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Abstract
If radar surveillance systems are installed near a wall, their radiation is reflected not only from
moving objects but also from the wall. In this way, non­existing so­called ghost targets can lead
to false detections. This thesis exploits such ghost detections to infer the position and extension
of a wall next to a radar sensor. This is done by geometric equations only and proves especially
successful outdoors. With this knowledge, it will be possible to distinguish ghost targets from
real ones and even use them for improved object detection.
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Abbreviations
ADC analog­to­digital converter

AoA angle of arrival

FFT fast Fourier transform

FMCW frequency­modulated continuous wave

IF intermediate frequency

IO interacting object

LOS line­of­sight

RCS radar cross­section

RX receiver antenna

SNR signal­to­noise ratio

TX transmitter antenna
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1. Introduction

Figure 1.1: An antenna transmits a
radio wave and detects its reflection
from an airplane (in practice, trans­
mitter antenna (TX) and receiver an­
tenna (RX) are often two different de­
vices).

When hearing the word “radar”, many people would
probably immediately think of a detection system used
mostly on airplanes or vessels. Maybe they could even
guess that it is an acronym for “radio detection and
ranging”, and know that it needs an antenna sending
out electromagnetic waves in the microwave domain
(radio waves). These waves then reflect back from the
interacting objects (IO) to a second antenna waiting
for the echoes to be received (see figure 1.1). The usage
on airplanes and on water is rather simple because there
are limited background scatterers such as walls or ceil­
ings, and detectable objects are scarce. It is therefore
not surprising that radar was pioneered in the Second
WorldWar [1] less than a century after electromagnetic
waves were first postulated and experimentally discov­
ered by James Clerk Maxwell and Heinrich Hertz, re­
spectively [2].

Since then, radar technologies have found their appli­
cations in weather forecasting, police radar guns for detecting speeders, and automotive sen­
sors [3]. Recently, stationary radar surveillance systems have conquered the market [4]. Com­
pared to video surveillance, radar can detect perpetrators also in foggy conditions, and it is often
considered as an alternative when privacy is important (an example could be public swimming
pools).

Figure 1.2: A radar (black box) detects
both a target and its reflection in the
ground (ghost target).

A radar sensor does, however, encounter difficulties
when placed in dense environments such as narrow
streets, and even more so indoors. One issue is named
“multipath” because it is due to the electromagnetic
waves reflecting from walls, thus taking more than just
the line­of­sight (LOS) path between the antenna and
IO. This leads to destructive and constructive interfer­
ence effects, and to the appearance of ghost targets (see
figure 1.2). Ghosts can lead to false detection but, es­
pecially if the floor­plan is known, they can help to in­
crease the signal­to­noise ratio (SNR) [5]. In automo­

tive applications, ghosts can be distinguished by comparing their orientation to their veloc­
ity [6].

Without knowing the floor plan and the targets’ orientation, this thesis tries to identify and
exploit ghost targets that appear when a radar sensor is placed next to a wall. In particular,
this was done using a commercially available evaluation platform, with which short measuring
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CHAPTER 1. INTRODUCTION

campaigns were undertaken indoors and outdoors.

The thesis is structured as follows: the theory section includes radar fundamentals, basic signal
processing, and electromagnetic wave theory. Themeasurement and analysis will be thoroughly
explained in the method section. The results and their discussion conclude the thesis.
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2. Background and Theory
The radar sensors used for this thesis transmit electromagnetic waves with a wavelength λ in
the millimeter range. This allows for the antennas to be very compact (of the order of λ) and
make highly accurate measurements. For example, an antenna with frequency f = 60GHz
sends out waves with λ ≈ 5mm (found via λ = c/f , where c is the speed of light) and can
easily detect movements in centimeter resolution.

However, to understand the workings of a radar sensor in detail, one needs to first understand
the theory of electromagnetic waves. The theory section thus starts with stating the wave equa­
tion for electromagnetic waves in both its real and complex notation. Section 2.2 then explains
the signal processing going on inside of a radar sensor. This is followed by a deterministic
analysis of the simplest multipath scenario ­ scattering on an even surface.

2.1 Electromagnetic waves

Electromagnetic waves are oscillations of electric andmagnetic fields in sync with each other [7].
They travel at the speed of light c and, generally, the two fields are perpendicular to each other
and perpendicular to the direction of propagation. The time dependent wave equations are
solutions to Maxwell’s equations and are sinusoidal. For the electric field, this means

E = E0 exp[j(2πft+ ϕ)], (2.1)

whereE0 is the amplitude, t is time, andϕ is a phase term. If an antenna emits such a radio wave
whose phase is considered zero at its origin, at a distance d it will have a phase of ϕ = 2πdf/c.
The imaginary part of equation 2.2 is the physical wave:

E = E0 sin (2πft+ ϕ), (2.2)

which is also a solution to Maxwell’s equations. In practice, it is convenient to use its complex
representation and only evaluate its real part when necessary.

It often suffices to consider the waves to be uniform plane waves, which means that the fields
are independent of their transverse coordinates and that their propagation vector follows simple
geometric rules. For our purposes, the most important one is the law of reflection. It states
that the angle of reflection is equal to the angle of incidence. Knowing this, basic trigonometric
identities can be exploited to measure distances. Exactly how this is done is explained after the
treatment of radar fundamentals.
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2.2. FMCW RADAR FUNDAMENTALS

2.2 FMCW Radar Fundamentals

By capturing the reflected signal and mixing it with the TX signal, a radar can easily deter­
mine the range, velocity, and angle of moving objects. How the first two parameters can be
deduced will be treated schematically in the following subsections, and the angle analysis will
be explained even more qualitatively. A more detailed account can be found in [8].

2.2.1 Range Measurement

Figure 2.1: Chirp signal with frequency as a lin­
ear function of time with slope S.

