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Abstract

Traditional meal planning for large kitchens is a laborious and complex affair with
multiple external constraints imposed on the meal plan, such as a healthy nutrition
profile and a low environmental impact, which should be fulfilled while being under
budget. This is a tough task for humans but by modelling the process with a Markov
Decision Process and using Reinforcement Learning an agent can be taught to create
meal plans from constraints. This is achieved by letting different sets of meals be
represented by states while actions correspond to adding specific meals to the meal
plan.

The algorithm uses an action-value function to govern the agent’s behaviour through
a policy. Furthermore, meal selections are rewarded through a terminal reward based
on the fulfilment of the constraints. The agent is trained by generating sample
episodes from following an ε-greedy policy. The return of each of these episodes is
used to update the action-value function and thereby the policy. This allows the
agent to learn which combinations of meals eventually can fulfil the constraints.

The behaviour of the algorithm is studied when applied to a realistic scenario. The
algorithm generates a six week long meal plan of school lunches with imposed na-
tional nutritional constraints and uses existing meal data. It finds feasible meal
selections which fulfil 14 constraints imposed when a sufficient data set is provided.
The results illustrate that the method has good potential to be part of a new data
and AI-driven approach to large scale meal planning.
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Chapter 1

Introduction

Society today is highly dependant on computers, more and more tasks are automated
and handled by various computer system. Vast amounts of data have been and are
being collected by these systems and with increasing computational power this has
lead to a surge in popularity for Machine learning algorithms. They thrive in this
environment and is the backbone of many intelligent systems today as they utilise
the vast amounts of data and learn from it in different ways.

The FoodTech industry is not an exception to this trend, there is an increasing
awareness around the food we consume and produce. Increasing the demands on
the meals served by restaurants, hospitals, elderly care facilities, schools etc. While
large scale meal planning is not a new phenomenon, it is getting more and more
complex all while data associated with this is accumulating. Thus leaving AI with
an opportunity and potential to contribute.

This thesis is done in cooperation with Matilda FoodTech, a company providing
software solutions for meal planning and follow ups for large scale cooking, who have
gather data associated with this process. The purpose of this thesis is to investigate
how a Reinforcement Learning model [1], can be used to create and optimise a meal
plan under a set of constraints based on a data set of existing meals. It will be
trained using a Monte Carlo learning approach [2].

1.1 Meal Planning

In Matilda FoodTech’s own words:

Matilda is supporting millions of meals made each day across the Nordic countries,
feeding our elderly and school children. A dish is designed based on a recipe, which
is a combination of ingredients and a nutrition declaration. Normally, 2-3 dishes
define a meal (e.g. lunch) and a set of meals are distributed over weeks or months.
The meals are carefully designed to work within the constraints imposed by costs, the
cooking process, equipment availability and other resources. In short, meal planning
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1.2. THE PROBLEM CHAPTER 1. INTRODUCTION

is a laborious and expert driven enterprise.

Meal planning today is thus mostly a human trial and error process often relaying on
previous created and proven to work meal plans and accumulated knowledge in the
subject. Small changes in constraints can be hard to account for and plan around
when such a multitude of constraints, that can be adversarial, exist.

It is in circumstances like this, where the human ability of overview and tracking
multiple objectives are failing, the power of today’s computers often comes to rescue.
If the problem can be stated in mathematical terms, then computer based algorithms
can be utilised to track and optimise large problems under multiple constraints and
objectives.

1.1.1 Meal Example From Data Set

Each data point in the data sets used correspond to a meal that has been recorded
by Matilda FoodTech’s software. Every meal includes a recipe with cooking in-
structions and proportions of all ingredients needed. Meals are often composed of
subcomponents, which in turn are built of ingredients or more subcomponents, tied
to the individual ingredients are nutritional values and a cost based on the amount
of the ingredient specified for one portion in the recipe. Table 1.1 illustrates how
the data for a meal of fried chicken with rice and sauce, originally Stekt kyckling s̊as
ris, looks. This example is composed of three components chicken fillet, boiled rice
and brown sauce. Some of the nutritional values of the meal plus price and weight
are displayed in the table.

Stekt kyckling s̊as ris

Component Weight Energy Protein Fat Carbohydrates Price
Kycklingfilé 107 g 596 kJ 23.4 g 5.4 g 0.0 g 4.24 kr
Ris Kokt 140 g 585 kJ 3.1 g 0.3 g 30.5 g 1.41 kr
S̊as Brun 114 g 248 kJ 0.6 g 4.1 g 5.0 g 1.07 kr

Total: 361 g 1438 kJ 26.99 g 9.79 g 36.35 g 6.34 kr

Table 1.1: A meal is often composed of subcomponents, which in turn is built of ingredients
or more subcomponents, tied to the individual ingredients are nutritional values and a cost
based on the amount of the ingredient specified in the recipe. Here the data has been
aggregated to subcomponent level and it is stated per portion, only a few nutrients of all
available are specified here. The total of all subcomponents, plus a name and an id, are
what makes up a data point in the used data sets. Notably, the meal lacks vegetables so it
is likely this was served along side a salad buffet or similar to make it a complete meal.

