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Abstract

Researchers in the field of Galactic Archaeology have entered the era of industrial rev-
olution. Upcoming surveys are planning on observing tens of millions of stars and high
precision and accuracy must be ensured when deriving their stellar parameters and ele-
mental abundances. Unconventional data-driven techniques hold the promise of efficiently
dealing with these vast collections of data while still rendering results of astrophysical value.

The Cannon is a supervised machine learning algorithm implemented to transfer stellar
properties or labels from a dataset of reference to any desired collection of stars. In this
thesis, The Cannon is trained on a set of synthetic spectra generated ab initio and applied
to a sub-set of 1410 FGK-type stars from the Gaia-ESO Survey for a label space of high
dimensionality (Teff , log g, ξ, v sin i and 16 [X/H] abundances, where X is Mg, Na, Ca, Sc,
Si, V, Ti, Mn, Fe, Ni, Cr, Co, Ba, Eu, O and Al). The aforementioned synthetic training
set does not represent a grid of synthetic spectra or a sub-sample of stars with well studied
properties. Instead, we have designed a sophisticated training set predominantly based
on the Bensby catalogue of 714 stars with well measured stellar parameters and elemental
abundances.

The Cannon is indeed very fast, taking an average time of 15 seconds to simultaneously fit
20 labels on one single spectrum after having trained on the model. It succeeds in recovering
the Teff , log g and [Fe/H] stellar parameters with typical deviations of σ[Fe/H] = 0.08 dex,
σTeff = 88 K and σlog g = 0.14 dex in the label offsets with respect to the GES values, as
well as determine 15 elemental abundances within a SNR range spanning from 10 to 300.
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Popular science

Astronomers are time travellers and stars are their time capsules. Such a statement is
particularly symbolic in the field of Galactic Archaeology, where the ultimate goal is to
reconstruct the history of our galaxy by studying in great detail the light radiated from its
stars.

The Milky Way, our galaxy, is a mixture of interacting gas and stars bound together by
gravity, and so, its evolution goes hand in hand with the evolution of these two components.
A key point here is the idea of chemical enrichment. Primordial gas is mainly composed of
hydrogen and helium, but as stars form, heavier chemical elements are produced in their
interiors and injected into the surrounding gas at death. This metal-rich gas will further
clog up into giant clouds, collapse and cool down to produce a new generation of stars
re-initiating the cycle. In addition to this, during its lifetime, the Milky Way has collided
with other galaxies in its vicinity. This makes different enrichment channels even more
complex to unravel, as gas and stars get violently mixed and scattered around. The result
is a plethora of stellar populations with distinct dynamical and chemical imprints, some of
which are preserved in stellar atmospheres and accessible by state-of-the-art observatories.

Our current understanding of the Milky Way classifies it as a spiral galaxy, with a distin-
guishable disk in which the Solar System is embedded. It is in this Galactic disk where
most of the gas and stars are located, allowing us to pursue extensive and precise surveys
of the properties of millions of these stars to disentangle the formation and evolution of
the Milky Way. Among these observable properties we find the temperature of the stellar
atmosphere, related to how bright its surface is, the surface gravity, which gives us an idea
of its pressure structure, and the metallicity of the star, representing the abundance of
heavier elements blocking the radiation emitted from the stellar atmosphere towards our
telescope. These three main stellar parameters along with other element abundances fix
the shape of stellar spectra, i.e. “stellar IDs” containing information about the chemistry
and dynamics of stars.

At this point one might imagine the computational and human efforts required to analyse
data from these large stellar surveys characterising millions of objects. Designed method-
ologies must therefore be effectively automatised. They need to ensure both efficiency when
examining stellar spectra for such large numbers of observed objects, but also high accu-
racy in order to obtain precise enough results to distinguish among the various chemical
enrichment channels. Another significant concern in the study of these massive catalogues
are the theoretical assumptions made when modelling the transferred radiation through
stellar atmospheres. Stellar properties change at different depths of the atmospheres in
very convoluted ways. Only a simplified model of the real astrophysical phenomena can
be constructed, sometimes in strong disagreement with one another even when the same
stars are examined.



Here, an algorithm called The Cannon is implemented to cast some light upon these issues.
The Cannon is a machine-learning code, meaning that it “learns” to relate spectra with
stellar properties by optimizing purely mathematical functions within a dataset of reference
and then applies such functions to any test set of interest. This is a data-driven approach as
it does not contain any astrophysical assumptions and is extremely fast as the optimized
mathematical expressions can be computationally cheap to calculate. In this work, we
prove the scientific value of this method when substituting the reference set by artificially
generated stellar spectra with known stellar properties and applied to a test set of 1410
stars observed with a high resolution instrument at the Very Large Telescope (VLT) of the
European Southern Observatory (ESO, Chile).
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Chapter 1

Introduction

The ultimate goal in Galactic Archaeology is to unveil the star formation history and
chemical evolution of the Milky Way (MW) by studying the kinematics, ages and elemen-
tal abundances of stars in their current arrangement. The underlying idea is that analysing
spectra of stellar populations with different parameters and abundances can probe different
aspects of the Galaxy.

To reconstruct the chemical history of the MW using elemental abundances, several as-
sumptions have to be taken into account. Chemical enrichment is a natural consequence
of stellar evolution, hence it gradually increases with time. Hydrogen, helium and a few
other light elements are produced in the Big Bang nucleosynthesis, but in general, elements
heavier than hydrogen are synthesised inside stars via nuclear fusion (Burbidge et al. 1957).
Exothermic reactions of the sort generate elements all the way up to 56Fe and are injected
into the interstellar medium (ISM) by winds and supernovae (SNe) at later stages of stel-
lar evolution. New born stars are then born from this enriched medium, producing new
elements that will be further spread into the Galaxy again in a repeated cycle. As a result,
each star-forming region has a unique chemical imprint that can be retained by stellar
atmospheres and passed along to future generations of stars (Freeman & Bland-Hawthorn
2002).

Such is the case of FGK type stars, whose lifetime in the main-sequence can exceed that
of the age of the Milky Way. These stars are still burning hydrogen to helium in their
cores and for this reason, few of them have begun climbing the Red Giant Branch (RGB),
where they experience the first dredge-up mixing. At this stage shallow convective zones
grow and cause substantial mixing of their material, erasing any preserved chemical fossils.
Hence, dwarf stars conserve the chemical make-up of earlier epochs of the protogalactic
cloud. However, identifying these patterns in stellar populations is a much more complex
exercise. One that involves coupling large-scale with small scale astrophysics.

Disentangling the formation of the Milky Way is indeed anchored to the present-day Λ-
Cold Dark Matter cosmological paradigm (ΛCDM). In this picture, baryons form galaxies
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inside CDM over-densities that collapse under the force of gravity into dark matter ha-
los. Structure grows and continues evolving driven by gravitational interactions to create
the vast cosmic web observed nowadays. A MW-like galaxy has hierarchically aggregated
smaller objects along the way, impacting the chemical and thermodynamical state of the
gas, dynamics of its stars and even modifying its size and mass which in turn influence the
star formation rate and its ability to keep the enriched material bound.

Events at large scales are therefore connected to small scale phenomena and vice versa.
For example, the environment and chemistry of dense molecular clouds regulate the stellar
mass of new born stars, which might end up as SNe enriching the ISM. Yet what sets
the span in resulting stellar masses, thus lifetimes, or which specific physical processes are
favoured leading to relevant nucleosynthesis channels is still a mystery. Furthermore, apart
from being subject to a galactic potential, stars suffer from radial and vertical migration
with respect to their cloud of birth. This is due to the presence of permanent sub-structures
like the bar, transient density waves like spiral arms and gravitational encounters by giant
molecular clouds all of which exert a torque on stars and modify their angular momentum.
If the internal distribution of angular momentum is not conserved, much of the dynamical
information, and the fossil chemical gradients are diluted irreversibly (Freeman & Bland-
Hawthorn 2002).

In order to find preserved signatures in such a plethora of stellar populations it is im-
perative to ensure high accuracy and precision in the calculation of abundances, stellar
parameters, distances, positions and proper motions for a statistically significant sample
of stars. Only then can constraints be set on the various chemo-dynamical models. The
measurement of stellar ages also plays an important role now accessible by asteroseismic
surveys, but via isochrone fitting or the [C/N] abundance ratio in giants too. All in all,
for a one to one mapping of the stars to their specific formation sites in the protocloud of
the Galaxy, at least the when (age), where (positions in the sky and distances) and how
(abundances and dynamics) are required.

In this sense, the field has experienced a major improvement with the release of Gaia DR2
(Gaia Collaboration et al. 2018) and further follow-up spectroscopic surveys. Studies can
now complement the five-parameter astrometric solution of unprecedented accuracy with
high resolution ground-based observations providing elemental abundances and radial ve-
locities. That is the case of recent publications by Helmi et al. (2017), Hayes et al. (2018)
and Haywood et al. (2018), who were able to identify metal-poor halo stars in retrograde
orbits with distinct patterns in chemical and dynamical space. These stellar populations
carry potential information on the mass and time of the merger events or “building blocks”
interacting with the Galaxy at its early epochs, i.e. the Gaia-Enceladus or Sequoia accre-
tion events.

The prospect has utterly changed within the last decade where the lack of good measure-
ments is no longer that big of an issue. Nevertheless, piecing together chemo-dynamical
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substructures into one common framework remains challenging. Large spectroscopic sur-
veys indeed contain a huge amount of information, yet they do not come without tremen-
dous effort and time invested in their planning (Jofré et al. 2019; Ruchti et al. 2016;
Lindegren & Feltzing 2013). One of these surveys is known as the Gaia-ESO Public Spec-
troscopic Survey (GES, Randich et al. 2013; Gilmore et al. 2012) and was put together with
the aim of providing one of the first homogeneous catalogues of approximately a hundred
thousand stars with known kinematics and elemental abundances.

Galactic Archaeology has thereupon entered an era of industrial scales. Large spectro-
scopic surveys are regarded as the best ready-to-use products but also face formidable
data reduction and spectral modelling challenges. Considering the great number of stellar
parameters and abundances that have to be derived, pipelines have been developed along
with their corresponding surveys. They are in charge of automatising the most redundant
steps in the process, e.g. background subtraction, barycentre correction, quality selection,
etc. Nevertheless, more efficient pipelines are still required for upcoming surveys, which
hold the promise of characterising tens of millions of stars and therefore need to drastically
reduce the number of synthetic spectra used for spectroscopic analyses (Ness et al. 2018;
Ting et al. 2017). Moreover, many spectroscopists have their own automatised pipeline
tailored on their more traditional experience and optimised to perform in a particular
spectral region, with a custom-made wavelength mask and for certain types of stars. Un-
surprisingly, different research groups can obtain contradictory results for the same stars
stemming from the choice of different assumptions and methodologies. Among most of
the known issues one finds: 1D, LTE model atmospheres, incomplete atomic data and
restricted spectral grids extremely sensitive to the signal-to-noise ratio (SNR) of the data.

An alternative to these physics-based pipelines is presented here. The Cannon (Ness et al.
2015) is a type of supervised machine learning algorithm that analyses stellar spectra
without any input of astrophysically motivated spectral model. It relies, however, on the
existence of a reference dataset with well-known stellar attributes from which information
is transferred to a second dataset by optimising a purely mathematical model. In doing
so, it is exceptionally fast while still meeting the uncertainties in stellar properties quoted
in physics-based approaches. The Cannon differs from other data-driven techniques be-
cause it contains an intrinsic probabilistic spectral model with its own noise prescription
(Casey et al. 2016). This provides a universal scale to, among others, consistently cross-
calibrate spectroscopic surveys with different wavelength coverages, SNRs and resolving
powers given a sub-set of common stars (Ho et al. 2017).

In this thesis, both stellar parameters and elemental abundances are computed for 1410
GES stars, although the approach has been adjusted slightly. Here, the reference set in The
Cannon is replaced by a set of spectra synthesised with Turbospectrum (Plez 2012) and
based on trustworthy stellar parameters and abundances derived in modern publications
(Bensby & Feltzing 2006; Bensby et al. 2014; Battistini & Bensby 2015, 2016; Delgado
Mena et al. 2017; Mishenina et al. 2019; Casali et al. 2019).
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The thesis is structured as follows:

• In Chapter 2 we briefly lay out our current understanding of the structure of the
Milky Way and what can we learn from it by studying the stellar parameters and
elemental abundances of stars in the solar neighbourhood.

• In Chapter 3 we summarize how our pipeline works and inspect some preliminary
results on a sub-set of 39 GES stars.

• In Chapter 4 we discuss the results after validating the pipeline and applying it to
the full 1410 GES set of stars.

• In Chapter 5 we sum up the whole thesis and highlight the main conclusions of the
project.

9



Chapter 2

Scientific background

This chapter deals in more depth with the Milky Way in the context of Galactic Archae-
ology. Its current, coupled, multi-component structure provides fossil information of its
assembly history and evolution. Particularly helpful is understanding the mechanisms that
influenced the formation of the stellar disk, as it appears to be ubiquitous in the local Uni-
verse and the major contributor of baryons in the Galaxy. Investigations addressing other
constituents like the halo and the outermost bulge are favoured by our location in the MW,
i.e. the thinness of the galactic disk. Deprojecting the latter, on the other hand, is fraught
with uncertainty because of interstellar extinction and source confusion. Despite these
disadvantages, being immersed in the galactic disk implies granted access to an extensive
sample of stars in the solar neighbourhood that can be examined with unparalleled detail.
The upcoming sections will follow the scheme listed below:

• Sketch of the different parts of the Milky Way that are observationally distinguish-
able: the thick disk, the thin disk, the in-situ halo and the accreted halo. One can
probe this canonical picture using chemistry, kinematics/dynamics and the spatial
distribution of stars in the Galaxy.

• These observations favour solar neighbourhood stars because of their proximity, but
roughly, two classes of stars are found: dwarfs and giants. The next section is aimed
towards understanding why it is more convenient for us to use dwarfs.

• After agreeing over the objects of interest targeted in this project, a discussion about
the main stellar parameters needed to catalogue stellar spectra is conducted.

• Finally, a brief review of five hand-picked elements will be given in order to under-
stand how we can interpret abundance plots.
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2.1 The canonical Milky Way

Within the classical picture of the Milky Way, four constituents are identified which prob-
ably formed at different stages of its evolution: the thin disk, the thick disk, the bulge and
the halo. We are of course ignoring the dark matter halo for the purpose of this project.
In this work we have a more observational perspective of the field of Galactic Archaeology
and therefore we tend to define these Galactic components in three phase spaces: spatially,
kinematically and chemically.

It is an ongoing debate whether all four regions can be traced as independent entities or
belong to a continuous chain of events within the context of an evolving galaxy. Indeed,
none of these existing frameworks allows to uniquely separate all substructures as there is
significant overlap among the distribution functions in the respective phase spaces. With
that, a quest to find the best tracer that distinguished among them began, pursuing high
resolution studies of a wide range of stellar populations (APOGEE, Majewski et al. 2017,
GALAH, De Silva et al. 2015, GES, Smiljanic et al. 2014, 4MOST, de Jong et al. 2014).

