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Abstract

In an age of increasing usage of heavily interconnected platforms, graph databases
have increased in popularity due to their ease of modelling these systems. This
thesis will evaluate if the graph database Neo4j can be used to model Lime’s
CRM System e�ciently by comparing the performance of Neo4j and MS SQL
on queries similar to those existing in Lime CRM.

To benchmark the databases, they were created with the core entities of
the Lime CRM system. The databases are created with the same structure and
schema as in Lime CRM. Thereafter, the databases were populated with ran-
domly generated data. These databases were then queried a large amount of
times with random values in every query to prevent caching.

Our results show that MS SQL was 4-10 times faster for insertion queries.
Furthermore, MS SQL was also 2-5 times more e�cient at handling queries that
return many rows/nodes of data.

Keywords: SQL, Neo4j, graph databases, benchmark, CRM
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Chapter 1

Introduction

In recent years, the popularity of graph databases has steadily increased into becoming a
mainstream storage alternative available to use by most database vendors. This is most likely
due to an increased need to represent enormous amounts of data with many relationships
between the data, such as social networks, e-commerce and customer relationship manage-
ment systems. The structural benefits of using graphs for modeling objects and interactions
in complex systems is one of the fundamental data abstractions in computer science [33].
Hence, applying graph theory on databases should apprehend the same structural benefits as
in graphs in graph theory.

Customer-relationshipmanagement (CRM) conducts themanagement, organization and
administration process of customers and customer relations in a company [5]. Moreover, it
includes the analysis about customers’ history and potential customers to improve business.
Thus, companies often use IT solutions to better synchronize and store data to a central
CRM system, such as the Lime Technologies CRM-systems [5].

In a large CRM-system it might be unsuitable to use traditional relational databases as
graph databases outperform them when dealing with large tables where many columns have
null values, also called sparse tables [33]. Furthermore, relational databases get outperformed
by graph databases when the relational database is using attribute tables, when there are a
lot of many-to-many relationships in the database, when the database has tree-like charac-
teristics and when the schema of the database frequently changes [33].

Graph databases use the mathematical definition of graphs as an internal representation.
This ensures that the graph theory defined in mathematics can be applied to these types of
databases. In graph theory context is made up with nodes which are connected by edges [31].
A node represents an entity or instance of a given label, such as users or accounts, and in
a CRM-system, it could be customers, invoices, orders, etc. An edge describes the connec-
tion between two nodes, which represents the relationships, and could describe knowledge,
friendships, occupation, etc.

Graph databases allow database designers to represent objects and relationships in a co-
herent manner due to its semantic properties with nodes, edges and attributes [2]. Due to the
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1. Introduction

graph structure of graph databases, the query time performance scales much better than for
relational databases. The reason for this is that the execution time of graph database queries
is proportional to the nodes traversed in the query. Thus, querying large graph databases is
far more e�ective than querying relational databases as relational databases have to traverse
the complete tables to find the query result [29]. This thesis will focus on evaluating the graph
database Neo4j, which mainly uses the query language Cypher.

Relational databases are based on the relational model, introduced by E. F. Codd, where
data is stored in a tabular form and due to its simplicity gained worldwide popularity, which
is a huge benefit itself [2] [21]. The pros of using relational databases is also their support for
the ACID properties (Atomicity, Consistency, Isolation, and Durability), which many non-
relation databases does not have [18]. However, a con with relational databases is that when
the database grows in size and complexity it does not perform as well as graph databases,
since it has scalability issues [14]. This thesis will focus on the relational database Microsoft
SQL Server and the query language Transact-SQL, which is used in theMicrosoft SQL Server
database.

This thesis provides a comparison and a benchmark study of relational and graph databases
in performance and complexity on storing and processing a large-scale customer relationship
management system. The three main areas of focus, that will be concluded in this thesis, are
the following:

1. A benchmark study comparing the performance di�erences between querying with
relational databases and with graph databases.

2. A token analysis study comparing the complexity of queryingwith the relational database
syntax and with the graph database syntax.

3. An implementation of a simpleCRM-systemprototypewith both a relational database
and a graph database as the storage back-end, simulating a practical example showing
a real-world application.

1.1 Problem Statement
This thesis will focus on evaluating and comparing relational and graph databases regard-
ing performance and complexity. The research will conduct a benchmark comparing the
querying performance di�erences on a CRM-system developed by Lime Technologies. Fur-
thermore, the research will also provide the complexity di�erences of the query language
Transact-SQL that is used in Microsoft SQL Server and Cypher, the query language used by
the graph database Neo4j, by analyzing tokens, which in some sense relates to the readability
of the queries. A prototype including these main focus areas will conclude this research by
clearly visualizing a simple CRM-system in use by simulating a real-world practical example
using the di�erent measured queries with both relational and graph databases.

The research questions that should be answered in this thesis:

1. How does the performance of graph databases compared to relational databases di�er,
when used in a large complex CRM database system, and when?

1.1. What kind of structures a�ect the query performances?
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1.2 Contribution Statement

1.2. What kind of queries provides the extreme cases?

2. How does the lexical complexity of the queries di�er for di�erent databases in a CRM-
system?

2.1. Which readability di�erences exist in Cypher and Transact-SQL?

2.2. How does the readability di�er for queries when query-complexity changes?

1.2 Contribution Statement
This master thesis will contribute to the knowledge of the di�erence between relational and
graph databases in regards to complexity (readability of the queries) as well as performance.
Specifically, the thesis will provide information in regards to whether non-relational or rela-
tional databases are best suited for CRM-systems and why or why not.

In the thesis, the work was divided in the following way: Victor mostly worked on the
benchmarking prototype and Jan mostly worked on evaluating the Lime CRM and writing
queries thereafter. However, most of the programming was done in pairs so we have both
participated on all parts of the development.

When it comes to report writing, Victor wrote the introduction and the theory about the
relational databases as well as the theory about regular expressions and lexical analysis. Jan
wrote the rest of the theory section as well as the majority of the method and the design of
experiments section, except for the parts about execution plans and big O notation. Victor
wrote the result section and Jan wrote most of the discussion.

The abstract and the conclusion was done in unison.

1.3 Outline
Chapter 2 describes the theoretical background needed to understand the thesis as well as
how the given problem was solved.

Chapter 3 consists of a description of the methodology that was used to conduct the
study.

Chapter 4 describes why and how the givenmethodologywas chosen, e.g. why the specific
queries that were benchmarked were chosen. It also describes how the complexity analysis
was set up and why it was done in that way.

Chapter 5 contains the results obtained from conducting the database comparison such
as graphs with performance data. It also contains a discussion of the obtained results.

Chapter 6 concludes the finding from the experiment and presents possibilities for future
work in regards to the di�erence between relational databases and graph databases.
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Chapter 2

Background and Related Work

This section contains the theoretical background that the work conducted in this thesis is
based on. It also contains a short description of relevant studies conducted. The section will
mostly focus on describing the di�erent databases, moreover, theory regarding what CRM
systems are and how they are used will also be provided.

2.1 Databases
Databases are essential in the activities of our modern day society by being involved in ev-
erything from bank withdrawals and online purchases to storing images and videos [7]. A
database is, in the most simple form, a collection of data, where data is facts that can be
recorded, such as names and account numbers. These records could be stored in an address
book, with indexing, or on a hard drive, using a software such as Excel. Complying to the
property of being logically coherent and representing some aspect of the real world a database
can be used by an intended group for a specific purpose.

A computerized database can contain records of any size, amount and complexity. Thus,
the database is required to be managed so that users can search, retrieve and update the
data. This is done either by application programs with specific tasks for the database or
by a database management system (DBMS). An application program uses specific queries or
requests for retrieving or updating the data. A database management system is a general-
purpose software system that handles all operations and maintenance on the database [7].

A DBMS also provides a conceptual representation of data by excluding details of how
the data is stored. The abstraction that organizes records and standardizes their relationships
to one another is the data model. A data model explicitly defines the structure of data using
logical concepts, such as objects, properties and relationships. There are many data models
that provides data abstraction to the users with di�erent pros and cons, depending on each
specific use case.

Section 2.2 describes the relational database model and gives an overview of relational
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2. Background and Related Work

databases. Section 2.3 describes the di�erent types of graph database models and gives an
overview of graph databases.

2.2 Relational Databases
Arelational database is a computerized database, no di�erent from the computerized database
described in Section 2.1, based on a relational databasemodel. A relationalmodel, in themost
simple form, defines the database as a collection of relations. Characterized as a simplistic
andmathematical approach of managing data using first-order predicate logic, proposed by E. F.
Codd in 1970 [6], it acquired world-wide popularity. Codd introduced a representation of all
data to be arrays of n-tuples grouped into relations. A relation has a degree n which responds
to how many di�erent parts that is grouped, also represented as a n-tuple. The example in
figure 2.1 illustrates a relation of degree 4, by E. F. Codd.

supply (supplier part project quantity)
1 2 5 17
1 3 5 23
2 3 7 9
2 7 5 4
4 1 1 12

Figure 2.1: A relation of degree 4 by E. F. Codd [6]

Informally a relation is seen as a table of values with a simple linear or flat structure [7].
A tuple, in the relational model terminology, corresponds to a row in a table. An attribute
defining some part of a tuple correlates to a column header. The values in a column has a
defined data type represented by a domain. A domain is a set of atomic values with a specified
format. An atomic value is an indivisible value, such as a name, a phone number or an age.
A column with the value ”Victor Winberg, Jan Zubac” is not an atomic value.

2.2.1 ACID properties
One of the key concepts of relational databases is that each sequence of operations with the
database is seen as a transaction. This can be seen as ”Either the transaction is successful,
or not”. A set of properties that ensures validity, even when errors occur when performing
this sequence of operations, is called the ACID properties [12]. The transaction property
ascertains that relational databases fulfill the ACID properties, which are the following:

Atomicity: The atomicity property states that all operations on data, e.g. inserts, up-
dates must be handled by the DBMS as one operation. Meaning that if several queries
are written after each other, they all must succeed or they are all considered as failed
and are therefore abandoned.

Consistency: The consistency property ensures that a transaction can only be com-
pleted if all constraints and actions posed on the data involved are fulfilled. This en-
sures that the database is always in a valid state.
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2.2 Relational Databases

Isolation: The isolation property states that every transaction must be isolated from
another transaction. An example of this would be if a transaction is done where person
A sends money to person B. During that transaction, another transaction shall not be
able to see that money has been withdrawn from person A’s account before person B
has received the money, that is, until the first transaction is completed. This ensures
that concurrent access to the database behaves in the same way as sequential access.

Durability: The durability property ensures that all changes to data are permanent.
This implies that the results of a database transaction shall remain the same even if
there is a power outage or a system failure.

2.2.2 Constraints
In Relational DBMS (RDBMS), there are several di�erent types of constraints that a�ect
when a transaction is deemed to be valid. Some of the most common constraint types will be
discussed below.

Domain constraints
Domain constraints are constraints that enforce the values stored in a database to follow the
domain specified [7]. In figure 2.2, the name data field is constrained by a domain constraint
to be a varchar (string) with a length of at most 20 characters. If a transaction tries to save a
data type that is not a varchar, or if a varchar with a length greater than 20 is attempting to
be inserted into the database, the domain constraint for the variable name is violated and an
error occurs. Furthermore, in figure 2.2, CHECK(zipcode > 0) is also a domain constraint
as it constrains the domain of the zipcode data entries to be integers between 1000 and the
maximum size of an integer.

CREATE TABLE cu s t ome r s {
i d INT ,
name VARCHAR( 2 0 ) ,
a d d r e s s VARCHAR( 2 5 ) ,
z i p c o d e INT ,
c o un t r y VARCHAR( 3 0 ) ,
t e l e p h o n e VARCHAR( 2 0 ) ,
CHECK ( z i p c o d e > 999 )

}

Figure 2.2: A table creation schema for the customer relational
model in figure 2.4

Key constraints
Key constraints force primary keys and foreign keys to have non-NULL values. Furthermore,
key constraints also ascertain that each primary key is unique. For example, if the id of the
customer in the relational the relational model in figure 2.4 is not unique, it would not be
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possible to distinguish between customers that have all other fields except the id-field in
common. The primary key constraint solves this problem by ensuring that primary keys
must have unique values [7].

Moreover, key constraints check relations between tables by making sure that tables that
have foreign keys from other tables contain some of the values from the table that they are
referencing [7]. An example of this using the relational model in figure 2.4 is the fact that
customer_id in the Orders entity is a foreign key that references the id in the Customers
entity. The foreign key integrity constraint ensures that all customer_id:s inserted into
Orders must be present in the Customers table, otherwise, orders without valid customers
could be created.

Null value constraints
Null value constraints are imposed on the database to ensure that some specific values in
the database are not stored as NULL. This constraint is used to ensure that some key data
components must have a value [7]. For example, for the customer table in figure 2.4 it would
not be appropriate to store Customers without them providing a name. This can be ensured
by constraining the name column to not contain NULL values.

2.2.3 Structured Query Language
The Structured Query Language (SQL) is a sub-language of the many data query languages,
where a query language is a computer language used for querying or requesting data from a
database. The di�erences between query languages is their syntax and appliance while their
similarities is to give factual answers to factual questions. SQL is based on relational algebra
and tuple relational calculus created by E. F. Codd [32]. The relational algebra is built with
five primitive operators: the selection, the projection, the cross product, the set union, and
the set di�erence. The tuple relational calculus is a non-procedural or declarative language
which is to filter tuples based on a given condition. Together these two definitions form the
foundation of SQL that became, and is still today, the most world-wide used query language.