1.2 The Problem

The problem this thesis tries to solve is;
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Can a meal plan be created, by using a machine learning approach that takes ex-
isting meals with associated data as input alongside constraints that the meal plan
should fulfil.

The constraints that will be considered are, in a descending order of importance:

1. Cost, keeping the meal plan under a fixed budget;

2. Nutrition profile, fulfilling nutrition standards;

3. CO2-equivalent, achieving a low environmental impact.

Thus a user should be able to state the size of its meal plan, 20 meals for example,
ones maximum average price i.e. the budget, nutritional values one wants achieved
e.g. an average energy level of at least 2700 kJ and a maximum average CO2-
equivalent. The algorithm should then generate a feasible meal plan, made up
from the provided meals, that fulfils the provided constraints and thus avoiding the
laborious human trial and error approach to meal planning.
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Chapter 2

Background

2.1 Reinforcement Learning

Reinforcement learning (RL) is a branch of machine learning, that has probably
gained most attention from its success in mastering games such as classical ones
as Atari [3], board games like Go [4] as well as modern computer games such as
DotA 2 [5]. It also has many more uses such as control theory for robotics [6] and
optimisations of chemical reactions [7] to mention a few.

The general framework and aim of RL is to train an agent to preform a task, e.g.
playing a chess game, it does so by performing actions (chess moves) that takes it
from its current state (the pieces position on the board) to a new state and it bases
its decision on readings of its environment (observing the new board after opponents
move). The agent thus lives in a world of finite states, for each state it has a set of
actions available, it chooses an action based on some reasoning with its observations
or interactions with the environment. The learning part of RL is that rewards are
set for achieving desirable states (capturing the opponents queen, without losing
yours) and outcomes (check mating the opponent). Negative rewards are given for
undesirable states and outcomes (losing your queen without compensation, losing
the game, etc.). The desired behaviour is then reinforced by letting the agent train
over and over again by simulating the task, record the outcome and update its
behaviour accordingly i.e. to maximise the reward. It mimics the common human
learning pattern of trial and error.

2.1.1 Markov Decision Process

A very common framework for RL is that of a Markov Decision Process (MDP).
The learning entity is called the agent and the system which it interacts with is called
the environment. The agent interacts with the environment by performing actions
and the environment responds with giving the agent rewards for its actions. This is
often done in a discrete time setting and the agents knowledge of the environment
is represented by states. Formally a state is notated s and it belongs to the set of
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all possible states, S. In each state there is a set of possible actions, A(s). Thus the
agent starts in state s0 performs action a0 gets a reward R1 from the environment
based on its action and ends up in state s1 and so on, as can be seen in the diagram
below.

s0
a0−→ s1

a1−→ . . .
aN−1−−−→ sN . (2.1)

There are two types of rewards, individual rewards tied to a particular state or
action and terminal rewards that is granted when the episode is terminated, i.e. a
final state is reached. Both rewards make up the return, G,

G = R1 +R2 + · · ·+RT . (2.2)

The notion of terminal states makes most sense in applications where there is a
natural start, termination and reset of the process, to some starting state, e.g. a
board game. Tasks that can be framed in this manner are called episodic tasks and
their training is divided into episodes, where each episode constitutes a sequence of
states, from a staring one to a terminal one.

The agents goal is to maximise all rewards, i.e. the return for an episode. What
the agent is searching for in reality is a policy, π. That should describe the agent’s
behaviour for any given situation by mapping all states to an action π(s) : S → A(s).
Policies can be as simple as a lookup table or a more advanced evaluation function
of the agents current state in the environment.

The goal is to learn an optimal policy such that the agent maximise the return. It
does so by exploring the state actions space of its environment. That is, it tries
out different sequences of actions and updates its policy based on the return it gets.
Thus the agent is learning by updating the policy in accordance with the outcome
of each episode. The policy consequently represents the agent’s total knowledge of
its environment.

One dilemma in the learning process, is that to find the optimal policy the agent has
to explore all possibilities to learn their value but in doing so it fails to exploit its
current knowledge [8]. Ideally one would want the agent to exploit its knowledge, to
not waste time on paths already deemed bad, while exploring just enough to not miss
better paths. This makes for a natural trade off, between exploring and exploiting, in
the learning process. In practice this is often dealt with by introducing stochasticity
in action selection in the learning process to ensure continuous exploration.

2.1.2 Value Functions

For the agent to be able decide on actions to take, it needs a way to evaluate its
current and future states. More precisely the agents policy needs to be able to assess
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the best action, given a state and a set of available actions. To that end a state
value function, V (s), can be utilised. The state value function describes the value
of being in any given state [9] and is based on the agents knowledge. A policy then
can then be to pick the action that corresponds to the next state with the greatest
state value.