Recent publications involving these vast surveys identify, broadly speaking, four separate
regions with unique chemistry and kinematics (Bland-Hawthorn & Gerhard 2016; Free-
man & Bland-Hawthorn 2002). Figure 2.1 pieces these four regions together in a Toomre
diagram (LHS) and an [α/Fe]− [Fe/H] abundance plot (RHS). The power of the Toomre
diagram is based on the assumption that each Galactic structure has increasing velocity
vectors. Regarding the abundance of α elements, its conclusive power is built on the idea
that since it is a relatively easy parameter to measure, there is direct access to the hopefully
frozen-in-time properties of the Galaxy.

The first and most prominent in terms of number of stars is the Galactic thin disk. The clas-
sical picture of the thin disk explains that it emerged around z ∼ 1 (Mo et al. 1998), when
most of the baryons dissipated into the midplane of the Galaxy and ended up distributed in
a decreasing exponential profile with small vertical scale height of 300 pc and large radial
scale length around 15 kpc (Gilmore & Reid 1983; Bovy & Rix 2013). Thin disk stars are
younger on average, and located within the metallicity range of −0.7 < [Fe/H] < 1. If
placed in the Toomre diagram they appear kinematically cold, with weak radial and vertical
components resulting in a total velocity of below 70 km s−1 with respect to the LSR. They
practically describe near-circular orbits and co-rotate with the disk of the Galaxy with low
velocity dispersion. The thin disk sequence is termed as low-α in modern literature due to
the fact that its stars have lower α-abundances over a wide range of metallicities (RHS of
Figure 2.1).

Closely related to the low-α sequence is the high-α sequence, more traditionally referred
to as thick disk (Bensby et al. 2014). Despite its unclear formation channel (merger-driven
heating of the thin disk, secular heating, radial migration, etc. see Bovy & Rix 2013), the
scientific community acknowledges the existence of a thick disk with larger scale height (∼
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Figure 2.1: Canonical overview of the Milky Way and its main components in (a) a Toomre diagram and
(b) [α/Fe]-[Fe/H] plane. (a) This schematic plot shows how stars are arranged according to their combined
vertical (W ) and radial (U) velocities against their rotational velocity (V ) with respect to the LSR. The
dotted lines represent lines of constant total velocity. (b) Sketch of the [α/Fe] − [Fe/H] space. Credit:
Hawkins et al. (2015).

1 kpc). Early photometric studies supported this claim further suggesting that the thick
disk is less dense, with only 12% of the surface brightness of its thinner sibling, hosting
older stellar populations with a shorter scale length. Thick disk stars are more metal poor
on average, α-enhanced and are governed by hotter kinematics (between orbital velocities
of 100 < V < 200 km s−1).

Finally, we have the halo stars, sparsely spread at predominantly low metallicities ([Fe/H] ≤
−1, RHS of Figure 2.1). Stellar populations in the halo are split in two (Nissen & Schuster
2010). Metal-poor high-α stars are thought to have dissipatively collapsed early on along
with the rest of the Galactic components. The metal-poor low-α sequence is associated to
stars born in an environment separate from the halo and perhaps incorporated later on.
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2.2. Probing the Milky Way with FGK type stars Chapter 2. Scientific background

Both in-situ and ex-situ populations stand out as having the hottest kinematics (above
200 km s−1, LHS of Figure 2.1), with out-weighting U and W velocity components.

It must be mentioned that even though this is the age of data-driven techniques and exten-
sive stellar surveys, our homogeneous characterization of stellar kinematics and chemistry
targeting various patches of sky and different wave bands is still biased towards solar neigh-
bourhood stars. It is by closely observing them that the scientific community has reached
the conclusions above. Challenges to this general description are mainly caused by perturb-
ing the original distribution functions leading to significant overlap in space, kinematics,
and chemistry (Bovy & Rix 2013; Minchev et al. 2015). Specially in the −1 < [Fe/H] < 0.5
metallicity window, where halo, thin and thick disk stars are present. Bensby et al. (2014)
find that the low velocity tail of thick disk stars blends with the high velocity tail of thin
disk stars. To convincingly split their sample between thin and thick disk stars, a com-
bination of stellar ages (Haywood et al. 2018) and α abundances (Adibekyan et al. 2012;
Reddy et al. 2006) is applied. Still, there are old stars that are kinematically cold and
α-enhanced as well as young, kinematically hot, α-depleted ones. The metal-poor end of
the [α/Fe]− [Fe/H] diagram is also a good example of mixture between the disk population
smoothly transitioning to the halo population of stars. Even if there are reasons to believe
that low metallicity, α-rich stars are born in-situ and are responsible for the early chemical
enrichment of the protogalactic thick disk (Hayes et al. 2018), they could in fact be relics
of the last major merger with the Milky Way, the Gaia-Enceladus event (Haywood et al.
2018; Koppelman et al. 2019; Myeong et al. 2019).

2.2 Probing the Milky Way with FGK type stars

The stellar spectroscopy community has often preferred targeting FGK-type stars to tackle
the questions posed in Galactic Archaeology. The reader must be warned that for the pur-
pose of this work, FGK stars will also be referred to as dwarfs or main-sequence stars
(though catalogued K stars can also be giants) and used indistinctly throughout. But this
has not always been the case as giants offer many advantages. Jönsson et al. (2017a,b),
Lomaeva et al. (2019) and Forsberg et al. (2019) perform high resolution spectroscopy on
a large sample of bulge giants with a broad wavelength coverage in the optical. Giants
are brighter and therefore can be observed at higher SNRs for the same resolving power
and exposure times compared to dwarf stars. They are also less affected by attenuation,
so they open up the window towards dusty environments closer to the Galactic centre.

Spectra of giant stars are hard to deal with though. In what follows, a comparison between
these two sorts of stars will be made, emphasising on the convenience of using solar-type
dwarfs.

• FGK type stars have larger effective temperatures, unbinding molecules in their atmo-
sphere. Molecular transitions are problematic in stellar spectra because they increase
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the number of lines and create prominent absorption bands. For particularly cool,
metal-rich giants, gathering a proper selection of absorption lines gets complicated
avoiding both blending and a proper selection of the continuum (even with high
resolution spectrographs). Moreover, a growing number of molecular lines favours
spectral lines to be blended with lines with unknown or uncertain atomic data.

• Unlike giants, dwarfs are located in the main-sequence of the Hertzsprung - Russell
diagram (HRD), still burning hydrogen to helium in their cores surrounded by a
shallow convective zone. Consequently they have not experienced heavy mixing of
the inner material processed by thermonuclear burning and the surface material, and
thus faithfully preserve the chemical composition of their birth environments.

• Dwarf stars are characterised by a higher surface gravity (log g > 3.5 dex), reinforc-
ing the continuum opacity and therefore decreasing the strength of the absorption
line at stake. This keeps weak lines in their linear regime and prevents some deeper
lines from saturating. Saturation is something spectroscopists avoid because it com-
plicates the calculation of the chemical abundances from the profile of absorption
lines. In terms of equivalent widths, the curve of growth mapping is less sensitive
to abundance values. In the context of synthetic spectra, saturation increases the
non-linear behaviour of spectra, making more difficult to model.

• Elemental abundance determination for dwarf stars is differential with respect to
the Sun to reduce systematic errors. Either spectral lines can be compared to the
solar spectrum or one can rely on the accuracy with which abundances and stellar
parameters are determined as well as the completeness of the line list.

• Unfortunately, dwarfs are dimmer than giants. This requires longer exposure times
to reach a high enough SNR for high resolution spectrographs and limits observations
to stars in the vicinity of the Sun.

• If filtered suitably, dwarfs can be placed on the turn-off of the HRD. This, together
with a reliable stellar parameters, enables to derive the age of stars via isochrone
fitting. For giants, spectroscopists rely on the [C/N] abundance ratio if there are no
available asteroseismic measurements.

2.3 Stellar parameters

In this section an explanation of the relevant stellar parameters for our analysis and how
they affect absorption lines is given. Unless specified otherwise, all of the succeeding sec-
tion applies to weak metal lines in FGK-type stars. That is, the strength of a weak metal
line is proportional to the ratio between the line and continuous opacity if the temperature
is more or less constant with optical depth for a given layer of the stellar atmosphere. In
more physical terms, the strength of a line depends on its absorption coefficient and the
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Figure 2.2: Strength of lines as a function of effective temperature and spectral type for a few chemical
species. Credit Kaler (2011).

number of absorbers derived from excitation and ionisation equations, themselves depen-
dent on temperature and gas and electron pressure.

In short, the relation between line strength or equivalent width (EW) of a line and abun-
dances depends on the stellar parameters.

Effective temperature

The effective temperature of a star, Teff , is defined as the temperature of a blackbody
radiatior that would produce the same luminosity as the star does. If stars are considered
blackbody radiators, their luminosity L? is related to their effective temperature by the
Stefan-Boltzmann equation:

Teff =

(
L?

4πσSBR2
?

)1/4

(2.1)

where Teff is the effective temperature at the surface of the star or, for the sake of argu-
ment, in the stellar photosphere, R? is its radius and σSB the Stefan-Boltzmann constant.

The effective temperature heavily controls the placement of the continuum and the strength
of absorption lines from the exponential and power dependencies in the radiative transfer
equations regulating the ionisation and excitation equilibrium as well as the continuum
opacity.
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An increase of EW goes hand in hand with that of temperature because of an increase in
excitation. After reaching its maximum in strength (Figure 2.2), the line weakens as the
continuous opacity of the negative hydrogen ion (H−) starts increasing due to high electron
pressures. A decrease in EW can also be due to the frequent ionisation of absorbers at
high temperatures, specially in the optical where the majority of lines come from neutral
species. Strong lines like the Na D lines depend on the collisional damping constant, which
is a function of the temperature, but are also affected by NLTE effects. The wings of
hydrogen lines are affected by the Stark effect (Gray 2005).

Measurement uncertainties in Teff are typically found to be around 200 - 300 K. If different
methods are available, the errors can be brought down to 50 K (Jofré et al. 2019). It is
also reported that a change of 100 K affects abundances obtained from neutral lines up to
0.1 dex, yet those derived from ionised lines change very little (Jofré et al. 2019).

There are multiple approaches to obtain Teff such as the infrared flux method, excitation
balance using Fe I lines or by fitting the wings of neutral hydrogen lines in the Balmer
series.

Surface gravity

The surface gravity, commonly found in the literature in logarithmic scale as log g, is
the Newtonian gravitational acceleration of the star at its surface assuming it is perfectly
spherical,

g = G
M?

R2
?

(2.2)

where M? is the mass enclosed by R?, the stellar radius, and G is the gravitational constant.
Since stars are astrophysical systems in equilibrium, the gravitational force that binds the
stellar atmosphere with the star is balanced out by the pressure gradient and therefore
log g is directly related to the pressure structure of the stellar atmosphere.

Spectra are not as log g-sensitive as they are Teff-sensitive, so it is a more challenging pa-
rameter to measure spectroscopically. There are three ways to visualise pressure effects.
The first comes from the abundance of absorbers with respect to the continuous opacity.
The second is via the damping coefficient of strong lines and the third is due to pressure de-
pendencies of the Stark effect. For the purpose of this thesis, only the first one is explained.
More information can be found in Gray (2005). The key factor here is the ionisation state
of the elements involved. Not only does the number of absorbers increase with pressure,
but also the number of free electrons provided by the ionised species further affecting the
continuous opacity (H− free-free transitions). If ion or neutral atom lines are in the same
or higher ionisation levels compared to the majority of the elements of the same species,
their lines strengthen when the pressure, thus continuous opacity, lowers down.
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Reported errors of log g do not get better than 0.1 dex, though asteroseismic surveys might
improve these uncertainties by a factor of 10 (Jofré et al. 2019). As expected, surface grav-
ity influences the chemical abundances derived from weak ionised lines more than it does
neutral lines.

There are multiple approaches to obtain log g such as the ionisation balance of the Fe II
to Fe I line ratio, through the wings of strong lines and with asteroseismology.

Metallicity

Metallicity is the third stellar parameter even though it just represents the chemical abun-
dance ratio between iron and hydrogen scaled with respect to the Sun:

[Fe/H] = log

(
NFe

NH

)
?

− log

(
NFe

NH

)
�

(2.3)

where NFe,H is the number density of either iron or hydrogen.

Iron is used as a proxy to represent metals in general, as the number of lines present in
the optical are much more abundant than any other element. However, as we will see later
on, abundances of other elements do not necessarily have to correlate with Fe.

Metallicity is so important because it shapes the overall structure of the stellar atmosphere,
influencing the strength of absorption lines and continuous opacities. High metallicity
implies larger abundances of metallic electron donors resulting in a change in the continuous
absorption through H− (Jofré et al. 2019; Gray 2005).

Microturbulence

It is considered the fourth stellar parameter as it directly affects radiative transfer in stellar
atmospheres and therefore elemental abundance determination. Denoted in the literature
as vmic or ξ, microturbulence is an empirical stellar parameter that refers to turbulent
motion, where the dimensions of the eddies are smaller than the local mean free path of
the photons in the atmosphere.

Microturbulence is the most notable source of line broadening in one dimensional spectral
modelling apart from the thermal Doppler shifts. Both phenomena are analogous in nature,
so it is, effectively, a calibration parameter needed to correct for any excess broadening
with a larger effect the stronger the line is (Jofré et al. 2019; Gray 2005).

Others

Two more stellar parameters or broadening terms are worth mentioning in this thesis.
They are the macroturbulence (vmac) and the projected rotational velocity (v sin i).
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Likewise, vmac describes velocity fields in stellar atmospheres. Yet the turbulence scales
are now large enough to retain the same photon from its creation to its escape from the
star. This parameter wants to account for the simultaneous radial and tangential motions
of macro-cells of gas, but it is very complicated to disentangle it from the effect of stellar
rotation directly from observed spectra. Henceforth, it is common practice to set both
parameters to zero and determine a global broadening term which encompasses them (Jofré
et al. 2019; Gray 2005).

2.4 Chemical abundances

In this section I will divide the periodic table in five groups: light, α, iron-peak, s-process
and r-process elements. The reason for this classification goes back to the diverse nucle-
osynthesis channels and observational features in abundance space. A general picture will
be sketched, paying special attention to the five representative elements chosen in Figure
2.3.

2.4.1 Light elements

Ignoring hydrogen and helium, the most abundant elements in the Universe can be traced
all the way back to the Big Bang nucleosynthesis (e.g. Li, Be, B), but can in fact be
produced by other means such as cosmic ray spallation, dying low mass stars and exploding
massive stars (e.g. C, Na, Al). The element we chose to be a representative light elements
is sodium.

Sodium, Na

Na (first panel of Figure 2.3) is a light odd-Z element mainly produced in the carbon-
burning process. It then gets injected into the ISM predominantly via core-collapse SNe
or SNe Type II (SNII), but also Asymptotic Giant Branch (AGB) stars (Clayton 2003).

As opposed to Al, another odd-Z element which depicts α-like behaviour in the [X/Fe]-
[Fe/H] plane, the [Na/Fe] has an upwards trend at super-solar [Fe/H]. It then takes solar
values at solar metallicities right before slowly increasing at sub-solar metallicities with a
maximum of [Na/Fe] ≈ 0.15 dex at [Fe/H] ≈ −0.6 dex (Adibekyan et al. 2012; Bensby et al.
2014; Reddy et al. 2006). Metal-poor stars after the maximum are depleted in [Na/Fe].
The same trends are found after correcting for NLTE effects.