SELECT f i e l d 1 [ , " f i e l d 2 " , e t c ]
FROM t a b l e
[WHERE " c o n d i t i o n " ]
[GROUP BY " f i e l d " ]
[ORDER BY " f i e l d " ]

Figure 2.3: A basic SQL query [4]

A basic SQL is structured using a valid combination of tokens each preceded by a keyword.
The example in figure 2.3 shows a basic query with two mandatory keywords SELECT and
FROM, and some optional keywords indicated by the containing brackets [4]. Keywords are
words that are reserved with an acquired meaning, such as; SELECT, which is used to specify
fields to be retrieved, and FROM, that specifies the table (or relation) to fetch data from.
A relationalmodel describes a general scenario of a system often practical to use whenmanag-
ing queries. The relational model example in figure 2.4 defines the relation betweenCustomers
and Orders, where a certain relationship between the models are identified by the arrow ”->”.

14



2.3 Graph Databases

Customers (id, name, address, zip code, country, telephone)
Orders(id, date_order, date_delivery, customer_id -> Customers)

Figure 2.4: A simple relational model

id name country
1 Alice Andersson Sweden
2 Benjamin Bauer Germany
3 Chloé Chevalier France

Table 2.1: Result of a SELECT
query on customers.

id date_order date_delivery name
1 1996-07-04 1996-08-02 Chloé Chevalier
2 1996-08-26 1996-08-28 Chloé Chevalier
3 1997-02-12 1997-02-27 Alice Andersson

Table 2.2: Result of a SELECT and JOIN-query on orders
and customers.

The most essential SQL query is the ”show all contents of a table”-query, that would,
for example in figure 2.4, translate into SELECT * FROM cu s t ome r s ; . The asterisk
symbol ”*” is used to select all fields. The query for ”show all contents of a table combined
with another table using common values” is used for combining tuples from other relations,
or rows from other tables. This could, using the JOIN keyword, translate into the query below:

SELECT * FROM o r d e r s
JOIN cu s t ome r s
ON o r d e r s . c u s t om e r _ i d = c u s t ome r s . i d ;

This instruction shows all orders’ date order and date delivery, including the name, address,
zip code, country and telephone of the related customer.
An example of a result retrieved from the two queries, ”show all contents of a table” (left)
and ”show all contents of a table combined with another table using common values” (right),
could be seen in Table 2.1 and 2.2.

2.3 Graph Databases
A graph database is a database where data is stored structured as a graph. This means that
the database is built using nodes and edges. The nodes in the graph typically represent data
entities and the edges represent relations between nodes. For example, a graph database that
contains data about pet owners might have humans and pets as nodes and ownership as edges.
This thesis will focus on describing labeled property graphs, as the Neo4j graphs are built as
label property graphs. Section 2.3.1 describes the property graphs that is used in Neo4j.

2.3.1 Property Graphs
Labeled property graphs contains nodes and relationships for the data stored in the model
as many other graph models. However, in a labeled property graph, the edges are directed,
meaning that they only go in one direction. An example of this is if person A and person B are
friends on a social media platform. It then has to be explicitly stated that person A is friends
with person B and that person B is friends with person A using two edges. Furthermore,
as the name suggest, the nodes in a labeled node graph can be labeled with one or multiple
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2. Background and Related Work

labels. The nodes in a labeled node graph contain key-value pairs, meaning that they can
contain more than one data type at the same time, similar to objects used in object oriented
programming. The relationships (edges) of a labeled graphs also must have labels that further
describe the relationship between the nodes connected. These edges can also have multiple
data fields which means that they can be interpreted as objects as well. Every node in the
Neo4j graph database has a unique identifier. Finally, it is also important to mention that
edges in a labeled node graph always have a start node and a finish node, e.g. there cannot be
an outgoing edge from a node without another node that is connected to that edge [29].

Node Node

Key:Value

Property

Key:Value

Property

Relationship 

Label LabelType

Figure 2.5: A general overview of the di�erent data entities in the
Neo4j labeled property graph

2.3.2 Graph Processing
Graph processing and graph storage are closely related. In a way, graph processing is also
about how the data is stored in the memory of the database engine. However, it is instead
the definition of how relationships between data are encoded and processed in the database
instead of the raw storage information such as which byte of a relationship data entry that
represents what. Graph databases can be processed in many di�erent ways and still be per-
ceived as a graph storage by the user due to them not seeing the underlying structure. There
are index-free adjacency graph databases where each node has references to all its neighbours,
e.g. all nodes that have relationships tied to that given node. The databases are said to have
native graph processing. On the other hand, there are graph databases that store the index of
nodes in a table instead of storing the connections between them. These graph databases are
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2.3 Graph Databases

usually interactedwith in a similarmanner to how interactions aremadewith SQL-databases.
[29].

Native Graph Processing
As mentioned in section 2.3.2, native graph processing is used in index-free adjacency graphs.
The definition of an index-free adjacency graph database is that the database stores an explicit
reference to all nodes adjacent to it in the graph. This increased e�ciency significantly as
all node indexes are stored ”locally” by each node instead of having a very large, global table
containing the indexes of all nodes. If one wants to find the neighbours of a node, it is much
easier to query the nodes with indexes adjacent to the node in focus instead of searching
through the whole graph for a specific index [29]. This processing property is what makes
graph query times proportional to the amount of nodes traversed in the query instead of the
graph being proportional to the total amount of nodes and edges. Neo4j uses native graph
processing which ensures the e�ciency benefits mentioned above.

Non-Native Graph Processing
As mentioned in section 2.3.2, graphs that use non-native graph processing use indexes to
connect nodes. The fact that indexes have to be looked up in a table in graph databases
with non-native graph processing adds further computational moments in most queries and
therefore the execution time is generally longer than for graphs with native graph processing.
An example of this can be illustrated with the help of figure 2.6 which represents a table
that stores the information about friendships in a graph database with non-native graphs
processing. To be able to find the Alice’s friends, and index lookup with the cost of O(log n)
has to be performed to be able to find Alice and her related entries. However, if one was to
find everyone who is friends withAlice instead, several index lookupwith the cost ofO(log n)
would have to be done to evaluate every possible entry that might be friends with Alice. So
finding Alice’s friends is O(log n), however, finding who is friends with Alice has a cost of
O(m log n) where m is the number of nodes that needs to be evaluated. In a graph database
with native graph processing on the other hand, the cost would always be O(m), due to the
indexes for each neighbour being stored locally and therefore only needing O(1) to fetch
every neighbour index. This clearly shows that native graph processing is more e�cient in
most cases [29].

To sum it up in short: Native Graph Processing evaluates Node relationships in querying,
leading to the execution time being proportial to the amount of nodes and relationships tra-
versedwhereas Non-NativeGraph Processing uses indexing in a table-likemanner to evaluate
relationships and therefore the execution time is propertional to the table sizes.

2.3.3 Graph Storage
As with graph processing mentioned in section 2.3.2, graph storage can be native or non-
native. Native graph storage is when the structure of the storage (database) is specifically
designed to handle graphs. This makes the storage very optimal, as it is specialized to handle
and store graph data. Neo4j uses native graph storage, therefore, the focus will be on explain-
ing native graph storage as it is what will be used as a base for this thesis. Due to Neo4j having
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Name: Alice Name: MalloryName: Bob

Figure 2.6: Non-Native Graph Processing for a friendship database
where SQL-like indexing is used for node traversal

native data storage and native data processing, it is a graph database with complete native
support. This means that every aspect of Neo4j is specifically designed to handle and store
graphs, which is one of the key factors to Neo4j’s e�ciency [29].

Neo4j stores di�erent data in separate files to ensure that the data is easier to find. This
means that relationships are stored in one data store, nodes are stored in another data store
etc. For all data stores that Neo4j uses, each data record is of a fixed size. For example, in
version 2.2 of Neo4j, the node records had the size of 15 bytes as seen in figure 2.7. A fixed
size for each record makes it very easy to find a specific record. Let’s say that we want to find
the record with id 300, due to the fixed size, it is known that this record is located at byte
300 ∗ 15 = 4500 which makes it a O(1) operation to fetch that data record [29].

The data that is stored in separate files are nodes and relationships as mentioned above,
as well as labels and properties. Labels represent what type of Node it is, e.g. ”Person” or
”Movie”, properties represent the internal data of a Node or a Relationship and are built
using key-values such as name: ”Victor Winberg” which represents the name of a Person.
Nodes are entities that hold properties and labels and represent connection points in the
graph, e.g. a Node can have a Person label and a name property as in the previous sentence
[29]. The connection between the di�erent data entities can be observed in figure 2.5. It
should be noted that relationships can contain properties, however, it was omitted in the
figure due to it being optional.

As seen in figure 2.7, relationships are stored in a more complex way as they are harder
to represent. The first parts in a relationship record represent the id:s of the nodes that are
connected through the relationship. Thereafter, a pointer is stored that indicates what type
of relationship it is. Moreover, a pointer to the last and the next relationships for both the
start node and the finish node are stored.

2.3.4 Constraints
Graph databases, and Neo4j in particular do not have access to the wide range of constraints
that relational databases have. The constraints available for Neo4j were not used in the
database to be benchmarked, but it is worth noting possible constraints as the existence and
lack of constraints is worth discussing. Neo4j does not have any constraints that can enforce
a node to have outgoing or incoming edges, it can only enforce uniqueness and existence of
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Node (15 bytes)
idUse

nextRelId nextPropId labels extra

1 5 9 14

Relationship (34 bytes)
idUse relationshipType firstNextRelId secondNextRelId firstInChainMarker

firstNode secondNode firstPrevRelId secondPrevRelId nextPropId

1 5 9 13 17 21 25 29 33 34

Figure 2.7: Neo4j node and relationship store file record structure,
as described in [23]

properties. There are three di�erent constraint types available for Neo4j as mentioned in
[25], namely:

Unique property constraints
The unique property constraint corresponds to the UNIQUE constraint in SQL which en-
forces one specific property to be unique in every node of with the given label. However,
the di�erence between the constraint in Neo4j and in SQL is the fact that using the unique
property constraint in Neo4j always creates an index on the property that is desired to be
unique [25].

Property existence constraints
The property existence constraint ensures that all nodes of a given label type have to have
given properties. This means that one can not remove the property from a node nor create
nodes of that specific label without the property that is constrained. This constraint therefore
corresponds to the rule in SQL is that one can not insert into a table without specifying a
value for all columns [25].

Node key constraints
The node key constraint property is a combination of the other constraints mentioned above.
It enforces a node of a given label to one or more properties for every node of that type that
is created. It also enforce uniqueness of one or several properties [25].

2.3.5 Graph Query Languages
A graph query language, similar to the Structured Query Language described in section 2.2.3,
is a collection of operators used to query data from a database. Since SQL was introduced
many years before any graph query language, many general concepts and approaches in SQL
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is directly transferred or similarly made in the graph query languages [23]. The lack of stan-
dardization has also led to several immensely di�erent implementations and frameworks.
However, some essential common key functionality is provided by a typical graph query lan-
guage [35]. Then, grouped into the categories; adjacency, reachability, pattern matching and
summarization, the core functionality can be described as follows [1] [15]:

Adjacency queries: The node/edge adjacency queries determines that two nodes are
adjacent when there is an edge between them. Similarly, two edges are adjacent when
they share a common node.

Reachability queries: The reachability queries determines whether two nodes are con-
nected by a path. Several studies and research exists regarding the computational com-
plexity for reachability queries.

Pattern matching queries: The pattern matching queries finds all subgraphs within a
graph. As an attractive field of study in database theory, it deals with two problems:
the graph isomorphism problem and the subgraph isomorphism problem.

Summarization queries: The summarization queries determines special functions that
allows for summarizing and assembling on the query results. For example, the aggre-
gate functions is included, such as: average, count, sum, minimum, maximum, etc.

Subgraph matching is the task of finding subgraphs within a graph. Supported by all graph
query languages it is, in a sense the simplest form of graph query [35]. However, belonging
to the pattern matching type of queries, the subgraph isomorphism problem is of a special
interest. Finding e�cient algorithms or approaches for the most essential graph query task is
of great interest. Thus, much study has been done and the task is known to be NP-complete
[35].

Cypher
Cypher is a graph querying language that is used for querying Neo4j databases. It is a declar-
ative language developed mostly by Neo4j through the openCypher Project [27]. The fact
that Cypher is declarative means that the data to be fetched is specified, instead of specify-
ing how to actually fetch the data. The Cypher Query Language has many similarities with
SQL, such as having the same abilities to manipulate and fetch data, such as changing data,
fetching data and creating ”data schemas” [9]. The language is built up using the keywords.
Some of the most common keywords are specified in table 2.3, however, there are numerous
more keywords in Cypher that are not as common.

The Cypher Query Language has di�erent patterns to represent di�erent data entities
in queries. Nodes are represented using parentheses, this means that in a Cypher query ( n )
represents a node called n. Node labels can also be specified in a query, to specify that n has the
label Person, it is instead specified as ( n : P e r s on ) [13]. Relationships are described using
brackets, where the relationship type can be specified inside the brackets, e.g. [ : KNOWS] .
Furthermore, directions of relationships are specified with an arrow pointing in the direction
in which the relationship goes [13]. Using the terminology above, we can specify a pattern
that describes that Person a knows Person b as follows:

( a : P e r s on ) − [ :KNOWS] − > ( b : P e r s on )
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MATCH Corresponding to the SELECT statement in SQL,
specifies what nodes to traverse in the query

CREATE Used when inserting data into the graph
WHERE Specifies conditions on the queried data, e.g. only

fetch names that start with an A
ORDER
BY

Sorts the output in ascending or descending order

RETURN Specifies what is desired as an output from the query
LIMIT Limits the data returned from the query to a given

number of entries

Table 2.3: Some of the most common Cypher keywords

Furthermore, properties can also be specified when querying data. When it is desirable to
specify properties for a Node, it is done within curly brackets inside the Node brackets, e.g.
( a : P e r s on { name : ’ J a n Zubac ’ } ) represents all person nodes where the name
is equal to ”Jan Zubac”.