The devices used in this thesis are frequency­
modulated continuous wave (FMCW) radars.
Their signals are called chirps because their
frequency increases linearly with time. A
chirp configuration is almost completely
characterized by its start frequency fc, band­
widthB, the chirp to chirp time Tc and slope
S. Figure 2.1 shows the frequency of such a
signal as a function of time with typical values
for the aforementioned parameters. The fig­
ure depicts two sent signals (TX) and the first
received signal (RX). The latter is the same as
the TX signal but shifted in time because it must travel to and from an IO. The time delay is
simply τ = 2d/c, where d is the distance to the IO, and c is the speed of light. In one frame
multiple signals are sent out after each other, but for the range measurement only the first one
is of interest.

As a first step in the signal processing, a frequency mixer combines the RX and the TX signal
to an intermediate frequency (IF) signal. Because these two inputs are both sinusoidal with
characteristic angular frequencies ωi and and phases ϕi (see equation 2.2), the mixer’s output
is also sinusoidal:

xout = sin [(ω1 − ω2)t+ (ϕ1 − ϕ2)]. (2.3)

In the time interval where the TX chirp overlaps with the RX chirp, the IF signal has fre­
quency

f0 = S · τ =
S2d

c
, (2.4)

which can be seen graphically by looking at figure 2.1. More explicitly, this is the TX frequency
when the RX signal first arrives. Similarly, the initial phase of the IF signal is

ϕ0 = 2πfcτ =
4πd

λ
. (2.5)
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2.2. FMCW RADAR FUNDAMENTALS

When there are several objects, the chirp is delayed by a different amount of time proportional
to the distance to each object. Hence, the IF signal consists of different tones. Fourier trans­
forming this signal reveals the signal’s different frequencies. In practice, this is done using a fast
Fourier transform (FFT) algorithm. The different frequencies correspond to the distances to
the IOs. If two IOs are at the same distance from the radar but at different angles, they will
share one peak. How these can be distinguished will be shown later on, where what has been
done so far will be referred to as range­FFT processing. From Fourier transform theory, it can
be shown that the range resolution depends only on the bandwidth [8]:

dres =
c

2B
. (2.6)

To give an example, one of the chirp configurations used for this thesis had a resolution of
roughly 6 cm. Theoretically, a radar can see very far, but the frequency change becomes higher
for objects further away. Real radars are equipped with an analog­to­digital converter (ADC),
which can sample up to a maximum frequency. The maximum distance a radar can see is

dmax =
Fsc

2S
, (2.7)

where Fs is the ADC sampling rate.

2.2.2 Velocity Measurement and Range­Doppler Plot

To measure the velocity v, two chirps separated by Tc are transmitted. Note from figure 2.1
that the second signal starts some time after the end of the first signal; this is called the idle
time. Because the signal can be assumed to travel much faster than the IO, the range FFT will
have peaks in the same location, but with a different phase. This difference is derived from
equation 2.5 as

∆ϕ =
4πvTc

λ
. (2.8)

Since the velocity measurement is based on the phase difference, the measurement is unam­
biguous only if |∆ϕ| < π. From this, the maximum relative speed measured by two chirps
spaced Tc apart can be determined to be

vmax =
λ

4Tc

. (2.9)

If multiple objects with different velocities are at the same distance from the radar, the range­
FFT will result in a single peak and the phase comparison technique will not work. This can be
reconciled by transmitting a frame of N equally spaced chirps (N = 128 for example). Con­
sider the example of two equidistant objects with velocities v1 and v2. Range­FFT processing
their set of IF signals results in a set ofN identically located peaks, each with a different phase.
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2.2. FMCW RADAR FUNDAMENTALS

These are sketched in grey in figure 2.2a. When a second FFT is performed over the N peaks,
the result is a function with local maxima at two different frequencies f1 and f2, marked in
color in figure 2.2a. This second FFT is also called the Doppler­FFT. The velocities can then
be computed via

vi =
λfi
4πTc

. (2.10)

From the theory of discrete Fourier transforms, it can then be shown that the velocity resolution
is

vres =
λ

2Tf

, (2.11)

where Tf = NTc.

All previously mentioned peaks actually appear as bins in a discrete matrix as shown in fig­
ures 2.2b and c. The final matrix is referred to as the Range­Doppler plot.

Figure 2.2: (a) A range­FFT gives the grey curves, a subsequent Doppler­FFT results in the
colorful curves. (b) The peaks of the grey curves appear as dark range bins. (c) The Doppler­
FFT on the rows of the first matrix results in a range velocity plot.

2.2.3 Angle measurement

An FMCW radar system can also estimate the angle of a reflected signal in the horizontal
plane. This angle of arrival (AoA) approximation is based on the fact that a small change in
the distance to an object results in a significant phase change in the peak of the range­FFT or
Doppler­FFT. Therefore, two RX placed next to each other such as in figure 2.3 will result in
two distinguishable signals.

In practice, one can also place several TX next to each other, and this thesis uses two TX and
four RX, resulting in eight Range­Doppler matrices. This method is called multiple­input
and multiple­output (MIMO) and is used heavily in wireless communication [9]. The eight
matrices are combined to a three­dimensional matrix, sketched in figure 2.4, and performing
an angle­FFT over the range­velocity bins along the layers reveals the phase ϕ of the signal. If
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2.2. FMCW RADAR FUNDAMENTALS

Figure 2.3: Sketch of an antenna array to resolve the AoA.

there are two objects at different angles but with the same velocity and range, there will be two
distinct peaks after this last FFT. The angle(s) can then be found by

θ = arcsin
( λϕ

2πd

)
, (2.12)

where d here is the RX spacing. If d = λ/2, the field of view is maximized and the above
equation simplifies conveniently.

Figure 2.4: The range velocity cube along whose third dimension the angle­FFT is performed.