From Figure 2.3 we observe that a pure chemical analysis shows no hints of the thin-thick
disk dichotomy whatsoever.
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Figure 2.3: [X/Fe]-[Fe/H] plot for the five reference elements. From top to bottom, the catalogues providing
with the data are: Bensby et al. (2014) for Na, Mg, Ni and Ba and Battistini & Bensby (2016) for Eu.
The horizontal and vertical dashed lines indicate solar values of metallicity and [X/Fe].
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2.4.2 α-elements

The α-elements are those elements whose nuclei are composed of integer multiples of he-
lium nuclei, also known as α-particles, e.g. O, Mg, Si, Ca, Ti. Observationally these
elements share a similar behaviour, viewed in Figure 2.4. A plateau extends from very
low metallicities up to [Fe/H] ∼ -0.5 dex, where a gradual decrease or knee towards solar
values at solar metallicities is seen.

The initial flat trend depends on the Initial Mass Function (IMF), which sets the number
of massive stars that will undergo SNII. They are the predominant synthesis channel for
α-elements and their progenitors are short lived (1-10 Myr). As time goes by modulated
by the star formation rate and efficiency of the host galaxy, the aforementioned knee kicks
in with an earlier or more delayed onset of SNe Type Ia (SNIa), which have a lifetime of
a few Gyr and generate mostly iron peak elements, decreasing the [α/Fe] abundance.

The α-trait in Figure 2.4 is better appreciated in the very close solar neighbourhood, at
higher temperatures and in the metallicity bin −0.7 dex ≤ [Fe/H] ≤ −0.35 dex (Fuhrmann
2011; Reddy et al. 2006; Adibekyan et al. 2012; Bensby et al. 2014). The potential gap
suggested by Figure 2.4, however, can be easily washed out by uncertainties. Our reference
light element is magnesium.

Figure 2.4: Abundance plot of [α/Fe] versus [Fe/H]. Top and bottom subplots correspond to different
underlying kinematic criteria used by Robin et al. (2003) and Bensby et al. (2003) respectively. Blue
triangles stand for thick disk stars, red circles for thin disk, magenta squares belong to the halo and green
asterisks and black crosses to the thin-thick disk and thick disk-halo transitions. Credit: Adibekyan et al.
(2012).
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Magnesium, Mg

Mg is a primary alpha element also synthesised in the carbon-burning process of massive
stars ending their lives as a SNII (Clayton 2003).

As a well behaved α element, [Mg/Fe] is reasonably constant up to [Fe/H] ≈ −0.5 dex.
After the knee, there is a general downwards trend to almost solar, continuing practically
flat at [Fe/H] > 0.

Although high [α/Fe] and low [α/Fe] stars are potentially identified as two split populations,
no strict chemical evidence hints towards a separation in the Galactic disk by looking at
Figure 2.3 (Adibekyan et al. 2012; Bensby et al. 2014; Reddy et al. 2006). Moreover,
Adibekyan et al. (2012) and Bensby et al. (2014) claim they find a group of High α Metal
Rich stars dubbed as HAMR around [α/Fe] ≈ 0.17 dex and after a gap at a metallicity
of [Fe/H] ≈ −0.2 dex. On average, they are old stars, but have thin disk kinematics. No
clear gap in metallicity is observed in the second panel of Figure 2.3 either.

2.4.3 Iron-peak elements

Iron-peak elements are thought to follow Fe in lock-step, however, their production sites
are often different than Fe. On that note, they display complex abundance trends evoking
numerous channels of enrichment, not necessarily produced by SNIa (Battistini & Bensby
2015). Elements like Sc, V, Cr, Mn, Co, Ni are iron-peak, among which Ni is plotted in
the third panel of Figure 2.3.

Nickel, Ni

This element is produced in neutron rich environments like SNIa, i.e. via explosive nuclear
burning (Clayton 2003).

Ni goes hand in hand with Fe, though the most exciting feature about the [Ni/Fe] against
metallicity trend is its similarity to [Na/Fe] (with comparatively fainter trends). Both Na
and Ni are controlled by the excess of neutrons in the cores of stars, so it is not surprising
to find a correlation in the [Na/Fe]-[Ni/Fe] plane. In fact, this ratio has been a decisive
tracer to distinguish between high-α and low-α stars in the halo (total space velocity larger
than 180 km s−1, Bensby et al. 2014; Nissen & Schuster 2010).

Other than that, and by strict inspection of the Ni panel in Figure 2.3, Ni appears unper-
turbed by the thin and thick disk division (Reddy et al. 2006).

2.4.4 Neutron capture elements

Nuclear fusion reactions are energetically favorable up to 56Fe. Heavier elements (A > 56)
form from neutron capture reactions (Burbidge et al. 1957), regulated by the density of
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neutrons in the surrounding environments and the cross-section of the isotopes at stake.
Therefore, determining the abundance of these sort of elements is crucial for understanding
their source of neutrons.

Depending on the stability of the isotope, the neutron capture rate can be compared to
β−-decay rates inside atomic nuclei,

n→ p+ e− + νe (2.4)

where a neutron n is captured by a nucleus and turned into a proton p by emitting an
electron neutrino and a β-particle (electron in the case of β−-decay). Thus, an interplay
between neutron capture and β−-decay reactions is set and dependent on the neutron bud-
get, absorption cross-section and stability of nuclei. At this point two main sub-processes
have to be defined: the s-process, where the isotope β−-decays due to slow neutron capture
rates; the r-process characterized by a rapid build up of neutrons with respect to decaying
reactions. No clear distinction between slow and rapid neutron capture processes can be
made as both mechanisms contribute to the overall abundance of heavier elements. The
last two panels in Figure 2.3 represent barium and europium, two neutron-capture elements
primarily produced by the s- and r-processes respectively:

s-process: Barium, Ba

Produced by low- and intermediate-mass stars in the AGB phase of stellar evolution. It
dominates for lighter elements above mass number A > 60. The magic numbers N = 50,
82, 126 cause a pile up in the abundance of stable nuclei at A = 90, 138, 208 (elements in
the valley of stability) as their neutron capture cross-sections are small, bottlenecking the
production of heavier elements.

Ba is a neutron capture element 83% of which is produced by s-processes (Delgado Mena
et al. 2017 and references therein), thus it is often used as reference in abundance de-
termination of neutron capture elements. From the Ba panel in Figure 2.3, an overall
under-abundance throughout [Fe/H] is observed. Perhaps a gradual rising trend with
metallicity towards solar values is appreciated, only to fall very smoothly at higher metal-
licities (Bensby et al. 2014). Delgado Mena et al. (2017) find more pronounced features,
with steeper declines at super-solar [Fe/H]. The scatter at large [Ba/Fe] abundances is
concentrated around [Fe/H] ≈ 0. These stars have generally hotter Teff , and since Ba is
known to be sensitive to NLTE corrections, Bensby et al. (2014) claim the abundances are
overestimated. Delgado Mena et al. (2017) on the other hand, include these stars in their
analysis as they are well mixed with the rest of stars in the sample.

r-process: Europium, Eu

The r-process is the predominant channel for elements heavier than A > 130 as long as
there is a fast enough intake of neutrons that keep the decay timescales large. Owing to the
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discovery of Eu-abundant, metal-poor stars (Sneden et al. 2008) and recent detections of
compact mergers with their electromagnetic counterparts (Rosswog et al. 2018), the study
of r-process elements has flourished.

The bottom panel in Figure 2.3 suggests that [Eu/Fe] might be connected to SNII explo-
sions as it clearly shows α-like behaviour, i.e. it quickly increases from solar values up to
[Eu/Fe] ≈ 0.5 dex at [Fe/H] ≈ −0.8 dex. For this reason, Eu was thought to be produced
by the same nucleosynthesis channels as α elements (Battistini & Bensby 2016; Delgado
Mena et al. 2017). However, recent work by Rosswog et al. (2018) matching the electroma-
gentic follow-up of the GW170817 neutron star merger to r-process yields indicated that
if not dominant, these events are a major contributor of rapid neutron capture elements.

Furthermore, Eu is the r-process prototype element as only 7% of it is synthesised by slow
neutron capture. Thus, the [Eu/Ba] abundance ratio can be used as a diagnostic of the
neutron-capture process (Battistini & Bensby 2016).
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Chapter 3

Methodology

This project explores the applicability of a machine learning technique to determine stellar
labels for Galactic Archaeology studies. The fundamental interest in this field resides in
deriving elemental abundances from stellar spectra and linking them to a particular nucle-
osynthesis channel. However, this is a process dependent on the coupling between large-
and small-scale physics, difficult to unravel unless accurate and precise measurements of
stellar labels are provided. One way of ensuring high quality investigations is by obtaining
high resolution and high SNR spectra, more easily achieved with a reduced number of stars
following a more specific selection function. Here, we implement our data-driven algorithm,
The Cannon, in the context of large spectroscopic surveys. It presents itself as a solution
that provides results that meet the quality standards even with spectra of lower resolution
or SNR. At the same time it has also proven to be extremely efficient when dealing with
datasets of the size of these spectroscopic surveys. In a nutshell this algorithm transfers
information from a reference sample of stars, or training set, to any dataset of interest,
referred to as test set, by optimizing purely mathematical expressions. Such methodology
is conceptually different to those followed in more traditional investigations in Galactic
Archaeology, so this chapter is aimed towards explaining in detail the decision making in
developing this unconventional pipeline:

• We start off by defining the type of objects targeted in this study, namely, FGK stars
from GES. The so-called test set will therefore be composed of continuum-normalised
and radial-velocity corrected spectra corresponding to these stars.

• The second section is dedicated to the design and synthesis of a grid of stellar spectra,
acting as the training set. This spectral model is generated from first principles. That
is, integrating the radiative transfer equations with the stellar labels as inputs, which
are in fact based on spectroscopic studies of solar neighbourhood dwarf stars.

• Finally, an explanation on how The Cannon operates and deals with the input of
both training and test sets will close up the chapter and lead the way towards the
final implementation of the pipeline.
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3.1 Test sample: FGK stars

We briefly described some of the main motivations for choosing FGK type stars in the
previous chapter. This section is now aimed towards motivating our choice of large spec-
troscopic survey and laying out the criteria followed in the selection of stars with such
spectral types. Understanding which region in the stellar label space corresponds to these
stars will help us design a representative and hopefully successful spectral model.

3.1.1 Gaia-ESO Survey

The Gaia-ESO Public Spectroscopic Survey is a multi-purpose collaboration lead by two
Co-PIs, Gerry Gilmore and Sofia Randich, using the facilities at the European Southern
Observatory (ESO) that wishes to homogeneously characterise around 105 stars of various
stellar populations and clusters in the Milky Way. The survey serves as a follow-up effort
of the European Space Agency (ESA) Gaia mission by integrating its astrometric solution
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Figure 3.1: Kiel diagram of all 55000 stars belonging to GES iDR4, observed with FLAMES (both GI-
RAFFE and UVES). The dashed black box encompasses all GES dwarfs, limited by a hard cut at log g = 3.5
dex (Smiljanic et al. 2014), an upper limit at log g = 5 dex and effective temperatures ranging from 3800
to 7000 K.
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to chemical abundances of multiple elements from bulge, halo, thin and thick disk stars of
the MW.

Spectra from giant stars are predominantly observed with the medium-resolution instru-
ment, GIRAFFE, part of the Fiber Large Array Multi Element Spectrograph (FLAMES)
at the Very Large Telescope (VLT) in Chile. About 5000 dwarfs within 2 kpc from the Sun
are targeted by the high-resolution Ultraviolet and Visual Echelle Spectrograph (UVES,
Dekker et al. 2000).

The goal in this project is to analyse all FGK-type dwarfs from GES observed with the
UVES spectrograph. The HRD in Figure 3.1 contains GES stars whose parameters be-
long to the the Internal Data Release 4 (iDR4). Limited by a dashed black box are both
GIRAFFE and UVES stars with dwarf-like stellar parameters. From all stars inside the
black box, a sample of 1580 dwarf stars have been observed with the UVES instrument.
We then took their positions in equatorial coordinates and utilised them to carry out a 1
arcsec cone search to extract their spectra from the ESO Phase3 Archive Interface 1.

A final set of 1410 spectra was collected, processed by the GES pipeline in charge of
background subtracting, calibration, order merging, SNR calculation, quality checking
etc. For more detailed information about the data treatment see Sacco et al. (2014) or
the ESO Phase 3 Data Release Description document 2. The extracted science spectra
are characterized by a resolving power of R = 47000, belong to the U580 UVES setting
centered at 580 nm and covering the 480-680 nm region and correspond to the GES iDR5
release, which is probably reason why a slightly smaller number of spectra was returned
using the iDR4 equatorial coordinates in the cone search. These final 1410 U580 spectra
define our test set, with associated radial velocities (RV), projected rotational velocities
(v sin i) and stellar parameters that we are going to take as ground truth to Doppler shift
and downgrade our spectra as well as further compare them to the results of our pipeline. In
other words, these spectra belong to stars whose parameters have already been determined
by GES and used in this project to validate The Cannon results for these same stars.

3.1.2 Continuum normalization

Unfortunately, among the features included in the GES data reduction pipeline, continuum
normalisation is not one of them. Hence, in order to run our machine-learning algorithm,
we developed our own normalisation procedure.

The choice of a proper continuum level is a long-lasting issue in the field of spectroscopic
astrophysics. The continuum level sets the baseline of the stellar flux (or intensity) from
which the strength of a spectral line is evaluated. This spectral strength or EW is pro-

1http://archive.eso.org/wdb/wdb/adp/phase3 main/form
2http://www.eso.org/rm/api/v1/public/releaseDescriptions/92
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portional to the column density of a particular species given the atomic (or molecular)
parameters related to the transition under study. Elemental abundances are derived by
measuring the contrast between the line and continuous opacities. This means that unre-
liable results are obtained if the continuum is misplaced.

Continuum normalisation was left as a post-processing task for the end user in order to
preserve as much information as possible from the UVES observations. Only the merged
spectrum for each star is available. With the suggested guidelines in Sacco et al. (2014),
we developed an algorithm to normalise these object spectra into our almost-final dataset.
The procedure runs as follows:

(a) Extract the fluxes and intrinsic flux scatter (flux errors) for every pixel.

(b) Mask out the strong lines that affect the shape of the continuum, i.e. Na D doublet,
Mg B triplet, Hα and Hβ.

(c) Re-size wavelength raster if needed to remove noisier spectrum edges.

(d) Split the spectrum in 60 fixed spectral bins.

(e) Calculate the median, fmed, of the fluxes and errors per spectral bin.

(f) Asymmetric σ-clipping per bin, centered around fmed, excluding pixels outside the
(fmed)+5σ

−σ window.

(g) Calculate the median of the clipped fluxes and errors.

(h) Fit a 3rd degree spline through the median fluxes of the 60 spectral bins.

(i) Use the spline fit to normalise the input spectrum, fout =
fin
ffit

.

(j) Overwrite the input spectrum with the newly normalised spectrum and go back to
(e) again.

(k) Exit the loop once we reached the desired goodness of the spline fit.

