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Abstract

Given a discrete dynamical system T , one can ask what the time average of the system will
be, that is, what is the average position of Tn(x) for large n? Birkhoff’s ergodic theorem,
one of the most important results in ergodic theory, says that for an ergodic system on a
finite measure space, the time average will in the limit as n −→ ∞ be equal to the space
average for almost all initial values x. In this thesis we study time averages of a dynamical
system T : [0, 1] −→ [0, 1] that depends on a parameter α. We show that there are values of
α for which the points x, T (x), T 2(x), . . . are equally often in the right half of [0, 1] as on
the left half. We also show that for other values of α, the time average never converges,
but instead oscillates between being concentrated on the left and right halves of the unit
interval. In the process, we also prove the existence of an absolutely continuous invariant
ergodic measure for T .
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Introduction

The study of dynamical systems arose as a way of describing systems in the real world that
evolve in time. Perhaps the first example is Newton’s classical mechanics, which uses differ-
ential equations to describe the movements of the planets. In this case time is continuous,
but if time is seen as discrete, a physical system can be modeled by a difference equation

xn = T (xn−1),

where xn is the state at time n and T is a function describing how the system evolves from
one time point to the next.

In the field of ergodic theory, one is interested in the typical long-term behaviour of dy-
namical systems, not the exact behaviour of every single point. A good example is the
ergodic hypothesis: the time spent by a system in a given region of the state space is pro-
portional to the volume of this space. For example, the hypothesis says that a gas molecule
in a room will be in the left half of the room one half of the time. The hypothesis was
proposed by Boltzmann in 1898 in the context of statistical physics. It turned out not to
be true for all physical systems, although it is often assumed to be true in statistical me-
chanics. A classical theorem in ergodic theory, Birkhoff’s ergodic theorem, gives conditions
under which the ergodic hypothesis is true. Ergodic theory studies statistical properties of
dynamical systems by using measure theory, which generalizes the concepts of size, length
and volume, and which is also the foundation of probability theory.

In this thesis we will study a specific dynamical system, and decide whether or not the
ergodic hypothesis holds. Our system is inspired by another, similar system that has al-
ready been well studied. It is often called the LSV map, because it was introduced by
Liverani, Saussol and Vaienti in [1]. It is a map f : [0, 1] −→ [0, 1] depending on a parameter
α > 0 and defined by

f(x) =

{
x(1 + 2αxα) if 0 ≤ x < 1/2

2x− 1 if 1/2 ≤ x ≤ 1
.

The LSV map is a special type of the so-called Pomeau-Manneville maps, introduced in [2].
These maps have two continuous branches, a fixed point at x = 0 and a derivative which
is greater than 1 except for f ′(0) = 1. The initial reason for studying them in [2] was that
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1. INTRODUCTION 3

they model the behaviour of fluids in the transition to turbulence.

The LSV map has a nonlinear left branch and an expanding linear right branch. A similar
system, but with two nonlinear branches, is the following:

T (x) =

{
x(1 + 2αxα) if 0 ≤ x < 1/2

1− (1− x)(1 + 2α(1− x)α) if 1/2 ≤ x ≤ 1
.

The left branch of T is the same as the left branch of the LSV map. But instead of a linear
right branch, the right branch of T is a mirrored version of the left branch. We will call
T the symmetric LSV map. The main question this thesis will answer is: as T is iterated
many times, will the points x, T (x), T 2(x), . . . be evenly spread out on the unit interval, or
will they be more concentrated on the left or right part of it? We will prove that for some
values of α, they are distributed evenly, but for other α’s, the distribution changes with
time, oscillating between being concentrated on the left part and being concentrated on the
right.

The thesis assumes no knowledge of ergodic theory, or of measure theory. In the next
chapter the basics of measure theory are presented, including the Lebesgue integral. The
next chapter presents the basics of ergodic theory. The fourth chapter is about the existence
and properties of a measure that is preserved by the symmetric LSV map. In the fifth chap-
ter we use the properties of this measure to determine how the points x, T (x), T 2(x), . . . are
distributed.
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Measure theory

The purpose of measure theory is to formalize notions of size, length and volume. Besides
being used in ergodic theory to study dynamical systems, it is the basis of Lebesgue integra-
tion, a generalization of Riemann integration, and of probability theory. A more thorough
reference, as well as proofs of the theorems presented here, can be found in [3] or [4]. We
start with the most natural way to measure the size of a set in Rn, the Lebesgue measure.

2.1 Lebesgue measure
Since we will only study transformations on the real line in this thesis, we will only consider
the Lebesgue measure on R, although it can easily be extended to higher dimensions. We
already know what the natural measure of an interval I is: its length |I|. The Lebesgue
measure of an interval is indeed its length, but it also assigns a measure to more complicated
sets. It does this by approximating a set A with a countable union of intervals. If a sequence
I1, I2, . . . of intervals covers a set A, and if it barely covers anything else, then the measure
of A should approximately be the sum of the lengths of the intervals.

Definition 2.1. The Lebesgue outer measure of a subset A of R is the number

λ∗(A) = inf

{ ∞∑
k=1

|Ik| : A ⊂
∞⋃
k=1

Ik and all Ik are bounded intervals

}
.

Lebesgue outer measure is not exactly the same as Lebesgue measure. The outer measure
is defined for all subsets of R, but we do not actually want to be able to measure every
subset. A property that a measure should satisfy is the following: if we partition a set A
into countably many disjoint subsets, then the measure of A should equal the sum of the
measures of the subsets. This is not true for the Lebesgue outer measure λ∗. The solution
to this problem is to define which sets can and cannot be measured. A set A in R is called
Lebesgue measurable, or just measurable, if for every ε > 0, there is an open set Gε
such that

A ⊂ Gε and λ∗(G \A) < ε.

In other words, the measurable sets are those which can be well approximated by open sets.
Most or all sets in R that we would call “normal” are measurable, including the following
kinds of sets.
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2. MEASURE THEORY 5

Theorem 2.1. The following kinds of sets are Lebesgue measurable:

• R and the empty set

• Open sets

• A countable union of measurable sets

• A countable intersection of measurable sets

• The complement of a measurable set

Now we can define the Lebesgue measure on R.

Definition 2.2. For a Lebesgue measurable set A in R, the Lebesgue measure λ(A) is
defined by λ(A) = λ∗(A).

The main reason for working with the Lebesgue measure, rather than the Lebesgue outer
measure, is that the measure of a disjoint countable union is the sum of the measures of the
sets in the union. This is true for the outer measure only for finite unions.

Theorem 2.2 (Countable additivity). If (An)∞n=1 is a sequence of disjoint measurable sets
in R, then

λ

( ∞⋃
n=1

An

)
=

∞∑
n=1

λ(An).

2.2 General measure spaces
We will in this thesis work with other measures than the Lebesgue measure. When defining
a measure on a general set X, there are two things to consider: which sets do we want to
measure, and how should they be measured?

The collection of measurable sets should satisfy the following: if we can measure a set,
then we can measure its complement, and if we can measure a countable number of sets,
then we can measure their union and their intersection. With these requirements, the mea-
surable sets form a so-called σ-algebra.

Definition 2.3. Let X be a nonempty set. A collection S of subsets of X is called a
σ-algebra if

(1) S is nonempty,

(2) S is closed under complements: if A ∈ S, then Ac ∈ S,

(3) S is closed under countable unions: if {An}∞n=1 is a collection of sets in S, then⋃∞
n=1An ∈ S.

Since S is nonempty, it contains at least one set A. Hence it must also contain Ac and
A ∪ Ac = X, and Xc = ∅. Moreover, properties 2 and 3 imply that S is closed under
countable intersections, because if {An}∞n=1 is a collection of sets in S, then

∞⋂
n=1

An =

( ∞⋃
n=1

Acn

)c
∈ S.
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Two trivial σ-algebras that exist for any X are S = {∅, X} and S = P(X), the power set
of X. According to theorem 2.1, the Lebesgue measurable sets form a σ-algebra in R.

If we have a σ-algebra S on X, and want a σ-algebra SY on a subset Y of X, then we
can easily get it by

SY = {A ∩ Y : A ∈ S}.
In this way, we can define the Lebesgue measurable sets on a proper subset of the real line,
for example an interval.

Given a σ-algebra S, we can define a measure on S. The main property that it should
have is countable additivity, which is what theorem 2.2 guarantees for the Lebesgue mea-
sure.

Definition 2.4. Let S be a σ-algebra on a set X. A function µ : S −→ [0,∞] is called a
measure on S if

(1) µ(∅) = 0,

(2) µ is countably additive: if {An}∞n=1 is a collection of disjoint sets in S, then

µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An).

The triple (X,S, µ) is called a measure space, and the sets in S are said to be mea-
surable. An example of a measure, besides Lebesgue measure, is the Dirac measure δx on
P(X), defined by

δx(A) =

{
1 if x ∈ A
0 otherwise

.

This works for any σ-algebra on any set. Another example is the counting measure c on
P(X), which counts the elements in a set, meaning c(A) is the number of elements in A if
it is finite, and c(A) =∞ if it is infinite.

We say that a measure µ is finite if µ(X) < ∞. If µ(X) = 1, then we call µ a prob-
ability measure. Of course, any finite measure can be made into a probability measure by
rescaling it. If X is a countable union of measurable sets of finite measure, then µ is called σ-
finite. For example, the Lebesgue measure is σ-finite, but the counting measure on R is not.

A set of measure zero is called a null set. In measure theory and ergodic theory, many
results only hold once one discards a null set from the measure space. A property is said
to hold µ-almost everywhere, or just almost everywhere, if all points that do not have the
property are contained in a null set. If µ is a probability measure the property is said to
hold almost surely. When one describes ergodic theory as the study of typical long-term
behaviour, one means behaviour that almost every element in the set follows, in this sense.

Suppose (X,S, µ) is a probability space, and A1, A2, . . . is a sequence of of events in the
space. The event that infinitely many of these events happen can be written

lim sup
n−→∞

An =

∞⋂
n=1

∞⋃
k=n

An.
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An element belongs to this set if and only if it belongs to infinitely many An’s. The Borel–
Cantelli lemma is a well known result about whether or not infinitely many events in a
sequence happen.