2.2.4 Radar Range Equation

The radar range equation deterministically relates the received echo power Pr to transmitted
power Pt in terms of design parameters and distance d between radar and IO without taking
into account reflections from randomly distributed obstacles. Its simplest derivation assumes
a point target [10]. This target collects all energy in an area around it, called the radar cross
section (RCS) σ, and reradiates it isotropically. From these considerations, it can be shown
that
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2.2. FMCW RADAR FUNDAMENTALS

Pr =
PtG

2λ2σ

(4π)3d4
, (2.13)

where G is the antenna gain, taking into account that the antenna does not radiate equally in
all directions. While not derived here, it is clear that the d4 and two of the three (4π) in the
denominator stem from both the antenna and the target radiating isotropically (the third (4π)
is a result of how the antenna receives the signal).

A slightly more involved derivation for volume targets [10] gives that

Pr ∝
η

d2
, (2.14)

where η is the volume reflectivity. For our purposes, it is not instructive to follow the complete
derivation because an actual IO cannot be considered a point target nor a perfect volume target.
It might best be approximated by a dominant volume target and a few point targets. The
expectation for measurement is thus that Pr ∝ d−n with 1 < n < 4. The exact behaviour
depends on the IO’s shape and its orientation.
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2.2. FMCW RADAR FUNDAMENTALS

2.2.5 Specular Ground Reflection

Figure 2.5: The transmit antenna placed
slightly higher above ground than the moving
IO. They are a distance d apart and the two
different paths the wave can take have length
ddirect and drefl.

As soon as multipath is introduced, even a
metallic sphere as the IO would not perfectly
reproduce equation 2.13. At high enough
distance, the range equation will actually be
proportional to d−8, as will be shown in the
following derivation for the simplest multi­
path case, which is adapted from [11].

Consider the geometry of figure 2.5, where
the transmit antenna is placed slightly higher
than the moving target. By the law of reflec­
tion, the two angles marked in the figure are
identical. The LOS path length from TX to
IO is denoted by ddirect while the length that
Erefl covers is drefl. From basic trigonome­
try, these are

ddirect =
√

(hTX − hIO)2 + d2, drefl =
√

(hTX + hIO)2 + d2.

The field strengths at the IO for the two paths are

Edirect = E
1

ddirect
exp

[
j
(
2πfct− 2πfc

ddirect
c

)]
, (2.15)

Erefl = (−1)E
1

drefl
exp

[
j
(
2πfct− 2πfc

drefl
c

)]
, (2.16)

where E is the amplitude and the factor (­1) is the ground reflection coefficient, approximately
true at an angle of incidence close to 90° [12]. When the heights are smaller than the distance
d, the amplitudes of both waves are approximately the same. At the IO the total field is the
sum of both:

Etot(d) = E
1

d
exp

[
j
(
2πfct− 2πfc

ddirect
c

)]{
1− exp

[
−j

(
2πfct

drefl − ddirect
c

)]}
.

(2.17)

The received power at the IO is proportional to the square of the magnitude of the field
strength:

|Etot|2 ∝
1

d2

∣∣∣∣1− exp

[
−j

(
2πfct

drefl − ddirect
c

)]∣∣∣∣2, (2.18)
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2.2. FMCW RADAR FUNDAMENTALS

which, at short distances, is proportional to d−2 with perturbations. A result of destructive
interference, these perturbations can be quite important and are also referred to as fast fad­
ing. At longer distances, equation 2.18 is proportional to d−4, which can be seen by plotting
equation 2.18 or by Taylor expanding it [11]. Since the reflection follows the same path, the
power at the receiving antenna is simply proportional to the square of equation 2.18 and thus
eventually decays as d−8.

In principle, this derivation also holds for a specular wall reflection. However, since the reflec­
tion depends on whether the electric field is parallel or orthogonal to the reflecting surface, the
two cases might differ in practice.

2.2.6 Wall reflection

Figure 2.6: Top­
view of an IO
moving next to a
wall.

When a radar keeps the the area around a modern office building under
surveillance, its dominant multipath component will probably be due to
the reflection in the windows rather than in the ground. This simple sit­
uation is sketched in figure 2.6. In principle, the multipath components
can occur when the signal travels to the object via LOS, then to the wall,
and then back (direct/indirect), or first to the wall, then to the object, and
then back via LOS (indirect/direct), or by taking the indirect path in both
directions (indirect/indirect). The last is attenuated by two reflections and
is generally not dominant, but it dominates if corner reflectors are used
(see method section). In this case, the ghost’s measured distance dghost
should be equal to d′ indicated in the figure. This and other parameters
can be found by simple trigonometry [13]:

d′ =
√
4a2 + d2 − 4ad sin θ, (2.19)

θ′ = arctan (
2a− d sin θ

d cos θ
), (2.20)

v′r = vr cos (θ + θ′), (2.21)

where vr is the main signal’s radial velocity, which is the one recorded by the radar. Solving
equation 2.19 for a, and taking only the positive solution, gives

a =
4d sin θ +

√
(4d sin θ)2 − 16(d2 − d′2)

8
. (2.22)

Similarly, solving equation 2.20 for a gives

a =
d

2
(cos θ tan θ′ + sin θ). (2.23)

10



2.2. FMCW RADAR FUNDAMENTALS

A final inference for a can be achieved by inserting equation 2.20 into equation 2.21 and solving
for a:

a =
d

2

[
cos θ tan

(
arccos

(
v′r
vr

)
− θ

)
+ sin θ

]
. (2.24)

Similar geometric equations can be found for the cases direct/indirect, indirect/direct. Instead
of dghost = d′ = (d′ + d′)/2, the ghost will then appear to be at a distance of dghost =
(d+ d′)/2 < d′. If θ = 0, the equivalent of equation 2.22 becomes

a =
√

d2ghost − dghost · d. (2.25)

This means that if the indirect/direct case is assumed while indirect/indirect is actually the case,
the distance to the wall will be overestimated.
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3. Method
The data analyzed in this thesis was recorded for this purpose only in non­laboratory environ­
ments. To this end, commercial antennas were used under a specific configuration. If not
otherwise specified, the main target was a corner reflector held by a person walking at a com­
fortable walking pace. All recordings were postprocessed in python.

