4, pp. 85–143.

Freeman, W. J. (1975). Mass action In the nervous system. Academic Press. URL:
http://sulcus.berkeley.edu/MANSWWW/MANSWWW.html.

Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition (2nd Ed.) Aca-
demic Press Professional, Inc., San Diego, CA, USA. ISBN: 0-12-269851-7.

Gers, F. A. and E. Schmidhuber (2001). “LSTM recurrent networks learn simple
context-free and context-sensitive languages”. IEEE Transactions on Neural
Networks 12:6, pp. 1333–1340.

Gómez, C., F. Vaquerizo-Villar, J. Poza, S. J. Ruiz-Gómez, M. A. Tola-Arribas, M.
Cano, and R. Hornero (2017). “Bispectral analysis of spontaneous EEG activity
from patients with moderate dementia due to Alzheimer’s disease”. In: 2017
39th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), Jeju Island, South Korea, July 11-15, 2017, pp. 422–
425. DOI: 10.1109/EMBC.2017.8036852. URL: https://doi.org/10.
1109/EMBC.2017.8036852.

Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep Learning. http://www.
deeplearningbook.org. MIT Press.

Grosse-Wentrup, M. and M. Buss (2008). “Multi-class common spatial pattern and
information theoretic feature extraction”. IEEE Transactions on Biomedical En-
gineering 55:8, pp. 1991–2000.

Grosse-Wentrup, M. (2008). Feature Extraction in non-invasive Brain-Computer
Interfaces. Dissertation. Technische Universität München, München.

Grossmann, A. and J. Morlet (1984). “Decomposition of Hardy functions into
square integrable wavelets of constant shape”. 15, pp. 723–736.

Gupta, S. S. (2014). “fMRI for mapping language networks in neurosurgical cases”.
The Indian Journal of Radiology & Imaging 24:1, pp. 37–43.

H. Jansen, B., J. R. Bourne, and J. W. Ward (1981). “Autoregressive estimation of
short segment spectra for computerized EEG analysis”. 28, pp. 630–638.

Hazarika, N., J. Z. Chen, A. C. Tsoi, and A. Sergejew (1997). “Classification of
EEG signals using the wavelet transform”. Signal Process. 59:1, pp. 61–72.
ISSN: 0165-1684. DOI: 10.1016/S0165-1684(97)00038-8. URL: http:
//dx.doi.org/10.1016/S0165-1684(97)00038-8.

63

Bibliography

He, K., X. Zhang, S. Ren, and J. Sun (2015). “Delving deep into rectifiers: sur-
passing human-level performance on imagenet classification”. In: Proceedings
of the IEEE international conference on computer vision, pp. 1026–1034.

Heyden, M. (2016). Classification of EEG data using machine learning techniques.
Master’s Thesis TFRT-6019. Department of Automatic Control, Lund Univer-
sity, Sweden.

Hinton, G. E., N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdi-
nov (2012). “Improving neural networks by preventing co-adaptation of feature
detectors”. arXiv preprint arXiv:1207.0580.

Hochreiter, S. and J. Schmidhuber (1997). “Long short-term memory”. Neural com-
putation 9:8, pp. 1735–1780.

Hornik, K. (1991). “Approximation capabilities of multilayer feedforward net-
works”. Neural networks 4:2, pp. 251–257.

Ihalainen, T., L. Kuusela, S. Turunen, S. Heikkinen, S. Savolainen, and O. Sipilä
(2015). “Data quality in fMRI and simultaneous EEG–fMRI”. Magnetic Reso-
nance Materials in Physics, Biology and Medicine 28:1, pp. 23–31. ISSN: 1352-
8661. DOI: 10.1007/s10334-014-0443-6. URL: https://doi.org/10.
1007/s10334-014-0443-6.

Ioffe, S. and C. Szegedy (2015). “Batch normalization: accelerating deep network
training by reducing internal covariate shift”. CoRR abs/1502.03167. arXiv:
1502.03167. URL: http://arxiv.org/abs/1502.03167.

J. Koles, Z., M. S. Lazar, and S. Z. Zhou (1990). “Spatial patterns underlying pop-
ulation differences in the background EEG”. 2, pp. 275–84.

Jeong, J. and W. Williams (1992). “Kernel design for reduced interference distribu-
tions”. 40, pp. 402–412.

Jing, S. and X. Yun (2017). “Off-line analysis of motor imagery electroencephalo-
gram”. In: 2017 First International Conference on Electronics Instrumentation
Information Systems (EIIS), pp. 1–6. DOI: 10.1109/EIIS.2017.8298770.

Kaplan, A. Y., A. A. Fingelkurts, A. A. Fingelkurts, S. V. Borisov, and B. S.
Darkhovsky (2005). “Nonstationary nature of the brain activity as revealed by
EEG/MEG: methodological, practical and conceptual challenges”. Signal Pro-
cessing 85:11. Neuronal Coordination in the Brain: A Signal Processing Per-
spective, pp. 2190–2212. ISSN: 0165-1684. DOI: https://doi.org/10.
1016/j.sigpro.2005.07.010. URL: http://www.sciencedirect.com/
science/article/pii/S0165168405002094.