Figure A.1 in Appendix A and Figure 3.2a summarise the continuum normalisation imple-
mentation for an example spectrum and spectral bin respectively. The top panel in Figure
3.2a shows the initial shape of the spectral bin, further normalised by the spline to render
the first normalised spectrum estimation. In every iteration, the recently normalised spec-
trum is fed into the algorithm as a non-normalised spectrum in order to re-normalize over
and over again until the output spectrum in the bottom panel is obtained. For every step
we are essentially approximating the continuum level to a spline function, an assumption
that is as valid as the σ-clipping technique is successful at capturing the true continuum
pixels. Both the intermediate panel and Figure 3.2b help explain how this works. Per itera-
tion and bin, we calculate fmed and the upper (5σ) and lower (σ) rejection conditions. The
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Figure 3.2: (a) Spectral bin illustrating the continuum normalization of a GES star observed with the U580
UVES setting whose labels, SNR, RV and identifier are placed in the header of the figure. The top panel
shows the spectrum before normalisation (zeroth iteration) and the fitting spline function in solid red with
one of its nodes in cyan; the second panel shows the same spectrum, with pixels in red indicating that they
remain after the σ-clipping; the third panel contains the final version of the normalised spectrum, after
iteratively scaling the input spectrum by the spline fit nineteen times. A horizontal red dashed line guides
the eye of the reader towards the expected continuum level. (b) Histogram of the fluxes corresponding to
the same bin showing the median in a solid red line and the upper 5σ and lower σ rejection criteria in
dotted red lines for the zeroth and last iteration of the algorithm.

clipped pixels are then located between the red dotted lines in Figure 3.2b corresponding
to these criteria and also coloured in red in the second panel of Figure 3.2a. Hopefully all
true continuum pixels land inside this window, yet we are also capturing pixels that belong
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to other spectral features. If these spectral traits are very prominent, the continuum level
will be severely influenced translated into an over or underestimation of fmed. Finally, since
we fix the continuum level to unity, fmed ≈ 1, we say the algorithm has converged when
the deviation of the fluxes around the median is smaller than 10−3. The histogram on the
RHS of Figure 3.2b indicates that our selection of continuum seems to be underestimated
by 1-5%. It is visible from the solid vertical red line, our continuum placement, that we do
not quite reach unity. However, the standard deviation of the pixels around this median
is small enough.

Some caveats are worth mentioning in this normalisation program. First, the presence of
more absorption lines will drag the continuum level downwards causing over-fitting. In this
sense, we would require mobile rejection criteria to shrink the window as we loop over the
same spectrum object to exclude false continuum pixels. On a different note, we tested our
script with spectra of SNR > 200, where the deviation from fmed is smaller and prone to
gradually reduce for increasing number of iterations. Low SNR spectra will, in principle,
suffer from this as they have a systematic broad spread around fmed. All in all, as much as
it would have been desirable to analyse both L580 (480-580 nm) and U580 (580-680 nm)
arms of the 580 setting, the density of lines in the blue spectra severely under-placed the
continuum level. We therefore limited ourselves to the U580 setting.

3.1.3 Radial velocity correction

The wavelength shift of a spectrum belonging to a star in radial motion with respect to the
observer is proportional to its velocity in such direction. In this survey (and data-release),
the RVs are calculated by comparing the targeted spectra to a synthetic spectral grid.
These templates cover effective temperatures between 3100 K < Teff < 8000 K, surface
gravities of 2.5 dex < log g < 5 dex and metallicities of [Fe/H] = {-1, 0} dex, compatible
with the stellar label space of the GES dwarf stars we are interested in. For more infor-
mation, see the ESO Phase 3 Data Release Description document.

To correct for this Doppler effect we used the RVs provided by GES and the script developed
by Dominic Ford available in his Github page 3. This Doppler shift is calculated using the
known RVs for each star. A positive radial velocity means that the object is moving away
from the observer:

λnew = λold

√
1− RV/c

1 + RV/c
(3.1)

where λnew is the corrected wavelength of the spectrum, λold is the wavelength grid of the
observed spectrum and c is the speed of light. It is worth mentioning that we detected
some stars with incorrect RVs in GES and had to exclude them from our analysis (they

3https://github.com/dcf21
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were already accounted for in our data selection scheme).

With continuum normalised and RV-corrected spectra composing our ready-to-use test set
of 1410 FGK stars, we are ready to move on.

3.2 Training sample: spectral model

Previous work done by Ness et al. (2015), Casey et al. (2016) and Ho et al. (2017) define
their training set as a sub-sample of reference objects whose stellar parameters are precisely
measured or have well-defined chemical patterns. Good object candidates might be the
Sun, the Gaia benchmark stars or open and globular clusters stars since their abundances
should be the same overall. In this thesis we take our training set to be a synthetic set of
spectra. Putting it in other terms, for each modelled spectrum, its flux as a function of
wavelength is generated from a given configuration of its stellar labels. In principle, this
model can extrapolate stellar attributes outside its label space, but in practice the results
are not trustworthy. Thus, the quality of the investigation is tightly bound to the choice
of label space in the same way as the quality of observational studies can only be as good
as the results obtained for the reference stars. Hence, for our synthetic training set to
properly emulate the targets of this study, the aforementioned high-dimensional grid has
to be compatible with the stellar label space covered by the FGK type stars in GES. Only
then will The Cannon be able to use the training set effectively as an interpolator to fit
the stellar labels of the stars of interest.

3.2.1 Designing a spectral model

A statistically significant, thus successful, sub-set of stars or spectral model has to densely
and broadly populate the stellar label space we wish to consider. Luckily, synthesising this
model a priori allows the user to tweak and tune it in advance. The underlying point of
the training set is to synthesise a spectral grid with the ability of modelling all possible
spectral features that we expect to appear in the test spectra.

The Bensby catalogue

It is then imperative for a proper training sample to cover both the stellar parameter and
chemical abundance space. To first order, the stellar parameters are the labels that fix
the shape of stellar spectra; chemical abundances can be interpreted as a second order
correction to the profile of absorption lines. Figure 3.3 compares two catalogues of stars,
arranged in a Kiel diagram. The grey dots represent FGK type stars in GES while the
color-coded ones correspond to stars from Bensby et al. (2014) (hereafter addressed as the
Bensby catalogue). Main-sequence and turn-off stars (dwarfs) are separated from giants
by a hard cut in log g according to Smiljanic et al. (2014). The pertinent sample of stars
is therefore contained below the horizontal dashed line, at higher log g values. As we can
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Figure 3.3: Kiel diagram comparing the Bensby catalogue of 714 FGK stars (colour-coded) to over 2000
UVES stars in GES (grey). The horizontal dashed line at log g = 3.5 dex separates the relevant dwarf
sample from the giants.

clearly observe from the scatter plot, the Bensby catalogue encompasses stars with appro-
priate effective temperatures and surface gravities.

As stars in the Bensby catalogue belong to the solar neighbourhood and have been selected
according to their kinematics to focus on the metal poor and rich limits of the thick disk,
the metal poor limit of the thin disk and the metal-rich limit of the halo as well as the
Arcturus moving group and Hercules stream. Moreover, the sample contains a significant
number of turn-off stars, which are known to make age determination more attainable.
Furthermore, Bensby et al. (2014) determine abundances of of 13 elements: O, Na, Mg,
Al, Si, Ca, Ti, Cr, Fe, Ni, Zn, Y, and Ba, indeed studied in GES. All in all, the Bensby
catalogue provides a good stellar sample to establish the groundings for our modelled
spectra.
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Catalogue Chemical elements X-matched stars

Bensby et al. (2014) O, Na, Mg, Al, Si, Ca, 714
Ti, Cr, Fe, Ni, Zn, Y, Ba

Battistini & Bensby (2016) Sr, Zr, La, Ce, Nd, Sm, Eu 593
Battistini & Bensby (2015) Sc, V, Mn, Co 662
Delgado Mena et al. (2017) Cu 167
Bensby & Feltzing (2006) C 50

Casali et al. (2019) N 0
Mishenina et al. (2019) Mo, Ru -

Table 3.1: Catalogues cross-matched with the Bensby catalogue. The two following columns display, from
left to right, the elements whose abundances we are interested in deriving and the number of stars in
common with the Bensby catalogue.

Complementing the Bensby catalogue

We are carrying out a spectroscopic analysis of dwarf stars in the optical region of the
electromagnetic spectrum. Thus, a model is perfectly complete for us when it recreates
all absorption lines of all the relevant atomic species in such wavelength range. Of course,
there are computed abundances of other elements included in GES that are not found in
the Bensby catalogue. One option would be to assign solar values of the abundances to all
our synthetic stars, yet a more realistic and sophisticated chemical labelling scheme was
developed in this project.

First of all, a literature search was carried out to cross-match the Bensby catalogue stars
with other catalogues containing spectroscopic studies of different groups of elements.
Apart from the Bensby catalogue, 6 additional papers are listed in Table 3.1 together
with the chemical elements they investigate and the number of cross-matched stars with
the Bensby catalogue. A special treatment was developed for the two last catalogues:

• Casali et al. (2019): In this paper, the [C/N] abundance ratio is used as a proxy for
stellar ages of giant stars experiencing first dredge-up mixing. Carbon and nitrogen
are synthesised in the CNO-cycle and brought up to the surface when the convective
zone grows and penetrates deep down into the interior of a star. This mixing washes
away its original chemical imprint at birth and changes their observable C and N
abundances. In particular, the nitrogen abundance is boosted with respect to carbon.
The [C/N] abundance ratio is then a sensitive tracer dependent on how much helium
is produced by the CNO-cycle, thus dependent on stellar masses and therefore stellar
ages. We intend to examine dwarf stars, not giants, but given that we do have [C/Fe]
abundances from Bensby & Feltzing (2006) we can obtain [N/Fe] by:

[N/Fe] = [C/Fe]− [C/N] (3.2)

where [C/N] values are sampled from a uniform distribution such that U ∼ (−0.9, 0.1).
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Figure 3.4: Kiel diagrams comparing stars in the Bensby catalogue (grey dots) with the cross-matched
stars from the publications noted in the top left corner of each subplot. The horizontal dashed line shows
the same hard cut at log g = 3.5, above which GES stars are considered to be giants (Smiljanic et al.
2014).

The limits of the distribution have been drawn from Figure 9 in Casali et al. (2019)
utilizing the Web Plot Digitizer tool. N is enhanced due to the CNO-cycle in giant
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stars, but it should be kept fairly constant in main-sequence stars.

• Mishenina et al. (2019): This paper analyses the [Mo/Fe] and [Ru/Fe] abundance
ratios for a sample of FGK type stars whose main stellar parameters are compatible
with the HRD of the Bensby catalogue. However, no public online table was up-
loaded by the authors and therefore the desired abundance ratios and corresponding
metallicities were also extracted with the Web Plot Digitizer tool 4.

The Kiel diagrams for the remaining 4 cross-matched catalogues are displayed in Figure
3.4. Stars in the Bensby catalogue are plotted in grey while the cross-matched stars in
common are colour-coded by metallicity. It is immediately visible from all panels that many
stars from the Bensby catalogue are missing in other catalogues and therefore cannot be
assigned an abundance value. Once again, instead of setting solar values by default to all
missing stars we will follow the next recipe, using C as an example (Figure 3.5):

(a) Cross-match the Bensby catalogue with any desired catalogue to identify which stars
they have in common. The LHS plot in Figure 3.5 shows such cross-match with
the stellar sample in Bensby & Feltzing (2006), where stars in common (blue dots)
contain [C/H] abundances.

(b) Place the cross-matched stars in a [X/H]-[Fe/H] plane and fit a 1st degree polynomial
through them (RHS panel in Figure 3.5).

(c) Extrapolate the fit to all other stars in the Bensby catalogue by relating their [Fe/H]
to [C/H] relying on the empirical fit. The exact value is drawn from a Gaussian

distribution such that N ∼
(

[C/H]fit, σfit

)
, i.e. the curve is centered around the

[C/H] value directly provided by the empirical relation and spread according to the
standard deviation of the observed data to the fit.

Figures B.1, B.2 and B.3 in Appendix B display [X/H]-[Fe/H], [X/Fe]-[Fe/H] and his-
togrammed [X/Fe] plots respectively for all 28 elements in Table 3.1. All α elements, O,
Mg, Si, Ca, Ti, show a more or less clear double peak in their histograms related to the low-
and high-α sequence. Since most of the stars in the Bensby catalogue have α abundances
the addition of synthetic values does not wash away the thin and thick disk features, hope-
fully recuperated in our final analysis. Also worth mentioning is the dramatic depletion in
number of stars at [Fe/H] < −1.5 dex, which makes the interpretation of abundance trends
difficult in this region. Looking at this low metallicity end in Figure B.1 for elements like O,
Eu or Cu, we suspect that a change of slope towards low metallicities might be happening
suggesting that our fit could be improved by including a broken linear polynomial fit for
these metal-poor stars.

Motivated by the same completeness arguments, we decided to include all other elements in
the periodic table with at least one absorption line within the wavelength range covered by

4https://apps.automeris.io/wpd/
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Figure 3.5: Missing abundances recipe using C as an example. Left: Cross-match between Bensby & Feltz-
ing (2006) and Bensby et al. (2014) to identify which stars have carbon abundances. Coloured in red are
stars exclusively catalogued in the Bensby catalogue whereas blue stars can be found in both publications.
Right: Extrapolation of [C/H] abundances using the metallicities of the stars in both catalogues.

our test spectra. However, for most of these elements, no previous work was found in the
literature utilizing dwarf stars. Nevertheless, we still applied the same missing abundances
recipe, but as there are no stars to cross-match with the Bensby catalogue, the linear fit
extrapolation was performed using 4 reference elements. Depending on which chemical
group the element at stake belonged to, one of the five elements in Figure 3.6 is chosen:
Mg for α, Ni for iron-peak, Ba for s-process and Eu for r-process elements. We decide to
ignore Na and instead assign solar values such that [X/Fe] = 0±N ∼ (0.2, 1).

It might seem unnecessary to develop such an elaborate scheme to artificially tag stars with
chemical abundances that will probably not be studied in the final implementation of the
machine-learning pipeline. Nevertheless, early tests with The Cannon showed that when
setting solar abundances by default it biased the results by correlating the abundances
with the strength of Fe lines.

3.2.2 Synthesising a spectral model

Generating synthetic spectra from first principles means directly accessing the equations
of radiative transfer (RT) and solving them in the context of modeled stellar atmospheres
(Gray 2005):

I+
ν (τν , µ) =

∫ ∞
τν

Sν(τ
′
ν) e

−(τ ′ν−τν) dτ ′ν (3.3)
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Figure 3.6: Abundance plots similar to those in Figure 2.3. Here, red dots have been added in the
background to identify the Bensby catalogue stars with synthetic [X/Fe] abundances.

where I+
ν is the outward directed monochromatic intensity (a similar equation can be

written for the flux), Sν is the so-called source function of the model atmosphere and τν
is the optical depth defined as the geometrical length along the stellar radius weighted by
the continuum opacity, αc, and line opacity, αl:
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τν =

∫ r

∞
− (αc + αl) dr′ (3.4)

Integrating the above mathematical expressions means understanding how the energy com-
ing from the stellar interior is transferred through different depths of the atmospheric layers,
reprocessed by the particles in them and finally re-emitted in the line of sight. Broadly
speaking, two fundamental parameters matter: the source function Sν and the extinction
coefficient αν = αc+αl. The former describes the thermodynamical state of the atmosphere
as a statistical collection of atoms, molecules, ions and electrons. The latter determines the
optical thickness of the medium and gathers information about the composition of the gas
in the atmosphere, ionization and excitation states, transition probabilities, broadening
effects and so on. In short, much is to be borne in mind to solve Equations 3.3 and 3.4,
where Sν and αν might depend on each other in a rather complex fashion. In fact, the only
way we can currently go about it is by making fairly strong assumptions:

• Hydrostatic equilibrium: Stellar atmospheres are physical systems in equilibrium,
where the force of gravity keeping the layers bound together is balanced by the
pressure gradient inside the star. No mass loss is considered.