3.1 Sensors

Figure 3.1: TI IWR6843ISK radar
sensor, front view, adapted from [14].

A technical drawing of the Texas Instruments IWR6843­
ISK sensor evaluation kit, which was used through­
out the thesis, can be seen in figure 3.1, with its an­
tennas in the top right corner. Their polarisation is
such that the electric field is in the vertical plane and
the magnetic field in the horizontal plane. It has a
60 to 64GHz range and of its 3 transmit antennas,
only 2 were used, whereas all of its 4 receive anten­
nas were used. The parameters of the configuration
configuration are found in table 3.1. The bandwidth
can be computed by multiplying the ramp time with
the slope such that B = 2340MHz. From equa­
tion 2.7 it follows that dmax ≈ 40m, such that each
range bin represents 40m/128 ≈ 30 cm. Because two
TX were used, the chirp to chirp time for each an­
tenna is Tc = 2 · (43 + 78) μs. From equation 2.9

vmax ≈ 5.14m/s and then each velocity bin represents 5.14/64m/s ≈ 0.08m/s, since 64
bins are allocated to positive velocity and 64 bins to negative velocity.

3.2 Measurement Set Up

Figure 3.2: Working
principle of a corner re­
flector.

If not otherwise specified, the radar sensor was placed on a tripod,
1.5m above the ground, and a person was recorded walking away
from it. This person would hold a corner reflector at hip height,
∼ 1m, pointing towards the sensor. Because of how the radio waves
reflect on the reflector’s surfaces (see figure 3.2), their direction is ex­
actly reversed. This ensures that the dominant multipath is always
indirect/indirect.

Some of the environments in which the radar sensor is placed are

12



3.3. DATA ANALYSIS

Table 3.1: Specifications of the chirp configuration.

Parameter Value
start frequency fc 60GHz
idle time Ti 43 μs
ramp time 78 μs
frequency slope S 30MHz/μs
ADC samples N 128
ADC sampling frequency Fs 8000 ksps

shown in figure 3.3a­c: a parking lot, a rather open indoors space with
glass surfaces on one side, and 2.5m next to an office building. In the
latter case, the wall is 3.2m from the fence to its left. The most basic
scenario involves the reflector being carried away in a straight line at
almost zero AoA. This, together with two other tracks, is sketched in
figure 3.3d.

Figure 3.3: (a)­(c) Different environments in which the radar is placed. (d) Three different
target tracks next to a wall.

3.3 Data Analysis

The data recorded by the sensor is stored in a three­dimensional matrix (128× 128× 8): each
of the 128 chirps’ data fills one column of length 128; the depth stems from the 2× 4 antenna
combinations. A Fourier transform over its first axis gives the range, a Fourier transform over its
second axis gives the velocity, and a Fourier transform over its last axis gives the angle. In Python,
the first and second Fourier transform can be combined with the numpy.fft.fft2 command that
is part of the NumPy library. In preparation to this, a two­dimensional Hanning window is
applied. This leads to eight Range­Doppler plots at each time step. These can be averaged to a
single plot for visualization. It is common practice to display the plots such that zero velocity is
found in the center. Furthermore, the Range­Doppler plots are converted to the decibel scale.
How the result would look like in practice is shown in the result section, figure 4.2, and it
might be useful to skip ahead for clarification.

Moving objects will clearly appear in such a Range­Doppler plot, and if only one object is
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3.3. DATA ANALYSIS

present, the highest peak in the plot can directly be associated with it. Similarly, the second
highest peak can be associated with its ghost. To avoid false detection, the ghost must not move
faster than the main IO, nor must it appear nearer. If there is only a wall on the right (left), its
AoA is restricted to be positive (negative).

The angle of arrival of any point in the Range­Doppler plot is easily found by doing a Fourier
transform along the third axis. Of course, this is only meaningful if an IO has been detected in
the Range­Doppler plot to begin with. Because the third axis has a depth of only eight bins, the
third Fourier transform is zero padded to include n = 128 bins in total, which is a parameter
in the NumPy discrete Fourier transform tool.

The Python code used for the analysis is attached in appendix A. While it cannot be executed
without the relevant files and packages, it might be helpful to see how the discrete Fourier
transforms are implemented in practice.
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4. Results
Results are presented for the simulation of the specular ground reflection. Then a typical Range­
Doppler plot is presented from which the signal power can be extracted. This is plotted as a
function of range to confirm that the power law from the simulation also holds in practice.
Next to the distance to IO and ghost target, the extracted features include velocity and AoA.
From these, the wall’s position is predicted. Combining a set of outdoor measurements enables
a particular robust method.

4.1 Power Law Simulation

As mentioned in subsection 2.2.5, a reflection in the ground will eventually result in the power
decreasing even more steeply as a function of distance. When this occurs, for the specific fre­
quency and radar height, can most easily be determined by plotting the square of equation 2.18.
This is done in figure 4.1, showing that the tipping point for the d−8 behaviour only occurs af­
ter hundreds of meters. Since the short­range radars used for this thesis only see up to∼ 40m,
this effect should not be of concern. That the d−4 law actually holds in practice will be shown
shortly. The effects of fast fading can also be seen in the figure: the interference results in large
deviations from the LOS signal signal (black line) even at short distances. While constructive
interference increases the signal power at some distances, destructive interference suppresses the
signal at other distances. This is relevant in practice, as will be shown later on.

4.2 Range Doppler Plot

The methods described in subsection 3.3 lead to Range­Doppler plots as seen in figure 4.2.
Everything to the right of the center are objects moving away from the radar. If the highest
intensity peak shall be associated with the main IO, the clutter in the center must first be
ignored a priori. Similarly, to associate the second highest peak with the ghost, a small region
around the main peak must be ignored deliberately. And, as described in subsection 3.3, the
ghost must not be allowed to come from regions of higher velocity and closer proximity than
the main peak. As can be seen from the figure, such regions are not empty but occupied by
signals that could stem from, for example, arms and legs swinging forward.