Theorem 2.3 (Borel–Cantelli lemma). Let (An)∞n=1 be a sequence of events in a probability
space (X,S, µ).

1. If
∞∑
n=1

µ(An) <∞,

then µ (lim supAn) = 0.

2. If
∞∑
n=1

µ(An) =∞

and the events are independent, then µ (lim supAn) = 1.

Since the Borel–Cantelli lemma was proved, mathematicians have tried to come up
with less restrictive conditions than independence for the second part of the lemma. It is
well-known that the sets do not need to be independent, only pairwise independent. In the
context of dynamical systems T , the sets An are often of a specific kind: a sequence (Bn)∞n=1

is given, and one wants to know if the events An = {Tn(x) ∈ Bn} happen infinitely often.
Independence of the sets An is usually too much to hope for in this case, but it might be
enough that they get closer and closer to independence, that is, µ(An ∩Am)−µ(An)µ(Am)
tends to 0 fast enough as |n −m| gets large. Both the classical Borel–Cantelli lemma and
one of its generalizations will be used in chapter 5.

2.3 The Lebesgue integral
The first way one learns how to integrate a real-valued function is by the Riemann integral.
It is done by approximating the area under a curve with Riemann sums with respect to a
partition of the function’s domain. By contrast, the Lebesgue integral instead partitions
the function’s range. It is defined with respect to a measure, and when that measure is the
Lebesgue measure, the integral is an extension of the ordinary Riemann integral to many
functions that are not Riemann integrable. We will not go into the details of the properties
of the Lebesgue integral in this thesis. We will simply define it, and later use some well-
known properties of it when we need them.

Take a function f : A −→ B as an example, where A and B are intervals on the real line.
Partition B into disjoint intervals B1, B2, . . . , Bn, and set Ak = f−1(Bk) for k = 1, 2, . . . , n.
On each interval Bk, let ak be the smallest number in Bk. For any set S, define the indicator
function

IS(x) =

{
1 if x ∈ S
0 if x /∈ S

.

Then the function

s(x) =

n∑
k=1

akIAk
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approximates f from below, and it is a finite sum of functions that are constant on a subset
of A and zero outside of it. When the sets Ak are measurable, such a function is called a
simple function. We will use approximations by simple functions to define the Lebesgue
integral.

The Lebesgue integral is not defined for all real-valued functions, but only for the so-called
measurable functions. A function f is said to be measurable if the set

{x : f(x) < a}

is measurable for every real number a. One good reason for only considering such functions
can be found in example above, where we approximated the function f by a simple function.
The sets Ak needed to be measurable, and this requires f to be measurable.

For a measurable set A, the integral of an indicator function IA with respect to a mea-
sure µ is defined as ∫

IAdµ = µ(A).

For a simple function, we define the integral as∫ ( n∑
k=1

akIAk

)
dµ =

n∑
k=1

(
ak

∫
IAk

dµ

)
=

n∑
k=1

akµ(Ak).

Simple functions do not have a unique representation as a sum of indicator functions, but
it turns out that the integral does not depend on the representation.

The integral of a non-negative measurable function f is defined by∫
fdµ = sup

{∫
sdµ : s is simple and s ≤ f

}
.

But we would of course like to be able to integrate functions that take on negative values
as well. For an arbitrary measurable function f , split it into f = f+ − f−, where f+(x) =
max(0, f(x)) and f−(x) = max(−f(x), 0). Then f+ and f− are non-negative and we can
define ∫

fdµ =

∫
f+dµ−

∫
f−dµ,

provided both integrals on the right hand side are finite. If so, we say that f is integrable,
otherwise we say that it is non-integrable. The integral of f over a subset A of the measure
space is defined by ∫

A

fdµ =

∫
IA · fdµ.
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Ergodic theory

Ergodic theory uses the tools of measure theory to study statistical properties of dynamical
systems. We start with some background on the theory of dynamical systems not involving
measure theory; for more background on this, see [5]. Then we introduce the ergodic theory
of dynamical systems. More on this can be found in [3].

3.1 Discrete dynamical systems
A discrete dynamical system is a set X together with a transformation T on X, that is, a
mapping T : X −→ X. We should think of T as describing how the points in X move in
discrete time steps. If, for example, a particle in a room is in position x at time 0, then
after one time step it will be at T (x), and after two time steps, it will be at T 2(x), and so
on. The set {x, T (x), T 2(x), . . .} is called the forward orbit of x.

If a point p satisfies T (p) = p, then we call p a fixed point. This is because, once the
orbit reaches p, it will stay there forever. A natural question to ask is: if we start the
system close to a fixed point, will the orbit converge to the fixed point, or will it go away
from it? We will restrict X to being a subset of R, so that we can talk about distances and
use the derivative.

Definition 3.1. A fixed point p is called Lyapunov stable if for all r > 0, there is a δ > 0
such that if |x− p| < δ, then

|T k(x)− p| < r for all k ≥ 0.

A fixed point p is called attracting if p is Lyapunov stable and there is a δ1 > 0 such that
if |x− p| < δ1, then

lim
n−→∞ |T

n(x)− p| = 0.

A fixed point p is called repelling if there is an r1 > 0 such that if x 6= p and |x− p| < r1,
then there is a k ≥ 0 such that

|T k(x)− p| ≥ r1.

Theorem 3.1. Let I be an interval in R and let T be a continuously differentiable function
from and to I. Let p be a fixed point of T .

9
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(1) If |T ′(p)| < 1, then p is attracting.

(2) If |T ′(p)| > 1, then p is repelling.

Note that the theorem says nothing when |f ′(p)| = 1. In this case p is called a neutral fixed
point.

Proof. (1) We will use the mean value theorem to show that, if the initial point is close
enough to p, then it will get closer and closer as we iterate. Pick a δ > 0 such that
|T ′(x)| < λ < 1 if |x− p| < δ, for some λ. Also pick an initial point x ∈ (p− δ, p+ δ).
According to the mean value theorem,

|T (x)− p| = |T ′(ξ)| · |x− p|

for some ξ strictly between x and p (here we used that T (p) = p). Since |T ′(ξ)| < λ,

|T (x)− p| < λ|x− p|.

And since λ < 1, T (x) also lies in the interval (p − δ, p + δ). Now we can repeat the
argument, substituting T (x) for x, which gives

|T 2(x)− p| < λ|T (x)− p| < λ2|x− p|.

Continuing in this way, we get

|Tn(x)− p| < λn|x− p|

for all n ≥ 0. Lyapunov stability follows because λn < 1, and attraction follows
because λn −→ 0 as n −→∞.

(2) Since |T ′(p)| > 1, there is a δ > 0 and a λ such that |T ′(x)| > λ > 1 for all x ∈
(p − δ, p + δ). We can use the same argument as for part 1 to show that, as long as
Tn(x) stays in (p− δ, p+ δ),

|Tn(x)− p| > λn|x− p|.

But this cannot continue forever. At some point λn|x−p| must lie outside (p−δ, p+δ),
and thus p must be repelling.

3.2 Measure-preserving transformations
Let (X,S, µ) be a measure space and let T be a transformation on X. In the field of ergodic
theory, one works with measurable transformations, transformations T such that T−1(A)
is a measurable set whenever A is a measurable set.

Definition 3.2. If T is measurable and µ(A) = µ(T−1(A)) for every measurable set A,
then T is called measure-preserving and µ is called T -invariant.

For a measure-preserving transformation, the measure

µ(T−n(A)) = µ({x : Tn(x) ∈ A})

does not change with time, so the intuition is that, as T acts on all the points in X, the
measure of the points lying in A at a given time is always the same. The following theorem
gives another characterization of measure-preserving systems, which we will find useful in
this thesis.
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Theorem 3.2. A transformation T on a measure space (X,S, µ) is measure-preserving if
and only if ∫

φ ◦ Tdµ =

∫
φdµ

for every µ-integrable function φ : X −→ R.

Proof. For the ’if’-part, take a measurable set A and let φ = IA. Note that IA ◦T = IT−1(A).
If the integrals of IA ◦ T and IA are equal, then

µ(A) =

∫
IAdµ =

∫
IA ◦ Tdµ =

∫
IT−1(A)dµ = µ(T−1(A)).

For the ’only if’-part, we start by proving it for characteristic functions. If T preserves µ,
then for any measurable set A,∫

IAdµ = µ(A) = µ(T−1(A)) =

∫
IT−1(A)dµ =

∫
IA ◦ Tdµ.

By linearity of the integral, the result also holds for all simple functions. For a non-negative
function φ, we use the fact that there exists an increasing sequence (φn)∞n=1 of simple function
converging pointwise to φ. For each of these, we have∫

φndµ =

∫
φn ◦ Tdµ.

Taking limits on both sides, and switching the order of the limit and the integral using the
Monotone Convergence Theorem, we get∫

φdµ =

∫
φ ◦ Tdµ.

For a general µ-integrable function φ, the result holds for the positive and negative parts of
φ separately, and so it holds for φ as well.

3.3 Ergodic transformations
One of the most important concepts in ergodic theory is ergodicity. It captures the notion
of a transformation T : X −→ X that moves X around enough so that you cannot divide
X into two parts and study the system separately on those parts. If there was a proper
subset A of X such that T−1(A) = A, then T restricted to A would be a transformation, as
would T restricted to the complement Ac. Therefore, all there was to know about T should
be possible to learn by studying those two restrictions. Ergodicity means that this cannot
happen, except possibly if A or Ac is a null set.

Definition 3.3. A measure-preserving transformation T is called ergodic if for all mea-
surable sets A, T−1(A) = A implies µ(A) = 0 or µ(Ac) = 0.

Then next theorem gives some different characterizations of ergodicity. It also involves
the concept of recurrence, which we will just briefly explain. A transformation T on a
measure space (X,S, µ) is called recurrent if for every set A of positive measure and almost
every x ∈ A, there is an n > 0 such that Tn(x) ∈ A. There is a famous theorem, called the
Poincaré recurrence theorem, which says that any measure-preserving transformation on a
finite measure space is recurrent. Thus in the finite case, the result below need not mention
recurrence. However, it also covers the σ-finite case, when recurrence is not automatic.
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Theorem 3.3. Let (X,S, µ) be a σ-finite measure space and let T : X −→ X be a measure-
preserving transformation. Then the following are equivalent:

1. T is recurrent and ergodic.

2. For every set A of positive measure, µ(X \
⋃∞
n=1 T

−n(A)) = 0.