π(s) = arg max
a∈A(s)

V (s) (2.3)

Alternatively, one can use a State-Action Value function, Q(s, a) also known as q-
function, thus giving a value to each state-action pair instead. An analogous policy
is then to pick the action that corresponds to the greatest state-action value.

π(s) = arg max
a∈A(s)

Q(s, a) (2.4)

2.1.3 Monte-Carlo Methods for Episodic Tasks

The general idea behind Monte-Carlo learning for episodic tasks is to learn purely
from experience by interacting with the environment [1]. This is done by: a) itera-
tively generating an episode based on the current policy, b) evaluate the result, c)
learn by updating the policy. That is the policy is updated on an episode-by-episode
basis and in that respect the Monte-Carlo approach is model free as only a policy
is needed to generate episodes to learn from [1].

Vi+1(a) = Vi(a) + α(G− Vi(a)) (2.5)

Constant-α MC [1], equation (2.5), V (a) is an action-value function and α ∈ (0, 1) is
the learning rate (also called step size) that decides the importance of a new episode
in relation to old ones. Since α = 0 leads to no update, the previous value is just
copied over, and α = 1 means that the latest episode completely overrides the old
one.

All sample episodes are generated from the current policy, if that policy is determin-
istic and greedy, i.e. it always chooses the best option, then all episodes will be the
same and no further exploration will take place. One way to ensure sufficient explo-
ration in Monte-Carlo methods is to use a ε-greedy policy [9]. That is a stochastic
policy that with probability (1 − ε) follows the policy and chooses the currently
believed best action and with a probability of ε it chooses a random action instead.
In other words each action selected in a generated episode is: a) with a probability
of ε a random action among the available ones excluding the policy choice, or b)
with a probability of (1− ε) the currently best action according to the policy. Thus
by increasing or decreasing ε ∈ (0, 1), the level of exploration versus exploitation
can be controlled.
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Chapter 3

Method

3.1 Problem Setting and Framework

The framework used is that of a MDP where each state, s, represents a selection of
meals and each action, a, represents which meal should be added to the selection,
i.e. the meal plan and a state sk represents a selection of k meals. A terminal state
is reached when, N the number of meals in the sought meal plan, have been selected,
thus sN is always a terminal state. The value, to select each unique meal to the
meal plan, is captured in the action value function V (a). The action value function
takes an action as input since all actions corresponds to a meal. The objective is to
chose meals in a way that maximise the return.

The return, G, is only based on the terminal reward, RT (sN), and is thus identical
to it. There are no individual rewards since a selection, meal plan, is only judged
on its total composition. For the same reason the order in which the meals are
selected do not matter, only the final state sN is of importance and it solely decides
the terminal rewards and thus the return that is used to update the action value
function for all actions involved to arrive at the final state. Hence the value function
reflects each meal’s individual capacity to contribute to fulfilling the constraints of
the meal plan.

Framework summarised:

• A state s ∈ S represents a selection of meals;

• At each state an action a ∈ A(s) is selected representing which meal that is
added to the selection (meal plan);

• The final state, sN , represents a meal plan of N unique meals;

• Vi(ai), i = 1, 2, . . . , N , represents the value of selecting a meal for the meal
plan;

• All meals have set of nutrition values, a cost and CO2-eq.

9
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3.2 Algorithm

3.2.1 General Behaviour

The algorithm’s goal is to find a selection that fulfils a set of constraint. The nature
of the constraints are thresholds values that one either wants to be over or under.
The thresholds values for cost, nutrient levels and CO2-equivalent per portion per
meal are given as input along with a data set containing all values per portion per
meal, the number of meals to select within the constraints and the hyperparameters
α and ε. The algorithm operates as following it generates an episode by ε-greedily
following its policy, π(s) see (3.1), that is choosing the action with the currently
highest action value, V (a), among the actions available with a probability of 1 − ε
otherwise one of the other actions are chosen with uniform probability.

π(s) =

{
arg maxa∈A(s) V (a), U(0, 1) ≥ ε

a ∈ A(s), otherwise
(3.1)

When N actions have been chosen in such fashion and the terminal state sN has
been reached, the terminal reward RT (sN), and thus the return G(sN) = RT (sN),
can be computed and the action value function is updated in accordance with (3.2)
for all actions involved in the episode’s selection, Asel.

Vi+1(a) = Vi(a) + α(G(sN)− Vi(a)) (3.2)

The action values are simply stored in an array during training and is updated by
the end of each episode thus affecting the policy for the next episode. Which actions
that are available at each state is tracked during each episode. The final output of
the algorithm is the relative value of each action for the data set and the top N
actions constitutes the proposed meal selection of the algorithm.