An example using the syntax introduced above as well as using some of the keywords in
table 2.3 can be written as follows:

MATCH (
(m : Movie ) − [ : RATED_BY ] − > ( : P e r s on { name : ’ V i c t o r Winberg ’ } )

)
WHERE m. r e l e a s e Y e a r > 2000
ORDER BY m. movieName
RETURN m

The query above returns all movies released after the year 2000 that have been rated by
the Person ”Victor Winberg” and sorts them by movie name is ascending order, given a
database containing users, movies and user ratings.

2.3.6 NoSQL
NoSQL is a term that describes a type of databases that have increased in popularity lately.
It stands for "Not only SQL" and is a collective term to describe databases that are not built
entirely on the regular relational database tables. NoSQL databases are designed for storing
large amounts of data and are used when the data to be stored cannot e�ectively be rep-
resented using relational models. These types of databases generally do not use Structured
Query Language (SQL) to query the data. Instead, many NoSQL vendors have developed
query languages of their own that are used to query the unstructured data in the databases
[24].

Several NoSQL databases have been developed by companies that process enormous
amounts of unstructured data, such as Facebook’s database Cassandra and Google’s Bigtable
which are both non-relational databases. Other popular NoSQL databases are MongoDB,
Neo4j andVoldemort [24]. One of themajor di�erences between relational and non-relational
databases is the fact that relational databases are designed to conform to theACID properties
described in section 2.2.1. NoSQL databases are limited by the CAP theorem which states
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that network shared data only can fulfill two out of three properties consistency, availability
and partition tolerance [11].

2.4 Database Benchmark
It is very hard to conduct proper benchmarking as there are many factors to take into con-
sideration. Karl Huppler mentions five properties that one should strive to achieve to some
degree to have a good benchmarking process. The properties are the following [16]:

Relevant: The data presented in the benchmark provides information relevant to the
comparison.

Repeatable: If the benchmark is conducted again in the same conditions as the previous
time it was conducted, the results will be very similar to each other.

Fair: All entities being compared in the benchmark should be able to partake in the
benchmarking with equal prerequisites

Verifiable: The results are presented in a way in which the validity of the results can
be assessed.

Economical: The sponsor/stakeholders of the benchmark can run it without problems.

To fully achieve all properties at once is nearly impossible. However, one should strive
to achieve all properties at least to some degree [16]. This thesis will not emphasize fulfilling
the economical property as it is not relevant in this study. The study will strive to fulfill all
other properties as much as possible.

2.5 Customer Relationship Management
Customer Relationship Management (CRM) is very hard to define. It is a very broad term
that can represent many di�erent elements. Generally, CRM is defined as customer centered
technology-based tools. Adrian Payne and Pennie Frow [28] define CRM in the following
manner: ”CRM is a strategic approach that is concerned with creating improved shareholder
value through the development of appropriate relationshipswith key customers and customer
segments. CRM unites the potential of relationship marketing strategies and IT to create
profitable, long-term relationships with customers and other key stakeholders.” [28]. There
are various types of CRM systems, namely Strategic CRM, Operational CRM and Analytical
CRM [5].

Operational CRM focuses on automation of customer-centric operations such as sales,
marketing and services. This means that services such as help desk interaction is integrated
in a common CRM system to make it easier for customers to get in contact with services
that can help them with various problems. Operational CRM also focuses on sales force
automation (SFA) by utilizing technology to keep track of sale trends etc. This data is also
used by an Operational CRM system to automate marketing by providing campaigns to its
customers by analyzing the sales data [5].
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Analytical CRM, on the other hand, focuses on handling data to determine which cus-
tomers are the most valuable, which customers are more prone to accepting certain deals
and so on. This enables users of the CRM to easily detect which customers to focus their
attention on for upcoming sales, and which customers need another approach [5].

Lastly, there is Strategic CRM which is mainly used to get an understanding of the needs
of the customers to be able to conform to as many needs from the customers as possible. As
a result of this, strategic CRM systems also aim to help to create and deliver value to their
customers by defining the business and customer [17].

2.6 Related Work
This section will list other work that has been made about the di�erence between graph
databases and relational databases. It will describe how this information was relevant to our
work.

In [33], Vicknair et al. make a comparison between a Neo4j database and a MySQL
database. The study was conducted to benchmark how long it takes for a set of queries to be
executed for the di�erent databases. Several di�erent databases were used, such as databases
containing only integers, databases containing 8kB random strings and databases containing
32kB random strings. Di�erent database sizes containing the mentioned data types were cre-
ated to see how the number of nodes a�ected the execution time of the di�erent queries. The
work of Vicknair et al. is useful in this report due to the fact that it gives a great insight on
how the size of the database impacts the execution time of a Neo4j database, which is similar
to what is to be studied in this master thesis. However, the data used was randomly generated
artificial data which implies that it was not structured in a way in which a database would
normally be used, e.g. as a social network so the results might di�er from what is observed
when a CRM system is evaluated. Their conclusion was that graph databases performed bet-
ter at both structural directed acyclic graph traversal queries and in full-text searches.

Another piece of work that is related to our work is the research conducted by Batra and
Tyagi in [3]. This paper also compares the execution time of queries for a Neo4j database and
aMySQL database. Similar results to [33] are presented, however, the di�erences between the
di�erent databases are farmore distinguishable due to the results being represented as graphs.
This research paper is interesting to us for the same reason as the research conducted by
Vicknair et al., namely that it gives usmore data on execution time di�erence for the di�erent
database types. Results from Batra and Tyagi’s work concluded a similar conclusion as the
results attained in the research conducted by Vicknair et al., namely that graph databases
performed better on their traversal and nested queries.

Webber et al. [29] have written a book that describes graph databases and Neo4j in de-
tail. In the book, the basic properties of graphs such as the formal definitions of nodes and
edges are very well explained. Furthermore, the book contains in depth explanations about
the underlying structure of the Neo4j graph database, such as how the data is processed and
stored in the Neo4j graph database which was very useful to us when evaluating why or why
not Neo4j was useful for storing and querying a CRM system. The insight in storage and
processing mentioned in this book also facilitate an understanding of the di�erences be-
tween Neo4j and MS SQL. Moreover, the book also contains comparisons between SQL and
Cypher queries with explanations to why some queries are hard to write in regards to both
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database types (relational and graph). These comparisons are a useful as a base for both the
performance and the complexity analysis as they give insight into the di�culties of both
databases.
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Chapter 3

Method

The work was conducted by performing an empirical study on two databases built with the
database structure and schema that exist in Lime’s CRM system. The relationships between
each data entity was modelled to be structured as in the real system. This means that all
relationship between entities are correct, however, we modelled the amount of relationships
from each node to be constant to an average of the amount of relationships we observed in
the real system. Therefore, instead of some person owning 3 documents and some owning 15,
every person owns the same amount of documents and so on. The databases were built with
randomized data values. In practice, this consisted of us comparing the relational database
that Lime currently uses, namely Microsoft SQL Server, against the graph database, we have
chosen, Neo4j with our data values. It is worth noting that the version of Neo4j used was
the Community Edition, meaning that the comparison in this thesis is between a free-to-use
software (Neo4j) and a paid software (Microsoft SQL Server). However, themajor di�erences
between the Enterprise and Community Edition of the Neo4j client are features that are very
useful in a database that is to be used in a real system such as additional constraints and
further customization options. Therefore, execution times presented in this thesis are not
that a�ected by the fact that a free and paid software are being compared. Following is the
steps needed to make the comparison:

1. Analyzing Lime’s current CRM system to determine what type of queries are called
and which operations are common in the system.

2. The queries that are to be benchmarked were written so that theMicrosoft SQL Server
and Neo4j queries return the same data. These queries were then compared from a
performance and complexity standpoint for the di�erent databases.

3. The performancewas compared by comparingCPU time used by the process when per-
forming the Microsoft SQL Server and Neo4j queries. Furthermore, we analyzed why
the queries are slow, fast or perform equally for the di�erent databases. Thus, answer-
ing problem statement 1 - ”How does the performance of graph databases compared to
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relational databases di�er, when used in a large complex CRM database system, and
when?”

4. The lexical complexity of the queries was to be compared by performing a lexical anal-
ysis to split the queries into tokens. Thereafter, we intended to evaluate how a similar
comparison had been done in other scientific papers. However, during our project
we realized that this was a subject that was not touched upon in scientific literature.
Furthermore, there was not enough time to conduct a user study to determine the
perceived complexity from many user’s perspective. Therefore, it was decided to not
include this study in the report as the results can not be backed by any scientific re-
search. As a consequence of this, we were not able to answer research question 2 in
this thesis.

5. Aworking prototype, with front-end, back-end and configurable database systems was
built to be able to run the queries many times and quickly visualize the results. The
purpose of the prototype is to demonstrate noticeable di�erences for the end users
live.

3.1 Benchmarking
During the thesis work period, several di�erent methods were tried to achieve a benchmark-
ing that is as good and fair as possible. One of the most important aspects of the benchmark-
ing process conducted in this thesis is the fact that all queries, for both databases, are called
with the same random sequence of value parameters to avoid query caching. The reason for
this is to see how well the two databases perform without caching, as they both perform ex-
tremely well and are close to indistinguishable when the queries are cached. To be able to do
this, a function was written in Python that randomly selects an existing entry for a specified
column in a specified table so that the queries actually always return data and do not try to
query entities not existing in the database.

However, some of the more complex queries were benchmarked with caching as well to
see how the performance of the databases di�ers when the queries are cached. The reason for
only analyzing and documenting the caching e�ects on the complex queries is, as mentioned
above, that the simple queries become close to instant in both databases when they are cached.

3.1.1 Mathematical time measurement functions
To get a broad spectrum of numbers to analyze later on, the mean values and standard de-
viation values will be calculated for the execution times of the queries. Each query will be
benchmarked and executed numerous times. The queries will then be executed with random-
ized parameters to emulate reality more, in terms of less caching of the queries. The top 5%
largest and smallest values will be removed from the data so that the extreme case execution
times will be ignored in the calculation. Removing the extreme values will be done so that
the results do not get distorted if there are execution times that di�er very much from the
average, e.g. if the operating system schedules a heavy process when one query is being exe-
cuted and to not be as a�ected by a query being cached for the lower execution times. This
approach was done in a similar way by Vicknair et al. [33]. They removed 10% of the largest
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and smallest execution times, however, their sample size was much smaller than ours, so we
deemed it fitting to only remove 5%.

3.1.2 Measuring the query execution time
Tomeasure the execution time of the queries specified in section 4.4, the queries will be called
through a programming language for e�cient calculation of the time measurements. Cypher
will be queried through the Neo4j Bolt Driver 1.7 for Python [30]. This python package
has functions to execute queries as well as measure the execution time of the queries. In
the Neo4j Bolt Driver 1.7 for Python, when a query is executed using the execute() method,
several attributes are set to the object that is returned. Some of these attributes will be used
for the benchmarking purposes, namely the attributes t_first and t_last which represent the
time it took for the server to have the first result ready and the time it took for the server to
consume the rest of the results. This implies that t_first + t_last represent the total execution
time of the query and this will therefore be used as a measurement of the execution time of
Neo4j. Neo4j’s o�cial client also operates through the bolt driver. In this client, one can
execute individual queries and get the results, as well as the execution time and the time
it takes to consume the data. The values of the execution times in Neo4j’s built in client
tool were evaluated to ascertain that they present approximately the same execution time as
the attributes t_first and t_last to ascertain that they are a trustworthy measurement of the
execution time. The evaluation showed that the execution time for the queries in Neo4j’s
o�cial client were the same as the execution times retrieved from the python bolt driver.
This indicates that the results from the python driver are accurate if one trusts Neo4j to
show the accurate execution times in their own client.

The execution time of the queries on the Microsoft SQL Server were measured in a dif-
ferent way. The queries were executed through the Python library pyodbc [19]. Pyodbc has
no built in functions for measuring the execution time. Instead, the method that was used to
measure execution time of the Microsoft SQL Server queries was to record the UNIX times-
tamp [20] before and after each query has been executed and subtracting the execution times
to get the time di�erence. This approach can be considered risky, as it is hard to know how
much of the time returned is CPU time and how much is the actual retrieval time of the
data. However, there is a possibility to query a Microsoft SQL Server database through the
Microsoft sqlcmd utility [22]. This command line tool enables execution of queries through
the command prompt and it displays the execution time of the queries executed. A compar-
ison between the execution time given by Microsoft’s o�cial tool and the UNIX timestamp
method was conducted to determine if there was any notable di�erence between the meth-
ods. The comparison showed that the execution times were very similar, however, one has to
take into consideration that the same query being called twice does not always take the exact
same time no matter which measurement method is used. Therefore, it is impossible to say
if the execution times are completely identical or not.
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Chapter 4

Design of Experiments

This section describes more in detail how and why the work was conducted the way it was.
For an evenmore detailed insight in the benchmarking prototype, one can visit a release of the
code used to conduct the benchmarking done in this thesis by following the DOI specified in
[34]. The GitHub repository also contains instructions on how to reproduce the experiments
conducted in this thesis to be able to validate the results.

4.1 Analyzing the Lime CRM System
One of the first tasks in the process of benchmarking Lime’s CRM system was to analyze the
system. This was done both to get a general understanding of what CRM Systems are and
how they are utilized, as well as to get specifics of how Lime CRM works and what some
common operations are. This section will describe the process of investigating the Lime
CRM to determine how to model a smaller version of the large scale CRM-system that Lime
distributes.

4.1.1 Data Relationship Analysis
A key component of understanding a software system that is heavily reliant on data storage
is to study what is being displayed in the system and envisioning how the displayed data is
stored in a database. In our case, a demo database containing a few hundred data entries
was provided to us. This database was a Microsoft SQL Server database, and was therefore
imported into Microsoft SQL Management Server where all tables, relationships, keys, con-
straints and so on were visible to us. The analysis started with identifying all tables present
in the database and subsequently noting what columns each table had. Section 4.2 describes
how the data acquired in this step was formed into an ER-diagram.