3. For every set A of positive measure and for almost every x ∈ X there is an integer
n > 0 such that Tn(x) ∈ A.

4. If A and B are sets of positive measure, then there is an integer n > 0 such that
T−n(A) ∩B 6= ∅.

5. If A and B are sets of positive measure, then there is an integer n > 0 such that
µ(T−n(A) ∩B) > 0.

One of the most important results in ergodic theory is the Ergodic theorem. It comes in
some different forms, but we will use the one proven by Birkhoff. If (X,S, µ) is a probability
space, T is a transformation on X and f is an integrable function, then we can define the
time average

1

n

n−1∑
k=0

f(T k(x))

and the space average ∫
fdµ.

For general transformations, these need not be related, but according to Birkhoff’s ergodic
theorem, if T is ergodic, then the time average actually approaches the space average as
n −→ ∞. In other words, ergodic transformations on a probability space satisfy the ergodic
hypothesis.

Theorem 3.4 (Birkhoff’s Ergodic Theorem). Let (X,S, µ) be a probability space and let T
be a measure-preserving transformation on (X,S, µ). If f : X −→ R is an integrable function,
then the limit

lim
n−→∞

1

n

n−1∑
k=0

f(T k(x))

exists for almost every x ∈ X. Denote this limit by f̃(x). Moreover,∫
X

fdµ =

∫
X

f̃dµ.

If T is ergodic, then for almost every x ∈ X,

lim
n−→∞

1

n

n−1∑
k=0

f(T k(x)) =

∫
X

fdµ.

There is an obvious reason for why non-ergodic transformations cannot satisfy the ergodic
hypothesis. If there is a set A such that µ(A) > 0, µ(Ac) > 0 and T−1(A) = A, then the
orbit of an x ∈ A never reaches Ac, so the time average for f = IAc is zero, and cannot get
close to the space average µ(Ac).
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The symmetric LSV map

The main topic of this thesis is the symmetric LSV map T : [0, 1] −→ [0, 1], depending on a
parameter α > 0 and defined by

T (x) =

{
x(1 + 2αxα) if 0 ≤ x < 1/2

1− (1− x)(1 + 2α(1− x)α) if 1/2 ≤ x ≤ 1
.

Its graph is shown in figure 4.1, for α = 1. (In the future when figures are shown, it will
always be with α = 1, if nothing else is mentioned. It does not really matter, because the
figures will look qualitatively the same if we change α.) It has two fixed points, 0 and 1.
The map is symmetric in the sense that T (1− x) = 1− T (x). The derivative of T is this:

T ′(x) =

{
1 + 2α(α+ 1)xα if 0 ≤ x < 1/2

1 + 2α(α+ 1)(1− x)α if 1/2 < x ≤ 1
.

The fixed points are neutral, i.e. T ′(0) = T ′(1) = 1, so theorem 3.1 cannot tell us anything
about their stability. However, the derivative outside the fixed points is greater than 1, so
they are actually repelling. This means that the system will not behave in an uninteresting
way, that is, it will not simply converge to one of the fixed points. In the next chapter we will
study how the points x, T (x), T 2(x), . . . are distributed along the unit interval. But first, we
will investigate the existence of a certain kind of invariant measures for T , called absolutely
continuous measures. Proving that such a measure exists, and determining what properties
it has, is interesting in its own right, but it will also help us when studying time averages of T .

A measure ν is said to be absolutely continuous with respect to another measure µ,
defined on the same measurable space, if µ(A) = 0 implies ν(A) = 0. According to the
Radon–Nikodym theorem [4], if ν is absolutely continuous with respect to µ and the space
is σ-finite, then there is a measurable function h, called the density of ν, such that

ν(A) =

∫
A

h dµ

for all measurable sets A. We will use a result of Rychlik [6] about the existence of absolutely
continuous invariant measures for certain dynamical systems. Rychlik’s result requires the
transformation to have two important properties, that we define here.

13
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0.5 1

0.5

1

x

T (x)

Figure 4.1: Plot of the function T for α = 1.

Definition 4.1. A transformation T : [a, b] −→ [a, b] is called piecewise expanding if [a, b]
can be partitioned into a finite or countable set of intervals {Ii} such that T is differentiable
on the interior of each Ii, and there is a constant λ > 1 such that |T ′| ≥ λ on the interior
of each Ii.

Definition 4.2. Let f : [a, b] −→ R. The variation V (f) of f is defined as

V (f) = sup

{
n∑
k=1

|f(xk+1)− f(xk)| : a ≤ x1 < x2 < . . . < xn ≤ b

}
.

A function is said to have bounded variation if V (f) < ∞, and the set of functions
f : [a, b] −→ R of bounded variation is denoted BV ([a, b]).

The variation of a function f measures how much a point moves in the vertical direc-
tion as it is moved along the graph of f . If f oscillates a lot, then it will have a large variation.

Now we can state Rychlik’s result.

Theorem 4.1 ([6]). If T is a piecewise expanding transformation with 1/T ′ of bounded
variation, then there exists a T -invariant probability density.

This theorem cannot be directly applied to the symmetric LSV map T , since T ′ = 1 at
the endpoints. What we will instead do is apply it to what is called the induced map on a
subinterval of [0, 1].

4.1 The induced map
The domain of the induced map is the subinterval Y = [a, b] centered around 1/2 that is
shown in figure 4.2. We choose the endpoints such that T (a) = b and T (b) = a. We first



4. THE SYMMETRIC LSV MAP 15

0.5 1

0.5

1

a b

x

T (x)

Figure 4.2: The points a and b that are the endpoints of the interval of the induced map.
They are defined by T (a) = b and T (b) = a.

define the hitting time function R by

R(x) = min{n ∈ Z+ : Tn(x) ∈ Y }.

In words, this is the first positive time n at which Tn(x) belongs to Y . This makes sense for
all x ∈ (0, 1) \ {1/2}, but when x ∈ Y we call it the return time, hence the letter R. Then
we define the induced map F : Y −→ Y by

F (x) = TR(x)(x).

Technically, F (1/2) is not well-defined, so if we want to be precise, then we should take
out 1/2 from Y . The graph of F is shown in figure 4.3. To understand why F looks like
this, we need to look at the graph of T in figure 4.2. First, F (a) = b and F (b) = a, and
R(a) = R(b) = 1. Now let x1 = b. If x ∈ Y is very close to x1, then R(x) = 2 and F (x)
is very close to b. As x decreases, R(x) will keep being equal to 2, and F (x) will decrease
continuously until x reaches a value x2 for which F (x2) = a. For x close to but less than
x2, R(x) = 3 and F (x) is close to b. Decreasing x again, R(x) will keep equaling 3, and
F (x) will decrease until x reaches a value x3 where F (x3) = a. As x approaches 1/2 from
b, there will be infinitely many of these discontinuities xi, and R(x) = i+ 1 on the interval
[xi+1, xi). Write

Ai = [xi+1, xi).

To see that there are infinitely many Ai, we can observe that

lim
x−→1/2+

R(x) =∞.

If there were only finitely many Ai, this limit would be finite. To the left of 1/2 the same
thing happens, giving a corresponding sequence of intervals. So Y has a countable partition
P, such that F is differentiable inside each interval of P.
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Figure 4.3: The graph of the induced map F .

We will now introduce a partition of X \ Y as well, related to P. It will turn out to
be important for two things: to prove that F has an invariant measure which is absolutely
continuous with respect to the Lebesgue measure, and to determine the finiteness of such
a measure for T . Consider just the interval [0, a], as the partition will be mirrored on the
right side of Y . Let

I1 = {x ∈ [0, a) : T (x) ∈ Y } and (4.1)
In+1 = {x ∈ [0, a) : T (x) ∈ In} for n ≥ 1. (4.2)

Then {In}∞n=1 is a sequence of intervals that form a partition of (0, a). By definition,
T (In+1) = In. Moreover, the hitting time of an x ∈ In is R(x) = n. The right endpoints an
of In form a sequence defined by

a1 = a,

an+1 = T−1(an) ∩ [0, a] for n > 1.

This sequence decreases at the rate n−1/α, as the following lemma shows.

Lemma 4.2. Let 0 < x1 < 1/2, let T̂ be the map T restricted to [0, 1/2), and let xn+1 =
T̂−1(xn) for n > 0. Then there are positive constants c1 and c2 such that

c1n
−1/α ≤ xn ≤ c2n−1/α

for all n > 0.

Proof. We begin with the inequality xn ≤ c2n−1/α. The proof of this is mostly the same as
the proof of lemma 3.2 in [1]. Let us use induction. By picking a c2 ≥ x1, the inequality
becomes true for n = 1. Now assume xn ≤ c2n

−1/α. If the inequality does not hold for
n+ 1, then xn+1 > c2(n+ 1)−1/α, implying that

xn = xn+1(1 + 2αxαn+1) > c2(n+ 1)−1/α(1 + 2αcα2 (n+ 1)−1).
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The aim is now to arrive at a contradiction. Combining xn ≤ c2n−1/α with the line above,
we get

n−1/α > (n+ 1)−1/α
(
1 +

2αcα2
n+ 1

)
,

or equivalently, (
1 +

1

n

)1/α

> 1 +
2αcα2
n+ 1

.

Subtracting 1 and multiplying by n+ 1 gives((
1 +

1

n

)1/α

− 1

)
(n+ 1) > 2αcα2 ,

or
(n+ 1)1/α − n1/α

n1/α
(n+ 1) > 2αcα2 . (4.3)

The numerator on the left hand side of (4.3) is of the order n1/α−1. This means there is a
constant K such that (n + 1)1/α − n1/α ≤ Kn1/α−1 for all n ≥ 1. Inserting this into (4.3)
gives

K
n+ 1

n
> 2αcα2 .

But this is a contradiction if we let c2 ≥ 21/α−1K1/α.

For the inequality c1n
−1/α ≤ xn, we can proceed in the same way as we just did up to

(4.3), except that we substitute c1 for c2 and reverse all inequalities. We then pick a K such
that (n+ 1)1/α − n1/α ≥ Kn1/α−1 for all n ≥ 1. Then

K
n+ 1

n
< 2αcα1 ,

which is a contradiction if c1 ≤ K1/α/2.