• Local Thermodynamic Equilibrium (LTE): Equilibrium between matter and radia-
tion is established in local parcels of gas in the stellar atmosphere. This is achieved
due to the high collision rate among particles, responsible for most of the atomic
and molecular transitions as well as re-distributing the energy inside the parcel. The
mean free path of the photon is much smaller than the radius of the star and the
timescale between collisions is much shorter than the timescale of change of observ-
able stellar properties.

In LTE, the excitation state of particles follows a Boltzmann distribution, their ion-
isation state can be described with the Saha equation, the velocity distribution of
particles is Maxwellian and the source function, Sν , turns into the Planck function.
This simplifies equations greatly, where the most important idea is that under LTE
conditions we can fully characterise our gas by knowing the temperature at each
parcel.

• Homogeneity: The stellar atmosphere is homogeneous and therefore one can treat Sν
independently of the optical depth τν .

• Plane-parallel atmosphere: The model atmosphere can be simplified by the plane-
parallel approximation. The atmospheric layers are assumed to be parallel with
properties conveniently expressed as a function of one dimension, the optical depth.
Plane-parallel atmospheres work for dwarf stars, whose atmospheres are thin com-
pared to the more extended ones in giant stars.
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Integrating Equations 3.3 and 3.4 means theoretically deriving an intensity (or flux) as a
function of frequency (or wavelength) of light exiting the stellar atmosphere. Turbospectrum
(Plez 2012; de Laverny et al. 2012; Alvarez & Plez 1998) is the RT software implemented in
this project to synthesise spectra from the library of stellar labels designed for our training
set.

Three main input parameters are needed to run Turbospectrum, the effective temperature,
surface gravity and metallicity of a star. The software takes these parameters to interpolate
among the MARCS grid of model atmospheres (Gustafsson et al. 2008) to get the prop-
erties of the stellar photosphere at every opacity-weighted stellar radius (optical depth).
These are 1D, plane-parallel, LTE model atmospheres containing the temperature profile,
gas and electron pressure structures, opacity and microturbulence velocity as a function of
an optical depth of reference, e.g. τ500, the optical depth at 500 nm.

The output file from MARCS is a so-called opacity file, containing the atmospheric prop-
erties for every optical depth needed to roughly outline the shape of the spectrum of
the star. This opacity file refers to the continuum opacity, in charge of accounting for
continuous processes such as scattering phenomena or collisional broadening with neutral
hydrogen (Barklem & O’Mara 1998). The opacity file is then combined with the third
version of the Vienna Atomic Line Database (VALD3, Piskunov et al. 1995; Kupka et al.
1999; Ryabchikova et al. 2015) to re-calculate the spectral energy distribution and include
the extra opacity coming from the presence of chemical species in the atmosphere. Infor-
mation on the central wavelength of their transitions, their Einstein coefficients or log gf
values, excitation potentials and broadening terms are provided by these line lists.

Synthetic spectra produced by Turbospectrum are infinitely resolved, that is, absorption
lines are only naturally broadened. Such a model is not useful at all when other factors
apart from more intrinsic mechanisms like microturbulence modify the profile of absorption
lines. Fortunately enough Turbospectrum outputs continuum normalised spectra, yet the
next section goes through the process of degrading our infinitely resolved modelled spectra
to be more comparable to observational spectra 5.

Spectra for almost all stars in the Bensby catalogue were generated using their correspond-
ing stellar parameters and chemical abundances for all relevant elements in the VALD3
line list (synthesised as explained in the previous section when necessary). Table 3.2 lists
a sub-sample of 9 stars that happen to break the synthesis routine. Out of these, 8 have a
surface gravity of log g = 4.50 dex. Apparently, these stars sampled a problematic region
of the MARCS grid for that log g value. This issue could have been solved by simply
changing our value to log g = 4.50001 dex, but we just removed the stars from the training

5Dominic Ford developed the bases of the pipeline utilized through out this project: both Python
wrappers for Turbospectrum and The Cannon as well as the scripts to downgrade spectra. They were
initially designed for the 4MOST Facility Simulator (4FS), so I adapted them to work for the UVES
spectra from GES.
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HIP Teff [K] log g [dex] [Fe/H] [dex]

2194 5211 4.50 -0.60
17970 5204 4.50 -0.49
28369 6940 3.97 -0.15
55210 5374 4.50 -0.25
56336 5878 4.50 -0.42
56452 5131 4.50 -0.40
82588 5322 4.50 -0.08
97358 5638 4.50 -0.03
106701 5701 4.50 0.08

Table 3.2: Main stellar parameters of stars from the Bensby catalogue that were not synthesised. Stars
are identified by their Hipparcos ID number.

set. The remaining star was much more troublesome because it lead to the MARCS model
having a negative convective velocity, and hence flux, at the most interior point. Again,
we could have fixed this by setting these two variables to zero, but that could have turned
into unwanted effects on the spectrum 6.

3.2.3 Downgrading a spectral model

Downgrading the synthetic set of spectra implies reproducing the observed line profiles by
adjusting the modelled spectrum. We do it in three steps: convolving spectra to match
the UVES resolving power and the projected rotational velocities, resampling the spectral
fluxes to the wavelength grid of the U580 setting and last, adding noise to reduce the
SNR. Figure 3.7 will help visualize this procedure with two example spectra observed with
UVES: a solar spectrum in the top panel and a spectrum in the bottom panel for a star
with a substantial rotational velocity.

Convolution

Parameters like the resolving power of the spectrograph, the stellar rotation or the macro-
turbulence are equal or similar to changing the resolution of the observed spectral features.
The difference between the two effects lies in the fact that a change in resolution broadens
or shrinks the width of absorption lines, but the integrated flux or area under the line
profile must be kept constant.

In this work we account for two sources of broadening, instrumental resolving power and
projected stellar rotation. After some trial and error we decided to mimic the broadening
effect by convolving our spectral lines with a Gaussian convolution kernel:

6The specific model atmosphere was p7000 g+3.5 m0.0 t02 st z+0.00 a+0.00 c+0.00 n+0.00

o+0.00 r+0.00 s+0.00.mod. See the MARCS website, https://marcs.astro.uu.se/.
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Solar parameters: Teff = 5780 [K]; logg = 4.437; [Fe/H] = 0; ξ = 1 [km/s] (default)
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ID: 08095427-4721419; Teff: 5884; logg: 4.45; [Fe/H]: 0.1; [Mg/H]: -0.77; ξ: 1.61; RV: 20.94; VSINI: 19.24
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Figure 3.7: Top: Comparison between the normalised solar ATLAS (red) and the Turbospectrum rendering
of the Sun (black) given the stellar labels in the header. The synthetic solar spectrum has been further
downgraded to a resolving power of R = 47000, but has not been RV shifted nor broadened due to its
rotational velocity. Bottom: Downgraded synthetic spectrum compared to the GES observation. Several
curves are observed in the graph. The red spectrum corresponds to the GES observation while the black
curve represents the fully downgraded synthetic version for the same stellar labels. The remaining grey
lines represent the intermediate steps in the downgrading process: Tspec stands for the infinitely resolved
synthetic spectrum; Conv represents the Tspec curve broadened to match the UVES resolving power; Vsini
adds the projected stellar rotation into the broadening and SNR=250 includes enough noise to match the
specified SNR. Both Vsini and SNR=250 are almost identical as the only difference is the addition of a
small percentage of Gaussian noise with respect to the signal.
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g = exp

{
− λ2

ker

2σ2
ker

}
, with σker =

FWHM

2
√

2 ln 2
(3.5)

Here, λker is the pixel grid of the convolution kernel and σker is the width of the Gaussian.
This kernel, g, is therefore passed along every pixel to widen spectral features according
to its σker, different for each broadening effect:

• Resolving power: We know that UVES spectra from GES have a resolution of R =
47000, which we can relate to the FWHM of the Gaussian as:

FWHMUVES =
δλUVES

∆λ
=
〈λ〉
R∆λ

(3.6)

where δλUVES is the spectral element width, ∆λ the wavelength step of the input
spectrum and 〈λ〉 its average wavelength. Caution must be taken when analysing
the units of these new variables introduced. We are interested in a σ in pixel units,
that is why we scale δλUVES with the wavelength or pixel step. The top panel in
Figure 3.7 shows the outstanding agreement between the solar ATLAS (available in
the ESO website) and the convolved solar synthetic spectrum.

• Projected stellar rotation or v sin i: The FWHM of the Gaussian kernel that would
mimic the broadening due to v sin i is

FWHMrot =
v sin i

c

〈λ〉
∆λ

(3.7)

where c is the speed of light in km s−1. The motivation for including broadening of
spectral lines due to stellar rotation is summarized in the bottom panel of Figure 3.7.
When downgrading the infinite resolution Tspec spectrum to the UVES resolving
power Conv, we realised that the lines were still deeper and narrower. After adding
v sin i to the convolution the synthetic model and observed spectrum looked much
more alike.

Since we are dealing with statistically independent Gaussian broadenings, we can add our
widths in quadrature, σ2

ker = σ2
UVES + σ2

rot. Nonetheless it is worth commenting on the
fact that neither the instrumental broadening or that due to stellar rotation have to be
Gaussian necessarily. The first depends on the response function of the instrument and
the second is supposed to follow a half ellipse profile (Gray 2005). The reason why we
chose to convolve our lines with a Gaussian kernel was, again, by trial and error trying
to recreate observed GES spectra with their stellar labels as inputs. There is still some
mismatch between the black and red spectra in the bottom panel in Figure 3.7. We
concluded that since macroturbulence is another parameter we did not account for (with
Gaussian-like broadening), we might have been trying to compensate for both widening
effects by forcing our v sin i term to be Gaussian.
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Resampling

Resampling our synthetic spectra means re-expressing the synthetic flux on the same wave-
length grid used for the U580 setting. Since one could, in principle, synthesise an infinitely
sampled spectrum, it is common practice to start with a sampling 10 times more refined
than that of UVES spectra. Once again, we used Dominic’s routine to do so.

This routine essentially calculates the integrated flux sampled on the synthetic wavelength
raster and linearly interpolates it onto the wavelength raster of choice with the np.interp

command from Numpy. To ensure that the integrated flux is kept constant, the cumulative
sum of the integrated flux is interpolated onto the U580 raster, divided by the width of
the pixel.

Finally, resampling must come after convolution to avoid loss of information.

Addition of noise

Numerous SNR definitions are found in the literature. For the sake of argument, we will
limit ourselves to a purely qualitative description.

We understand the SNR as the amount of noise compared to signal that contaminates
each pixel of the observed spectra. Roughly, a SNR = 250 indicates that 1 out of 250 flux
counts at a given wavelength is noise. We will then introduce noise in our spectral model
by shifting the flux values such that:

f ′i = fi + noise (3.8)

Here, fi is the flux of the ith pixel in the convolved and resampled spectrum and f ′i is the
shifted flux after adding noise, a random number sampled from a Gaussian distribution
with µ = 0 and σ = N . Moreover, N is the noise level inversely proportional to the SNR
value, N = S/SNR, where S is the signal level, i.e. S = fi. A more detailed explanation
can be found in Dominic’s code.

3.3 The Cannon

Two datasets have been constructed so far. First, a set of spectra synthesised from obser-
vationally derived stellar labels. We name this spectral grid the training set. The second
one, a sub-sample of FGK-type GES dwarfs whose stellar labels we want to recover. We
name it the test set. The goal is to transfer the labels (stellar parameters and chemical
abundances) from one dataset to the other without any additional physical modelling along
the process.

To do this we make our machine, The Cannon, “learn” about the known stellar labels
in the training set. We call this stage the training step, consisting of the creation of a
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mathematical model which allows us to predict fluxes at all wavelengths as a function of
stellar labels. The second stage, the test step, employs this predictive power to measure
stellar labels for the test set.

The Cannon is built on the following assumptions:

• Stars whose stellar labels look alike have similar spectra. This is true if the picked
labels suffice to fully characterise the star to be analysed.

• The stellar spectrum is a smoothly varying function of the stellar labels such that it
can be approximated with a second order polynomial of the stellar labels.

• Training and test sets have been “observed” with the same instrument. The resolu-
tion of the spectra from both datasets is identical and are both sampled in the same
wavelength raster.

• Training and test spectra are continuum-normalised.

• The intrinsic flux scatter at each wavelength pixel is known, normally distributed
and statistically independent from the other flux variances of the other wavelength
pixels.

• The stellar labels of the training set are well-known and homogeneously cover the
relevant label space. We treat them as the basis to propagate our labels to the test
set.

3.3.1 Training stage

The Cannon is a generative model. That is, it generates the probability density function
of the flux at all wavelengths for every object spectrum as a function of the stellar labels.
This generative model is a“purely mathematical relation” between spectra and labels and
is what The Cannon optimizes or trains on by looking at the training set.

The predictive power of the model then relies on its flexibility, i.e. on how well the model
replicates the label-spectral flux relations. It has been reported in the literature that a
quadratic functional form of the model is sufficiently specific whilst flexible:

fnλ = θTλ · `n + enλ (3.9)

with

`n ≡
[1, `n1, `n2, `n3, · · · , `nK ,
`n1 · `n1, `n1 · `n2, `n1 · `n3, · · · ,
`nK · `nK ]

(3.10)

and
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enλ = ξnλ

√
σ2
nλ + s2

λ (3.11)

Here, the subscript n stands for every single object spectrum and λ represents each pixel
(or wavelength element) within an object spectrum. In this sense, fnλ is the spectral flux
per pixel per object spectrum and `n is our quadratic-in-labels vector. This “vectorizing
function” of the labels defines the freedom of the generative model and can, in princi-
ple, be any arbitrarily complex function of the stellar labels. For a quadratic polynomial
Equation 3.10 encompasses a total of K linear (`n1 = Teff , `n2 = log g, `n3 = [Fe/H]),
quadratic (`2

n1 = Teff
2) and cross terms (`n1 · `n2 = Teff · log g) per object spectrum. The

first element of `n sets the continuum at unity and forms the constant term of the poly-
nomial. The polynomial coefficients at each wavelength are symbolized by θTλ and enλ
represents the flux error at each wavelength element in each object spectrum. As long as
the model is good, enλ can be sampled from a Gaussian distribution with zero mean and
variance σ2

nλ + s2
λ. Equation 3.11 shows the mathematical form of the noise. The ξnλ term

is just a random number drawn from a normal distribution, σnλ is the uncertainty of the
flux at each pixel of the training or test spectra and sλ, the intrinsic flux scatter of The
Cannon model linked to the pixel at stake. This last can also be interpreted as the gen-
eral ability (or inability) of The Cannon model to faithfully reproduce the flux at each pixel

Inasmuch as the flux errors are drawn from a probability density function, The Cannon
is a probabilistic model, thus it estimates the mean and the variance of the flux at all
wavelengths and object spectra. We optimize this model by writing out the single-pixel
log-likelihood function:

ln p(fnλ | θTλ , `n, s2
λ) = −1

2

[
fnλ − θTλ · `n

]2
σ2
nλ + s2

λ

− 1

2
ln
(
σ2
nλ + s2

λ

)
(3.12)

This formula is a log-likelihood function for both polynomial coefficients and the labels,
which essentially looks like a χ2 distribution. That is to say, maximizing the likelihood of
either θλ or `n is the same as minimizing the χ2 function.