If a video is created from successive images stitched together, it can be clearly seen that the
ghost signal approaches the main signal (as long as we observe an IO moving away from the
radar). Also, the intensity of the peaks drops with their range. Since the peak intensity is
directly proportional to the received power, it is checked next if this decrease can be described
by a power law.

15



4.2. RANGE DOPPLER PLOT

Figure 4.1: Plot of the square of equation 2.18 for fc = 61GHz, hTX = 1.5m, and hIO =
1.0m. Fits to the two different regions show an initial d−4 behaviour followed by d−8. The
blue linear fit is taken through the marked local maxima and the yellow linear fit is taken only
through the data with d > 104. The black straight line is the result if the ground reflection is
not taken into account.

Figure 4.2: A typical Range­Doppler plot where the strongest and second to strongest signals
are marked with crosses and arrows in orange and green.
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4.3. POWER RANGE BEHAVIOUR

4.3 Power Range Behaviour

Because of the direct proportionality, the value of the highest peak in a Range­Doppler plot
can be treated as the received power. It is an easy feat to obtain the distance at which this
peak appears, which allows the power to be plotted as a function of distance. The result for
three different environments can be seen in figure 4.3. A linear fit for the first two scenarios, a
narrow corridor indoors, and an open air parking lot, reveals a slope of∼ −40. Since these are
semi­log plots, this quantity is equivalent to the d−4 power law expected for point scatterers. If,
however, the sensor is placed outdoors next to an office wall (figure 3.3c), a linear fit is no longer
as suitable. Such a fit would give a slope of∼ −33, which is due the decreased power especially
at short distances (< 10m). Although excluding these points leads again to a d−4 behaviour.
Hence, these results confirm what was to be expected from the power law simulation.

The same experiments were also performed with hTX = 2m, and 2.5m; results not shown
here. In these cases, the linear fit becomes less and less suitable and gives slopes of ∼ −16 and
∼ −5 if applied. The reason for this is that the antenna directivity is not isotropic, especially
not in the elevation angle. In light of these results, the antenna was never set higher than 1.5m
in subsequent measurements.

(a) A narrow corridor indoors. (b) Outdoor, on a parking lot.

(c) Outdoor, next to a wall with windows.

Figure 4.3: Power vs range plots (semi­log), their linear fits and how the data is distributed
around these fits (together with Gaussian fits of the histograms).

4.4 Geometric Inference with Apriori Model

The results for this section are found in figures 4.4 to 4.9. They concern measurements in an
open indoor space (as seen in figure 3.3b), and different tracks next to an office building. Since
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4.4. GEOMETRIC INFERENCE WITH APRIORI MODEL

they are all similar to each other, it suffices to explain them in detail for the indoor case and
then the outdoor cases can be interpreted accordingly.

The two relevant measurements in figure 4.4 are the AoA of the strongest and second strongest
signals. They are plotted in green and blue for different distances of the IO. Since the IO was
simply moving straight away from the sensor, its AoA is close to zero for all d. A first conclusion
from this is that it is appropriate to consider the strongest signal in the Range­Doppler plot to be
the LOS response of the corner reflector. The second strongest signal, however, is not necessarily
due to the ghost, which is expected to follow the red line in the figure. This red line is simply
the realization of equation 2.20, which is the expected θ′ given θ, d, and a = 2.5m. For up
to d = 16m the measured θ′ is not at all close to this expectation, which is because there is no
wall to the right for the first 8m. After this, the ghost’s AoA does, however, behave as expected,
with occasional deviations. In a first step, these deviations, together with the data from the first
16m can be discarded by setting a threshold of how far the measured θ′ may differ from its
expected value. The result is then the “noise reduced” line in figure 4.4.

Figure 4.4: Data taken in an indoor environment, the target moving orthogonally away from
the sensor. The plot shows the angle of arrival of the main and ghost target, the latter also with
its theoretical angle to identify erroneous classification. If the measurement is in the vicinity of
the red graph, it is marked in yellow and considered noise reduced.

Once ghost signals are identified, however, their distance and angle information can be used to
plot the ghost’s position over time in Cartesian coordinates. The same can be done for the main
signal’s position, and the result is presented in figure 4.5. While both positions follow a path
that is roughly as theorized, especially the ghost signal is unstable in the horizontal direction.
The variance in the main signal’s horizontal position after 20m can be explained by the drop
in SNR with increasing distance but increasing the angle resolution would make these jumps
less significant. One way to do so would be by padding the signal with more zeros in the
angle­FFT.
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4.5. CUMULATIVE GEOMETRIC INFERENCE

Figure 4.5: The Cartesian coordinates of main and ghost target in an indoor environment. For
the first 8m there is no wall to the right of the radar.

As shown in subsection 2.2.6, there are three different equations to infer a from the measure­
ments, and their differing results can be seen in figure 4.6. All equations require θ as an input,
but the only other variable needed in equation 2.22 is d. As can be seen, it systematically
overestimates the distance to the wall and this estimate increases with the distance to the main
signal. This increase is shared among all three methods and is linear in the case equation 2.24
is used. The latter makes use of the velocity of the ghost signal. Lastly, equation 2.23 requires
the measurement of θ′. It is not clear why these methods differ so much and in the indoor
scenario it is difficult to decide on an optimal method. For the outdoor case, this will become
more obvious.

Outdoors, next to an office building, the tracks covered by the IO are as indicated in figure 3.3d.
Repeating the whole analysis as in the indoor case, the inferred distances a to the building’s
wall are much closer to 2.5m throughout the whole range of d in figures 4.7c, 4.8c, and 4.9c
if equation 2.23 is used. It is from this observation that we conclude that this equation is the
one best suited for estimating a. There is still a visible slope and variance in the estimate, but
it is good enough for basic applications, which are discussed in the conclusion. Moreover, the
variance can be reduced if several measurements are averaged, as will become apparent in the
following section.