It will be convenient to have a short piece of notation for when two sequences grow at
the same rate. If a(n) and b(n) are sequences, and there are positive constants c1 and c2
such that

c1 ≤
a(n)

b(n)
≤ c2,

we write a(n) ∼ b(n). If only the upper bound holds, we write a(n) . b(n), and if only
the lower bound holds, a(n) & b(n). Lemma 4.2 says that an ∼ n−1/α. The lengths of the
intervals In can then be estimated as

|In| = an − an+1 = T (an+1)− an+1 = 2αaα+1
n+1 ∼ (n+ 1)−1−1/α ∼ n−1−1/α. (4.4)

Now on to showing that F satisfies the conditions of theorem 4.1. We can use the chain
rule to show that F is piecewise expanding. If x ∈ Ai (an element of P to the right of 1/2),
then F (x) = T i+1(x). Using the chain rule several times gives

F ′(x) = T ′(T i(x)) · T ′(T i−1(x)) · . . . · T ′(T (x)) · T ′(x).
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Each of these derivatives is at least 1. Moreover, T ′(x) > T ′(b), so F ′(x) > T ′(b) > 1. The
same argument applies to x < 1/2 as well, so F is piecewise expanding. It remains to show
that 1/F ′ has bounded variation. To do this, we will investigate some distortion estimates
of F . A distortion estimate is a bound on how much the derivative of a map can vary within
a certain region, and such estimates are widely used in the study of dynamical systems.

4.2 Bounded distortion and Adler’s condition
The first distortion estimate we present is just a special case of a later one, but we need to
prove the special case first.

Lemma 4.3. The map F satisfies the following bounded distortion estimate: there is a
constant K such that for each I ∈ P and for all x, y ∈ I,

1

K
≤ F ′(x)

F ′(y)
≤ K.

Proof. On I, F = Tn for some n. By the chain rule,

F ′(x) = T ′(x) · T ′(T (x)) · . . . · T ′(Tn−1(x)).

The arguments are the same on the right and to the left of 1/2, so let us assume I lies to
the right of 1/2. For 1 ≤ i ≤ n − 1, T i(x) ∈ In−i, where In−i the interval consisting of
the points in [0, a] whose hitting time to [a, b] is n− i, and which was defined in (4.1)-(4.2).
Write Ik = [ak+1, ak), and note that T (ak+1) = ak. Then since T ′ increases on [0, a],

F ′(x)

F ′(y)
=
T ′(x) · T ′(T (x)) · . . . · T ′(Tn−1(x))
T ′(y) · T ′(T (y)) · . . . · T ′(Tn−1(y))

≤ T ′(x) · T ′(an−1) · T ′(an−2) · . . . · T ′(a1)
T ′(y) · T ′(an) · T ′(an−1) · . . . · T ′(a2)

=
T ′(x) · T ′(a1)
T ′(y) · T ′(an)

≤ sup
s∈[0,1]

T ′(s)2 = (2 + α)2.

Setting K = (2 + α)2, we have proved the lemma.

The next distortion estimate, Adler’s condition, was introduced by Roy Adler to show
the existence of invariant measures for various maps, see for example [7].

Definition 4.3. Let f : [0, 1] −→ [0, 1] be a piecewise C2 function, i.e. there is a finite or
countable partition P of intervals of [0, 1] such that f is twice differentiable on each I ∈ P.
Then f satisfies Adler’s condition if there is a number L <∞ such that

sup
I∈P

sup
x,y∈I

∣∣∣∣ f ′′(x)f ′(y)2

∣∣∣∣ < L.

If f were piecewise linear, then the quantity above would be zero, and the condition
would be easily satisfied. And if f is not too far from being piecewise linear, the condition
should still be satisfied, so Adler’s condition is a measure of how close a function is to being
piecewise linear.
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Lemma 4.4. The map F satisfies Adler’s condition.

Proof. Take an I ∈ P and two points x, y ∈ P. On I, F = Tn for some n, so we need to
calculate the second derivative of Tn. The chain rule and the product rule give

(Tn)′′(x) =

(
n−1∏
i=0

T ′(T i)

)′
(x) =

n−1∑
i=0

(T ′(T i))′(x)

n−1∏
k=0
k 6=i

T ′(T i(x))

=

n−1∑
i=0

T ′′(T i(x))

i−1∏
j=0

T ′(T j(x))

n−1∏
k=0
k 6=i

T ′(T i(x)) =

n−1∑
i=0

T ′′(T i(x))

T ′(T i(x))
F ′(x)

i−1∏
j=0

T ′(T j(x)).

Using this and lemma 4.3,

F ′′(x)

F ′(y)2
=

∑n−1
i=0 T

′′(T i(x))/T ′(T i(x)) · F ′(x) ·
∏i−1
j=0 T

′(T j(x))

F ′(y)2

≤ K ·
∑n−1
i=0 T

′′(T i(x))/T ′(T i(x)) ·
∏i−1
j=0 T

′(T j(x))

F ′(y)

≤ K2
n−1∑
i=0

T ′′(T i(x))

T ′(T i(x))
·
n−1∏
k=i

1

T ′(T k(x))

≤ C
n−1∑
i=0

1

(Tn−i)′(T i(x))

for some constant C, since T ′′/T ′ is bounded. Let us now assume x > 1/2; the situation
would be symmetrical if x < 1/2. The point T i(x) lies in the interval In−i. We have
Tn−i(In−i) = [a, b), so by the mean value theorem, there is a point ξi ∈ In−i such that

b− a = (Tn−i)′(ξi) · |In−i|.

The argument in the proof of lemma 4.3 can just as well be applied to T k on Ik, meaning
that if x, y ∈ Ik, then

1

K
≤ (T k)′(x)

(T k)′(y)
≤ K.

Hence (Tn−i)′(T i(x)) ≥ (Tn−i)′(ξi)/K, and so

F ′′(x)

F ′(y)2
≤ CK

n−1∑
i=0

1

(Tn−i)′(ξi)
= CK

n−1∑
i=0

|In−i|
b− a

≤ CKa

b− a
,

where the last inequality is due to the Ik’s being disjoint intervals in [0, a].

Adler’s condition can be used to prove a stronger version of the bounded distortion in
lemma 4.3. Let

Pn =

{
n−1⋂
k=0

F−k(Ik) : Ik ∈ P for k = 0, 1, . . . , n− 1

}
.

Then Pn consists of the continuity intervals of Fn. The distortion estimate in lemma 4.3
can be improved to hold for Fn on the sets of Pn, independently of n.
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Lemma 4.5. The map F has uniformly bounded distortion: there is a constant M such
that for all n > 0, all I ∈ Pn and all x, y ∈ I,

1

M
≤ (Fn)′(x)

(Fn)′(y)
≤M.

Proof. The first step is to show that (Fn)′′(x)/(Fn)′(x) is bounded on I ∈ Pn. Following
essentially the steps in the proof of lemma 4.4, we get

(Fn)′′(x)

(Fn)′(x)
=

n−1∑
i=0

F ′′(F i(x))

F ′(F i(x))2
·
n−1∏
k=i+1

1

F ′(F k(x))
.

We have shown that F is piecewise expanding, so F ′(F k(x)) ≥ λ for some λ > 1. This and
Adler’s condition gives

(Fn)′′(x)

(Fn)′(x)
≤ L

n−1∑
i=0

1

λn−1−i
< L

∞∑
k=0

1

λk
=

Lλ

1− λ
.

Using this bound, we have, if x, y ∈ I ∈ Pn,∣∣∣∣log (Fn)′(x)

(Fn)′(y)

∣∣∣∣ = | log |(Fn)′(x)| − log |(Fn)′(y)|| =
∣∣∣∣∫ x

y

(Fn)′′(t)

(Fn)′(t)
dt

∣∣∣∣
≤ sup

∣∣∣∣ (Fn)′′(t)(Fn)′(t)2

∣∣∣∣ · ∣∣∣∣∫ x

y

(Fn)′(t)dt

∣∣∣∣ ≤ Lλ

1− λ
|Fn(x)− Fn(y)|

≤ Lλ

λ− 1
.

This means that
exp

(
− Lλ

λ− 1

)
≤ (Fn)′(x)

(Fn)′(y)
≤ exp

(
Lλ

λ− 1

)
,

proving the lemma.

Using Adler’s condition and bounded distortion, it is easy to prove that 1/F ′ has bounded
distortion, as shown in [8]. Assume I ∈ P and x, y ∈ I. Then because of Adler’s condition
and bounded distortion,∣∣∣∣ 1

F ′(x)
− 1

F ′(y)

∣∣∣∣ = ∣∣∣∣F ′(y)− F ′(x)F ′(x)F ′(y)

∣∣∣∣ ≤ ∫ y

x

|F ′′(s)|
|F ′(x)F ′(y)|

ds =

∫ y

x

|F ′′(s)|
F ′(s)2

· F ′(s)2

|F ′(x)F ′(y)|
ds

≤ LK2|x− y|.

If x ∈ I ∈ P and y ∈ J ∈ P, then because of bounded distortion and the mean value
theorem, ∣∣∣∣ 1

F ′(x)
− 1

F ′(y)

∣∣∣∣ ≤ ∣∣∣∣ 1

F ′(x)

∣∣∣∣+ ∣∣∣∣ 1

F ′(y)

∣∣∣∣ ≤ K|I|
b− a

+
K|J |
b− a

.

Recall how variation was defined:

V (1/F ′) = sup

{
N∑
n=1

∣∣∣∣ 1

F ′(an+1)
− 1

F ′(an)

∣∣∣∣ : a ≤ a1 < a2 < . . . < aN ≤ b

}
.
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Inside of a given interval I ∈ P, the variation can be at most LK2|I|, because of the first of
the two observations above. The second observation means that each interval I ∈ P may also
contribute at most 2K|I|/(b−a) to the total variation through terms |1/F ′(ak)−1/F ′(ak+1)|
where one of ak and ak+1 lies inside I and the other lies outside. Adding the contributions
for each I ∈ P, we get

V (1/F ′) ≤
∑
I∈P

LK2|I|+ 2K|I|
b− a

= LK2(b− a) + 2K.