In the training step we are interested in the Maximum Likelihood Estimate (MLE) of the
θλ coefficients. We fix the K-lists of labels for all training set stars taking advantage of
the fact that both fluxes and labels are known and solve Equation 3.12:

{θ̂λ, ŝλ} ← argmax

Nref∑
n=1

ln (fnλ | θTλ , `n, s2
λ) (3.13)

It must be emphasised that the likelihood function is optimized in such a way that we
compute the MLE of the polynomial coefficients for each pixel individually but considering
all Nref = 705 object spectra at once. Our generative model is then composed by this

library of coefficients θ̂λk:
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Λ number of pixels

y

K-list of labels−−−−−−−−−−−−−−−−−→
θ̂11 θ̂12 · · · θ̂1K

θ̂21 θ̂22 · · · θ̂2K
...

...
. . .

...

θ̂Λ1 θ̂Λ2 · · · θ̂ΛK


3.3.2 Testing stage

The Cannon has now been trained to estimate the probability density function of the
flux, given a certain configuration of stellar labels. We then assume that our data-driven
probabilistic generative model is also representative of the test set and solve for the stellar
labels:

{ˆ̀mk} ← argmax
Λ∑
λ=1

ln (fmλ | θTλ , `m, s2
λ) (3.14)

Now, the observed flux is known, so we exploit the recently calculated library of θ̂λ coef-
ficients to extract the labels of the test spectra. From the mathematical expression above
we realise that even if the χ2 is fundamentally similar, we are now fixing θ̂λ and ŝλ to infer
ˆ̀
mk by considering one single test spectrum m (out of the total M = 1410 GES dwarfs)

and optimizing for all pixels in such spectrum at the same time. The final output of The
Cannon will look like the following array of labels:

M test stars

y

Labels−−−−−−−−−−−−−−−−−−→
ˆ̀
11

ˆ̀
12 · · · ˆ̀

1K

ˆ̀
21

ˆ̀
22 · · · ˆ̀

2K
...

...
. . .

...
ˆ̀
M1

ˆ̀
M2 · · · ˆ̀

MK


This whole process of computing stellar properties is called label transfer.

3.3.3 Fine tuning

In the previous sections we outlined what is considered a standard The Cannon (hereafter
abbreviated as TC) run. Early work with the standard TC (Ness et al. 2015; Ho et al.
2017) involved small number of labels, e.g. Teff , log g, [Fe/H], [α/Fe]. It turned out that,
against expectations, one could easily extend the number of labels without requiring an ex-
ponentially growing training set to properly cover the label space. The reason behind this
behaviour is that TC acts as an interpolator transferring the labels by using the quadratic
polynomial as an interpolating function. Furthermore they realised that when optimising
TC model to fit chemical abundances, the polynomial coefficients corresponding to a large
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number of wavelength pixels had a non-zero contribution. Physically this makes no sense
as the [Mg/H] abundance, for instance, must only be affected by the flux in pixels belong-
ing to Mg absorption lines and nothing else. This lead to the idea of regularization.

Regularization methods incorporate an extra term when optimizing the log-likelihood func-
tions in the training step: the penalizing function. From a more qualitative perspective,
this function encourages θ coefficients to become very small, i.e. it increases the num-
ber of null components in the generative model with the sole purpose of restricting the
wavelength dependencies for some desired labels. Not only did this make TC much faster,
but also avoided overfitting of the polynomial coefficients. Discussion about the different
regularization techniques is out of the scope of this project, but we motivate the curious
reader to check the theory about LASSO regularization in Tibshirani (1996), which is the
kind of regularization integrated in this TC implementation.

Censoring mask

Another useful concept is the censoring mask. The user may decide to run TC passing
along a list of important absorption lines related to transitions of elements whose abun-
dance are to be estimated. If so, TC will train and test only looking at narrow spectral
windows around these lines, which might potentially change its overall performance. In
this final section, we will discuss and motivate our choice of censoring mask by briefly
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ID: 08095427-4721419; Teff: 5884; logg: 4.45; [Fe/H]: 0.1; [Mg/H]: -0.77; ξ: 1.61; RV: 20.94; VSINI: 19.24

GES Obs

Figure 3.8: Masked U580 GES spectrum according to the line list published in Ruchti et al. (2016). The
original mask was modified slightly to exclude the NaD lines (5886-5900 Å) and the Hα region (6470-
6650 Å). Pixels in white and red are ignored by TC while pixels in blue are accounted for during the
optimization.
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analysing some preliminary results of a sub-set of 39 GES dwarfs (Table C.1 in Appendix
C).

Figure 3.8 represents an example spectrum with a censoring mask based on the line list
from Ruchti et al. (2016). White pixels are ignored while blue-shaded ones are “active”,
meaning that they would be included in TC analysis. One thing to note is that a large
fraction of the spectrum is removed from the run. Two red (and also ignored) regions
stand out: the Hα 6470-6650 Å window and the Na D lines at 5889.95 Å and 5895.92 Å.
They have been highlighted in red because they are exceptionally problematic parts of the
spectrum. In fact, it is while pondering on how to handle these two conflictive regions that
we adopt a successful (enough) censoring mask based on the original Ruchti list.

Figure 3.9 zooms into these two problematic parts of the spectrum for two different stars
and versions of the Ruchti mask. Looking at the top panel, the Hα panel, we see a mismatch
in both core and wings when modelling the Hα line. We anticipated the cores of strong
lines not to be properly profiled as Turbospectrum does not correct for non-LTE behaviour.
On the other hand, we expected to get the wings right. The issue causing our spectrum to
deviate from the model is most probably related to the continuum-normalisation stage. As
a reminder, the Hα region was completely masked out from the normalisation process to
avoid overfitting the continuum. The full extent of the Hα region of influence was decided
upon by eye, inspecting the resulting shape of the line in the normalised output spectra
for all stars. It turned out that its profile was extremely sensitive to the actual selection of
the limits of this influence region. This lead to the idea that we could either mask out the
whole 6470-6650 Å region as in Figure 3.8 or exclude the Hα core (as well as other lines in
the vicinity) but keep some pixels of its wings to help constrain the effective temperature
and surface gravity (shaded regions in the top panel of Figure 3.9).

The bottom panel in Figure 3.9, compares observed and modelled spectrum focusing on
the NaD region. The plot is a good example of how ambiguous the shape of these two lines
can be. What is more, Munari & Zwitter (1997) computed the equivalent widths of this
doublet to estimate the interstellar reddening. Thus, it is not surprising that they often
present blends with interstellar Na lines whose central wavelengths have been shifted due
to the RV of the cloud in the line of sight. Driven by this chain of thoughts, we carried
out a detailed by-eye comparison between the normalised observed spectra and the Tur-
bospectrum rendering using the same labels. We found that our synthetic model failed to
represent some spectral components, not only in the vicinity of the NaD doublet, but also
around other absorption lines throughout the spectral range. They were close enough to
the central wavelength of the transition to fall inside the spectral window of the censoring
mask. Consequently, apart from trying out the idea of excluding the cores of the NaD
lines, we also tested different widths of the spectral window: 0.5 Å for the cores, 1 Å to
cover part of the wings and 2 Å, the default setting of the line mask.

To sum up, two characteristics of the censoring mask will be modified: the presence of
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Figure 3.9: Top: Zoomed-in plot of the Hα spectral region. Two spectra are compared: the synthetic
spectrum in black and the observed spectrum in red for the same stellar labels. As in Figure 3.8, the
blue-shaded pixels are ”active” pixels and the red-shaded ones remain excluded. Bottom: Zoomed-in plot
of the Na D lines for a different star. Spectral model and GES observation are compared again, but now,
three spectral windows around each line are displayed. From the narrowest and darkest window to the
broadest and most transparent one the window widths are: 0.5 Å, 1 Å and 2 Å.

Hα and NaD lines and the size of the fixed width of the spectral window for all lines
in the censoring mask. To decide which configuration works best in terms of TC perfor-
mance, we will run our pipeline for 39 GES stars. Table C.1 contains the main stellar labels
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Mask ∆Teff [K] ∆log g [dex] ∆[Fe/H] [dex]

Full −42± 238 −0.05± 0.33 −0.05± 0.12
No cores −215± 188 −0.01± 0.30 −0.09± 0.09
No Hα/NaD 8± 154 −0.007± 0.219 −0.01± 0.08

Table 3.3: Mean and standard deviation of TC offsets with respect to GES for the three main stellar
parameters and for the three types of masks represented in Figure 3.10.

of these 39 stars, which were selected to have relatively solar-like parameters and high SNR.

To decide on how to manage the two strong line regions we ran TC varying the settings
in three ways: first, without a censoring mask at all, i.e. looking at the whole spectrum;
second, passing a mask that excludes the core of Hα (and some lines in its wings as seen in
the top panel of Figure 3.9) and the Na D (bottom panel of Figure 3.9, where the narrowest
window is turned into an excluding mask) lines; third and last, fully excluding the Hα and
Na D regions. For these three different configurations, we kept the size of the spectral
window at 2 Å. Figure 3.10 and Table 3.3 display the offsets between TC and GES values,
their mean and standard deviation for these three configurations when training on 7 stellar
labels: {Teff , log g, [Fe/H], ξ, v sin i, [Mg/H] and [Na/H]}. However, results are only shown
for the three main stellar parameters as they are the ones for which the improvement is
most noticeable.

In general, TC labels experience a noticeable reduction in their offset with respect to the
GES values by applying censoring masks that exclude a larger number of pixels. The dotted
lines in Figure 3.10 and the uncertainties of TC results in Table 3.3 show the plus/minus
standard deviations (SDs) of these offsets centered around their mean. As we select a more
conservative mask, they decrease in magnitude indicating that the scatter of the offsets is
reduced. The mean offset is also an important variable to check as it gives us an idea of
how biased our results are with respect to the GES values. It is then obvious from the
average offsets of Figure 3.10 and Table 3.10 that the mask that completely excludes the
strong line regions is favoured with small bias and SDs of σTeff = 154 K, σlog g = 0.22 dex,
σ[Fe/H] = 0.08 dex.

Now, lets move on to varying the size of our spectral window. Now we will keep the mask
that fully ignores the Hα and NaD regions and test three spectral window widths: 0.5 Å, 1
Å and 2 Å. Likewise, we produced the 3-panel figure for the three different window widths,
however, no significant preference of size was visible upon inspection. We tried something
new. Figure 3.11 shows TC averaged abundance offsets for 15 elements with at least one
absorption line in the modified Ruchti mask. The three colours are linked to the three
window sizes as indicated in the graph. We observe that our TC implementation seems to
be systematically underestimating the abundances for all elements, with emphasis on Sc,
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Figure 3.10: TC run for our subset of 39 GES stars. The dots represent stars in a plane with GES labels on
the x-axis and the offsets between TC and GES labels on the y-axis. Three different runs are represented
in each row of this plot corresponding to the three different colors: green for the run with no mask, red
for the run where the mask excludes the cores of strong lines and black for the mask that excludes these
regions. The horizontal solid lines represent the averaged offsets and the dotted lines, also colour-coded,
represent the SD of the offsets.

−400

−200

0

200

400

F
u

ll

Teff

−0.50

−0.25

0.00

0.25

0.50

log g

−0.2

−0.1

0.0

0.1

0.2

[Fe/H]

−400

−200

0

200

400

N
o

co
re

s

−0.50

−0.25

0.00

0.25

0.50

−0.2

−0.1

0.0

0.1

0.2

5000 6000 7000

−400

−200

0

200

400

N
o

H
α
/N

aD

3.5 4.0 4.5

GES labels

−0.50

−0.25

0.00

0.25

0.50

−1.0 −0.5 0.0 0.5

−0.2

−0.1

0.0

0.1

0.2

∆
`

=
` T

C
−
` G

E
S

50



3.3. The Cannon Chapter 3. Methodology
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Figure 3.11: Offsets for 15 elements averaged over the 39 GES validation stars. Three TC runs are
compared to each other, colour-coded by window sizes of 0.5 Å, 1 Å and 2 Å. A horizontal dashed line at
zero was placed to guide the eye. Eu and O have no abundance values in GES and therefore no offset can
be calculated for these two elements, yet TC does produce a chemical abundance for these elements.

V and Mn. The narrower the spectral window gets the more we rectify for this bias.

To conclude, from Figures 3.10 and 3.11 we learn that our current pipeline is improved by
implementing a censoring mask based on the line list in Ruchti et al. (2016), arranged to
exclude the Hα and NaD spectral regions and with spectral windows of 0.5 Å of width.
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Chapter 4

Results & Discussion

To recap, we wish to transfer stellar labels (stellar parameters and elemental abundances)
from a reference set of stars to a larger set in a spectroscopic survey applying a data-driven
technique. The latter set of stars, addressed to as test set, consists of 1410 GES FGK-
type dwarf stars with normalised RV-corrected UVES spectra covering a spectral region
of 5800 Å-6800 Å with a resolving power of R = 47000 and a wide range of SNRs (10-
300). The former, denoted the training set, represents a synthetic spectral model of 705
stars whose stellar labels are based on spectroscopic studies of solar neighbourhood dwarf
stars. This model was further convolved to account for instrumental and stellar rotation
broadening, resampled onto the U580 raster and degraded to a SNR of 250. A preliminary
validation step was carried out to refine The Cannon, our machine learning algorithm. We
realised that masking out certain chunks of spectra improved its performance. Indeed, we
decided upon the use of a censoring mask based on the line list of Ruchti et al. (2016),
slightly modified to exclude the Hα region of influence as well as the NaD lines and only in-
clude pixels in the vicinity of lines within a window of 0.5 Å around the central wavelength.

In this chapter we will analyse the final results of running TC on the full set of 1410
test stars training on a total of 20 labels: {Teff , log g, [Fe/H], ξ, v sin i, [Mg/H], [Na/H],
[Ca/H], [Sc/H], [Si/H], [V/H], [Ti/H], [Mn/H], [Ni/H], [Cr/H], [Co/H] [Ba/H], [Eu/H],
[O/H], [Al/H]}. The results for 25 randomly picked stars for the three first labels are listed
in Table D.1 in Appendix D.

The first check to make sure that we are properly recovering the stellar parameters is to
plot a Kiel diagram (or HRD). Figure 4.1 illustrates the recovery power of our pipeline.
As much as the metallicity of stars appears to have an exceptional match, the shape of
the main-sequence-to-turn-off transition is less smooth. We recover a less scattered Kiel
diagram concentrated in the main-sequence, except for some outliers at log g < 3.5 dex.
It is worth mentioning that our pipeline has the ability to extrapolate stellar labels, so
nothing stops it from placing stars outside the expected locations in the Kiel diagram.
Moreover, if we scroll all the way back to Figure 3.3, we will realise that even if the test
set was confined under a hard cut at log g = 3.5 dex, a few of our synthetic stars were kept
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Figure 4.1: Comparison figure of two Kiel diagrams: the GES-reported stellar parameters on the LHS and
the TC-reported values on the RHS.

beyond this boundary. These stars extend the label space of the training set making it
more flexible and capable of extrapolating stellar properties towards that region. However,
it also increases the tendency of TC to find a local minimum in the χ2 fitting corresponding
to stellar labels in such region. A gathering of very metal-poor stars was detected in the
turn-off too, we will come back to these later on.