• The policy π(s) (3.1) is to select a ∈ A(s) such that V (a) is maximised

• The return, G, is identical to the terminal reward, RT (3.6)

• V (a) is update for all a ∈ Asel in accordance to (3.2)

3.2.2 Terminal Reward, RT

The terminal reward is based on how well the selection fulfils a set of constrains
while being under budget. All constraints are simple linear ones with a threshold
value, i.e. x should be less or greater than a constant.

10
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x1 < c1

x2 > c2
...

xk > ck

The values monitored are the average value over the whole selection in each episode,
xk(sN) the average value of the k:th constraint for the final state sN .

xk =
1

N

∑

a∈Asel

xk,a (3.3)

The reward from each constraint are denoted, rk, it is defined differently depending
on if the corresponding constraint is a lower (3.4) or upper (3.5) limit.

rlower
k =

{
xk

ck
, xk ≤ 1.1ck

1.1, otherwise
(3.4)

rupperk = 1− xk
ck

(3.5)

Lower limit constrains are hard capped at 10% above the threshold value, see (3.4),
while upper limit constraints are penalised for exceeding their threshold, see (3.5).
The hard cap serves to discourage large overshoots and compensation behaviour by
not granting no further reward for massively exceeding the threshold.

Finally the terminal reward, RT (sN) is constructed by the weighted sum of all rk’s
with a corresponding weight wk that is taken as input so priority of constraints can
be created by rewarding selected constraints more than others. If the selection is
under or equal to the budget, the sum

∑
k wkrk constitutes the terminal reward, if

the selection exceeds the budget a negative term is added to the terminal reward,
see (3.6).

RT (sN) =

{∑
k wkrk, cost ≤ budget∑
k wk(rk − 1), cost > budget

(3.6)

Thus any selection under budget will have a positive terminal reward and a selection
over budget will in general lead to a negative terminal reward but if the selection is
very good apart from its cost it can achieve a small positive terminal reward. That
is good but too expensive selections, are rewarded more than bad and too expensive
selections.

11
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3.2.3 Alternative Terminal Rewards

Two alternative terminal rewards were developed to use as a comparison to the
original one previously described. They will be denoted triangular and inverse
Euclidean while the original terminal reward will be called the regular terminal
reward when a distinction is to be made.

The triangular terminal reward, constitutes of a weighted sum in the same way as
the regular terminal reward i.e.

RTri
T (sN) =

∑

k

wkrk.

The difference is that rk is a triangular function centred around either the norm
value, for a lower limit constraint, or half the norm value, for an upper limit con-
straint. See equations (3.7) and (3.8) for formal definitions.

rlower
k =

{
xk−0.5ck
0.5ck

, xk < ck
1.5ck−xk

0.5ck
, xk ≥ ck

(3.7)

rupperk =

{
xk

0.5ck
, xk < ck

ck−xk

0.5ck
, xk ≥ ck

(3.8)

The second alternative terminal reward, is a modified inverse Euclidean distance
to the sought norm. That does not distinguish between upper and lower limit
constraints, as the regular or triangular terminal reward. See equation (3.9) for full
definition.

REuc
T (sN) =

1√∑
k wk(xk − ck)2 + 1

(3.9)

Figure 3.1 below illustrates the behaviour of all three rewards and notes some simi-
larities and differences between them.

12
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(a) Regular (b) Triangular (c) Inverse Euclidean

Figure 3.1: The reward functions considered, (a) the regular one described in the method,
(b) a triangular function and (c) a modified inverse Euclidean distance. The plots shows
how an individual constraint is rewarded, in relation to its norm value, depending on if it
is a lower or an upper limit type of constraint. All weights are equal to one here for clarity
and an easier comparison. Notably (a) and (b) distinguish between lower and upper limit
constraints while (c) treats them equally. While (b) and (c) share a symmetrical property
that (a) lacks.

3.3 Data Sets

The data sets used, referred to as A and B, are provided by Matilda FoodTech.
They contain nutrient levels and costs per portion for a range of meals, to each meal
a uniformly random CO2-equivalent has also been added. Data set A is smaller, its
prices are less accurate and it was mainly used during development of the method
but it also serves as a comparison to data set B as they do not share the same source.
Data set B is much larger and has accurate prices for all its meals and makes for a
more realistic example.

3.3.1 Data Set A

Data set A contains around 2265 meals, they all have nutritional values per portion
of the meal. The price per portion associated with each meal was incomplete and
a random price has been added to those meals that lacked a price based on the
available pricing data.

13
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Constraint µ σ Units

Cost 7.58 6.52 kr
Energy 1240 881 kJ
Protein 12.8 11.0 g
Fat 14.0 14.8 g
Carbohydrates 28.1 22.6 g
Fibre 3.0 2.71 g
Salt 1.66 3.52 g
Polyunsaturated Fat 1.87 2.91 g
Saturated Fat 5.18 5.62 g
Vitamin D 1.04 2.00 µg
Vitamin C 21.0 24.5 mg
Iron 1.40 1.94 mg
Folate 49.3 94.0 µg
CO2-eq1 2.0 0.3 kg

Table 3.1: Means, µ, standard deviations, σ, and corresponding units for nutrient levels,
cost and CO2-equivalent per portion per meal for all meals in the data set, which contains
2265 meals in total.