Here we did not actually need uniformly bounded distortion, but it will be needed later on.

With bounded variation proved, the conditions of Rychlik’s theorem 4.1 are satisfied, and
so F has an invariant probability measure ν, with a density h.

4.3 The density and the Perron–Frobenius operator
Rychlik proved theorem 4.1 by methods of functional analysis, and one of the main tools he
used was the Perron–Frobenius operator, an operator that is commonly used to prove the
existence of invariant measures.

Definition 4.4. Let T be a piecewise expanding transformation. The Perron–Frobenius
operator PT : L1(λ) −→ L1(λ) is defined by

PT f(x) =
∑

y∈T−1(y)

f(y)

|T ′(y)|
.

The Perron–Frobenius operator is sometimes called the transfer operator. The usefulness
of the operator is that PTh = h if and only if h is a T -invariant density. This is well-known,
but let us prove it ourselves. Assume h is a density for the T -invariant measure µ. Then
for all measurable sets E, ∫

E

h(x)dx =

∫
T−1(E)

h(x)dx.

Since T is piecewise expanding, the interval [0, 1] can be partitioned into countably many
intervals A1, A2, . . . (possibly a finite list) with disjoint interiors inside of which T is injective
(if T were not injective on some Ak, then T ′ would have to be zero somewhere in Ak). The
map T can therefore be divided into the maps Tk = T |Ak

, which are injective. Integration
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by the substitution y = Tk(x) now gives∫
E

h(x)dx =

∫
T−1(E)

h(x)dx

=
∑
k

∫
T−1
k (E)

h(x)dx

=
∑
k

∫
T−1
k (E)

h(x)

|T ′(x)|
|T ′(x)|dx

=
∑
k

∫
E∩Tk(Ak)

h(T−1k (y))

|T ′(T−1k (y))|
dy

=
∑
k

∫
E

ITk(Ak)
h(T−1k (y))

|T ′(T−1k (y))|
dy.

This last row is not technically correct, since T−1k (y) does not exist unless y ∈ Tk(Ak). But
we can easily get around this by extending T−1k to being identically zero where it would
otherwise be undefined. The next step is to interchange the sum and the integral. If the
discontinuities of T are finite in number then this is no problem, and if there are infinitely
many, then we can for example use the Monotone Convergence Theorem (see [4]). The
interchange gives ∫

E

(
h(x)−

∑
k

ITk(Ak)
h(T−1k (y))

|T ′(T−1k (y))|

)
dx = 0.

And since the set E can be any measurable set, the integrand has to be identically zero
outside of a null set. Thus

h(x) =
∑
k

ITk(Ak)
h(T−1k (x))

|T ′(T−1k (x))|
=

∑
k

T−1
k (x) exists

h(T−1k (x))

|T ′(T−1k (x))|
=

∑
y∈T−1(x)

h(y)

|T ′(y)|
.

Now we have shown that, if h is a T -invariant density, then PTh = h. For the converse, we
reverse the argument.

The Perron–Frobenius operator will be useful for us, for instance in the proof of the following
lemma, which says that the F -invariant density h is bounded away from 0 and ∞.

Lemma 4.6. There are positive constants c1 and c2 such that c1 ≤ h ≤ c2.

Proof. Rychlik showed in [6] that h has bounded variation, which obviously implies an
upper bound c2. The lower bound is what requires some work from us. The measure ν is a
probability measure, which means that∫ b

a

h(x)dx = 1.

Since h has bounded variation, the set of discontinuities of h is countable (see for example
[9] for a proof of this), hence a Lebesgue null set, and according to Lebesgue’s criterion for
Riemann integrability [3], h is thus Riemann integrable. The integral above can therefore
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be seen as an ordinary Riemann integral. That the integral of h is positive implies there
is a step function S ≤ h that is greater than ε > 0 on some entire interval I, which in
turn means that h(x) > ε on I. So h is bounded from below on I, and the next step is to
somehow extend this to all of Y . We will use the Perron–Frobenius operator for this.

The partition elements of Pn get arbitrarily small, so there is an n and a J ∈ Pn such
that J ⊂ I. Since Fn(J) = Y , also Fn(I) = Y . The measure ν is invariant with respect to
Fn, according to the following calculations, where we use the F -invariance of ν:

ν((Fn)−1(E)) = ν((F−n)(E)) = ν((F−n+1)(E)) = . . . = ν(F−1(E)) = ν(E).

Hence h is a fixed point of PFn , meaning that

h(x) =
∑

y∈F−n(x)

h(y)

|(Fn)′(y)|
.

Since Fn(I) = Y , at least one of these y’s lie in I. We therefore have the lower bound
c1 = ε/ supy∈I |(Fn)′(y)|. Should supy∈I |(Fn)′(y)| =∞, then this would not work, but we
can make sure that the supremum is finite. According to the chain rule,

(Fn)′(y) =

n−1∏
i=0

F ′(F i(y)).

If the closure of some F k(I), 0 ≤ k ≤ n− 1, contains the midpoint 1/2 we have the problem
of unbounded (Fn)′, but then we could actually cut off a piece of F k(I) so that there is
a positive distance between it and 1/2, and so that Fn(I) still equals Y (this is possible
because F k(I) would have to contain infinitely many intervals of F ’s partition P). This can
in turn be achieved by cutting off a piece of I. Thus (Fn)′ becomes bounded on I, and the
lower bound c1 becomes positive.

That h is bounded away from zero can be used to show that F is ergodic with respect
to ν. Assume there is a set A such that ν(A) > 0 and T−1(A) = A. Then the measure
ν1 with density h1 = h · IA is also invariant. To see this, take a measurable set E and set
B = E ∩A and C = Y \A. Then

ν1(F
−1(E)) = ν1(F

−1(B)) + ν1(F
−1(C)) = ν(F−1(B)) + 0 = ν(B) = ν1(B) = ν1(E).

But lemma 4.6 applies to any F -invariant density, meaning that h1 must be bounded away
from zero. If ν(Ac) > 0 it is obviously not, so ν(Ac) = 0, and F is ergodic.

Rychlik’s theorem does not say that the F -invariant density h must be unique, but it is
unique in our case — up to a Lebesgue null set of course. This follows from Birkhoff’s
ergodic theorem. Assume h1 and h2 are both F -invariant densities. Then since F is ergodic
with respect to h1 and h2, the time average must converge to∫

Y

h1(x)φ(x)dx =

∫
Y

h2(x)φ(x)dx

for every function φ that is integrable with respect to both. Now assume there is a set
A with Lebesgue measure λ(A) > 0 such that h1(x) 6= h2(x) for all x ∈ A. Then either
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A ∩ {h1 > h2} or A ∩ {h1 < h2} has positive Lebesgue measure; assume the former. With
B = A ∩ {h1 > h2}, this means that∫

Y

h1(x)IB(x)dx >
∫
Y

h2(x)IB(x)dx,

but this contradicts the line above if we set φ = IB .

Let us summarize the facts about ν.

Theorem 4.7. The measure ν is the unique absolutely continuous F -invariant ergodic mea-
sure, and its density h is bounded away from 0 and ∞.

4.4 Constructing the T -invariant measure
The process of inducing a system on a subset of the domain by using the return time R is
common in ergodic theory, as it is sometimes easier to find an invariant measure ν for the
induced system. There is a standard way of using ν to construct an invariant measure µ of
the original system, which we will follow. It is described by Zweimüller in [10], where µ is
defined in the following way (where we extend ν to X by ν(X \ Y ) = 0):

µ(E) =

∞∑
n=0

ν({R > n} ∩ T−n(E)). (4.5)

If E is a Lebesgue measurable set in X, then

µ(T−1(E)) =

∞∑
n=0

ν({R > n} ∩ T−n−1(E))

=

∞∑
n=1

ν({R > n} ∩ T−n(E)) +

∞∑
n=1

ν({R = n} ∩ T−n(E))

= µ(E)− ν(E ∩ Y ) +

∞∑
n=1

ν({R = n} ∩ T−n(E))

= µ(E)− ν(E ∩ Y ) + ν(F−1(E ∩ Y ))

= µ(E),

proving that µ is T -invariant.

We want to know for which α that µ is finite. First, it follows from the definition of µ
that µ(Y ) = ν(Y ) = 1. Next, let us calculate µ(Ik), where {Ik}∞k=1 is the partition of (0, a)
that was defined in (4.1)-(4.2). Recall that Ak is the interval in P to the right of 1/2 that
has return time k+1. Since T (Ak) ⊂ (0, a), and since R(Ik) = k, we must have T (Ak) = Ik.
Moreover T (Ik+1) = Ik, so Tn(An+k−1) = Tn−1(In+k−1) = Tn−2(In+k−2) = . . . = Ik. This
implies, for n > 0, that

{R > n} ∩ T−n(Ik) ∩ Y =

( ∞⋃
i=n

Ai

)
∩ T−n(Ik) = An+k−1.
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Then

µ(Ik) =

∞∑
n=0

ν({R > n} ∩ T−n(Ik)) =
∞∑
n=1

ν(An+k−1) =

∞∑
n=k

ν(An).

The lower and upper bounds on the density h mean that ν(An) ∼ |An|, and the fact that
T ′ is bounded between 1 and 2 + α means that |An| ∼ |T (An)| = |In| ∼ n−1−1/α. Thus
ν(An) ∼ n−1−1/α, and so

µ(Ik) =

∞∑
n=k

ν(An) ∼
∞∑
n=k

n−1−1/α ∼ k−1/α.

We have

µ(X) = µ(Y ) + 2

∞∑
k=1

µ(Ik) ∼ 1 + 2

∞∑
k=1

k−1/α,

and we can see that µ(X) <∞ if and only if α < 1.

The measure µ is equivalent to the Lebesgue measure λ, by which we mean that µ(A) = 0
if and only if λ(A) = 0. To see this, first assume µ(A) = 0. It makes no difference if 0 or 1
is in A, since they have zero measure, so assume 0, 1 /∈ A. Set B = A \ Y and C = A ∩ Y .
Because µ|Y = ν and ν has a density bounded away from 0, we must have λ(C) = 0. For
B, set E = T−1(B) ∩ Y . Then we have µ(E) = 0, and λ(E) = 0, again because of the
density h. The set E gets mapped to B by T , and T maps Lebesgue null sets to Lebesgue
null sets, meaning that λ(B) = 0. (A function need not map null sets to null sets, but T
does, because it is Lipschitz continuous on the two halves of the unit interval.) Thus every
µ-null set is a Lebesgue null set.