Given that our analysis encloses a wide spread of SNRs, we decided to divide the test set
in 3 bins: the first 500 stars have SNRs between 10 and 61, referred to as the low SNR
stars or SNR < 50 bin; the next 500 stars have a SNR in between 61 and 94, referred
to as medium SNR stars or 50 < SNR < 100 bin; the last 410 stars span from SNRs of
94 to 319 and are named high SNR stars or SNR > 100 bin. Figure 4.2a compares three
Kiel diagrams owing to the three different cuts in SNR. The GES test stars correspond to
the background grey stars, but the coloured ones are coded depending on a 3D-residual
calculated as:

3D−σ =

√(
∆Teff

σTeff

)2

+

(
∆ log g

σlog g

)2

+

(
∆[Fe/H]

σ[Fe/H]

)2

(4.1)

where the offsets of the three main stellar parameters are, once again, the difference be-
tween the TC and GES values, ∆` = `TC − `GES. These offsets are weighted by σ`, which
stands as the reported SDs in the bottom row of Figure 3.10 or Table 3.3 (TC run using
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Figure 4.2: (a) Three HRDs for, from left to right, low, medium and high SNR. The GES stellar parameters
render the stars in grey in the background while the color coded ones are TC results. (b) Scatter plot as
a function of SNR of TC-reported uncertainties (top row) and the offsets to the GES parameters (bottom
row). Orange dots represent a running mean with window size of 100 stars, performed on the scattered
data.
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a mask with window size of 2 Å and excluding the problematic strong line regions).

From Figure 4.2a one realises that the transition from low SNR to high SNR takes us
through a slow decrease in the number of present stars with high 3D-σ. This indicates
that TC provides smaller offsets at high SNRs, which is not unexpected as the improve-
ment of the performance of our pipeline and the quality of the data go hand in hand.
Perhaps more worth commenting on is the fact that although TC performs slightly better
in the SNR > 100 bin, we still do a good job at analysing low SNR stars. Another com-
mon characteristic of the Kiel diagrams in Figure 4.2a is that the stars with smallest offset
are located on the main sequence, where the training set is most dense. Specially in the
high SNR bin, we see that most red stars are scattered around these main-sequence and
turn-off features. It is also reassuring to observe that our “sub-giant” renderings correlate
with large offsets.

To complement Figure 4.2a we have Figure 4.2b. This array of subplots lay out the perfor-
mance of TC as a function of SNR. We observe that the bottom row of this figure shows
a deviating trend from zero as we move towards lower SNRs. It is at SNR < 75 that
the curve bends towards underestimations of Teff and log g, but over-estimations of the
metallicity. Nevertheless, offsets are generally well constrained. Regarding the top row
of this figure, it is not entirely sure whether one can attribute it physical meaning. TC
uncertainties do not reflect physical errors and therefore they are underestimated. In some
sense, the TC observational flux uncertainties might be correct, but there are additional
systematic uncertainties that come into play here when determining other stellar labels.

From this point on, and to a certain extent, we will refer to the GES labels as ground
truth. In this sense, the purpose of Table D.1, Figure 4.3 and Figures D.1, D.2, D.3, D.4,
D.5, D.6, D.7 and D.8 from Appendix D is to evaluate how well we reproduce the stellar
parameters in such survey as a function of SNR. In Figure 4.3 the label offsets are plotted
versus the GES values (colour-coded by SNR) along with their average and SD. Table 4.1
lists the mean labels offsets and SDs averaged over the number of stars in each SNR bin.

Label offset Low SNR Medium SNR High SNR All SNR

∆Teff [K] −23± 90 10± 75 13± 100 −1± 90
∆log g [dex] −0.09± 0.15 −0.04± 0.12 −0.04± 0.14 −0.06± 0.14

∆[Fe/H] [dex] 0.003± 0.084 −0.01± 0.07 −0.04± 0.24 −0.01± 0.15
∆ξ [km/s] 0.003± 0.202 0.03± 0.20 0.07± 0.20 0.03± 0.20

∆v sin i [km/s] 0.7± 3.6 0.2± 2.6 1.1± 3.5 0.6± 3.3
∆[Mg/H] [dex] −0.013± 0.144 −0.01± 0.1 −0.01± 0.11 −0.01± 0.12

Table 4.1: Averaged offsets of the 6 stellar labels represented in Figure 4.3 for the low, medium and high
SNR bins as well as for the total 1410 stars.
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Figure 4.3: 6-panel figure where the label offsets ∆` are plotted against the GES labels we pursue to
recover. Stars are colour-coded by their SNR and are scattered around two dotted grey lines representing
their ±SD: {σTeff = 90 K, σlog g = 0.14 and σ[Fe/H] = 0.15}.
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The first thing to notice from Table D.1 and Figure 4.3 is that the overall recovery of the
GES labels is unbiased, with label offsets compared to the GES values in good terms with
their corresponding uncertainties quoted in the literature (Jofré et al. 2019). Nevertheless,
in strong disagreement with what has been discussed so far in this section, there does not
seem to be a distinct improvement in the performance of TC as the SNR is increased. It
is true that stars placed in the medium SNR bin are less biased and produce lower offsets
with respect to the GES values when compared to the low SNR bin. However, high SNR
stars do not seem to further correct the small biases in our labels and display dramatically
large SDs. While low SNR stars could potentially appear as more volatile than high SNR
stars, the outliers in the former lie closer to the zero offset mark compared to those in the
latter, enhancing their offset uncertainties in Table D.1 (Figures D.1, D.3, D.4 and D.6).
Lets take a closer look at Figure 4.3:

• Effective temperature, Teff : The overall spread in effective temperature offset is
σTeff = 90 K. Fitting Teff works best for stars with solar-like temperature. At higher
temperatures the number of stars both in the testing and training set are depleted.
As a result, TC fails at predicting stellar effective temperatures above 6250 K ap-
proximately. A quick glance at Figure 4.1 suggests that artificially filling the high
temperature sections of the HRD of our training set will most likely improve the
measurements of Teff . A population of low SNR stars appear to be systematically
underestimated (see Figures D.1 and D.4).

• Surface gravity, log g: The offset in log g has a typical deviation of σlog g = 0.14 dex for
all SNR stars. At first sight it is perceived as more volatile than Teff , perhaps owing
to the fact that we completely removed the wings of strong lines from our analysis.
Moreover, there is a population of stars that are systematically biased towards the
bottom of the log g panel, trend that becomes more visible at medium and high SNR
bins.

• Metallicity, [Fe/H]: The offset in [Fe/H] is the one whose SD suffers the most from
outliers. This is the case for the high SNR bin with a SD of σ[Fe/H] = 0.24 dex
(see Figures D.3 and D.6), more than 3 times larger than the previously quoted for

CNAME T GES
eff T TC

eff log g GES log g TC [Fe/H] GES [Fe/H] TC v sin i GES v sin i TC

06403749+0954579 5992 6531 4.16 4.07 0.06 -2.14 - 3
06412224+0907372 6749 6539 4.16 4.13 -0.06 -2.16 - 3
06420663+0956026 6871 6516 4.12 4.06 -0.09 -2.14 35 2
08090850-4701407 6650 6517 4.10 4.09 -0.06 -2.07 - 3
10423830-6408320 6305 6481 3.97 4.05 0.01 -2.08 - 3

Table 4.2: Three main stellar parameters plus projected rotational velocities of five problematic stars.
Values for TC and GES are quoted with the corresponding super-indices.
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medium SNR stars (σ[Fe/H] = 0.07 dex, see Figures D.2 and D.5). The full extent of
these outliers is best seen in Figure D.7, where TC completely disagrees with GES
when fitting the [Fe/H] label for the 5 stars found in Table 4.2. These stars have a
large effective temperature and, upon inspection of their spectra, we concluded that
they also have a high projected rotational velocity as almost all spectral features
were practically smoothed out. In other words, it is not surprising that a poor
fit is obtained. Removing these stars from the analysis results in overall offsets of
∆Teff = −1±88 K, ∆ log g = −0.06±0.140 dex, ∆[Fe/H] = 0.007±0.081 dex, ∆ξ =
0.03± 0.20 km s−1, ∆v sin i = 0.7± 3.2 km s−1, ∆[Mg/H] = −0.01± 0.12 dex.

• Two more panels attract our attention, that of the microturbulence and projected
rotational velocity. Both ξ and v sin i are effectively regarded as nuisance parameters
concerning the broadening of the spectrum, but it becomes clearer from the panels
that not much science can be extracted from them.

Regarding element abundances, we will move onto Figures 4.4 and 4.5 (complemented by
Figures D.9, D.10 and D.11 in Appendix D for all elements). The first of these graphs
displays the abundance offsets and deviations averaged over all our test set stars. As
already hinted in Figure 3.11, TC consistently reports lower abundances for almost all
elements. On the brighter side, the overall bias is minor, compatible with a 1σ spread
of 0.05 dex for most species. Again, Sc, V, and Mn are especially underestimated, with
striking error bars in the case of Sc. This would come as a surprise if it were not for the
GES abundance panel for Sc in Figure D.9. The dark grey dots, corresponding to [Sc/Fe]
abundances derived from Sc I lines have a huge spread in the abundance plane with re-
spect to TC results. For V the bias is mainly due to TC analysing stars of solar metallicity

Mg Na Ca Sc Si V Ti Mn Ni Cr Co Ba Eu O Al

Elements

−0.4

−0.2

0.0

0.2

∆
[X
/H

]

Figure 4.4: Averaged abundance offset and SD for all 15 elements studied. The horizontal dashed line has
just been placed at zero for reference. Eu and O have no abundance values in GES and therefore no offset
can be calculated for these two elements.
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Figure 4.5: [X/Fe]-[Fe/H] abundance plots for our reference elements, comparing the results from GES,
TC and the relevant catalogue of the element at stake: Bensby et al. (2014) for Na, Mg, Ni and Ba and
Battistini & Bensby (2016) for Eu. Roughly speaking, the abundance plots in red represent the training
set. Just as a reminder, Eu has no GES panel owing to the absence of Eu abundances for our test stars.
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with an under-abundance of V with respect to GES and Battistini & Bensby (2015). The
issue in [Mn/Fe] addresses low metallicity stars, which seem to contain constant [Mn/Fe]
ratios at [Fe/H] < −0.5 dex in GES and Battistini & Bensby (2015). Compared to these re-
sults, TC values look like they reproduce an ever decreasing trend for this metal-poor stars.

Figure 4.5 is a convenient collection of plots to visualise the performance of TC when em-
ulating abundance trends. On the face of it, TC abundance trends have substantially less
scatter than the GES trends. One could interpret this as an improved performance over
the GES results, with tighter trends being recovered. However, it is a general concern that
this might come from an insufficient coverage of the abundance label space in the training
set. Linking features to actual astrophysical mechanisms or systematics arising from the
choice of training set is a slippery slope. If we draw our attention towards the Ni row, we
observe a clear trend in TC and Bensby et al. (2014) panels towards sub-solar [Ni/Fe] as
we approach metallicities bellow -0.7 dex. This is in strong disagreement with the GES
[Ni/Fe] abundance ratios, with metal-poor stars having an enhanced Ni abundance. Either
this is caused by not having high enough [Ni/Fe] stars in our training set (red panel) or
perhaps TC is picking up a correlation between Ni abundance and Fe lines since we are
not forcing it to train on Ni lines only (this statement can be claimed for every element).
This possible biased Ni trend towards our selection of training set is worrying. On the
brighter side, we can check the Ba row. A convex banana-like shape is distinguishable in
all three panels, yet this “banana” curve is much more flattened and spread out in Bensby
et al. (2014). These results suggest that our training set selection might not be seriously
biasing our abundances. A sanity check would be to artificially extend the training set to
astrophysically unlikely values to see whether the trends are severely affected or not. For
instance, if we manage to pin-point these missing high [Ni/Fe] stars.

The case of Eu is rather special. There is only one single Eu absorption line in the line list
from Ruchti et al. (2016), but it lies within the excluded Hα region of influence. Yet this
does not stop TC from actually computing [Eu/H] abundances. Given that we have pur-
posely removed all pixels which should in principle directly affect the value of this label, we
think that TC is picking up spurious changes in flux that correlate with the Eu abundance.

One of the most important plots in Bensby et al. (2014) is Figure 22 in the paper, where
the thin and thick disk are easily recognized as the low- and high-α branches in [Ti/Fe]-
[Fe/H] space. Moreover, this distinction is also visible in the ages of stars. Even though
we did not include stellar ages in our analysis we attempted to identify these thin and
thick disk substructures with Figures 4.6 and 4.7. The selection function in Bensby et al.
(2014) was orchestrated to target more kinematically hot stars in the thick disk, hence
the more noticeable gap between the above-named low- and high-α sequences. Regarding
TC results, a common feature among all three panels is that [Ti/Fe] is shifted to higher
abundances. Even though we do see both thin and thick disk stars, the split of points is
not nearly as visible in the rest of the panels perhaps due to this offset or simply caused
by an increase in scatter with respect to Bensby et al. (2014). If any, the thin-thick-disk
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Figure 4.6: [Ti/Fe] as a function of metallicity in GES (top grey panel), Bensby et al. (2014) (bottom
red panel, basically our training set) and TC (three middle panels). These last have been separated into
low, medium and high SNR bins as the plots are read from top to bottom and have been colour-coded by
[Ti/Fe] offset.
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Figure 4.7: [Ti/Fe] histograms for the three SNR bins. Every panel contains the GES (grey), Bensby et al.
(2014) (red) and TC abundances for each SNR bin (blue) for comparison purposes.

division is visible at medium SNR, which contains more stars than the high SNR bin. This
is somewhat confirmed by Figure 4.7. Histograms of all 15 elements are found in Figure
D.12 in Appendix D.

The last plot in this chapter is Figure 4.8. With this plot we want to compare the titanium
versus iron abundance plots for all the datasets we have been dealing with and those
obtained in Buder et al. (2019). None of the datasets seem to clearly distinguish between
thin and thick disk, yet more concerning is the fact that the [Ti/Fe] in GALAH are under
abundant with respect to TC results by 0.2 dex. Since abundances in Buder et al. (2019)
are computed using Spectroscopy Made Easy (SME, Valenti & Piskunov 1996), we might
be noticing some systematic biases between both codes, however, this distinct shift might
also be due to a very different selection of stars in the survey.
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Figure 4.8: [Ti/Fe]-[Fe/H] abundance plots comparing our results to other datasets used in this work and
those measured by SME for 8000 dwarf stars in GALAH (Buder et al. 2019).
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Conclusion

The purpose of this thesis is to explore an alternative data-driven approach in the analysis
of stellar spectra. The Cannon is our machine-learning algorithm, designed to efficiently
and accurately transfer stellar properties or labels from a reference dataset to any dataset
of interest. The targets of this study, referred to as the test set, are then FGK-type dwarf
stars from the Gaia-ESO Survey, among which we selected 1410 after a series of quality cuts
and filtering of stars outside the relevant stellar parameter space. The dataset of reference,
referred to as the training set, was substituted by a spectral model. Turbospectrum was the
radiative transfer software used to synthesise the model based on stellar parameters of 705
stars from Bensby et al. (2014) and complemented with element abundances of modern
publications in the field of observational Galactic Archaeology (Battistini & Bensby 2015,
2016; Bensby & Feltzing 2006; Delgado Mena et al. 2017; Mishenina et al. 2019; Casali
et al. 2019). These two datasets required massaging before being fed to The Cannon. We
continuum-normalised and RV-corrected the test set and downgraded the training set to
match the resolution and wavelength raster of the UVES spectrograph. Some preliminary
runs were carried out to evaluate the performance of the pipeline under different versions of
censoring masks. These initial analyses trained on a validation sample of 39 GES stars by
fitting only 7 labels: {Teff , log g, [Fe/H], ξ, v sin i, [Mg/H] and [Na/H]}. In the end, after
fine tuning The Cannon, it was configured to fit 20 labels, {Teff , log g, [Fe/H], ξ, v sin i,
[Mg/H], [Na/H], [Ca/H], [Sc/H], [Si/H], [V/H], [Ti/H], [Mn/H], [Ni/H], [Cr/H], [Co/H]
[Ba/H], [Eu/H], [O/H] and [Al/H]}, on the full test set.