After we got an idea of what data entities were stored in the database, the database was
imported into the Lime CRM System to see how the data is displayed in the CRM System
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that was to be modelled. It was then quickly realized that many of the table and columns
stored in the database were there to facilitate e.g. front end development and maintenance,
which means that many of the tables were rarely queried for data. These tables were omitted
in our model, as the model to perform the benchmark on had to be constrained to not reveal
too much information about exactly how the Lime CRM System was implemented. Instead
focus on the core entities, which technically could be derived from the Lime CRM Desktop
Client as well as the Lime CRMWeb Client without knowing the database structure.

To study how the di�erent tables are connected, SQL Server Profiler was used. This
program logs the operations conducted on the database that is connected to the profiler. In
this case, the demo database was connected to the profiler, so all queries performed on the
database when we interacted with the Lime CRM System were logged to later be viewed.
Parts of the Lime CRM System containing many data fields from di�erent tables were ex-
plored and interacted with to systematically locate queries of relevance to the study, e.g.
advanced queries with many joins. The profiling also led to an increased understanding of
the database, which was helpful later on.

When the core entities and relationships have been singled out, we created an ER-diagram
for us to envision how all entities are connected as a whole and what columns are necessary
and which ones can be omitted in the benchmarkmodel. The ER-diagram of the core entities
that are used in the databases that were benchmarked can be seen in figure 4.1.

4.1.2 Common Operations
In the benchmark, several queries were analyzed to see how well Cypher performs in com-
parison to Transact-SQL in a CRM system. As it was not realistic to cover all the queries that
are called in the Lime CRM System, a small subset of queries needed to be singled out. The
vision was to create realistic queries on our model that represent queries that are often called
in the real Lime CRM System. By analyzing the system as well as talking to our supervisor at
Lime, it was deemed that the most common operations to perform in the system is to display
various data. This means that the most common queries are SELECT queries. As a result
of this, a majority of the benchmarking queries consist of retrieving data from the database.
When it comes to the data retrieval queries, some of the most common operations is to filter
data using some or several of Lime CRM’s available filters. Therefore, many of the queries
used in the benchmarking will contain filtering in one way or another.

The other very common database operation was to add data to the database, which is why
several insertion queries will be benchmarked to see how the di�erent databases perform
when inserting data. Lastly, updates are also used somewhat regular in the Lime CRM so
there are also some queries that benchmark the e�ciency of data updates for the di�erent
databases.

4.1.3 Reasonable size for Lime’s CRM System
It is of great importance to ensure that the system onwhich the benchmark is to be performed
on resembles the Lime CRM System as closely as possible to guarantee that the results are
actually relevant to Lime’s CRM system. For the benchmark to be realistic, the size of actual
databases that customers of Lime CRM use were estimated. Furthermore, the quantity of
each data entity stored in the database was estimated to assure that the proportions in the
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benchmark database model are close to the ones in the real system. It would e.g. not be a
realistic depiction of the real CRM System if our model had 100 documents in it and the
real system has 10000 documents. Moreover, it is important to mention that many of Lime’s
customers have tailored solutions, which means that the Lime CRM is not the same for all
customers. Moreover, some companies that are users of Lime CRM are naturally larger than
others. As a result of this, the study will focus on emulating the Lime CRM system for the
larger companies, as they are more relevant to the study. This means that the result might be
applicable for all companies that use Lime CRM.

For us to estimate the number of data entities stored in Lime’s CRM System, a database
that Lime uses in-house was provided to us. In this database, the number of companies, deals
etc was observed to determine an estimate of what a reasonable size for the largest database to
be benchmarked is. The entities that had most entries in the database were histories, which
were a factor of 10 more than any other entity, this naturally led us to having history entries
make up a large portion of the database.

To evaluate how the databases perform for di�erent database sizes, three di�erent databases
were built. The smallest graph database had 35,960 nodes and 129,100 relationships, which
corresponds to 35,960 row entries in the Microsoft SQL Server database. The medium graph
database had 342,510 nodes and 1,272,500 relationships which corresponds to 342,510 row en-
tries in the Microsoft SQL Server database. Lastly, the largest graph database had 3,460,510
nodes and 12,800,500 relationships which corresponds to 3,460,510 row entries in the Mi-
crosoft SQL Server database.

4.2 Database Schema
The database schema was designed based on a basic Lime-CRM setup, with some of the
essential CRM-entities included. This means that many CRM-entities that would not a�ect
the benchmarking will be omitted, e.g. due to them not introducing any further complexity
and depth to the benchmarked queries. Furthermore, some attributes were also omitted in
the ER-diagram as the data properties themselves are not the focus of the benchmarking, due
to the benchmarking not being a�ected by many columns that are not queried anyway. As a
result of this, the relationships in the ER-diagram are the most important. The ER-diagram
of all the data relationships in our miniature CRM System can be seen in figure 4.1.

The office and coworker tables store the information about coworkers at ”our” com-
pany and at what office they are stationed at. Whereas, the company and person tables
instead store information about the companies that are Lime’s customers and their employ-
ees. Then we have the deal, document and history tables which store the information that
a CRM-system organizes with the previous given tables. A deal could be a pending project
that could deliver a value with a given probability. These deals then have a lot of in-
formation between the di�erent two parties, coworker and person, from di�erent events.
These events are stored as a history usually with a document of some sort. A history
could be a call, meeting, email, etc.

When it comes to the relationships presented in figure 4.1, the relationship between a
history and deal entity conveys information about a specific event that was part of the
deal, for example a phone call. The relationships between the document entity and the
history document represents that a document was part of the given history e.g. that

31



4. Design of Experiments

Company

name

phone

website

address

<<weak>>
Document

description

type

document

<<weak>>
Deal

name

value

probability

Coworker

name

phone

email

Office

name

phone

address

Person

name

position

phone

email

<<weak>>
History

type

date

notes

Figure 4.1: An ER-diagram overview of the core CRM-entities

an excel document was written after a visit to a customer. The relationships between a
coworker and a deal corresponds to the fact that the given coworker is the salesperson
for that deal. The relationship between a person and a deal is very similar. It corresponds
to the fact that a person is responsible for a deal. The connection between coworker,
person and history represent that the person/coworker took part in that history entry,
e.g. coworker A spoke to person B on the phone regarding a deal, forming a history entry.

4.3 Building the databases

To be able to build a database similar to the real databases used by Lime’s customers in the
Lime CRM, large amounts of fake data had to be generated. The data generation was done
by utilizing the python package faker [8]. With faker, it was possible to randomly generate
all data fields needed, such as addresses, zip codes, first and last names and so forth, using the
same amount of relationships and structure as in Lime CRM. Therefore, providing us with a
real-life scenario with anonymized data. With the use of setting specific seeds, it was ensured
that the randomly generated data was the same every time. Hence, both the graph database
and the SQL database was populated with exactly the same data.
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4.3.1 Microsoft SQL Server
A very important part of building an e�cient SQL database was constructing indices on
heavily queried data. However, in Lime CRM system, it is highly unpredictable which data
will be queried, meaning that it is hard to decide what data to construct indices on. As a result
of this, it was decided that for the SQL database, indices would only be created on foreign
keys, to make joins faster, and on primary keys. A reason for this constrained usage of indices
is also the fact that insert operations are common in CRM systems, and many indices make
inserts slower as the index needs to be moved and rearranged whenever additional data is
inserted in the database.

As a result of this we created seven tables from the seven given entities in figure 4.1. In
SQL, a table describes their relationship to another table by using foreign key constraints.
I.e. describing the relationship between a row in the persons table to a row in the companies
table is done by a foreign key constraint in the persons table, named company id.

4.3.2 Neo4j
As explained in section 2.3.1, graphs have di�erent properties than relational databases. To
construct a graph database from a relational database, each table in the relational database
corresponds to a node label. The properties of each node consist of the columns of that table.
So to convert the relational database into a Neo4j graph database, node labels for each table
will be created, e.g. Person, Company etc. Furthermore, these nodes will be given properties
corresponding to each column in the relational database, except for the columns that rep-
resent foreign keys that reference other tables. In Neo4j, this will instead be represented as
relationships.

When it comes to indices in graph databases, it is not possible to create an index on
relationships, which would be the equivalent of creating indices on foreign keys in SQL. As
a result of this, indices were only created on the primary keys, namely the id of every node.

Instead of e.g. storing a company id in the Person node, this relationship was instead
labeled as WORKS_FOR. Hence, the relationship entity also describes in text what it represents,
whereas in SQL one has to analyze the two tables that are connected with a foreign key to
figure out what the relationship means. The relationships that were used to construct all the
type of edges corresponding to the relational database foreign keys are the following:

WORKS_AT: Represents that a Coworker works at a Company

RESPONSIBLE_FOR: Represents that a Person is responsible for a Deal

OWNS: Represents ownership of a Document

ATTENDED: Represents that a Coworker and/or Person is part of a History entry

ATTACHED_TO: Represents that a Document is attached to a Deal

SALESPERSON_FOR: Represents that a Coworker is in charge of a Deal

PART_OF: Represents that a Deal is part of the History for a given entity
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4.4 Database Queries
During the benchmark analysis, several di�erent operations were performed on the Neo4j
and Microsoft SQL databases. As delete queries are rarely executed in CRM systems, it was
decided that delete queries would not be a part of this study. Instead, the thesis focused
on studying insertion, retrieval and updates on data. These di�erent queries used will be
described further below. The queries that were called during the benchmarking were sought
out to be diverse in many ways. The operations used in Lime CRM that we will evaluate
when benchmarking are the following:

• Joining few and several tables

• Filter using indexed and non-indexed columns/properties

• Filter on close and distant relationship-endpoints

• Filter using floats, integers, strings and dates

• Filter using few and several operators

• Nested filtering

• Querying small, medium and large size tables

• Insertion into small, medium and large size tables

• Updating a single property

• Updating a property in many rows/nodes

The reason for this is that these operations cover a lot of the functionality of Lime CRM
and they also cover many operations of the databases.

4.4.1 Data retrieval
Data retrieval queries are very important in any system that heavily relies on data storage.
The reason for this is that whenever some data is to be displayed in the system, the data has
to be retrieved from the database. As a consequence of this, a large part of the benchmarking
consisted of data retrieval queries. To get a good overall understanding of the di�erences
between Neo4j and Microsoft SQL Server, several di�erent types of queries had to be called
in order to see the performance for a specific query.

It is important tomention that our databases contains no null values, whichmeans that all
tables/nodes have non null values for all columns/properties. As a result of this, theMicrosoft
SQL query optimizer creates the same query execution plan regardless of the join type. This
means that inner joins and outer joins are treated in the exact same way by the SQL server.
Therefore, it was decided that left joins were to be used in all queries, even if it in most
databases would not be fitting to construct the queries using left joins.

For the data retrieval queries, most tables should be queried to see how well Microsoft
SQL handles larger and smaller tables as well as if there is any di�erence in Neo4j when
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retrieving node-types that there are a lot of. Furthermore, di�erent depth of queries was
used to see when the databases start to di�er in performance. In one of the queries, namely,
query A.12, all persons working at a given company are retrieved. This query has distance one,
meaning that it is not su�cient to just go through all persons to find the query result, instead
companies and persons have to be analyzed together by either joining tables (Transact-SQL)
or by analyzing relationships (Cypher). Finding everyone working at a specific company is a
natural key component of a CRM system, therefore we deemed it important to include this
query in the benchmark.

Moreover, it was tested how Neo4j and MS SQL handle queries that are dependant on
retrieving data from many tables combined, or in Cypher, data that can not be retrieved
without analyzing many relationships. The reason for this is that the data entities in Lime
CRM are heavily connected to each other, so most operations that are true to the functional-
ity of the real Lime CRM System cannot be made without analyzing the performance when
several tables have been joined together. Query A.5 where 5 tables are joined to be able to
retrieve all entities attached to history data entities with specified type represents this type
of query. Furthermore, this query also returns large amounts of data, which is an interesting
point of analysis in regards to performance of the databases.

A very common feature in Lime CRM is to utilize the so called quick filter, according
to several developers at Lime CRM. This filter allows the user to enter an arbitrary input,
thereafter, when the data is queried, it is checked whether the given input exists in any of the
columns shown in the current window of Lime CRM. Two queries with di�erent complexity
were tested. Firstly, query A.13 which only tests how the system handles the Lime CRMquick
filter. Secondly, query A.4 tests the quick filter as well as evaluating how the databases per-
form when combining the quick filter with a feature called ”transfer”. For transfers, specified
columns in one tab, e.g. deals can be transferred to e.g. coworkers to see all coworkers that
are part of the selected deal(s).

Lime CRM also has another type of filtering, where only one specified column is filtered
after a given criterion. This feature is evaluated using the queries A.2 where only histories
before a given date are selected as well as only histories with a specific type to see how well
the databases handle basic filtering. Additionally, the queries A.1 also evaluated how well
the databases handle filtering in Lime CRM, more specifically, how the databases handle the
filter option ’Begins with’, where one can specify to only select those data entries in a given
column that begin with a given combination.

To further analyze the filtering function mention in the previous paragraph, query A.3
was chosen to evaluate how the databases handle filtering of floats. This operation corre-
sponds to filtering the deals table to only display deals above a given probability.

Lastly, query A.6 was chosen to see how the databases handle heavy filtering of data, in
this case choosing the deal with highest probability in the system. Thereafter, this data entry
is used to query deals that are related to the coworker that is responsible for the first deal.

4.4.2 Data insertion
To evaluate the performance of insertion for the di�erent databases, we wanted to create
data insertion queries with di�erent depths to see how much indexes a�ected the execution
times in the di�erent databases as well as to get an understanding of the performance of
insertion queries for MS SQL and Neo4j. One of the reasons that we chose to evaluate inser-
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tion is this way is the fact that indexing negatively impacts insertion. Therefore, queries with
di�erent amount of indices were benchmarked to see how a�ected the two databases were
by this. However, as inserts only operate on one table, except for creating references to for-
eign keys/creating relationships, data was inserted in tables/nodes with varying relationship
complexity. In query A.9, data is inserted into the histories table, which has five indices, and
therefore the insertion is more complex as more indices have to be relocated when new data
is inserted. Query A.7, inserts data into a table with two foreign keys, and query A.8 inserts
data into a table with only one foreign key, and therefore only index on one row.