Now assume λ(A) = 0, and set B = A \ Y and C = A ∩ Y . Then µ(C) = 0, again
because of the density h. Set E = T−1(B) ∩ Y . Then T (E) = B (possibly excluding 0 and
1, which are both µ and λ null sets), and since T ′ is strictly positive and λ(B) = 0, λ(E) = 0.
Therefore µ(E) = 0, and the T -invariance of µ gives µ(B) = 0, so µ(A) = µ(B)+µ(C) = 0.
Hence µ and λ are equivalent.

The measure µ is ergodic and recurrent. We can show this using theorem 3.3, which says
that ergodicity and recurrence is equivalent to the statement that if µ(A) > 0, then for
almost every x ∈ X there is an n > 0 such that Tn(x) ∈ A. Take an arbitrary set A of
positive measure. Fix a natural number k, and take an arbitrary point x with R(x) = k.
Then T k(x) ∈ Y . Now assume µ(A ∩ Y ) > 0. We know that F is ergodic with respect to
ν = µ|Y , which means that for µ-almost every y ∈ Y , Fm(y) ∈ A for some m > 0. And
since µ is T -invariant, it is also true that for µ-almost every x with hitting time k, there
is an m > 0 such that Fm(T k(x)) ∈ A ∩ Y , and hence an n > 0 such that Tn(x) ∈ A. If
µ(A∩Y ) = 0, then replacing A with T−1(A)∩Y in the last two sentences again shows that
for µ-almost every x ∈ X with R(x) = k there is an n > 0 such that Tn(x) ∈ A. Because
X \{0, 1, 1/2} is the countable union of the sets {R = k}, the same holds for µ-almost every
x ∈ X.

Let us summarize the facts about µ.

Theorem 4.8. The measure µ defined in (4.5) is T -invariant, ergodic, recurrent and equiv-
alent to the Lebesgue measure. If α < 1 it is finite, otherwise it is infinite.



5

Time averages of the symmetric
LSV map

In this chapter we are going to investigate how the points x, T (x), T 2(x), . . . are distributed
on the unit interval. To make this more concrete, we first introduce the function

φ(x) =

{
−1 if x ≤ 1/2

1 if x > 1/2
,

which indicates if x is in the left or right part of [0, 1]. Then we define the so-called Birkhoff
sums

Sφn(x) =

n−1∑
k=0

φ(T k(x)) (5.1)

and the time averages

Eφn(x) =
Sφn(x)

n
. (5.2)

The time average En is a measure of how much time the orbit of x spends in the left and
right parts of the unit interval. The following theorem is the main result of this chapter,
and of this thesis.

Theorem 5.1.

1. If 0 < α < 1, then Eφn(x) −→ 0 as n −→∞ for Lebesgue-almost every x.

2. If α ≥ 1, then
lim inf
n−→∞ Eφn(x) = −1 and lim sup

n−→∞
Eφn(x) = 1

for Lebesgue-almost every x.

The second item in the theorem says that, if α ≥ 1, then the time average oscillates, but
it says even more. It says that one can find time points N such that the orbit has spent
almost all of its time up to N in the left half of the unit interval, as well as time points
where it has spent almost all of its time in the right half.

26
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Theorem 5.1 has an interesting corollary, involving what are called physical measures. If
a transformation on a probability space is ergodic, then the time average converges to the
space average for almost every initial point. However, there are systems f where, although
the time average does not converge to the space average for almost every x, it does so for
a quite large set of initial points. An f -invariant measure µ is called a physical measure
if there is a set U with positive Lebesgue measure such that for each x ∈ U and each
continuous φ : X −→ R,

1

n

n−1∑
k=0

φ(fk(x)) −→
∫
f dµ.

Every invariant ergodic probability measure which is absolutely continuous with respect to
the Lebesgue measure is physical, since U can be taken to beX minus a null set. An example
of a physical measure which is not absolutely continuous is the Dirac measure δp where p
is an attracting fixed point. Here we can take U to be a small enough interval around p
that every x ∈ U converges to p, making the time average converge to φ(p) =

∫
φdδp. It is

not known exactly which systems have a physical measure, but theorem 5.1 implies that T
has no physical measure if α ≥ 1. For the time average never converges according to the
theorem, which means it certainly cannot converge to any space average. A small detail
here is that φ in the definition of a physical measure is continuous, while in theorem 5.1 it
is not. But this can be easily fixed by modifying the discontinuous φ so that it increases
continuously from −1 to 1 in a small interval around 1/2.

5.1 Simulations
Before trying to prove theorem 5.1, it is a good idea to look at some simulations, and see if
they agree with the theorem. I decided to iterate T a hundred million times and plot the
time average as it evolved, and I did this for nine different values of α: 0.4, 0.6, 0.8, 1, 1.2,
1.4, 1.6, 1.8 and 2. The results are shown in figure 5.1. The x-axis is logarithmic, since the
ups and downs of the time average seem to occur at intervals that get exponentially longer
with time. For all α < 1 the time average does appear to converge, while for α ≥ 1 it does
not, at least not before 108 iterations. Thus the graphs agree with theorem 5.1. Contrast
this with the time average of the LSV map, shown for the same α’s in figure 5.2. Here the
time average always converges, though not to zero.

Let us give a heuristic explanation for why the time average oscillates for the symmet-
ric LSV map T , and why it does not oscillate for the ordinary LSV map. It has to do with
the neutral fixed points 0 and 1. If x lies very close to one of these, then because T ′(x) ≈ 1,
T (x) ≈ x, and the orbit of x will stay close to the fixed point for a long time, which gives
many contributions of the same sign to the time average, enough to substantially change
it. Because of the symmetry of T , the orbit should get close to 0 about as often as it gets
close to 1, causing the time average to go back and forth. As time increases, the orbit
needs to pass closer and closer to the fixed points to cause a noticeable change in the time
average. Apparently, if α < 1, the orbit does not tend to pass close enough to the fixed
points. Regarding the LSV map, 1 is not a neutral fixed point, so it does not counteract
the influence of the neutral fixed point 0.
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Figure 5.1: The time average of T as a function of time for nine different values of α. Note
the logarithmic x-axes.

Figure 5.2: The time average of the LSV map as a function of time for nine different values
of α. Note the logarithmic x-axes.
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5.2 Converging time average
The first part of theorem 5.1, that the time average converges to 0 when α < 1, is quite easy
to prove using the results of the previous chapter. The measure µ is T -invariant, ergodic,
and if α < 1 it is finite, and after rescaling, a probability measure. Obviously φ is also
integrable in this case, so Birkhoffs ergodic theorem (3.4) applies. The only thing left to
prove is that the integral of φ is 0. It seems obvious, since T is symmetric around 1/2, but
we should prove it. It is because µ is symmetric in the sense that µ(A) = µ(1− A), which
in turn is because h(x) = h(1−x). We can use the Perron-Frobenius operator to show this.
Since h is a fixed point of the Perron-Frobenius operator PF , and since F (x) = 1−F (1−x),

h(1− x) =
∑

F (1−x)=y

h(y)

|F ′(y)|
=

∑
F (1−x)=1−y

h(1− y)
|F ′(1− y)|

=
∑

1−F (1−x)=y

h(1− y)
|F ′(y)|

=
∑

F (x)=y

h(1− y)
|F ′(y)|

= PF (h(1− x)).

Thus h(1 − x) is an F -invariant density, and since there is only one, h(x) = h(1 − x) for
Lebesgue-almost every x ∈ Y . The symmetry of µ now follows from how it was constructed.
According to Birkhoff’s ergodic theorem,

Eφn =
1

n

n−1∑
k=0

φ(T k(x)) −→
∫
φdµ = 0

for µ-almost all x ∈ X. And because µ is equivalent to the Lebesgue measure, Eφn −→ 0 for
Lebesgue-almost every x ∈ X as well.

5.3 Oscillating time average
With the case α < 1 taken care of, we will now turn to the case α ≥ 1, and prove the
second part of theorem 5.1, oscillating behaviour of the time average. It is, however, easier
to do this by proving oscillating behaviour for a time average of F . Instead of the function
φ which was used for Eφn , we use the function ψ : Y −→ R defined by

ψ(x) =

{
R(x)− 2 if x ≤ 1/2

−R(x) + 2 if x > 1/2
.

The point of using this function is that it has the same sign as φ, but it weights the argument
according to its return time to Y , so that

ψ(x) =

R(x)−1∑
k=0

φ(T k(x)). (5.3)

Now we define the Birkhoff sums

Sψn (x) =

n−1∑
k=0

ψ(F k(x)),
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and the time averages Eψn (x) = Sψn (x)/n. The notation is perhaps a bit unclear, since it
does not mention F , but it should not cause any confusion. Because of (5.3), the Birkhoff
sums Sφn and Sψn are related in the following way:

Sψn (x) =

n−1∑
k=0

R(Fk(x))−1∑
i=0

φ(T i(F k(x)))

 = Sφm(x),

where m > n. Therefore, if Eψn (x) oscillates, then so does Eφn(x). This is of course only
valid for x ∈ Y , but since almost every orbit of X eventually reaches Y , it is no problem to
restrict x to Y .

The strategy to show oscillating behaviour will be to prove that the individual terms of
Sψn get big enough often enough to single-handedly change the sign of Eψn . More specif-
ically, we will prove that |ψ(Fn(x))| − Sψn (x) > 0 infinitely often, both for Fn(x) > 1/2
and Fn(x) < 1/2, and that this difference becomes very large. We will then show why this
implies that lim inf Eφn = −1 and lim supEφn = 1.