4.5 Cumulative Geometric Inference

Throughout this thesis ghosts are assumed to be the second strongest signal. In the previous
section false ghost detections are identified by how far they are from an expected position. This
cleaning step requires that a is known beforehand, but there is an alternative that combines the
data from several measurements, which is presented in the following.
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4.5. CUMULATIVE GEOMETRIC INFERENCE

Figure 4.6: The inferred distance to an indoors wall using three different methods (see main
text). In reality the wall is 2.5m away, marked by the black horizontal line.

(a)The angle of arrival of the main and ghost target
(the latter also with its theoretical angle to discern
erroneous classification).

(b) The Cartesian coordinates of both targets.

(c) The inferred distance to the wall (in reality
2.5m away, black horizontal line) using three dif­
ferent methods (see main text).

Figure 4.7: Analysis of data taken outdoors next to an office building, the target moving or­
thogonally away from the sensor.
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4.5. CUMULATIVE GEOMETRIC INFERENCE

(a)The angle of arrival of the main and ghost target
(the latter also with its theoretical angle to discern
erroneous classification).

(b) The Cartesian coordinates of both targets.

(c) The inferred distance to the wall (in reality
2.5m away, black horizontal line) using three dif­
ferent methods (see main text).

Figure 4.8: Analysis of data taken outdoors next to an office building, the target moving diag­
onally away from the sensor (from right to left).
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4.5. CUMULATIVE GEOMETRIC INFERENCE

(a)The angle of arrival of the main and ghost target
(the latter also with its theoretical angle to discern
erroneous classification).

(b) The Cartesian coordinates of both targets.

(c) The inferred distance to the wall (in reality
2.5m away, black horizontal line) using three dif­
ferent methods (see main text).

Figure 4.9: Analysis of data taken outdoors next to an office building, the target moving diag­
onally, from left to right, away from the sensor.

22



4.5. CUMULATIVE GEOMETRIC INFERENCE

Since all measurements were performed three times, there are nine available data sets that each
predict a in the outdoor case. For each set, a list with pairs of d · cos θ and a can be created
and these lists can then be combined. This combined list can be plotted as a two­dimensional
heat map, which can be seen in figure 4.10. Because the outliers are not the same for each mea­
surement, but the correct inferences are, the outliers will be negligible in such a representation.
This is exactly what can be observed in figure 4.10.

In particular, the heat map has a horizontal resolution of 5 cm and a vertical resolution of
40 cm. A lower resolution is possible, but then the inferred wall would be less visible because
each “correct” bin might then only contain two or three counts instead of one count for the
bins containing an outlier.

To make the wall even more visible, the heat­map can be smoothed by applying a Gaussian
filter, which can be seen in the right of figure 4.10. From there, it can be seen that the estimate
of a changes almost by half a meter along the vertical. Considering the original heat map on
the left reveals some kind of structure in the inference. It seems as if the wall is interrupted
at regular intervals. This could be due to patterns in the wall such as glass alternating with
concrete, which should result in a more large scale structure. Thus, it is more likely that fast
fading is responsible for the valleys and peaks in this representation.

Figure 4.10: The inferred distance to the wall (a) at different vertical distances to the radar.
To remove outliers, the results of nine different measurements are overlaid as a heat map (see
main text). The heat map on the right is simply a blurred version of the one to the left. Two
exemplary inferred distances are marked to visualize the slope.
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5. Conclusion
When radar sensors are placed next to a wall the radio waves reflect from this surface and ghost
targets appear. This thesis succeeded in showing that this permits to infer the geometry of a
simple environment. More precisely, when there is only one wall, a single object moving in
different ways in front of the radar gives rise to a main signal. The second most intense signal
can then be associated with the ghost target. There are three different trigonometric formulae
that can be used to infer the distance to the wall and one of them was shown to result in a
satisfying inference. With this one, the distance to the wall was systematically overestimated
and the wall was also inferred to not be straight. The following paragraph explains why these
minor insufficiencies are, however, not of great concern.

Once the position of the wall is known, an obvious next step to mitigate multipath would be to
discriminate all signals that seem to originate from behind the wall. Even if the wall’s position
is not inferred exactly correct, it is good enough to mitigate most of the possible ghost signals.
Even more helpful would be to translate the ghost targets back to their actual sources’ position.
This could be useful if the main target alone reflects too weakly to be detected, as could be
the case for small animals or drones. For this application, it is even less important that the
environment is predicted correctly. Indeed, it would be worse to provide the radar with a real
floor plan because the systematic shift would then be incorporated into the translation to the
main target. As long as the ghost can be correctly associated with its real source, it is irrelevant
if the wall’s position is predicted correctly.

In practice, this would mean that the environment’s features would have to be determined at
installation. In this step, it is important that only one IO moves in front of the radar because
otherwise the second strongest signal would most definitely not be due to a ghost target. The
big advantage is that the floor plan could be relearned at regular intervals. If new furniture
is moved in or parts of a building are remodeled, the radar could simply adapt to its new
environment.

The most successful inference was achieved for outdoor environments with a continuous wall
on one side of the radar, but especially for indoor environments with high ceilings and regular
walls, the results should be applicable there, too. And even for more dense environments such
as corridors, the geometric methods should work. In this case, the ghosts can appear on both
sides of the radar, such that the algorithm would only have to be rewritten slightly. Thus, this
thesis takes indoor radar systems one step closer.
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A. Python Code
1 import matplotlib.pyplot as plt
2 import numpy as np
3 import csv
4 import math
5 import matplotlib.cm as cm
6 from mpmath import *
7 from scipy.stats import norm
8 from collections import Counter
9

10 plt.style.use('fivethirtyeight')
11 plt.rcParams.update({'font.size': 35})
12

13 from data_loaders import ReadPickle
14

15 from radar_rec_utils.utils.unpack_cube import unpack_cube
16

17 frame = 80
18 cl_width = 2
19 wall_distance = 2.5
20 factor = 0.3125
21

22 def rd_process(cube):
23 ns = cube.shape[0]
24 nr = cube.shape[1]
25 win = np.outer(np.hanning(ns), np.hanning(nr))
26