3.3.2 Data Set B

Data set B contains 100 000 meals, they all have accurate nutritional values and
price per portion for each meal, a random CO2-eq has also been added to each
meal. The data set is a subset of meals that have been preprocessed by removing
data points that had a z-score (3.10) greater than 3 or less than -3. This was done
so that extreme outliers were removed, that probably adhere from human error in
logging values or fields left empty.

zi =
xi − µ
σ

(3.10)

1Randomly generated values.
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Constraint µ σ Units

Cost 10.5 6.67 kr
Energy 1691 881 kJ
Protein 19.6 10.9 g
Fat 19.9 12.8 g
Carbohydrates 40.4 23.3 g
Fibre 3.97 3.08 g
Salt 0.64 1.21 g
Polyunsaturated Fat 1.36 1.87 g
Saturated Fat 5.23 5.71 g
Vitamin D 0.85 1.0 µg
Vitamin C 24.2 24.9 mg
Iron 1.59 1.26 mg
Folate 29.4 42.0 µg
CO2-eq2 1.0 0.46 kg

Table 3.2: Means, µ, standard deviations, σ, and corresponding units for nutrient levels,
cost and CO2-equivalent per portion per meal for all meals in the data set, which contains
100000 meals in total.

2Randomly generated values.
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Chapter 4

Results

4.1 Base Case and Nutritional Norms

In this chapter a lot of different results will be presented but the core settings and
parameters will mostly be the same with some isolated modifications to highlight and
explore certain features. This section will define the base case used and summarise
the recurring parameters and experimental setups.

The base case used to evaluated the algorithm has been that of finding a meal plan
of school lunches for kids. The time frame is 6 weeks of lunches Monday to Friday,
i.e. 30 meals are sought. The nutrient constraints chosen are those suggested by the
Swedish Food Agency, Livsmedelsverket, [10] that are stated in Table 4.1.

They are national recommendations for healthy school lunches in Sweden for dif-
ferent age ranges. It contains specific values for 12 different nutrients that are of
extra importance for children and that they recommend should be fulfilled, on ap-
proximately a 3 week average, for school lunches. The age range 10 to 12 years
old have been chosen and the nutritional profile recommend for them is used to set
realistic constraint on the meal plan. It is referred to as norm 10-12 in the future.
In addition an upper limit constraint on the CO2-equivalent have been set to 0.5
or 1.0 kg. Worth noting is that for the nutrients salt and saturated fat the norm
value is a highest recommended intake. Therefor they are considered upper limit
constraints and are deemed successful when the average value is below the threshold.
The CO2-eq is of the same nature along with the budget.

17
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Nutrient 10-12 16-18 Unit

Energy 2700 3300 kJ
Protein 24 29 g
Fat 24 28 g
Carbohydrates 77 94 g
Fibre 8 10 g
Salt 1.81 1.8 g
Polyunsaturated Fat 5.5 6.5 g
Saturated Fat 71 9 g
Vitamin D 3 3 µg
Vitamin C 15 15 mg
Iron 3.3 3.3 mg
Folate 60 60 µg

Table 4.1: Norm values taken from ’Nationella riktlinjer för m̊altider i skolan’ [10]. It
describes recommended average intake of several important nutrients for school children of
age 10-12 and age 16-18 years during a school lunch. It corresponds to roughly a third of
the recommended intake for a whole day.

The budget of the meal plan is in general 16 or 18 kr a high budget in relation to
the costs in the data sets. The hyperparameters α and ε are always 0.1 and 0.3
respectively. In most cases the same experiment has been carried out with both
data sets, with data set A 2265 meals was available and for data set B 10000 were
randomly selected from the 100000 available. The number of episodes used in the
training varies from 40000 and upwards. The general parameter setup, for both data
sets, is summarised in Table 4.2 below.

Parameter Value

Size of selection 30
α 0.1
ε 0.3
Norm 10-12
Budget 16 kr
Available meals 2265
Training episodes 50k - 80k

(a) Parameter setup for data set A.

Parameter Value

Size of selection 30
α 0.1
ε 0.3
Norm 10-12
Budget 18 kr
Available meals 10000
Training episodes 40k - 100k

(b) Parameter setup for data set B.

Table 4.2: Summery of parameters used in most experiments.

The weight setup used differ between data sets and experiments more so they will
be present in each section. The results will be displayed in tables summarising the
average values of the final selection for each constraints along side its norm value.
When it is of interest there will also be figures with plots illustrating the evolution
of the selections average values during the training for picked nutrients.