It will turn out to be easier to analyze a modified version of the Birkhoff sums Sψn , where ψ
is replaced by non-negative functions with finite expectation. Firstly, consider replacing ψ
by the return time R, which is equal to |ψ|+ 2. If R(Fn(x)) > SRn (x) infinitely often, then
also |ψ(Fn(x))| > Sψn (x) infinitely often. However, the expectation of the terms of SRn is by
F -invariance equal to the expectation of R, and

E(R) =
∫
Y

R(x)h(x)dx ∼
∫
Y

R(x)dx = 2

∞∑
k=1

∫
Ak

R(x)dx

∼
∞∑
k=1

(k + 1)k−1/α−1 ∼
∞∑
k=1

k−1/α,

so if α ≥ 1, then E(R) = ∞ (recall that the Ak’s are the intervals of the right part of the
partition P). But if we set R to zero if it gets too large, then it will have finite expectation.
More precisely, we define the “cut-off” return times

Rk = R · I{R<ak}
for some numbers ak, so that E(Rk) <∞. The numbers ak can be chosen so that R ◦F k =
Rk ◦ F k almost surely for all but a finite number of k’s. At this point, it is necessary to
divide the calculations according to whether α = 1 or α > 1. First assume the latter; the
former case will be dealt with below. For α > 1 and k > 1, set

ak = kα(log k)q

for some q > α. (For k = 0, 1, we can set ak = 1 for example, or something else finite. Some
of the statements below will only hold for k > 1, but the first two terms will not matter).
Then

ν({R ◦ F k > ak}) = ν({R > ak}) ∼
∞∑

n=dake

ν(An) (5.4)

∼
∞∑

n=dake

n−1/α−1 ∼ a−1/αk =
1

k(log k)q/α
(5.5)
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(dae denotes the smallest integer that is at least as big as a), and so
n−1∑
k=0

ν({R ◦ F k > ak}) ∼
n−1∑
k=2

1

k(log k)q/α
. (5.6)

This series is known to converge when q/α > 1, for the following reason: the primitive func-
tion of 1/(x(log x)q/α) is (log x)1−q/α/(1 − q/α) which goes to 0 as x −→ ∞, and therefore
the integral test implies that the series is convergent.

Now the Borel–Cantelli lemma tells us that with probability 1, R ◦ F k > ak for only a
finite number of k’s. Thus R◦F k = Rk ◦F k for all large enough k almost surely. Therefore,
instead of working with the Birkhoff sums SRn , let us work with the sums

Sn(x) =

n−1∑
k=0

Rk(F
k(x)),

where we avoid the superscript for simplicity. For almost every x ∈ Y there is an n0 such
that R ◦ F k = Rk ◦ F k if k > n0, which means that Sn(x) = SRn (x)− C for some constant
C (depending on x, but not on n) . Hence it suffices to show that Rn ◦ Fn(x)− Sn(x) > 0
infinitely often and that this difference becomes arbitrarily large, since then the constant
C will not matter. For simpler notation, write Xk = Rk ◦ F k. We will first show that the
events

Bn = {Sn < u1E(Sn) < u2E(Sn) < Xn}
with positive probability happen infinitely often, where u1 < u2. This is the reason for
working with sums of finite expectation.

If the events Bn were independent and their measures summed up to infinity, then the
result would follow from the classical Borel–Cantelli lemma. However, the Bn’s are not
independent, so it is necessary to use a generalization of the Borel–Cantelli lemma. We will
use one proven by Petrov.

Theorem 5.2 ([11]). Let µ be a probability measure and let A1, A2, . . . be a sequence of
events satisfying

∑∞
k=1 µ(Ak) =∞. Assume H ≥ 1. If

lim inf
n

n∑
i,j=1

µ(Aj ∩Ai)−Hµ(Ai)µ(Aj)(
n∑
i=1

µ(Ai)

)2 ≤ 0,

then µ(lim supAn) ≥ 1/H.

This is a more general version of a much earlier result from a paper in 1959 by Erdős
and Rényi, in which they proved the special case of H = 1 [12]. For the case H = 1, it
is clear to see that the numerator estimates how close the events Ai and Aj are to being
independent; if all events are pairwise independent, then the numerator will be zero.

Let us first show that
∑
nBn =∞. The expectation of Xn is

E(Xn) ∼
dane∑
k=1

k · ν(Ak) ∼
dane∑
k=1

k−1/α ∼
∫ an

1

x−1/αdx ∼ a−1/α+1
n − 1 ∼ nα−1(log n)q(1−1/α).

(5.7)



5. TIME AVERAGES OF THE SYMMETRIC LSV MAP 32

The expectation of Sn then becomes

E(Sn) =
n−1∑
k=0

E(Xk) ∼
n−1∑
k=1

kα−1(log k)q(1−1/α) ≤
n−1∑
k=1

nα−1(log n)q(1−1/α) (5.8)

= nα(log n)q(1−1/α). (5.9)

The events Bn consist of two separate events,

En = {u2E(Sn) < Xn}

and
Fn = {Sn < u1E(Sn)}.

Moreover, En can be written as En = F−n(Kn), where

Kn = {x ∈ Y : u2E(Sn) < R(x) < an}.

The events En and Fn are unfortunately not independent, but they are close enough, in the
sense of the following lemma.

Lemma 5.3. ν(Bn) ∼ ν(En) · ν(Fn).

Proof. First, note that Sn is constant och each I ∈ Pn. This means that Fn is a union of
elements in Pn. Next, let I ∈ Pn. Because of uniformly bounded distortion, i.e.

1

M
≤ (Fn)′(x)

(Fn)′(y)
≤M

(lemma 4.5), the length of I ∩En can be bounded between two extremes. The one extreme
is that Fn|I is a straight line with some slope t1 on I \ En, and a straight line with slope
Mt1 on I ∩ En, in which case |I ∩ En| = |Kn|/(Mt1). The other extreme is that Fn|I is a
straight line with some slope t2 on I ∩ En, and a straight line with slope Mt2 on I \ En,
meaning |I ∩En| = |Kn|/t2. The slopes t1 and t2 must satisfy |Y |/(M |I|) ≤ t1, t2 ≤ |Y |/|I|.
Therefore,

|Kn| · |I|
M |Y |

≤ |I ∩ En| ≤
M · |Kn| · |I|

|Y |
.

Since these bounds hold for every n and every I ∈ Pn, and since Fn is a union of intervals
in Pn,

|Bn| ∼ |Fn| · |Kn|.

Finally, the F -invariance of ν and the fact that ν(A) ∼ |A| for all measurable sets A imply
that ν(Bn) ∼ ν(En) · ν(Fn).

The next step in order to show that
∑
n ν(Bn) =∞ is then to estimate ν(En) and ν(Fn).

Let us start with the latter. We will use Markov’s inequality, which states that if X is a
non-negative random variable and t > 0, then ν({X > t}) ≤ E(X)/t [4]. It implies that

ν(Fn) = 1− ν({Sn > u1E(Sn)}) ≥ 1− E(Sn)
u1E(Sn)

= 1− 1

u1
.
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If we pick an u1 > 1, then ν(Fn) is bounded away from zero.

The probability ν(En) can be estimated as follows:

ν(En) = ν ({u2E(Sn) < Xn}) ∼
dane∑

k=du2E(Sn)e

ν(Ak) ∼
dane∑

k=du2E(Sn)e

k−1−1/α (5.10)

∼
∫ an

u2E(Sn)

x−1−1/αdx ∼ (u2E(Sn))−1/α − a−1/αn (5.11)

& n−1(log n)−(q−q/α)/α − n−1(log n)−q/α (5.12)

∼ n−1(log n)−(q−q/α)/α. (5.13)

Using lemma 5.3,

n∑
k=1

ν(Bn) ∼
n∑
k=1

ν (Ek) ν(Fk) ≥
(
1− 1

u1

) n∑
k=1

ν (Ek) &
n∑
k=1

k−1(log k)−(q−q/α)/α. (5.14)

If we pick the q such that (q − q/α)/α = 1, then this series diverges as n −→ ∞. There is
enough margin to pick such a q, since the only previous requirement was that q > α.

If α = 1, we modify the calculations by first setting

an = n2.

The aim is still to show that
∑
nBn = ∞, and we do it in basically the same way. It is

the labeled calculations (5.4)-(5.14) that need to be changed, and the rest of the arguments
stay the same. We get

ν({R ◦ F k > ak}) ∼
1

ak
=

1

k2
,

and so
n∑
k=1

ν({R ◦ F k > ak}) ∼
n∑
k=1

1

k2
,

which converges. This again shows that R◦F k = Rk◦F k for all large enough k almost surely.

The expected value of Xn for α = 1 is calculated as

E(Xn) ∼
dane∑
k=1

1

k
∼
∫ an

1

1

x
dx = log an = 2 log n.

Thus the expected value of Sn becomes

E(Sn) =
n∑
k=1

E(Xk) ∼
n∑
k=1

log k ≤ n log n.

Then, reusing the calculations in (5.10)-(5.11),

ν(En) ∼
1

u2E(Sn)
− 1

an
&

1

n log n
− 1

n2
∼ 1

n log n
. (5.15)
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Then
n∑
k=1

ν(Bn) ∼
n∑
k=1

ν (Ek) ν(Fk) ≥
(
1− 1

u1

) n∑
k=1

ν (Ek) &
n∑
k=1

1

n log n
,

which diverges. Now all the differences between the cases α = 1 and α > 1 have been taken
care of.

Let us estimate ν(Bi∩Bj)−Hν(Bi)ν(Bj) for some H. For this, it does not matter if α = 1
or α > 1. According to lemma 5.3, there is a constant c such that ν(Bn) ≥ cν(En)ν(Fn) for
all n. Hence

ν(Bi ∩Bj)−Hν(Bi)ν(Bj) ≤ ν(Ei ∩ Ej)−Hν(Bi)ν(Bj)
≤ ν(Ei ∩ Ej)− c2Hν(Ei)ν(Ej)ν(Fi)ν(Fj).

Since
ν(Fn) ≥ 1− 1

u1
,

we can pick an H big enough that c2Hν(Fi)ν(Fj) ≥ 1. Then we get

ν(Bi ∩Bj)−Hν(Bi)ν(Bj) ≤ ν(Ei ∩ Ej)− ν(Ei)ν(Ej).

The right hand side can be written as

ν(Ei ∩ Ej)− ν(Ei)ν(Ej) =
∫

(IKj
◦ T j) · (IKi

◦ T i)dν −
∫

IKj
dν

∫
IKi

dν,

which, if j > i, is the same as∫
(IKj

◦ T j−i) · IKi
dν −

∫
IKj

dν

∫
IKi

dν.