Krizhevsky, A., I. Sutskever, and G. E. Hinton (2012). “Imagenet classification with
deep convolutional neural networks”. In: Advances in neural information pro-
cessing systems, pp. 1097–1105.

64

Bibliography

Lacoste, A., F. Laviolette, and M. Marchand (2012). “Bayesian comparison of ma-
chine learning algorithms on single and multiple datasets”. In: Lawrence, N. D.
et al. (Eds.). Proceedings of the Fifteenth International Conference on Artificial
Intelligence and Statistics. Vol. 22. Proceedings of Machine Learning Research.
PMLR, La Palma, Canary Islands, pp. 665–675. URL: http://proceedings.
mlr.press/v22/lacoste12.html.

Larson, E., A. Gramfort, D. A. Engemann, jaeilepp, T. L. Brooks, M. Jas, C. Brod-
beck, M. Luessi, jona-sassenhagen, R. Goj, J.-R. KING, wronk, yousrabk, M.
van Vliet, C. Holdgraf, A. Leggitt, A. R. Dykstra, R. Trachel, lorenzo-desantis,
mbillingr, dgwakeman, D. Strohmeier, T. Linzen, H. Bharadwaj, E. Ruzich,
alexandre barachant, cmoutard, C. Bailey, jmontoyam, and C. Brunner (2016).
mne-python: v0.12. DOI: 10.5281/zenodo.51277. URL: https://doi.org/
10.5281/zenodo.51277.

Laton, J., J. V. Schependom, J. Gielen, J. Decoster, T. Moons, J. D. Keyser, M. D.
Hert, and G. Nagels (2014). “In search of biomarkers for schizophrenia using
electroencephalography”. In: 2014 International Workshop on Pattern Recogni-
tion in Neuroimaging, pp. 1–4. DOI: 10.1109/PRNI.2014.6858527.

Lawhern, V. J., A. J. Solon, N. R. Waytowich, S. M. Gordon, C. P. Hung, and
B. J. Lance (2016). “EEGNet: a compact convolutional network for EEG-based
brain-computer interfaces”. arXiv preprint arXiv:1611.08024.

LeCun, Y., L. Bottou, G. B. Orr, and K.-R. Müller (1998). “Efficient backprop”. In:
Neural networks: Tricks of the trade. Springer, pp. 9–50.

Lindgren, G., H. Rootzén, and M. Sandsten (2014). Stationary stochastic pro-
cesses for scientists and engineers. Boca Raton : CRC Press, cop. 2014. ISBN:
9781466586185.

Lystad, R. P. and H. Pollard (2009). “Functional neuroimaging: a brief overview
and feasibility for use in chiropractic research”. The Journal of the Canadian
Chiropractic Association 53:1, pp. 59–72. URL: http://www.ncbi.nlm.
nih.gov/pmc/articles/PMC2652631/.

Maas, A. L., A. Y. Hannun, and A. Y. Ng (2013). “Rectifier nonlinearities improve
neural network acoustic models”. In: Proc. icml. Vol. 30. 1, p. 3.

Mallat, S. G. (1989). “A theory for multiresolution signal decomposition: the
wavelet representation”. IEEE Trans. Pattern Anal. Mach. Intell. 11:7, pp. 674–
693. ISSN: 0162-8828. DOI: 10.1109/34.192463. URL: http://dx.doi.
org/10.1109/34.192463.

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Y.
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan-
delion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul

65

Bibliography

Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng
(2015). TensorFlow: large-scale machine learning on heterogeneous systems.
Software available from tensorflow.org. URL: https://www.tensorflow.
org/.

Martínez, A. M. and A. C. Kak (2001). “PCA versus LDA”. IEEE transactions on
pattern analysis and machine intelligence 23:2, pp. 228–233.

Müller-Gerking, J., G. Pfurtscheller, and H. Flyvbjerg (1999). “Designing optimal
spatial filters for single-trial EEG classification in a movement task.” Clinical
neurophysiology : official journal of the International Federation of Clinical
Neurophysiology 110 5, pp. 787–98.

Muthuswamy, J. and N. V. Thakor (1998). “Spectral analysis methods for neuro-
logical signals”. Journal of Neuroscience Methods 83:1, pp. 1–14. ISSN: 0165-
0270. DOI: https : / / doi . org / 10 . 1016 / S0165 - 0270(98) 00065 -
X. URL: http : / / www . sciencedirect . com / science / article / pii /
S016502709800065X.

Nadeau, C. and Y. Bengio (2003). “Inference for the generalization error”. Ma-
chine Learning 52:3, pp. 239–281. ISSN: 1573-0565. DOI: 10 . 1023 / A :
1024068626366. URL: https://doi.org/10.1023/A:1024068626366.

Ohlsson, M. (2017). Lecture notes on introduction to artificial neural networks and
deep learning (fytn14/extq40.