When it comes to the insertion queries in Cypher however, they are a lot more complex
by nature. The queries update the graph with the same data as the SQL queries. The major
di�erence between Cypher and Transact-SQL is that relationships are automatically created
when inserting data that is constrained by foreign keys, due to the fact that the schema en-
forces the data that is being inserted to conform to the data existing in the table that is being
referenced. In Cypher, there is no easy way of creating a node and its relationships using one
query, therefore, the MERGE statement has been used, as seen in query A.9, A.8 and A.7. The
MERGE-statement creates a node and/or relationship if it does not exist. As seen in query
A.9, using MERGE, nodes that we want to create relationships to are found, and the node
that is to be inserted is created (the history node is this case), thereafter, all relationships
between the new node and the existing nodes are created. This is naturally a more complex
process than insertion in Transact-SQL, as we enforce Cypher to find existing nodes before
it can create relationships between them and the newly created node.

4.4.3 Data updates
As mentioned in section 4.1.2, update queries are not used as much as insertion and data
retrieval in Lime CRM. Therefore, we decided to only test two update queries as there are is
not that much update functionality in Lime CRM. Query A.11 was benchmarked to evaluate
how the databases perform for the most basic update operation, namely updating a single
property in a single node/row. The performance of update queries can be impacted by hav-
ing multiple indices, as they essentially both delete data, which enforces updates of indices
and thereafter inserts the new data which also enforces updates of indices. To test how the
databases perform in this regard, query A.10 was chosen to represent an update query that
updates a non-indexed property in many nodes.

4.5 Execution Plans
To further analyze the benchmark execution times we used the built in query profiler in
Neo4j and the built in query execution plans that are provided in Microsoft SQL Manage-
ment Server for MS SQL. These query planners were used to distinguish how the di�erent
databases actually execute the queries, e.g. what is going on in detail to be able to determine
why the queries in one of the databases is more time consuming than the other for particular
queries. Therefore, the use of execution plans is good to analyze and compare where and
when it occur. Here we will give a brief overview of how the execution plans work.

Neo4j uses statistical information regarding number of nodes with certain labels, rela-
tionships by type, etc. to determine how the query should be executed. Then the execution
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ProduceResults

Pro jection

Limit(10000)

Filter(Person)

ExpandAll(WORKS_AT )

NodeIndexSeek(Company)

(a) Neo4j

Select

Top(10000)

NestedLoops(Join)

NestedLoops(Join) IndexSeek(Company)

IndexSeek(Person) KeyLookup(Person)

(b)MS SQL

Figure 4.2: Execution Plan for Query A.12.

planner uses a number of operators to perform the execution of the query [26]. For example
in figure 4.2a it uses:

NodeIndexSeek - finds the company node with the specific given index

ExpandAll - traverses all incoming WORKS_AT relations from the company node

Filter - filters each row to only contain person nodes

Limit - returns the first 10000 rows

Projection - evaluates expressions and produces a row with the results thereof

Produce Results - prepares the result to be consumable by the user

MS SQL Server uses a so called Cost-based Execution Plan that tries multiple di�erent
execution methods until it ends up with the most optimal execution plan with the least pos-
sible cost [10]. For example in figure 4.2b it uses:

Select - contains a lot of useful information about the plan as a whole

Top - passes the first 10000 rows

NestedLoops - combines the result of the two operations below:

– IndexSeek - finds the company name with the specific given index

– NestedLoops - combines the result of the two operations below:

* IndexSeek - finds the person ids with the given company_id
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* KeyLookup - pulls additional data, not held in the nonclustered index

What we want to receive in this query is the persons working for a specific company.
For this example, MS SQL would store the persons and companies in two separate

tables with a clustered index on their primary keys, similar to a phone book each table is
sorted and indexed page by page. Furthermore, the company_ids in the persons table is
separately stored in a non-clustered index, similar to an index in the back of a book refer-
encing to a certain page. From a data-centric point of view MS SQL first seeks using the
non-clustered company_ids index for finding all person ids. Then, by looking them all up
in the clustered index we receive the additional data. Lastly, it will combine the results from
these operations with the clustered index seek of the given company id.

4.5.1 Big O notation
Calculating the Big O notation of a query in Neo4j and MS SQL can be done by looking at
the execution plan. Given the example in figure 4.2, we are given two tables; persons and
companies where the persons table is 10 times larger than companies. Assigning n as person
rows and m as company rows, we can calculate the big O notation of the two queries.

MS SQL uses the b-tree structure of the index to seek directly to matching records where
company_id is the given company id. This operation is executed one time and therefore takes
O(log(n)). Then we do a key lookup for each of these values k, giving us O(k log(n)). Then
we join these values by performing an index seek on the company with given company_id,
taking O(log(m)) time. The total big O notation is therefore:

O(log n) + O(k log n) + O(log m)

Neo4j uses the b-tree structure of the index to find the company node with given index,
taking O(log(n)) time. Then, we perform expand and filter each evaluating a small amount
of relations/nodes k, that with enough relationships should continuously be a low value, with
the complexity of O(2 ∗ k). Then, we limit and perform a projection that evaluates each
incoming row for each returning argument g (worst-case < 100), giving us O(g ∗ k). The
total big O notation is therefore:

O(log n) + O(2 ∗ k) + O(g ∗ k) −−−−−→
n,k→∞

O(log n + k)
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Chapter 5

Evaluation

5.1 Results
The results show the execution times for the two databases under comparison on multiple
di�erent queries explained in section 4.4. Most of the queries were run 250 times, except for
query A.13, query A.5 and query A.4, calculating the mean and standard deviation values.
Query A.13 was run 10 times and query A.5 and query A.4 were run 50 times. The reason
for these discrepancies in the number of executions is the fact that python times out if these
queries are called more times, due to them taking to long to complete. These values are then
plotted onto bar charts comparing Neo4j and MS SQL. Finally the expression complexity
is compared for the same queries. The databases small, medium and large in the bar plots
correspond to the databases explained in further detail in section 4.1.3. All queries that are
part of the results are described in detail in section 4.4.

5.1.1 Equipment
When performing a benchmark, it is very important to mention what hardware and soft-
ware the benchmarking process was conducted on. The reason for this is so that someone
conducting the same benchmarking has a reference point for their results. If the hardware
and software specifications are available, it might be more clear why the results di�ered.

The benchmarking was conducted on a Dell Ultrabook equipped with an dual core Intel
Core i7-5600UCPUwith themax clock speed of 2594Mhz. Furthermore, the computer has 4
logical processors and 16 GB of RAM. It is also important to mention that the benchmarking
is run on Windows 10, as results might di�er between operating systems as scheduling etc.
might be di�erent. If one is interested in the full list of specifications for the computer used,
it is a Dell Latitude E7250.
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5.1.2 Performance Benchmarks
sm

al
l

m
ed
iu
m

la
rg
e

0

10

20

30

40

50

60

Query A.1

Ex
ec
ut
io
n
T
im

e
(m

s)

sm
al
l

m
ed
iu
m

la
rg
e

Query A.2

sm
al
l

m
ed
iu
m

la
rg
e

Query A.3

Neo4j
MS SQL

Figure 5.1: Filtering queries

The first comparison chart, seen in figure 5.1, are a set of three relatively non-complex queries.
To the left we execute a query with three joins that filters out the results on the exit nodes.
In the middle we increase with one more join but instead filter on the smaller table con-
necting the tables, on an indexed column. For all three queries in figure 5.1, Neo4j and MS
SQL are very similar in performance when the smallest database is queried. For the medium
database, there are a few performance di�erences in Neo4j andMS SQL. Neo4j performs bet-
ter for query A.1 and MS SQL performs slightly better for query A.3. For the large database,
however, Neo4j performs better for query A.1 andMS SQL performs better for the other two
queries.
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Figure 5.2: Queries with a long execution time

The second comparison chart, seen in figure 5.2, are a set of three more complex queries,
in the sense that the queries have a longer execution time. To the left we execute a nested
WHERE clause with depth of two. In the middle we execute four joins and filtering on a non-
indexed column in the big table. To the right we once again execute a nested WHERE clause
filtering on a non-indexed column. The conclusions drawn from the results are that that MS
SQL performs far better than Neo4j in all cases except for the medium database in query A.4.
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Figure 5.3: Insertion queries

The third comparison chart, seen in figure 5.3, are a set of some simple insertion queries.
We insert into a small (left chart), medium (middle chart) and big (right chart) table. The
conclusions drawn from these results are that Neo4j once again performs much worse than
MS SQL, which was expected. In this figure, it can also be seen that an increase in indices
gives an increased insertion time.
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Figure 5.4: Update and basic retrieval query

The fourth comparison chart, seen in figure 5.4, are a set of some simple update queries
as well as a basic retrieval query in the right most bar plot. In the left chart we update the
database using a nested WHERE clause. In the middle chart we perform a simple update query
using an indexed column. The right most bar plot in figure 5.4 represents a retrieval query
that retrieves all employees at a given company. For the retrieval query, Neo4j performs
worse than MS SQL, however, the larger the database, the closer Neo4j gets in terms of
performance. In the middle bar plot which represents updating a company’s name, it can
be seen that Neo4j performs significantly worse than MS SQL for all database sizes, which
was expected. However, in the left bar plot in figure 5.4 it can be seen that Neo4j performs
slightly better than MS SQL for the more slightly more advanced update query.
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Figure 5.5: Complex filtering. Query A.13.

In figure 5.5, the query executes four joins with multiple WHERE statements using OR
and AND to filter multiple columns. Once again we conclude that MS SQL performs faster
than Neo4j. However, they both scale linearly in execution time. It should be noted that the
scale of the y-axis is logarithmic, meaning that MS SQL is approximately 10 times faster than
Neo4j for all database sizes.
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Figure 5.6: Regex vs String Operations in Query A.1

In figure 5.6, the query A.1 using the small database was executed with di�erent amount
of regex/string operations. This to test if there is a noticeable di�erence between the two
types of string comparison operators. MS SQL uses simple string operations to compare
strings, since its operator LIKE is a string operator. Neo4j, on the other hand, uses regular
expression to compare strings, since its operator =~ is a regex operator. Seen in the graph
the distance between Neo4j and MS SQL increases, while the percentage di�erence stays the
same. MS SQL is continuously (approximately) 50 percent faster than Neo4j.
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retrieval query on the large database.

Query A.5.

The benchmarking conducted in this thesis was done by specifically designing the exper-
imental setup not to cache the query results due to our understanding that customers using
Lime CRM do not call the same queries that often, which results in limited data caching.
However, benchmarking using caching was also performed by calling the same query many
times in a row to see how the databases handle caching of data. The results of two queries
being cached and benchmarked can be seen in figure 5.7 and 5.8. In figure 5.7, Neo4j’s perfor-
mance increased by 58% and MS SQL’s performance increases by 64% when the queries are
cached. At this point, both databases are approximately equally good at caching data.

However, as seen in figure 5.8, the results are completely di�erent for queries that return a
lot of data. In given figure, it can be seen that Neo4j’s performance increases by 44% whereas
MS SQL’s performance is increased by 84%. These numbers really show the di�erence in
caching for MS SQL and Neo4j. Neo4j is e�cient at caching small amounts of data and
smaller paths, however, when much data is returned in a single query, Neo4j is having a
harder time caching it.
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5.1.3 Execution Plans
Query A.1. MS SQL scans through a small table a (companies) with an attribute complying
with the query filter, returning a small amount of rows k and then performing index seek on
a larger table b (persons) to join additional data, takingO(log a+ k log b) ≈ O(k log b) time.
Then, scanning all rows in a large table c (deals) and performing a hash match on all these
row, taking O(c + c). Resulting in the total big O notation:

O((k log b) + (c + c)) −−−−−→
b,c→∞

O(c)

Neo4j starts with the smallest table h (companies) and then filtering this already small
table further, taking O(h + h) time. Now we have k companies we would like to continue
to traverse from. By expanding and filtering three times, usually finding more nodes than
wanted when expanding that then is filtered out, taking O((ak + k) + (bk + k) + (ck + k))
time, when filtering with a linear path. Meaning, that we for each expand operator get a,
b or c times irrelevant data that then is filtered out back to k. However, if the traversal
path would instead be binary tree-structure for finding the relevant nodes, depending on
how many nodes each relationship has, it would result in a higher order complexity, taking
O((ak+21k)+ (b21k+22k)+ (c22k+23k)). And for the general case it would result in taking
O((ak + c1k) + (bc1k + c1c2k) + (cc1c2k + c1c2c3k)). Resulting in the total big O notation:

O((h + h) + (ak + c1k) + (bc1k + c1c2k) + (cc1c2k + c1c2c3k)) −−−−−→
h,k→∞

O(h + k)

It is hard to come to a solid conclusion in this case, since it really depends on how the
traversing path is structured. If each company has one or few relation(s) to the next node(s),
and it continues somewhat linear, Neo4j would perform better than it would if it expands a
lot.

Query A.13. MS SQL performs an expensive scan through all rows in a huge table n
(histories). Then, passing all of those rows to three hash matches, each taking O(n) time.
However, all of these operations is running in parallel, for each gathered row from the huge
table, decreasing the cost to the time it takes to scan the huge table once. Resulting in the
total big O notation:

O(n)

Neo4j needs to make several operations through the huge table n (histories) and their
relations, similar to MS SQL passing the table to multiple hash matches. However, this is
not done in parallel making this an expensive query. Furthermore, when performing expand
we often receive more relations than what we are interested in that then is filtered out. Lastly,
we perform a filter. Resulting in the total big O notation:

O((n + n) + (3n + n) + (2n + n)) = O(9n)

Resulting in that MS SQL should perform faster than Neo4j, since the big O notation
directly is about 10 times faster.