1This is a highest recommended intake
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4.2 Realistic Example

In this section, results from two good attempts of fulfilling all constraints of the base
case will be shown. Firstly one attempt using data set A and secondly one attempt
with data set B.

4.2.1 Data Set A

Using the base case setup and custom weights described in Table 4.3 yielded a
descent result, 11 out of 14 constraint were fulfilled. Worth noting is that the price
per portion 8.83 kr which in contrast to the budget of 16 kr is very good. The
constraints that are not fulfilled are all upper limit constraints and the CO2-eq
limit of 1.0 kg is quite unattainable considering the mean and standard deviation
of the data set (Table 3.1). The other two, salt and saturated fat, are both in the
neighbourhood of their limits. All details can be found in Table 4.4 below.

Constraint w

Protein 2
Carbohydrates 8
Fibre 2
Saturated Fat 3
Rest 1

Table 4.3: Custom weight setup used for this section with data set A. Omitted constraints
have the value 1.
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Constraint Norm Algorithm Unit

Cost - 8.83 kr
Energy 2700 3200 kJ
Protein 24 24.1 g
Fat 24 37.1 g
Carbohydrates 77 78.7 g
Fibre 8 7.73 g
Salt 1.82 1.88 g
Polyunsaturated Fat 5.5 6.73 g
Saturated Fat 72 8.7 g
Vitamin D 3 3.0 µg
Vitamin C 15 42.5 mg
Iron 3.3 5.0 mg
Folate 60 200 µg
CO2-eq 1.0 1.91 kg
Achievement Ratio - 11/14 -

Table 4.4: Average value of each parameter considered for the final selection found by the
algorithm along side the considered norm. Training was performed with hyperparameters
α = 0.1 and ε = 0.3, a budget of 16 kr, norm 10-12, a selection of size 30 and it ran for
80 000 episodes. Overall a good result, since 11 out of 14 constraints are fulfilled with only
2262 meals available. The evolution of the training can be seen in Figure 4.1.

The evolution of the average values for some of the constraints are illustrated in
Figure 4.1. Of the four constraints shown in the figure only saturated fat was
not fulfilled. However, as can be seen in Subplot 4.1b, that constraint is below
its threshold in many instances during its training. The other three constraints
all display the same general trend of increasing up to their lower limit and then
oscillating around that value.

2This is a highest recommended intake
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(a) Polyunsaturated fat (b) Saturated fat

(c) Protein (d) Carbohydrates

Figure 4.1: The evolution of the average nutrients levels of the selection during training
in blue as well as each threshold value, dashed line. Training was performed with hyperpa-
rameters α = 0.1 and ε = 0.3, a budget of 16 kr, norm 10-12, a selection of size 30 and it
ran for 80 000 episodes. In (a), (b) and (d) the final values are above their lower limit, (b)
however end above its upper limit. They do all illustrate an oscillating behaviour around
their limits.

4.2.2 Data Set B

With data set B and a custom weight setup, see Table 4.5, a selection of 30 meals
among 75 000 was obtained that fulfilled all 14 constraints.

Constraint w

Energy 5
Carbohydrates 8
Fibre 3
Polyunsaturated Fat 3
Saturated Fat 3
Vitamin D 2
Rest 1

Table 4.5: Custom weight setup used for this section with data set B. Omitted constraints
have the value 1.
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All details of the final result is captured in Table 4.6, the resulting cost per portion
of the selection became 11.43 kr which is far below the high budget of 18 kr. All
constraints are fulfilled and most of them with good margin.

Constraint Norm Algorithm Unit

Cost - 11.43 kr
Energy 2700 3381 kJ
Protein 24 28.97 g
Fat 24 34.55 g
Carbohydrates 77 91.38 g
Fibre 8 8.92 g
Salt 1.82 0.67 g
Polyunsaturated Fat 5.5 10.9 g
Saturated Fat 72 5.31 g
Vitamin D 3 3.0 µg
Vitamin C 15 20.2 mg
Iron 3.3 5.9 mg
Folate 60 100 µg
CO2-eq 1.0 0.85 kg
Achievement Ratio - 14/14 -

Table 4.6: Average value of each parameter considered for the final selection found by the
algorithm along side the considered norm. Training was performed with hyperparameters
α = 0.1 and ε = 0.3, a budget of 18 kr, norm 10-12, a selection of size 30, 75 000 meals
were available and it ran for 100 000 episodes. The selection fulfils all 14 constraints, with
good margin in all cases except vitamin D, for a average price of 11.43 kr which is way
under budget. The evolution of the training can be seen in Figure 4.2.

The evolution of some nutrient levels for the selection during training for this exam-
ple can be seen in Figure 4.2. In all four examples given, the average value stays on
the desired side of its limit when it is found. For the lower limit examples, shown in
Subplots 4.2a, 4.2c and 4.2d, there is a clear trend of staying above the limit once
it is breached. While for 4.2b, an upper bound constraint, it already starts below
but on the occasions it exceeds its limit it quickly turns under the limit again.