Oostenveld, R., P. Fries, E. Maris, and J.-M. Schoffelen (2011). “FieldTrip: open
source software for advanced analysis of MEG, EEG, and invasive electrophys-
iological data”. Intell. Neuroscience 2011, 1:1–1:9. ISSN: 1687-5265. DOI: 10.
1155/2011/156869. URL: http://dx.doi.org/10.1155/2011/156869.

Oppenheim, A. V. and R. W. Schafer (2009). Discrete-Time Signal Processing. 3rd.
Prentice Hall Press, Upper Saddle River, NJ, USA. ISBN: 9780131988422.

Pardey, J., S. Roberts, and L. Tarassenko (1996). “A review of parametric modelling
techniques for EEG analysis”. Medical Engineering & Physics 18:1, pp. 2–11.
ISSN: 1350-4533. DOI: https : / / doi . org / 10 . 1016 / 1350 - 4533(95)
00024-0. URL: http://www.sciencedirect.com/science/article/
pii/1350453395000240.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay (2011). “Scikit-
learn: machine learning in Python”. Journal of Machine Learning Research 12,
pp. 2825–2830.

Polyn, S. M., V. S. Natu, J. D. Cohen, and K. A. Norman (2005). “Category-specific
cortical activity precedes retrieval during memory search”. Science 310:5756,
pp. 1963–1966. ISSN: 0036-8075. DOI: 10.1126/science.1117645. eprint:

66

Bibliography

http://science.sciencemag.org/content/310/5756/1963.full.
pdf. URL: http://science.sciencemag.org/content/310/5756/1963.

Refaeilzadeh, P., L. Tang, and H. Liu (2009). “Cross-validation”. 532–538, pp. 532–
538.

Roach, B. J. and D. H. Mathalon (2008). “Event-related EEG time-frequency analy-
sis: an overview of measures and an analysis of early gamma band phase locking
in schizophrenia”. Schizophrenia Bulletin 34:5, pp. 907–926. DOI: 10.1093/
schbul / sbn093. eprint: /oup / backfile / content _ public / journal /
schizophreniabulletin/34/5/10.1093/schbul/sbn093/2/sbn093.
pdf. URL: http://dx.doi.org/10.1093/schbul/sbn093.

Rogers, B. P., J. D. Carew, and M. Meyerand (2004). “Hemispheric asymme-
try in supplementary motor area connectivity during unilateral finger move-
ments”. NeuroImage 22:2, pp. 855–859. ISSN: 1053-8119. DOI: https : / /
doi.org/10.1016/j.neuroimage.2004.02.027. URL: http://www.
sciencedirect.com/science/article/pii/S105381190400120X.

Russell, S. J. and P. Norvig (2003). Artificial Intelligence: A Modern Approach.
2nd ed. Pearson Education. ISBN: 0137903952.

Rutkowski, G., K. Patan, and P. Leśniak (2013). “Comparison of time-frequency
feature extraction methods for EEG signals classification”. In: Rutkowski, L.
et al. (Eds.). Artificial Intelligence and Soft Computing. Springer Berlin Heidel-
berg, Berlin, Heidelberg, pp. 320–329. ISBN: 978-3-642-38610-7.

Ryynanen, O., J. Hyttinen, and J. Malmivuo (2004). “Study on the spatial resolu-
tion of EEG - effect of electrode density and measurement noise”. In: The 26th
Annual International Conference of the IEEE Engineering in Medicine and Bi-
ology Society. Vol. 2, pp. 4409–4412. DOI: 10.1109/IEMBS.2004.1404226.

Sandsten, M. (2018). Time-Frequency Analysis of Time-Varying Signals and Non-
Stationary Processes. An Introduction. Mathematical Sciences, Lund Univer-
sity.

Slepian, D. (1978). “Prolate spheroidal wave functions, Fourier analysis, and
uncertainty—V: the discrete case”. The Bell System Technical Journal 57:5,
pp. 1371–1430. ISSN: 0005-8580. DOI: 10 . 1002 / j . 1538 - 7305 . 1978 .
tb02104.x.

Waldhauser, G. T., V. Braun, and S. Hanslmayr (2016). “Episodic memory retrieval
functionally relies on very rapid reactivation of sensory information”. Jour-
nal of Neuroscience 36:1, pp. 251–260. ISSN: 0270-6474. DOI: 10 . 1523 /
JNEUROSCI . 2101 - 15 . 2016. eprint: http : / / www . jneurosci . org /
content/36/1/251.full.pdf. URL: http://www.jneurosci.org/
content/36/1/251.

67

Bibliography

Xu, Y., S. Haykin, and R. J. Racine (1999). “Multiple window time-frequency distri-
bution and coherence of EEG using Slepian sequences and Hermite functions”.
IEEE Transactions on Biomedical Engineering 46:7, pp. 861–866. ISSN: 0018-
9294. DOI: 10.1109/10.771197.

Yger, F., F. Lotte, and M. Sugiyama (2015). “Averaging covariance matrices for
EEG signal classification based on the CSP: an empirical study”. In: EUSIPCO
2015. Nice, France. URL: https://hal.inria.fr/hal-01182728.

68