Query A.5. MS SQL once again does an index scan through the huge table n (histories),
but filtering out the one complying with the filter, finding k entries, taking O(log n) time.
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Those entries is then used to gather information from two other rather large tables a (deals)
and b (persons), taking additionalO(k log a+ k log b). Resulting in the total big O notation:

O(log n + (k log a) + (k log b))

Neo4j finds a medium size amount of rows that complies with the query in the smallest
table n (companies). Then, continues its process of expanding andfiltering through the nodes,
finding a small amount of relationships from the start and keeps traversing. Lastly, projecting
some values to return. Similarly to what we concluded in our first execution plan, our big O
notation once again depends on which values would go towards infinity.

Query A.2. MS SQL seeks through a huge table n (histories), finding all rows complying
with the specified filter k and then performing a key look-up for each complying row, taking
O(log n + k log n) ≈ O(k log n). Then, four joins and tree more index seeks are performed,
taking O(k log a + k log b + k log c). Resulting in the total big O notation:

O(k log(n ∗ a ∗ b ∗ c))

Neo4j finds the specified row in the small table n (deals), by performing an index seek,
that complies with the query and the specific rows relations from the huge table k (histories),
taking O(n + k). Resulting in the total big O notation:

O(n + k)

5.2 Discussion
5.2.1 Indexing
Indexing primary and foreign keys is very important in MS SQL since they are then stored
in a structure (B-tree) that enables SQL Server to find the row or rows associated with the
key values quickly and e�ciently. If a column that is part of a query is not indexed in MS
SQL, a full table scan has to be done to find the data entries in the query. This costs O(n),
whereas the corresponding operation when indexing is used only costs O(log n). As a result
of this, the di�erence in execution time is not that noticeable when having small tables, but
when size increases the execution time scales badly. Therefore indexing is very important to
MS SQL.

Indexing can also be done in Neo4j, however, due to the fact that Neo4j is an index-
free adjacency graph, it ensures that every node keeps track of adjacent nodes, which is a
sort of index itself. In fact, this is what we found to be a key strength of Neo4j and graph
databases. One fact that was noticed is that it is important to have indices on at least one of
the properties stated in the WHERE clause in each query for Neo4j. The reason for this is that
if there is no index on any property that is part of the query, Neo4j has a hard time deciding
from where to start the graph traversal. This leads to the graph evaluating all nodes of a given
label, which is very expensive if there are many nodes in the database. The di�erence with
index and without is easier discussed with the following example: In query A.3, none of the
properties in the WHERE clause are indexed. As a result of this Neo4j’s query planner decided
that it needs to traverse all 10,000 companies in the database at the beginning of the queries
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to then filter out the companies that do not fulfill the name constraint specified in the WHERE
clause. This is expensive as the path to and from 10,000 nodes has to be evaluated at the start
of the query. On the other hand, in query A.2 the property deal_id is present in the query
and by utilizing this Neo4j knows to start at that specific deal node which leads to a much
narrower graph traversal and is therefore highly beneficial.

It is also important tomention that the fact that indexing is only used on the id:s in Neo4j
and on the id:s and the foreign keys in MS SQL which might have an impact on the results. If
specific indices were to be used, Neo4j might have performed better than MS SQL for some
specific queries or the performance di�erence might have become even greater in favor of MS
SQL. However, we decided to stay true to a simple model with close to no indices as this was
more realistic than creating arbitrary indices that do not actually exist in the present Lime
CRM system.

5.2.2 Performance
In Lime-CRM there are a few di�erent types of queries that are executed when using their
systems. When using their system to retrieve information, without modifying or creating
new data, the retrieve or select queries are executed in the back-end. These queries could be
categorized into two groups: joining and filtering. Joining is the queries that simply joins
multiple tables on primary and foreign keys and retrieve large amounts of data. Filtering is
the queries that only joins rows in tables with specific data values.

As mentioned in our theory section the key aspects with many tables and multiple nested
relationships are met, indicating that graph databases should perform better than relation
databases for this kinds of CRM systems. However, even when we perform extreme case
complexity queries MS SQL still outperforms Neo4j even though it should perform better
according to the studies conducted by Vicknair et al. [33] and Batra et al. [3]. This indicates
that there might be one or several sources of errors in the benchmarking conducted by us,
which could have had an impact on the result. These potential sources of error are discussed
in section 5.2.5. But, much of the theory is not really backed-up with comparison results they
are just stated. The comparison results that exist are instead queries that performs traversal
queries and other graph-operations that is much more graph-related thanMS SQL, and thus,
in these studies, SQL performs worse than Neo4j.

For example, in [33], it is shown that for queries that are evaluating payload data, meaning
that they need to evaluate the properties of the nodes and not just traverse the graph and find
a pattern, Neo4j performs immensely worse than a SQL database. This is the same result as
was discovered in this thesis, however, the results di�er slightly as the databases used in this
thesis are far larger than the ones used in [33]. A reason for these results is the fact that Lime
CRM is built as a relational database, due to the interface of the system corresponding to large
tables displaying large amounts of data. With this data model, Neo4j is heavily restrained
due to the fact that every query being called in the system needs to evaluate many payload
properties of many nodes. This means that even though the data is heavily connected with
relationships in Lime CRM, the user interface of Lime CRM is built to display large tables
with data that is heavily joined together. As long as the users and the user interface of Lime
CRM operate the system by displaying and navigating in large tables, it is not enough to
make Neo4j perform better than MS SQL just by the fact that the data has deep and many
relationships. To achieve what was observed in other papers, i.e. [33], Lime CRM would
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need to perform more graph operations, such as finding connections between nodes that are
very far apart in the graph structure, e.g. deep graph traversal, or finding specific paths in
the graph instead of returning large amounts of data as it would do in the current state of
Lime CRM. This phenomenon was also observed in the query profiler for Neo4j, where it
was evident that projection of the results took a significant amount of the total query time
whereas in MS SQL, the projection of the results is close to instant.

5.2.3 Caching
It is worth mentioning that Microsoft SQL Server is a paid programwhereas the Neo4j client
that is used is the free ’Community Edition’. If the enterprise edition of Neo4j would be used,
the caching di�erences might have been di�erent as the enterprise edition of Neo4j o�ers
a feature called ’Active Page Cache Warmup’ which records cache profiles by e.g. recording
what data is stored in memory and what data is not present there. This facilitates that the
cache contains some of the regularly queried data on database start up as well. This feature
might have shown even further improval of performance when the queries are cached.

5.2.4 Queries
This section will discuss performance results for the individual queries presented in section
5.1. The discussion will mostly focus on the queries where a significant di�erence in per-
formance can be seen, as it is not equally interesting to evaluate why they are performing
approximately as good. An overall discussion about the di�erences as a whole will be con-
ducted in the rest of section 5.2.

Insertion queries
One interesting result heavily interconnected with indexing is the execution times of the SQL
queries in figure 5.3, where the middle bar plot is an insertion into a table with one index,
the left most bar plot is an insertion query into a table with two indices and the right most
bar plot is an insertion query into a table with four indices. It can clearly be seen that the
fewer indices the table has, the shorter the execution time of insertion queries is for MS SQL.
Having twice as many indices in a table where data is to be inserted results in approximately
three times the execution time. This shows that creating indices on the data is not only
positive, as the insert operations are influenced a lot. However, the execution times for the
insertion queries are so small that the significant increase in execution time for di�erent
amount of indices does not have a noticeable impact on the performance of the system unless
large amounts of data is bulk inserted at once. Overall though, Neo4j performs far worse than
MS SQL. The reason for this performance di�erence is the fact that when insertion is made
in Neo4j, every outgoing relationship from the created node has to be created. In theory, one
could create a node that is completely isolated without any relationships, however, that node
would serve no purpose and therefore all nodes are connected in this benchmark process. To
be able to create relationships to the nodes that the newly inserted node is to be connected
to, the existing nodes have to be found. E.g. in query A.8, the company with id y has to be
found before the relationship between the person to be inserted and the given company can
be made. This is a fairly simple process in that specific query, however, for more complicated
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queries such as A.9 there are several nodes and several relationships to be created for every
insert that is to be made. This is the reason that MS SQL performs so much better for insert
queries, as in MS SQL the associations to other tables are handled by foreign keys so there is
no need to perform expensive look-ups whenever something is to be inserted.

Retrieval queries
QueryA.1. As seen in the left bar plot in figure 5.1, MS SQLperforms significantly worse than
Neo4j for the large database. This is one of the few queries were Neo4j is faster than MS SQL
so it is worth evaluating why this is the case. Firstly, Neo4j strongly benefits from the fact that
some of the focus of this query is on coworkers, which is the entity with the fewest database
entries. The way that Neo4j executes this query is by finding all nodes with the coworker
label and thereafter filtering away all nodes that do not fulfill the condition in the WHERE
clause. After this operation is done, there are approximately 50 coworkers left that fulfill the
condition. From these coworkers, all deals that they are salespersons for are found and the
graph expands one step. Thereafter, all persons that are responsible for these deals are located
by expanding the person relationships from the deals that are already found and lastly the
WORKS_AT relationships from the persons are expanded to find the companies related to these
persons. All of these operations are very cheap and evaluate very few nodes compared to the
size of the complete graph. As explained in section 5.1.3, the time complexity of the queries
are approximately the same order, however, Neo4j on average performed approximately twice
as good for this query, as seen in figure 5.1. In total there are approximately 13,000 database
hits being executed for this query in Neo4j, which is not a lot. However, for MS SQL, the
outlook is completely di�erent. In total, MS SQL evaluates about 100,000 rows for this
query, which is significantly more than Neo4j. The reason for the di�erence in database
operations for these queries is the fact that MS SQL first performs an index scan on the
complete companies table to be able to filter out the companies that fulfill the predicate in
the WHERE clause, which results in 10,000 data reads and it also performs an index seek on
the persons table to find the persons that work at the companies found after the filtering in
the first index scan was done. Thereafter, the given companies are joined with persons to be
able to extract all the data from these rows. After that, a clustered index scan is performed on
the deals table to find those deals whose person_id:s match persons that exists in the data
that has been obtained through joining the companies and persons. This operation performs
50,000 row reads as it has to go through the complete deal table. Already at this point, MS
SQL has performed 5 times the operations of Neo4j, which is very significant. Thereafter,
these obtained deals are joined with coworkers and the data is later extracted. From this
evaluation of the query execution plan, it is clear why Neo4j performs better for this query
than MS SQL. However, MS SQL is not 8 times slower than Neo4j in this query even though
the figures in the execution planmentioned in 5.1.3 indicate this. This ismostly due to the fact
that MS SQL executed several of its operation in parallel whilst Neo4j does all sequentially.

Query A.13. One of the largest di�erences in execution time is presented in figure 5.5,
which makes it interesting to discuss. When observing the query profiler for Neo4j, it can
be seen that the first filtering conditional results in approximately 14,000,000 database hits.
These database hits can be seen as di�erent paths that have to be searched in order to find the
nodes that fulfill the filtering demands. From this number it is apparent how this query takes
a very long time in Neo4j, as 14,000,000 path tries are very performance costly. Furthermore,
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finding all persons that attended a given history results in another 9,000,000 database hits
which also a�ects the performance of the query. The reason for there being so many database
hits for finding nodes in this particular query is the fact that the histories entity which is
being filtered in the query is the entity which has the largest amount of nodes stored in the
database, namely 3,000,000. This makes Neo4j spread into a huge graph, as the particular
query that is being evaluated can not be optimized to create a smaller visit tree for its query.
In total Neo4j needs approximately 36,000,000 database hits to be able to find the result,
whereas MS SQL needs almost half of that, namely 19,000,000 need to be read. As seen from
the previous statement, MS SQL also takes a very long time to execute, but the execution
time of MS SQL is expected due to extensive filtering being a complex and time consuming
operation no matter which database is used. After all, 19,000,000 rows to be read is time
consuming no matter how you look at it. However, as mentioned earlier, the big O notation
for this query, explained in section 5.1.3 indicates that MS SQL should be approximately
12 times faster than Neo4j, which is very close to the actual results, where Neo4j performed
about 10 times worse thanMS SQL for this query. Even thoughMS SQL has to perform three
O(n) operations, these are all done in parallel, whereas the big O for this query in Neo4j is
O(9n). These di�erences indicate that the query in theory should be approximately 9 times
faster in MS SQL, which is very close to the measured results which showed a 10 times faster
execution time for MS SQL.

Query A.5. Another interesting query result worth discussing is the result in the middle
bar plot in figure 5.2. This query presents one of the largest performance di�erences between
Neo4j and MS SQL. After the query planner was analyzed for Neo4j, it was observed that it
is the projection of data that takes most of the execution time of the query. Neo4j is actually
not that slow at finding the nodes where the properties to be returned are stored, however
as mentioned earlier, it is very ine�cient at returning large amounts of data (properties).
The performance in this query is limited due to similar factors to the other queries that are
slow in Neo4j, namely that Neo4j does not have a given start node to start from. Instead, for
this particular query, Neo4j needs to expand all outgoing WORKS_AT relationships to find all
persons working at the companies. Thereafter all ATTENDED relationships from the persons
are expanded to find the histories that these persons attended. This goes on for several steps to
be able to connect all node types and their relationships to be able to retrieve the requested
data. It becomes clear why this is not sustainable in the long run, as the graph just keeps
expanding and expanding with additional relationships. In this query, it becomes apparent
that even though database reads are an indication that is worth noting when evaluating the
performance, it is not the only impactful factor. When comparing the theoretical big O
notation for the databases when this query is executed, there does not seem to be that big of a
di�erence. Neo4j should in theory take approximately twice as long asMS SQL as mentioned
in section 5.1.3 but that is not the case in practice. Instead, one of the reasons that MS SQL
performs so much better for query A.5 is the fact that at least half of the work in MS SQL
is run in parallel during the query execution. So if two tables are to be joined, they are both
evaluated in parallel before the join is conducted. This is not the case in Neo4j, which slows
down the query execution time noticeably. A conclusion that can be made out of this is the
fact that Neo4j is bound to not perform better in the current Lime CRM system due to the
system’s core functionality being built around displaying large amounts of data and the data
is stored in such a way that there is no natural starting point for the Neo4j queries. However,
if Lime were to reevaluate how their CRM system is to be used, or find a potential customer
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that is interested in finding complicated relationships and/or patterns within the stored data,
it might still be possible to utilize a graph database e�ciently.