27 fft_size = (ns, nr)
28 rd = np.fft.fft2(cube * win[:, :, np.newaxis], s=fft_size, axes=(0,

1))
29 rd = np.fft.fftshift(rd, axes=(1, ))
30

31 rd_db = 20 * np.log10(np.mean(np.abs(rd), axis=2))
32 nf = np.median(rd)
33 nf_db = np.median(rd_db)
34

35 return rd, rd_db, nf, nf_db
36

37 def angle_process(rd, rd_db, peak_idx):
38 ang_fft = np.fft.fft(rd[peak_idx], n = 128)
39 ang_fft = np.fft.fftshift(ang_fft)
40 angle_peak_idx = np.argmax(np.abs(ang_fft))
41

42 angle = 2 * (angle_peak_idx - ang_fft.shape[0] // 2) / (ang_fft.
shape[0])

43 angle = np.rad2deg(np.arcsin(angle))
44

45 return ang_fft, angle
46

47 def find_peak(range_velocity , clutter_width , factor = 0.3125):
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48 nv = range_velocity.shape[1]
49 rv_mod = range_velocity.copy()
50 rv_mod[:,nv//2-clutter_width:nv//2+clutter_width] = 0 #Set the

clutter to zero
51 idx = np.unravel_index(rv_mod.argmax(), rv_mod.shape)
52 power = rv_mod[idx]
53 distance = idx[0]*factor
54 return rv_mod, power, distance , idx
55

56 def find_second_peak(range_velocity , idx, factor = 0.3125):
57 rv_mod = range_velocity.copy()
58 rv_mod[idx[0]-2:idx[0]+3,idx[1]-3:idx[1]+4] = 0 #Set around main

peak to zero
59 rv_mod[:idx[0]+1,:] = 0 #Set shorter distances to 0
60 rv_mod[:,idx[1]:] = 0 #Set higher velocities to 0
61 idx_2 = np.unravel_index(rv_mod.argmax(), rv_mod.shape)
62 distance_second = idx_2[0] * factor
63 power_2 = rv_mod[idx_2]
64 return idx_2, distance_second , power_2
65

66 def inverse_wall_non_radial(d_direct, v_real, d_ghost, v_ghost,
theta_ghost , theta = 0, factor = 0.3125):

67 theta_rad = np.deg2rad(theta)
68 theta_ghost_rad = np.deg2rad(theta_ghost)
69 b = 4*d_direct*math.sin(theta_rad) # b in quadratic equation
70 d_wall_d = factor/8 * (b + math.sqrt(b**2-16*(d_direct**2-d_ghost

**2)))
71 arg = math.acos(v_ghost/v_real) - theta_rad
72 d_wall_v = factor/2 * d_direct * (math.cos(theta_rad)*math.tan(arg)+

math.sin(theta_rad))
73 d_wall_angle = factor/2 * d_direct * (math.cos(theta_rad)*math.tan(

theta_ghost_rad) + math.sin(theta_rad))
74 return d_wall_d, d_wall_v, d_wall_angle
75

76 def find_ghost_AoA_non_radial(d, d_wall = 2.5, theta = 0 ):
77 arg = (2*d_wall-d*math.sin(np.deg2rad(theta)))/(d * math.cos(np.

deg2rad(theta)))
78 theta_ghost = np.rad2deg(math.atan(arg))
79 return theta_ghost
80

81

82 if __name__ == '__main__':
83 folder = "/home/andrenu/radar_data/2020_11_25/_raw_data_2020 -11-25

_10-53-24"
84 reader = ReadPickle(folder)
85

86 data = reader.read_frame(frame)
87 cube = unpack_cube(data)
88 cube_med = np.median(np.abs(cube.real))
89

90 rd, rd_db, nf, nf_db = rd_process(cube)
91

92 rv_m, power, distance, idx = find_peak(rd_db, cl_width, factor)
93 idx_2, distance_ghost , power_2 = find_second_peak(rv_m, idx, factor)
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94

95 plt.figure()
96 plt.imshow(rd_db, vmin=nf_db, vmax=nf_db + 40, cmap='jet', aspect='

auto', origin='lower')
97 plt.scatter(idx[1], idx[0], s=500, marker='x', c = 'darkorange')
98 plt.scatter(idx_2[1], idx_2[0], s=500, c='green', marker='x')
99 plt.xlabel('"velocity"')

100 plt.ylabel('"range"')
101

102 ang_fft, angle = angle_process(rd, rd_db, idx)
103

104 plt.figure()
105 plt.plot(20 * np.log10(np.abs(ang_fft)))
106 plt.ylabel('dB')
107 plt.xlabel('Anglebin')
108 plt.title(f'AngleFFT (angle={angle})')
109

110 power_list = []
111 power_2_list = []
112 distance_list = []
113 d_wall_d_list = []
114 d_wall_v_list = []
115 d_wall_angle_list = []
116 d_wall_av_list = []
117 d_wall_1_list = []
118 d_wall_2_list = []
119 angle_list = []
120 theta_list = []
121 angle_direct_list = []
122 distance_ghost_list = []
123 error1_list = []
124 error2_list = []
125 d_wall_3_list = []
126

127

128 for ind, frame in reader.read_frames():
129 power_sum = []
130 cube = unpack_cube(frame)
131

132 rd, rd_db, nf, nf_db = rd_process(cube)
133 rv_m, power_db, distance, idx = find_peak(rd_db, cl_width,

factor)
134 idx_2, distance_ghost , power_2 = find_second_peak(rv_m, idx,

factor)
135

136 ang_fft_direct , angle_direct = angle_process(rd, rd_db, idx)
137 ang_fft, angle = angle_process(rd, rd_db, idx_2)
138 d_wall_d, d_wall_v, d_wall_angle = inverse_wall_non_radial(idx