2This is a highest recommended intake
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(a) Polyunsaturated fat (b) Saturated fat

(c) Protein (d) Carbohydrates

Figure 4.2: The evolution of the average nutrients levels of the selection during training
in blue as well as each threshold value, dashed line. Training was performed with hyper-
parameters α = 0.1 and ε = 0.3, a budget of 18 kr, norm 10-12, a selection of size 30, 75
000 meals were available and it ran for 100 000 episodes. All plots illustrates the desired
behaviour of the algorithm with both types of constraints. For lower limit constraints, (a),
(c) and (d), the random selection’s values start below their limits but they steadily increase
with training episodes until they pass their thresholds. They then stays above them. For
(b), an upper limit constraint, the random selection’s value already starts below its limit
but whenever it exceeds its limit it goes back under again.

4.3 Different Rewards

This section shows results from a comparison between the regular terminal reward
function used, the triangular and the inverse Euclidean terminal reward (3.9).

All three rewards were used while training the algorithm on identical data with a
identical parameter setup and number of episodes trained. Data set B was used, all
weights were set to 1 and the base case with 80000 episodes were used.

Figure 4.3 compares the evolution of the selection’s average values for some nutrients
between all three models. Overall the model with the regular reward performed best
but for certain nutrients it was out done by the model with the inverse Euclidean
distance, see Subplots 4.3c and 4.3d for example.
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(a) Polyunsaturated fat (b) Saturated fat

(c) Energy (d) Carbohydrates

(e) Fiber (f) Protein

Figure 4.3: The evolution of the average nutrients levels of the selection during training,
for three different reward functions in blue, yellow and green as well as each threshold
value, dashed line. Training was performed with hyperparameters α = 0.1 and ε = 0.3, a
budget of 18 kr, norm 10-12, a selection of size 30, 10 000 meals were available and it ran
for 80 000 episodes. Overall the regular reward performed best but the inverse Euclidean
distance did not do bad, while the triangular reward was not competitive at all. Even though
all three reward functions shares some properties with, one or both of the others, there are
considerable difference in the outcome, suggesting that the method is quite sensitive to the
reward function’s construction.

The triangular reward function did considerably worse and did not compete with
either of the others. While the inverse Euclidean distance was comparable to the
regular one even though they differ in both symmetrical properties and in if they
distinguish between upper and lower limit constraints.
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Even though the triangular and the inverse Euclidean distance looks quite similar,
they produced very different results and the inverse Euclidean distance was far
superior. Consequently the method is deemed to be quite sensitive to the reward
function.

4.4 Varying budget

In this section the results of three identical training setups with only a varying
budget will be compared. This will be done with data set B and with a high,
medium and low budget with two weight setups.

10000 meals were randomly selected from the 100000 meals available and used for
the training. Two different weight setups, w1 and w2, were considered for three
different budgets each. The budgets are denoted, low, medium and high and they
corresponds to 6, 12 and 18 kr per meal respectively. These values were chosen as
they reflects a bit less than average, average and a bit higher than average price
per meal in the data set. Table 4.7 summaries the full set up and table 4.8 and 4.9
illustrates the resulting values for selections for both weight setups.

Constraint w1 w2

Energy 1 3
Carbohydrates 1 3
Fibre 1 3
Polyunsaturated Fat 1 3
Saturated Fat 1 3
Rest 1 1

(a) Weight setups compared, w2 has a higher
weight than w1 for five constraints. All omit-
ted constraints have the standard weight 1.

Parameter Value

Size of selection 30
α 0.1
ε 0.3
Norm 10-12
Available meals 10000
Budget 6, 12, 18 kr
Training episodes 40000

(b) Parameters used in this section with data
set B.

Table 4.7: Experimental setup summarised.

The first weight setup, w1 with all weights being equal to one, gave some mixed
results. As can be seen in Table 4.8 medium budget got one more constraint fulfilled
compared to the high budget. However looking at the individual values of each
constraint reveals that the high budget selection does better than the medium budget
selection in a majority of the cases. It is worth noting that the price of the low budget
selection exceeded its budget of 6 kr and the price of the high budget selection is
only 10.61 kr in comparison to its budget of 18 kr.
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Constraint Norm Low Medium High Unit

Cost - 6.26 8.79 10.61 kr
Energy 2700 1672 2226 2301 kJ
Protein 24 14.91 24.42 26.9 g
Fat 24 18.48 30.69 24.02 g
Carbohydrates 77 42.8 44.6 52.91 g
Fibre 8 4.22 5.58 6.51 g
Salt 1.83 0.41 0.56 0.20 g
Polyunsaturated Fat 5.5 2.09 6.32 2.97 g
Saturated Fat 73 3.85 6.51 4.18 g
Vitamin D 3 1.0 5.0 3.0 µg
Vitamin C 15 21.9 41.9 26.5 mg
Iron 3.3 2.0 7.6 10.3 mg
Folate 60 100 600 700 µg
CO2-eq 1.0 1.04 0.98 0.95 kg
Achievement ratio - 4/14 11/14 10/14