In summary, the main conclusions of this work are:

• We have successfully tagged 1410 GES dwarf stars by transferring information on 20
stellar labels from our synthetic training sample. Among all 20, valuable scientific
results can be inferred from 18 of them: the effective temperature Teff , surface gravity
log g, metallicity [Fe/H] and 15 element abundances. The remaining 2 labels, ξ and
v sin i, are regarded as nuisance parameters due to their lack of scientific meaning
and poor theoretical understanding in terms of how they affect absorption lines. As
much as microturbulence is modelled in Turbospectrum, nothing else can be said from
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its panel in Figure 4.3. The projected stellar rotation felt like a necessary broadening
parameter to properly emulate the observed spectra. Nonetheless, we treated it as
a fudge parameter in an attempt to account for other sources of broadening such
as macroturbulence. Some finger-shaped features are observed in the v sin i panel of
Figure 4.3. We assume these artifacts arise because of how we assigned v sin i values
to the training set, i.e. we convolved each synthetic spectrum of our training set
by randomly picking a from the GES v sin i values of the test set. An immediate
improvement concerning this parameter would be to sample the v sin i values from a
smooth distribution.

• Preliminary results strongly encouraged the use of a censoring mask (Figure 3.10).
Since we are not forcing TC to look at a particular set of pixels depending on the
label we wish to fit, the pipeline renders more scientifically valuable results excluding
“unnecessary” or “problematic” pixels. Unnecessary in the sense of avoiding pixels
other than those covering, say, Mg transition lines when fitting [Mg/H]. Problematic
in the sense that our 1D, LTE spectral model does not fully cover all spectral features.
One must also note that such improvement in TC performance is due to the careful
selection of the censoring mask, which is based on the line list published in Ruchti
et al. (2016). The spectral lines in this paper have been carefully selected to fit
Galactic Archaeology studies using dwarf stars in the optical range.

• Two spectral regions were excluded as detrimental: the Hα and the Na D doublet.
Concerning the first, we expected not to model the core of Hα because all cores in
strong lines suffer from NLTE effects. Turbospectrum is a 1D, LTE radiative transfer
code and therefore does not account for NLTE effects when producing the training
set spectra. The wings of Hα are also poorly fit, and it is most probably due to our
continuum normalisation scheme not being able to model non-linear spectral features
such as the full Hα region of influence. Regarding the Na D lines, we realised it is
common practice to always mask them out as they blend with Na lines in the ISM
(Munari & Zwitter 1997).

• Another characteristic of the mask we tested was the width of the spectral window
covering absorption lines of interest. It was not until we extended the number of labels
to fit a larger number of chemical abundances that we realised TC systematically
underestimated all of them. Narrowing the size of such window from 2 Å to 0.5 Å
corrected this bias slightly (Figure 3.11). We are still not certain about what could
be going on, yet one thing is clear, very few pixels from the full spectrum are required
in the actual analysis.

• Continuum-normalisation is difficult to pin down. More accurately speaking, coding
a functional continuum-normalisation for a general use is a hard task. The presence
of numerous absorption lines, spectral features arising from the merging of orders
in an echelle spectrograph and a wide range of SNRs can comfortably hide the true
continuum pixels and completely shift the baseline. Given that TC shows better
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results after a deliberate removal of pixels, the possibility of avoiding continuum-
normalisation of the full spectrum is tempting. Since TC is effectively looking at
narrow windows around the relevant absorption lines, normalising the individual
absorption lines would likely suffice.

• The recovery of the three main stellar parameters is summarised in Table 4.1. How-
ever, we realised that it was worth excluding a handful of stars which TC classified
as extremely metal-poor ([Fe/H] < −2). After removing these stars (Table 4.2), the
SD of the label offsets for the three main labels are σTeff = 88 K, σlog g = 0.14 dex and
σ[Fe/H] = 0.08 dex. These uncertainties are comparable to those reported in the lit-
erature and hold (even improve) throughout a wide interval of SNRs. Measurements
at low SNR are favoured by the statistics, though there is a population of stars with
a systematically underestimated Teff and log g probably due to bad performance of
the continuum normalisation routine. At high SNRs the scatter in label offsets is not
significantly improved even after the removal of the hot, fast rotators. This indicates
that a more in depth examination of the stellar spectra involved is needed to identify
potential reasons for large label offsets. Finally, medium SNR stars report the best
results with practically unbiased results and SDs of σTeff = 75 K, σlog g = 0.12 dex
and σ[Fe/H] = 0.07 dex for the three main stellar parameters.

• Perhaps, a price to pay for the conscious removal of pixels from both our training and
test spectra could be the loss of important information to help constrain our labels.
In this sense, special emphasis must be made regarding our inability to replicate the
wings of the Hα line. These are strongly dependent on the pressure and temperature
of the atmospheric layers where they form and should be good tracers of Teff and
log g if modeled properly.

• The scientific value of our results is best represented by the 15 abundance plots from
Figures D.9, D.10 and D.11. One would still need to carry out some extra tests
to analyse the impact of the label space covered by the training set on the final
abundance plots, e.g. whether we recover stars with high Ni abundance or not by
artificially extending the label space of the training set in that direction. Nevertheless,
we manage to reproduce similar trends with a significant reduced scatter in all 15
elements. It is in examining these similarities and differences with both training and
test sets that we would be able to gain a better understanding of TC, the GES and
the different catalogues we compared with.
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Figure A.1: Continuum normalization of GES star observed with the U580 UVES setting whose labels, SNR, RV and identifier are shown in
the title of the figure. The top panel shows the spectrum before normalisation (zeroth iteration) and the fitting spline function in solid red
with its nodes (cyan dots); the panel in between shows the same spectrum, with pixels in red indicating that they remain after the σ-clipping;
the bottom panel contains the final version of the normalised spectrum, iteratively scaling the input spectrum by the spline fit. The dashed
vertical red lines mask out the broadest lines in the piece of spectrum, namely, Hα and Na doublet.
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Figure B.1: [X/H] as a function of metallicity for all 28 elements with available observational data for the
FGK type stars. Dots in blue represent stars with observed elemental abundances, cross-matched between
the Bensby catalogue and the catalogue of stars corresponding to the element on the top left corner of
each panel. Stars in red belong to the Bensby catalogue too, but are not picked in the cross-match and
therefore have a synthetic abundance value. The dashed line shows the first order polynomial fit.
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Figure B.2: [X/Fe]-[Fe/H] plots for all 28 elements. The same colour scheme as Figure B.1 is employed.
Here, the dashed vertical and horizontal lines show the default solar metallicity and abundance value.
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Appendix C

Fine tuning

ID Teff log g [Fe/H] ξ v sin i [Mg/H]

00240628-7204370 5522.0 3.9 -0.87 0.81 9.58 -0.24
01402870-0059453 5699.0 3.95 0.08 1.18 2.8 0.18
03394563+0008017 5819.0 4.28 0.33 1.14 3.04 0.42
04394032-4603107 5989.0 4.37 -0.05 1.15 4.83 -0.19
04591551-5202392 5807.0 4.3 0.08 1.03 2.7 0.15
04595520-5159408 5892.0 4.34 0.01 1.16 2.0 0.09
05000360-5152370 6651.0 4.47 0.03 1.64 15.06 0.21
05202229-4653038 5854.0 4.18 0.07 1.03 4.78 0.13
06403720+0926513 6061.0 4.2 0.01 1.21 5.73 0.04
06410157+0915215 5386.0 3.9 0.27 1.06 2.89 0.44
06413715+0920599 5900.0 4.34 0.08 1.12 5.11 0.22
06440226-0101566 5622.0 4.44 0.14 1.08 4.0 0.21
07033617-4229583 6460.0 4.25 0.07 1.93 14.98 -0.09
07211345-0034280 5439.0 3.67 -0.28 1.12 4.64 -0.15
07444655-4235508 5891.0 3.77 -0.27 0.34 13.78 -0.07
08003075-0029292 5981.0 3.81 -0.15 1.43 5.22 -0.11
08093304-4737066 5640.0 4.26 -0.01 1.82 14.1 -0.18
08095427-4721419 5884.0 4.45 0.10 1.61 19.24 -0.77
09272162-0026042 5843.0 4.38 0.06 1.02 2.0 0.13
10484720-6403081 6844.0 4.51 -0.08 2.38 12.69 -0.05
10592101-4106265 5665.0 4.37 0.20 0.96 2.0 0.25
11002390-4101447 5279.0 4.55 -0.18 1.05 5.94 -0.1
11072859-5847592 5908.0 4.35 0.25 1.23 4.48 0.26
11073982-5842055 6146.0 4.61 -0.01 1.56 12.46 0.13
11083921-5845051 5955.0 4.56 -0.06 1.34 12.07 0.06
11124268-7722230 5226.0 3.94 -0.07 2.02 10.07 0.13
11214703-0957090 5750.0 4.39 -0.10 1.14 6.08 0.03
13011600-4101507 5935.0 4.24 -0.17 1.12 2.0 -0.08
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13592093-4058230 5831.0 4.56 0.20 0.86 9.96 0.17
14002595-1003372 5659.0 3.81 -0.53 1.14 4.96 -0.27
14003318-4054310 5888.0 3.96 -0.26 1.15 3.33 -0.16
14595971-1955054 5852.0 4.27 0.14 1.01 4.73 0.18
15540366-4052141 5969.0 4.11 0.09 1.13 2.24 0.14
17345383-4300502 5993.0 4.06 0.13 1.24 4.41 0.17
17573649-3449364 5158.0 3.56 0.04 0.88 5.59 0.12
18182202-3252027 5054.0 3.54 -0.13 1.08 3.05 -0.05
18281038+0647407 5590.0 4.58 -0.48 0.69 11.91 -0.18
18282204+0650074 6391.0 4.33 0.02 1.57 9.79 0.17
22504769-5242498 5892.0 4.28 0.06 1.06 4.2 0.1

Table C.1: Main stellar labels for the sub-sample of 39 GES stars.
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ID SNR TeffGES TeffTC log gGES log gTC [Fe/H]GES [Fe/H]TC

03595585-2952287 73 5360 5366 4.4 4.49 -0.032 0.029
13395534-3412246 37 5579 5655 4.09 4.02 -0.43 -0.401
05121384-6155151 128 5405 5320 4.48 4.4 -0.09 -0.15
00295076-0334166 82 5639 5678 4.09 4.15 0.114 0.089
14002595-1003372 55 5918 5983 4.03 4.06 -0.487 -0.38
01505298-5007283 157 5267 5281 4.44 4.49 -0.031 -0.038
04302280-5008330 73 5553 5588 4.32 4.31 -0.172 -0.087
21200837-4804424 115 5857 5918 4.1 4.14 0.001 0.003
18492377-4228283 90 5913 6063 4.13 4.16 -0.466 -0.416
03200852-5558261 110 5644 5634 4.04 3.94 -0.003 0.021
10235288-3545538 200 5306 5341 4.46 4.56 -0.021 -0.054
02294307-0328342 161 5527 5448 4.42 4.37 0.171 0.103
04200948-0015371 104 5496 5505 4.31 4.29 -0.051 -0.089
10592101-4106265 112 5430 5430 4.33 4.4 -0.151 -0.15
15295442-1957254 60 5809 5803 4.11 3.9 -0.228 -0.326
10403923-1807097 135 5990 5976 3.88 3.53 -0.467 -0.528
14193707-3703162 225 5061 5055 4.45 4.51 0.04 -0.003
20590947-5459144 43 5907 5909 4.12 4.02 0.171 0.096
05102002-6152039 160 5419 5507 4.37 4.55 0.302 0.302
07452778-4227198 44 5681 5632 4.28 4.24 0.305 0.234
23201331-5451382 46 5514 5497 4.44 4.41 0.158 0.1
10230126-3535321 69 5356 5341 4.36 4.41 0.259 0.191
09202790-1758277 98 5659 5634 4.42 4.35 -0.135 -0.177
08393608-0030520 64 5752 5752 4.04 3.86 -0.439 -0.526
08093304-4737066 119 6034 6059 3.94 3.82 -0.149 -0.154

Table D.1: Main stellar labels plus ID and SNR for 25 randomly picked stars from the full test set of 1410
GES stars. The GES and TC values are listed for comparison purposes.
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Figure D.1: Adaptation of Figure 4.3 only including stars in the low SNR bin.
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Figure D.2: Adaptation of Figure 4.3 only including stars in the medium SNR bin.
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Figure D.3: Adaptation of Figure 4.3 only including stars in the high SNR bin.
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Figure D.4: Histograms of the label offsets in Figure D.1, with their mean and SD.
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Figure D.5: Histograms of the label offsets in Figure D.2, with their mean and SD.
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Figure D.6: Histograms of the label offsets in Figure D.3, with their mean and SD.
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Figure D.7: 6-panel scatter plot where TC labels are represented versus the GES labels for all 1410 test
stars, colour-coded by SNR.
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Figure D.8: Correlation between labels offsets and GES values for Teff , log g and metallicity in the test set. Again, dots are coloured in
accordance with their SNR.
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Figure D.9: [X/Fe]-[Fe/H] comparison figure among GES and TC abundances for the test stars and the
reported abundances from the catalogues in Table 3.1 for the relevant elements. Mg, Na, Ca, Si, Ti,
Ni, Cr, Ba, O and Al are studied in Bensby et al. (2014), Sc, V, Mn and Co in Battistini & Bensby
(2015) and Eu in Battistini & Bensby (2016). Sc, Si and Ti have a second set of light grey dots added in
their GES abundance panels. In these three cases, dark grey dots correspond to abundances calculated
from transitions within the neutral species, whereas light grey dots stand for abundances determined from
transitions from the ionised sibling. Missing GES abundance panels for Eu and O just represent the
absence of [Eu/Fe] and [O/Fe] abundances for all these 1410 stars.

88



Appendix D. Final TC run

−0.4

0.0

0.4

V

GES abundances TC abundances Catalogues

−0.4

0.0

0.4

Ti

−0.4

0.0

0.4

Mn

−0.4

0.0

0.4

Ni

−1.0 −0.5 0.0 0.5
−0.4

0.0

0.4

Cr
−1.0 −0.5 0.0 0.5

[Fe/H]
−1.0 −0.5 0.0 0.5

[X
/F

e]

Figure D.10: Continuation of Figure D.9.
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Figure D.11: Continuation of Figure D.9.
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Figure D.12: Normalised histograms of TC, GES and catalogued results for all 15 elements in Figures D.9,
D.10 and D.11
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