Kim [13] used a result of Rychlik [6] to show that if T is piecewise expanding and 1/T ′ has
bounded variation, then there are constants C > 0 and 0 < r < 1 such that for all n > 0,
all f ∈ L1(ν) and all φ with bounded variation,∫

(f ◦ Tn) · φdν −
∫
fdν

∫
φdν ≤ Crn‖f‖1 · ‖φ‖BV . (5.16)

Here the BV -norm is defined by ‖φ‖BV = ‖φ‖1 + V (φ), and it can be proven that it really
is a norm. We have ‖IKn

‖1 = ν(Kn) = ν(En) −→ 0 and V (IKn
) = 4 (Kn consists of two

intervals), so the BV -norm becomes:

‖IKn
‖BV = ‖IKn

‖1 + V (IKn
) ∼ 1.

So by (5.16) there exists a C > 0 and an r, 0 < r < 1, such that, if j > i,∫
(IKj

◦ T j−i) · IKi
dν −

∫
IKj

dν

∫
IKi

dν ≤ Crj−iν(Ej).
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Then we get

n∑
i,j=1

ν(Bi ∩Bj)−Hν(Bi)ν(Bj) ≤
n∑

i,j=1

ν(Ei ∩ Ej)− ν(Ei)ν(Ej)

= 2

n∑
i=1

n∑
j=i+1

ν(Ei ∩ Ej)− ν(Ei)ν(Ej) +
n∑
i=1

ν(Ei)− ν(Ei)2

≤ 2

n∑
i=1

n∑
j=i+1

Crj−iν(Ej) +

n∑
i=1

ν(Ei) ≤ 2

n∑
i=1

C
r

1− r
ν(Ei) +

n∑
i=1

ν(Ei)

= D

n∑
i=1

ν(Ei),

where D = 1 + 2Cr/(1− r).

For the numerator in theorem 5.2,(
n∑
i=1

ν(Bi)

)2

≥

(
n∑
i=1

cν(Ei)ν(Fi)

)2

≥

(
n∑
i=1

c
1

1− u1
ν(Ei)

)2

=

(
c

1− u1

)2
(

n∑
i=1

ν(Ei)

)2

.

Hence
n∑

i,j=1

ν(Bi ∩Bj)−Hν(Bi)ν(Bj)(
n∑
i=1

ν(Bi)

)2 ≤ D(1− u1)2

c2
· 1
n∑
i=1

ν(Ei)
−→ 0 as n −→∞.

This proves that theBn’s satisfy the conditions of theorem 5.2, and therefore ν(lim supBn) ≥
1/H > 0.

Although lim supBn does not necessarily have probability 1, we can use ergodicity to show
that something similar to Bn almost surely happens infinitely often. Because F is ergodic,
theorem 3.3 says that for almost every x ∈ Y there is a k > 0 such that F k(x) ∈ lim supBn.
This means that

Sn(x)− Sk(x) < u1E(Sn−k) < u2E(Sn−k) < Xn(x) (5.17)

infinitely often for n > k. Since Sk(x) does not depend on n, this is similar enough to Bn.

Important for theorem 5.1 is that (5.17) happens infinitely often both for Fn(x) > 1/2 and
Fn(x) < 1/2. This can be shown by replacing the eventsBn byBrn = Bn∩{Fn(x) ∈ (1/2, b)}
or by B`n = Bn∩{Fn(x) ∈ (a, 1/2)}, which by the symmetry of F are both half the measure
of Bn. This changes nothing essential, so by the same arguments as for Bn, Brn and B`n
both happen infinitely often with positive probability. Thus (5.17) ν-almost surely happens
infinitely often for both Fn(x) < 1/2 and Fn(x) > 1/2.

Now let us see what this says about Eφn . Take an n where (5.17) happens, and set m =∑n−1
i=0 R(F

i(x)) = SRn (x); this is the m for which Sψn (x) = Sφm(x). Let N = m+R(Fn(x)),
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which for large n is equal to m + Xn(x), and consider EφN (x). Assume ψ(Fn(x)) > 0,
i.e. Fn(x) < 1/2. Then R(Fn(x)) = ψ(Fn(x)) + 2, and by using this and the fact that
Sψn (x) ≥ −SRn (x) + 2n, we get

EφN (x) =
SφN (x)

N
=
Sψn (x) + ψ(Fn(x))

Xn(x) + SRn (x)
≥ −S

R
n (x) + 2n+Xn(x)− 2

Xn(x) + SRn (x)

≥ Xn(x)− SRn (x)
Xn(x) + SRn (x)

= 1− 2SRn (x)

Xn(x) + SRn (x)
= 1− 2(Sn(x) + C)

Xn(x) + Sn(x) + C

≥ 1− 2(Sn(x) + C)

Xn(x) + Sn(x)
,

where C is the number such that SRn (x) = Sn(x) + C for all large enough n. Combining
this with (5.17), we get

EφN (x) ≥ 1− 2(Sn(x) + C)

Xn(x) + Sn(x)
≥ 1− 2(Sn(x) + C)

u2E(Sn−k) + Sn(x)
.

Once u2E(Sn−k) becomes larger than C, the right hand side will be decreasing as a function
of Sn(x). By (5.17), Sn(x) < Sk(x) + u1E(Sn−k), so

EφN (x) ≥ 1− 2(u1E(Sn−k) + Sk(x) + C)

(u1 + u2)E(Sn−k) + Sk(x)
≥ 1− 2u1

u1 + u2
− 2(Sk(x) + C)

(u1 + u2)E(Sn−k)

In conclusion: if (5.17) holds with Fn(x) < 1/2 and a large enough n, then EφN (x) ≥
1− u1/(u1 + u2)− cn, where cn −→ 0. By increasing u2 and n, we can make EφN (x) as close
to 1 as we want. By doing a similar argument for Fn(x) > 1/2, we can in that case also
make EφN (x) as close to −1 as we want. Since (5.17) happens infinitely often with both
Fn(x) < 1/2 and Fn(x) > 1/2, this proves that lim inf Eφn(x) = −1 and lim supEφn(x) = 1
for µ-almost every x. And since µ is equivalent to the Lebesgue measure, this proves theo-
rem 5.1.

We mention a connection with a result from Galatolo, Holland, Persson and Zhang [14].
They investigate growth speeds of Birkhoff sums, and of the maximum process

Mφ
n (x) = max

0≤k≤n−1
φ(T k(x))

for maps T preserving a probability measure µ and non-integrable functions φ:
∫
φdµ =∞.

They study a certain kind of piecewise expanding dynamical systems called Gibbs–Markov
systems — see their paper for the definition. For α ≥ 1, proposition 2.8 in their paper about
Gibbs–Markov systems applies to F , and says that for each ε > 0 and almost all x ∈ Y ,
there is an n0 such that for all n > n0,

nα(log n)−α−ε ≤MR
n (x) < SRn (x) ≤ nα(log n)α+ε.

In particular, since MR
n (x) grows to infinity, R(F k(x)) is greater than all previous terms

infinitely often. We have proven something even stronger for F , namely that R(F k(x))
infinitely often is greater than the sum of all previous terms.
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5.4 Frequency of oscillations
We have shown that the events Cn = {Xn > Sn} happen infinitely often almost surely, but
not how frequently they occur. They may occur quite often, or extremely seldom. The sum∑n
k=1 ICk

(x) counts how many times Ck happens up to time n. A natural hypothesis is that
the number of Ck’s that occur before time n is approximately equal to the expected value
of this sum, or in other words, that we almost surely have∑n

k=1 ICk
(x)

E (
∑n
k=1 ICk

)
=

∑n
k=1 ICk

(x)∑n
k=1 ν(Ck)

−→ 1 as n −→∞. (5.18)

This, unfortunately, seems to be hard to prove. We will therefore content ourselves with
proving it for the events En = {Xn > u2E(Sn)} instead of Cn. This is not as interesting a
result, since it does not show how often oscillations occur, but it is at least an indication
that (5.18) might be correct.

The classical Borel–Cantelli lemma gives a condition for the events in a sequence (An)∞n=1 to
occur infinitely often. When studying dynamical systems, one is often interested in whether
the event Fn(x) ∈ An occurs infinitely often. Assume

∑
n ν(An) = ∞. If Fn(x) ∈ An in-

finitely often almost surely, then (An)
∞
n=1 is called a Borel–Cantelli sequence, BC for short.

If ∑n
k=1 IAk

◦ F k(x)∑n
k=1 ν(Ak)

−→ 1

for almost every x, then (An)
∞
n=1 is called a Strong Borel–Cantelli (SBC) sequence. An

SBC sequence is a BC sequence where we know how often Fn(x) ∈ An. The terms BC
and SBC sequence were introduced by Chernov and Kleinbock in [15]. We have shown
that Kn is a BC sequence (recall that F−n(Kn) = En), but it is also an SBC sequence.
This follows immediately from the following theorem proved by Kim [13]. Just as above,
‖f‖BV = ‖f‖1 + V (f).

Theorem 5.4 ([13]). Let T be a piecewise expanding map with 1/|T ′| of bounded variation.
Assume T has a unique absolutely continuous invariant measure µ with density bounded
away from 0. If (An)∞n=1 is a sequence of sets with

∑
µ(An) = ∞ and ‖IAn‖BV < M for

all n for some M , then (An)
∞
n=1 is an SBC sequence.

The map F satisfies the conditions of the theorem, as do the sets Kn, since Kn is just
two intervals. Hence Kn is an SBC sequence, and therefore we almost surely have∑n

k=1 IEk
(x)∑n

k=1 ν(Ek)
=

∑n
k=1 IKk

◦ F k(x)∑n
k=1 ν(Kk)

−→ 1 as n −→∞.

How fast does the denominator grow? For α > 1 and α = 1 equations (5.13) and (5.15)
respectively give the lower bound ν(En) & n−1(log n)−1, and it is not too hard to show that
& can be replaced by ∼. Thus

n∑
k=1

ν(Ek) ∼
n∑
k=1

1

k log k
∼
∫ n

1

1

x log x
dx = log(log n).

Hence
∑n
k=1 IEk

(x) grows at the very slow rate of log(log n). In other words, En occurs
extremely rarely. A further research topic might be to show this result for Cn instead of
En.
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