Query A.2. It is also important to discuss the queries where the databases are similar
in performance to unravel how the di�erent databases perform the given queries. As seen
in figure 5.1, Neo4j and MS SQL are very close performance-wise for query A.2 and query
A.3 for all database sizes. It is interesting that the databases have two completely di�erent
approaches that work approximately equally well as seen in the bar plots. For query A.2
Neo4j finds the deal with the specified id by utilizing an index seek which is very e�cient.
For specific query, the graph traversal is beneficial as the graph does not expand very much,
instead it only goes a few steps in depth, as explained in section 5.1.3. In MS SQL on the
other hand, the approach is very di�erent. Here, the first action that is done is to do a key
look-up to filter out all histories that do not fulfill the WHERE clause. Thereafter, coworkers,
documents and persons are all join in one at a time. These join operations are cheap as they
all perform index seeks that evaluate less than 100 rows to find the given ids that match the
foreign keys available in the previous join. So both databases having very e�cient query plans
for this specific query and are therefore approximately equally e�cient at execution it and
retrieving the data. The execution plan discussed in section 5.1.3 show the same results as the
actual result, namely that MS SQL and Neo4j should perform roughly the same. The small
di�erence observed in the actual result is as mentioned above the fact that MS SQL performs
some of the actions in this particular query in parallel, which makes it slightly faster.

Update queries
Some results worth noting are the execution times in the left and the middle bar plot in
figure 5.4, which represent update queries. In the left picture, representing query A.10 the
results show that Neo4j has a shorter execution time. Even though the execution time of
Neo4j is not that much shorter than the one for SQL Server, it is worth noting that MS SQL
takes a factor of five longer for the left query than for the middle query, whereas Neo4j takes
approximately the same amount of time for both queries. The reason for Neo4j performing
far better compared to SQL in query A.10 is the fact that this query is perfectly constructed
for Neo4j to do well. For the databases to be able to update all deals for a given company,
all connections between that company and its employees has to be found. In Neo4j, this
is simply done by first performing an index seek to find the node with the given id and
thereafter there is only a need to traverse all WORKS_AT relationships going to the specified
company and thereafter all relationships going out of the found Person nodes to find the
deals. This is very cheap as Neo4j lets each node keep an index to all adjacent nodes and there
is only a depth of 2 being traversed. However, in MS SQL, it is an expensive operation to find
all persons that are connected to a given company and thereafter finding all deals connected
to those persons. The reason for this is that index seeks have to be done on the foreign keys
of the deals and the persons table before the data can be updated. Therefore, SQL performs
far worse for this query compared to Neo4j.

However as seen in the middle bar plot in figure 5.4 MS SQL is far more e�cient at
executing update statements that do not contain joins or nested sub queries. The reason for
this is that it only needs to perform one index scan to find the row to be updated whereas
Neo4j needs to find all company nodes and thereafter filter to find the specific node that is
to be updated. The performance di�erence here is due to it being a much faster operation
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to perform an index scan on a fairly small table compared to finding all company nodes in a
graph structure. These particular di�erences are only relevant for this specific benchmarking
setup, namely having no indices on any property other than the id. The performance of MS
SQL would be improved by approximately 91% according to data provided by Microsoft
SQL Server Management Studio when running the query. This is showing that an index
is very important for MS SQL in this particular query. It was tested if Neo4j would also
perform far better with indexing is this case, but the results showed that there was only a
small improvement in execution time. This is indicating that indexing is not as important
for Neo4j as it is for MS SQL for this particular query.

5.2.5 Sources of error
As the results achieved in this thesis show di�erent results than the research conducted by
e.g. Vicknair et al.[33] and Batra et al.[3], it is important to mention factors that might have
impacted the results.

Time measurement methods

Due to us using two di�erent timemeasurementmethods whenmeasuring the execution time
of the two databases under comparison, the gathered results might have been impacted by
this. Even though both execution times measured for the queries correspond to the execution
times displayed in respective o�cial client tool, there is still a possibility that they measure
the time at di�erent points in the execution resulting in potential time di�erences. This
might be part of the explanation to the big standard deviations observed in the queries with
the shortest execution time, such as query A.12.

Heavy usage of string comparisons

As many of the queries used in this benchmark have some aspects of filtering within them, it
is worth having a discussion about the impact this might have had on the results. Firstly, it
needs to be mentioned that it is unknown how the string comparisons of the LIKE method
in Microsoft SQL Server and the regular expression evaluator =~ in Neo4j are implemented.
Due to query A.13 being the query showing the largest execution time di�erence between
the two databases and also being the query with the heaviest usage of the string comparison
methods, this might indicate that the di�erent string comparison methods might have had
an noticeable impact on the queries where heavy filtering was done. In figure 5.6, we evaluate
how the execution time for query A.1 is a�ected by adding more and more regex/string oper-
ators. It can be seen that the percent di�erence in execution time between the two databases
stays approximately constant which indicates that the string comparison methods are similar
in performance. Due to the database used for this test being very small, a small amount of
data is returned by each query which leads to the results not being that a�ected by the data
returned and instead being most a�ected by the string/regex operator evaluation times.
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Standard deviation
It is also worth having a short discussion about the standard deviations of the query execu-
tion times and why they are very significant for some queries. Due to many of the queries
performed in this benchmark being filtering queries, it is natural that filtering queries might
not always find results. This is one of the reasons behind the queries in figure 5.1 having
large standard deviations compared to the execution time itself. As mentioned earlier, these
queries are called 250 times with random values, and some of the executions yield no results
at all. This impacts the execution time significantly and therefore creates a large standard
deviation as there is a noticeable di�erence in execution timewhen returning 100 values com-
pared to none. Furthermore, the query execution times are also dependant on the CPU and
memory usage of the computer, which may be another factor to the di�erences in execution
times as there are many ongoing processes on Lime’s work computers at all times and these
processes might a�ect the execution time of the queries.

Differences between a model and the real system
Due to the fact that the databases used in this thesis do not represent the exact data relation-
ships of the Lime CRM System, it is possible that this had an e�ect on the execution times
measured in this thesis. Moreover, it is hard to conclude results for a complete system based
on only 13 queries. Even though these queries perform common actions in the system and
cover much functionality of the databases, there is far more functionality that has not been
evaluated. Therefore, it is worth mentioning that the di�erence between the 7 entity model
of the CRM system that was used in this benchmark and the real CRM system with far more
entities might be noticeably di�erent in performance.
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Chapter 6

Conclusions

This research aimed to compare the performance of graph databases and relational databases
by exploring key factors that a�ect the execution times of each database. Furthermore, it
was aimed to determine if and when one database technology would perform better than the
other.

Based on the data retrieved from testing, analyzing and comparing the performance in
terms of execution time for 13 queries executed by the databases Neo4j and Microsoft SQL
Server, it can be concluded that Microsoft SQL Server is a far more suitable database to use
for representing Lime’s current CRM-System. It was shown that Neo4j only showed a better
performance than MS SQL for a very small subset of the queries that were benchmarked,
which implies that MS SQL is more e�cient at handling the CRM data.

While the results in this thesis only apply if there are only indices on foreign keys and
primary keys in MS SQL and indices on primary keys only in Neo4j, the results can generally
be applied, however, they might not be very accurate to how the CRM-systems would per-
form during actual run time as the queries with bad performance would be indexed in one
way or another in a real system that is live on the market.

Given the guaranteed performance increase, according to Neo4j, when managing multi-
ple joins, mentioned earlier it was a reasonable assumption to assume Neo4j would perform
better at the more complex and nested join queries. Despite that, the results yielded from
the research conducted indicates that Neo4j performed worse than Microsoft SQL Server
for the majority of queries. Something we observed was that usually when mentioning that
graph databases perform better at multiple joins it is usually also mentioned that Neo4j is
index-free, which makes us believe that when mentioning their superior performance against
relational databases they compare the databases without indexing anything. Naturally, Neo4j
benefits from this as it already has ’built-in’ indices.

As a result of this, our thesis helps improve the knowledge gap that exists in regards to
when graph databases are suitable and when they are not. Our results indicate that it is not
su�cient for the data stored to be highly interconnected to benefit from a graph structure.
Instead, the queries have to be specified in a given way, preferably so that the sub-graph that
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is traversed in a query is narrowed. This means that the graph database is slow in queries
that keep expanding the graph instead of having a narrow starting point and continuously
filtering and expanding at the same time so that the path traversed stays narrow. Of course,
these results are specific for CRM systems. Other data systems might have other uses for
graph databases that cannot be expressed in SQL.

6.1 Future Work
The research conducted in this thesis focused on determining whether graph databases or
relational databases are most suitable for Lime’s CRM-system, which has heavily connected
data but is restricted to displaying tables with data. In the future, it is worth researching if
there are use cases for CRM-systems that are not represented in the current CRM systems
on the market due to the limitation posed by the relational databases that represent the data.
For example, it could be interesting to find whether there is a use for evaluation shortest
paths between two nodes of interest in the graph, or if there is a desire to traverse the graph
recursively. If database operations such as these would be found interesting to CRM users,
this could be realized by having a graph database as a ”slave database” that replicates the
master database but is only used for operations where graph databases are beneficial, such as
operations with graph traversal to an extensive depth. With some knowledge from some Lime
employees we also learned that some systems at Lime actually used elastic search database
which is achieved by adopting NoSQL for these specific cases. That is, when performing
filtering or searching.

Another interesting point that was not evaluated in this thesis but is worth looking into
in the future is the fact that Neo4j mostly utilizes the heap for query executions and state
transitions. Therefore, it could be worth evaluating how Neo4j would handle concurrent
access to a large and very busy CRM system to see if it is realistic to host the database with
Neo4j and what kind of specifications a potential host machine/server would have to have to
be able to handle the heavy memory load.

To further analyze the complexity of database queries, more research has to be done on
the subject. To be able to draw any conclusions at all within this subject, one would have
to perform a large empirical study to evaluate whether the study participants consider the
complexities of the queries to be the same as the results of this thesis show to get real user
input on the perceived complexity di�erences. Lastly, the model used to determine the query
complexity in this thesis could be further improved by analyzing more than separate tokens,
e.g. by conducting analysis on pairs or larger tuples of tokens to evaluate how di�erent tokens
combined a�ect the overall readability of the queries.
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Appendix A

Queries

In all queries below, x and y represent values that exist in the database, or in some cases,
parts of values that exist in the database, e.g. the first three letters of an entity existing in the
database.

A.1 Filter on Coworker and Company
A query that returns all coworkers with a randomized first name that work in a city that
begins with a randomized letter combination.

Cypher

MATCH ( c : Company ) < − [ :WORKS_AT] − ( p : P e r s on ) ,
( d : Dea l ) < − [ : RESPONSIBLE_FOR ] − ( p ) ,
( d ) < − [ : SALESPERSON_FOR] − ( co : Coworker )
WHERE co . name =~ ’ x . * ’ AND c . c i t y =~ ’ x . * ’
RETURN co . name , c . name , c . c i t y
LIMIT 10000 ;

Transact-SQL

SELECT TOP 10000 co . name , c . name , c . c i t y
FROM compan i e s a s c
LEFT JOIN p e r s o n s a s p ON p . company_ id = c . i d
LEFT JOIN d e a l s a s d ON d . p e r s o n _ i d = p . i d
LEFT JOIN cowo rk e r s a s co ON d . c owo r k e r _ i d = co . i d
WHERE co . name LIKE ’ x % ’ AND c . c i t y LIKE ’ y%
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A.2 Filter on History and Deal
A query returning all histories that are of type ’Call’, that occurred before a specific date and
that are part of the deal with the specified id.

Cypher

MATCH ( d : Dea l ) < − [ : PART_OF] − ( h : H i s t o r y ) ,
( h ) < − [ :ATTACHED_TO] − ( doc : Document ) ,
( h ) < − [ :ATTENDED] − ( c : Coworker ) ,
( h ) < − [ :ATTENDED] − ( p : P e r s on )
WHERE d . i d = x AND h . t y p e = ’ Ca l l ’
AND h . d a t e < ’ y ’
RETURN h . da t e , c . name , h . t ype , p . name , doc . d e s c r i p t i o n
LIMIT 10000 ;

Transact-SQL

SELECT TOP 10000 h . da t e , c . name , h . t ype , p . name , doc . d e s c r i p t i o n
FROM d e a l s AS d
LEFT JOIN h i s t o r i e s AS h ON h . d e a l _ i d = d . i d
LEFT JOIN documents AS doc on h . document _ id = doc . i d
LEFT JOIN p e r s o n s AS p ON h . p e r s o n _ i d = p . i d
LEFT JOIN cowo rk e r s AS c ON h . c owo r k e r _ i d = c . i d
WHERE d . i d = x AND h . t y p e = ’ Ca l l ’
AND h . d a t e < ’ y ’ ;

A.3 Filter on Deal and Company
A query returning all deals above the given probability at a company beginning with the
given letter combination.