[0], idx[1], idx_2[0], idx_2[1], angle, angle_direct , factor)
139 theta_ghost = find_ghost_AoA_non_radial(distance , wall_distance ,

angle_direct)
140

141 if power_db > nf_db + 20 and ind < 400:
142 g_rel = ghost_rel_list[d_list_bin.index(idx[0])]
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143 v_rel = v_rel_list[d_list_bin.index(idx[0])]
144 plt.figure(3)
145 plt.clf()
146

147 plt.subplot(121)
148 plt.imshow(np.abs(cube[:, :, 0].real), vmin=cube_med , vmax=

cube_med * 4, cmap='jet', aspect='auto')
149 plt.xlabel('chirp')
150 plt.ylabel('discrete samples')
151 plt.title('Baseband')
152

153 plt.subplot(122)
154 plt.imshow(rd_db, vmin=nf_db, vmax=nf_db + 40, cmap='jet',

aspect='auto')
155 plt.scatter(idx[1], idx[0], s=500, c='darkorange', marker='x

')
156 plt.scatter(idx[1]*v_rel, idx[0]*g_rel, s=500, c='crimson',

marker='x')
157 plt.scatter(idx_2[1], idx_2[0], s=500, c='green', marker='x'

)
158 plt.xlabel('"velocity"')
159 plt.ylabel('"range"')
160 plt.title('No repair (noise = {:.2f}dB)'.format(nf_db))
161

162 plt.suptitle(f'Frame {ind}, {idx}')
163

164 plt.pause(0.01)
165

166

167 #disregard noise ("ind" manually chosen)
168 if power_db > nf_db + 20 and ind < 360 and ind > 50 and angle >

0:
169 power_list.append(power_db)
170 power_2_list.append(power_2)
171 distance_list.append(distance)
172 d_wall_d_list.append(d_wall_d)
173 d_wall_v_list.append(d_wall_v)
174 d_wall_angle_list.append(d_wall_angle)
175 angle_list.append(angle)
176 theta_list.append(theta_ghost)
177 angle_direct_list.append(angle_direct)
178 distance_ghost_list.append(distance_ghost)
179

180

181

182 plt.figure()#Power-Range for main peak
183 plt.plot(distance_list , power_list , '-o')
184 plt.xlabel('range [m]')
185 plt.ylabel('power [dB]')
186 log_distance_list = np.log10(distance_list)
187 z = np.polyfit(log_distance_list , power_list , 1)
188 x = np.linspace(min(log_distance_list), max(log_distance_list),

1000)
189 plt.plot(10**x, z[0]*x + z[1])
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190 plt.xscale("log")
191 print(z)
192 plt.text(10, 110, f'slope = {np.round(z[0], 2)}', fontsize=15)
193

194 #discern between useful data and noise:
195 angle_list_reduced = []
196 distance_list_reduced = []
197 d_wall_d_list_reduced , d_wall_v_list_reduced ,

d_wall_angle_list_reduced , distance_ghost_list_reduced = [], [], [],
[]

198 power_2_list_reduced = []
199 for i in range(len(distance_list)):
200 if angle_list[i] > theta_list[i] - 3 and angle_list[i] <

theta_list[i] + 5: #these parameters are manually decided
201 angle_list_reduced.append(angle_list[i])
202 distance_list_reduced.append(distance_list[i])
203 d_wall_d_list_reduced.append(d_wall_d_list[i])
204 d_wall_v_list_reduced.append(d_wall_v_list[i])
205 d_wall_angle_list_reduced.append(d_wall_angle_list[i])
206 distance_ghost_list_reduced.append(distance_ghost_list[i])
207 power_2_list_reduced.append(power_2_list[i])
208

209 plt.figure() #Plot AoAs
210 plt.plot(angle_list , distance_list , label = 'FFT ghost angle')
211 plt.plot(theta_list , distance_list , linestyle = ':', label = '

theoretical angle')
212 plt.xlabel('AoA [degree]')
213 plt.ylabel('target distance [m]')
214 plt.plot(angle_list_reduced , distance_list_reduced , linestyle = '--'

, label = 'noise reduced')
215 plt.plot(angle_direct_list , distance_list , linestyle = '-.', label =

'FFT main angle')
216 plt.legend()
217

218 plt.figure()#Wall inference
219 plt.plot(d_wall_d_list_reduced , distance_list_reduced , c = 'r',

label = 'inferred from eq. 2.22')
220 plt.plot(d_wall_angle_list_reduced , distance_list_reduced , c = 'g',

linestyle = '-.', label = 'inferred from eq. 2.23')
221 plt.plot(d_wall_v_list_reduced , distance_list_reduced , c = '

cornflowerblue', linestyle = '--', label = 'inferred from eq. 2.24')
222 plt.axvline(x = 2.5, c = 'k')
223 plt.xlabel('inferred distance to wall [m]')
224 plt.ylabel('target distance [m]')
225 plt.legend()
226

227 #Plot in cartesian coordinate system:
228 k = 0
229 plt.figure()
230 plt.ylim(0, 40)
231 plt.xlim(-2, 11)
232 plt.xlabel('x [m]')
233 plt.ylabel('y [m]')
234 x_list, y_list, x_ghost_list , y_ghost_list = [], [], [], []
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235 for i in range(len(distance_list)):
236 x_list.append(distance_list[i] * math.sin(np.deg2rad(

angle_direct_list[i])))
237 y_list.append(distance_list[i] * math.cos(np.deg2rad(

angle_direct_list[i])))
238 if distance_list[i] == distance_list_reduced[k] and k < len(

distance_list_reduced) - 1:
239 x_ghost_list.append(distance_ghost_list_reduced[k] * math.

sin(np.deg2rad(angle_list_reduced[k])))
240 y_ghost_list.append(distance_ghost_list_reduced[k] * math.

cos(np.deg2rad(angle_list_reduced[k])))
241 k += 1
242 plt.plot(x_list, y_list, '-x', c = 'r', label = 'main target')
243 plt.plot(x_ghost_list , y_ghost_list , '-o', c = 'g', label = 'ghost

target')
244 plt.legend()
245

246 plt.show()
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