Cypher

MATCH ( p : P e r s on ) − [ : RESPONSIBLE_FOR ] − > ( d : Dea l ) ,
( p ) − [ :WORKS_AT] − > ( c : Company )
WHERE d . p r o b a b i l i t y > x AND c . name =~ ’ y . * ’
RETURN p . name , p . ema i l , p . phone , d . name , c . name
LIMIT 10000 ;

Transact-SQL

SELECT TOP 10000 p . name , p . ema i l , p . phone , d . name , c . name
FROM pe r s o n s AS p
LEFT JOIN d e a l s AS d ON p . i d = d . p e r s o n _ i d
LEFT JOIN compan i e s AS c ON p . company_ id = c . i d
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A.4 Filter on Deal then Transfer

WHERE d . p r o b a b i l i t y > x AND c . name LIKE ’ y % ’ ;

A.4 Filter on Deal then Transfer
A query that filters all deals containing a given word, selects all histories that are part of
those deals and then returning all persons that are part of those histories.

Cypher

MATCH ( co : Coworker ) − [ : SALESPERSON_FOR] − > ( d : Dea l ) ,
( d ) < − [ : RESPONSIBLE_FOR ] − ( p1 : P e r s on )
WITH d . i d a s d _ i d
WHERE d . name =~ ’ x . * ’ OR p1 . name =~ ’ x . * ’ OR co . name =~ ’ x . * ’
MATCH ( h : H i s t o r y ) − [ : PART_OF] − > ( d e a l : Dea l { { i d : d _ i d } } ) ,
( h ) < − [ :ATTENDED] − ( p2 : P e r s on )
RETURN COLLECT( DISTINCT p2 . name ) , p2 . ema i l
LIMIT 10000 ;

Transact-SQL

SELECT TOP 10000 p1 . name , p1 . em a i l
FROM pe r s o n s AS p1
LEFT JOIN h i s t o r i e s AS h1 ON h1 . p e r s o n _ i d = p1 . i d
WHERE h1 . i d IN (

SELECT h2 . i d
FROM h i s t o r i e s AS h2
WHERE h2 . d e a l _ i d IN (

SELECT d3 . i d
FROM d e a l s AS d3
LEFT JOIN p e r s o n s AS p2 ON d3 . p e r s o n _ i d = p2 . i d
LEFT JOIN cowo rk e r s AS co ON d3 . c owo r k e r _ i d = co . i d
WHERE d3 . name LIKE ’ x % ’ OR
p2 . name LIKE ’ x % ’ OR co . name LIKE ’ x % ’

)
)
GROUP BY p1 . name , p1 . ema i l ;

A.5 Filter on History
A query returning all deals with the specified history type.

Cypher

MATCH ( d : Dea l ) < − [ : PART_OF] − ( h : H i s t o r y ) ,
( h ) < − [ :ATTENDED] − ( co : Coworker ) ,
( h ) < − [ :ATTENDED] − ( p : P e r s on ) ,
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( p ) − [ :WORKS_AT] − > ( c : Company )
WHERE h . t y p e = ’ x ’
RETURN h . da t e , co . name , h . t ype , p . name , c . name , d . name
LIMIT 10000 ;

Transact-SQL

SELECT TOP 10000 h . da t e , co . name , h . t ype , p . name , c . name , d
. name

FROM h i s t o r i e s AS h
LEFT JOIN d e a l s AS d ON h . d e a l _ i d = d . i d
LEFT JOIN cowo rk e r s AS co ON h . c owo r k e r _ i d = co . i d
LEFT JOIN p e r s o n s AS p ON h . p e r s o n _ i d = p . i d
LEFT JOIN compan i e s AS c ON p . company_ id = c . i d
WHERE h . t y p e = ’ x ’ ;

A.6 Filter on Deal and Coworker
A query returning all deals above a given probability for the coworker that is responsible for
the deal with the highest probability in the system.

Cypher

MATCH ( d : Dea l ) < − [ : SALESPERSON_FOR] − ( co : Coworker )
WITH co . i d a s id , d . p r o b a b i l i t y a s prob
ORDER BY d . p r o b a b i l i t y DESC LIMIT 1
MATCH ( c : Coworker { { i d : i d } } ) − [ : SALESPERSON_FOR] − > ( d e a l : Dea l )
WHERE d e a l . p r o b a b i l i t y > x
RETURN d e a l . name , d e a l . v a l u e , d e a l . p r o b a b i l i t y , c . name
LIMIT 10000 ;

Transact-SQL

SELECT TOP 10000 d . name , d . v a l u e , d . p r o b a b i l i t y , co . name
FROM d e a l s AS d
LEFT JOIN cowo rk e r s AS co ON d . c owo r k e r _ i d = co . i d
WHERE co . i d IN (

SELECT TOP 1 co2 . i d
FROM d e a l s a s d2
LEFT JOIN cowo rk e r s AS co2 ON d2 . c owo r k e r _ i d = co2 . i d
ORDER BY d2 . p r o b a b i l i t y DESC

) AND d . p r o b a b i l i t y > x
ORDER BY d . p r o b a b i l i t y DESC ;
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A.7 Insert Deal
A query that inserts a new Deal node and creates all outgoing relationships from the newly
created node.

A query that insert a row in the deals table.

Cypher

MERGE ( d : Dea l {
i d : x , name : ’ B e s t Dea l Ever ’ , v a l u e : 1 0 , p r o b a b i l i t y : 0 . 9 99
} )
MERGE ( p : P e r s on { i d : y } )
MERGE ( c : Coworker { i d : y } )
MERGE ( p ) − [ : RESPONSIBLE_FOR ] − > ( d ) < − [ : SALESPERSON_FOR] − ( c ) ;

Transact-SQL

INSERT INTO d e a l s
VALUES ( x , ’ B e s t Dea l Ever ’ , 1 0 , 0 . 9 9 999 , y , y ) ;

A.8 Insert Person
A query that inserts a new Person node and creates all outgoing relationships from the newly
created node.

A query that insert a row in the persons table.

Cypher

MERGE ( p : P e r s on {
i d : x , name : ’ I n s e r t e d Name ’ ,
phone : ’ 0 7 0 1 2 3 4 5 6 7 8 ’ , p o s i t i o n : ’CEO ’ , ema i l : ’ i n s e r t @ i n s e r t . com ’
} )
MERGE ( c : Company { i d : y } )
MERGE ( p ) − [ :WORKS_AT] − > ( c ) ;

Transact-SQL

INSERT INTO p e r s o n s
VALUES ( x , ’ I n s e r t e d Name ’ ,
’ 0 7 0 1 2 3 4 5 6 7 8 ’ , ’CEO ’ , ’ i n s e r t @ i n s e r t . com ’ , y ) ;

A.9 Insert History
Aquery that inserts a newHistory node and creates all outgoing relationships from the newly
created node.

A query that insert a row in the histories table.
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Cypher

MERGE ( h : H i s t o r y {
i d : x , t y p e : ’ Ca l l ’ , n o t e s : ’ Crea t ed ’ , d a t e : ’ 2018 −03 − 15 ’
} )
MERGE ( doc : Document { i d : y } )
MERGE ( d : Dea l { i d : y } )
MERGE ( p : P e r s on { i d : y } )
MERGE ( c : Coworker { i d : y } )
MERGE ( h ) < − [ :ATTACHED_TO] − ( doc )
MERGE ( h ) < − [ : PART_OF] − ( d )
MERGE ( h ) < − [ :ATTENDED] − ( p )
MERGE ( h ) < − [ :ATTENDED] − ( c ) ;

Transact-SQL

INSERT INTO h i s t o r i e s
VALUES ( x , ’ Ca l l ’ , ’ 2 0 18 −03 − 1 5 ’ ,
’ Crea t ed ’ , y , y , y , y ) ;

A.10 Update Deal
A query that updates the deal probability for all deals linked to a specific company.

Cypher

MATCH ( d : Dea l ) < − [ : RESPONSIBLE_FOR ] − ( p : P e r s on ) − [ :WORKS_AT] − > ( c : Company )
WHERE c . i d = x
SET d . p r o b a b i l i t y = 0 . 9 9
RETURN d ;

Transact-SQL

UPDATE d e a l s
SET d e a l s . p r o b a b i l i t y = 0 . 9 9
WHERE d e a l s . p e r s o n _ i d IN (

SELECT p . i d
FROM pe r s o n s a s p
WHERE p . company_ id = x

) ;

A.11 Update Company
A query that updates the company name for a given company.
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A.12 Filter on Company

Cypher

MATCH ( c : Company )
WHERE c . i d = x
SET c . name = ’ Updated ’
RETURN c . name ;

Transact-SQL

UPDATE compan i e s
SET compan i e s . name = ’ Updated ’
WHERE compan i e s . i d = x

A.12 Filter on Company
A query that returns all persons working at a specific company.

Cypher

MATCH ( p : P e r s on ) − [ :WORKS_AT] − > ( c : Company )
WHERE c . i d = x
RETURN p . name , p . ema i l , c . name
LIMIT 10000 ;

Transact-SQL

SELECT TOP 10000 p . name , p . ema i l , c . name
FROM pe r s o n s AS p
LEFT JOIN compan i e s AS c ON p . company_ id = c . i d
WHERE c . i d = x ;

A.13 Filter on multiple entities
A query that utilizes the filtering function in Lime CRM by typing two random data entities
and looking through all possible columns for a potential hit.

Cypher

MATCH ( d : Dea l ) < − [ : PART_OF] − ( h : H i s t o r y ) ,
( h ) < − [ :ATTACHED_TO] − ( doc : Document ) ,
( h ) < − [ :ATTENDED] − ( c : Coworker ) ,
( h ) < − [ :ATTENDED] − ( p : P e r s on )
WHERE ( h . t y p e =~ ’ x . * ’ OR c . name =~ ’ x . * ’ OR
p . name =~ ’ x . * ’ OR doc . d e s c r i p t i o n =~ ’ x . * ’ )
AND ( h . t y p e =~ ’ y . * ’ OR c . name =~ ’ y . * ’ OR
p . name =~ ’ y . * ’ OR doc . d e s c r i p t i o n =~ ’ y . * ’ )
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RETURN h . type , h . da t e , c . name , p . name , doc . d e s c r i p t i o n
LIMIT 10000 ;

Transact-SQL

SELECT TOP 10000 h . t ype , h . da t e , c . name , p . name , doc . d e s c r i p t i o n
FROM h i s t o r i e s AS h
LEFT JOIN d e a l s AS d ON h . d e a l _ i d = d . i d
LEFT JOIN cowo rk e r s AS c ON h . c owo r k e r _ i d = c . i d
LEFT JOIN p e r s o n s AS p ON h . p e r s o n _ i d = p . i d
LEFT JOIN documents AS doc ON h . document _ id = doc . i d
WHERE ( h . t y p e LIKE ’ x % ’ OR c . name LIKE ’ x % ’ OR
p . name LIKE ’ x % ’ OR doc . d e s c r i p t i o n LIKE ’ x % ’ )
AND ( h . t y p e LIKE ’ y % ’ OR c . name LIKE ’ y % ’ OR
p . name LIKE ’ y % ’ OR doc . d e s c r i p t i o n LIKE ’ y % ’ ) ;
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Grafdatabas, den nya lagringsmetoden?

POPULÄRVETENSKAPLIG SAMMANFATTNING Jan Zubac, Victor Winberg

Det finns flertal fall då grafdatabaser överträffar traditionella relationsdatabasers pre-
standa. Är grafdatabaser potentiellt den nya lagringsmetoden vid stor mängd sam-
mankopplad data? Vilka villkor krävs? För att sätta det på prov har vi skapat en
testmiljö med en stor mängd relationsbunden data.

På sistone har grafdatabasers popularitet och
därmed även användningen av dessa databastyper
ökat avsevärt. Några av de hemsidor med störst
besökarantal såsom Facebook och LinkedIn an-
vänder sig i stor utsträckning av grafdatabaser
för att lagra sin data. Anledningen till denna
ökning är det faktum att dagens applikationer
lagrar stora mängder data som är sammankop-
plad med ett flertal relationer. Traditionella
databaser, som lagrar data på ett sätt som kan
liknas vid ett Excel-ark med stora tabeller, sägs
ha svårt att hantera de nya kraven som ställs på
databaser i dagens teknikdrivna samhälle. Stäm-
mer detta eller är de traditionella tabellutformade
databaserna trots allt bättre?
Grafdatabaser använder sig av grafstrukturer

för att lagra data. Dessa strukturer består av
noder som lagrar data och anslutningar som kop-
plar ihop datan.
I vårt examensarbete har vi undersökt om pre-

standan i ett kundhanteringssystem, även kallat
CRM-system, kan förbättras genom att använda
sig av grafdatabasen Neo4j. Dessa typer av system
genomför komplicerade operationer som ställer
höga krav på databaserna som hämtar datan.
Dessa komplicerade operationer gör att det kan
ta uppemot en halv minut innan den efterfrågade

datan kan visas för användaren, vilket är prob-
lematisk i vardagligt bruk. Därmed var det in-
tressant att jämföra två helt olika databastyper
för att se vilken som gjorde bäst ifrån sig och om
det därmed var intressant att övergå till att an-
vända sig av grafdatabaser i CRM-system.
Enligt förespråkare för grafdatabaser är de

snabbare än traditionella databaser i ett flertal
fall. Det CRM-system som vi har gjort stu-
dien på, Lime CRM, använder sig i dagsläget av
databassystemet Microsoft SQL Server och den la-
grade datan uppfyller många av faktorerna som
antyder att grafdatabaser bör briljera i systemet.
Men resultatet visar något helt annat.
De traditionella relationsdatabaserna prester-

ade bättre i de flesta användningsfallen av CRM-
system, trots de påstådda motgångarna som
denna databastyp sägs uppleva vid hantering av
stora mänger väldigt sammankopplad data. En
av anledningarna till detta är att Limes system
inte uppnår en tillräckligt stor databasstorlek för
att grafer ska vara fördelaktiga att använda.
Studiens resultat kan användas för att mer

specifikt undersöka när grafdatabaser överträffar
traditionella databaser, så att företag, specifikt
inom kundhantering, vet vilken databastyp som
hade varit bäst för deras system.
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