Table 4.8: Comparing the outcome with a low, medium and high budget. Training was
performed with hyperparameters α = 0.1 and ε = 0.3. We present low, medium and high
budget, weight setup w1, a selection of size 30 and norm 10-12 was used. 10 000 meals
were available and it ran for 40 000 episodes. Note that the cost per meal for the low budget
exceeded its threshold. There is a general trend of better results with higher budgets but
there are also counter examples, notably the medium budget achieved one more constraints
than the high budget.

Using the second weight setup w2 yields similar results. But in this case the high
budget selection performs better with one more constraint fulfilled than the medium
budget selection, see Table 4.9. The same observations as with the first weight setup
are still true. Looking at individual values, the high budget selection scores best
in a majority of the constraints. As expected the low budget selection scores a lot
worse than the medium and high budget selections with both weight setups.

3This is a highest recommended intake
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Constraint Norm Low Medium High Unit

Cost - 5.11 9.7 12.04 kr
Energy 2700 1392 2534 2566 kJ
Protein 24 14.78 23.99 24.36 g
Fat 24 15.36 28.65 27.49 g
Carbohydrates 77 34.93 59.16 62.96 g
Fibre 8 3.39 8.55 9.45 g
Salt 1.83 0.30 0.63 0.53 g
Polyunsaturated Fat 5.5 1.59 7.64 7.67 g
Saturated Fat 73 3.3 4.38 4.45 g
Vitamin D 3 1.0 3.0 2.0 µg
Vitamin C 15 28.3 45.2 38.1 mg
Iron 3.3 1.7 5.4 7.1 mg
Folate 60 41 300 500 µg
CO2-eq 1.0 0.92 1.06 0.94 kg
Achievement ratio - 5/14 10/14 11/14

Table 4.9: Comparing the outcome with a low, medium and high budget. Training was
performed with hyperparameters α = 0.1 and ε = 0.3. We present low, medium and high
budget, weight setup w2, a selection of size 30 and norm 10-12 was used. 10 000 meals
were available and it ran for 40 000 episodes. There is a general trend of better results
with higher budgets but there are also counter examples. The high budget case produces
the best result overall with one more constraint fulfilled than the medium budget.

4.5 Comparing Weights

In this section different weight setups will be compared to study the influence it has
on the solution for both data sets. This will be done by the following experiment,
two selections will be obtained by training with differing weights but in all other
regards an identical setup, the results will then be compared. The two sets of weights
will be wb a nominal setup with all weights equal to one and wr a heuristic setup
that has weights greater than one for some constraints. The experimental setup will
differ a bit between the data sets as they differ in size and in which constraints that
are hard to achieve.

4.5.1 Data Set A

For data set A the experimental setup is described in Table 4.10, the weights differ
in three cases.

3This is a highest recommended intake
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Constraint wb wr

Carbohydrates 1 5
Polyunsaturated Fat 1 5
Saturated Fat 1 5

(a) Weights for different constrains used for
the blue, wb, and the red, wr, selection all
other weights that are omitted have the value
1.

Parameter Value

Size of selection 30
α 0.1
ε 0.3
Norm 10-12
Available meals 2265
Budget 16 kr
Training episodes 50000

(b) Parameter setup used for data set A.

Table 4.10: All weights and parameters used for the experimental setup, the results of the
selections can be seen in Table 4.11.

The outcome is displayed in Table 4.11 for both the blue and the red selection, the
red selection achieves better results in all three constraints that had a higher weight
compared to the blue selection. However the red selection performers slightly worse
than the blue selection overall as it fulfils one less constraint.

Constraint Norm wb wr Unit

Cost - 10.07 9.06 kr
Energy 2700 2605 3043 kJ
Protein 24 24.73 18.62 g
Fat 24 38.89 47.03 g
Carbohydrates 77 40.93 54.7 g
Fibre 8 5.32 6.53 g
Salt 1.8 3 1.76 1.7 g
Polyunsaturated Fat 5.5 8.58 11.85 g
Saturated Fat 7 3 7.24 6.24 g
Vitamin D 3 4.0 2.0 µg
Vitamin C 15 41.9 28.3 mg
Iron 3.3 5.4 2.5 mg
Folate 60 400 100 µg
CO2-eq 0.5 1.89 1.95 kg
Achievement ratio - 9/14 8/14

Table 4.11: Comparing the result with two different weight setups, wb and wr, all rows
where the weights differed are highlighted in green. Training was performed with hyper-
parameters α = 0.1 and ε = 0.3, a budget of 16 kr, a selection of size 30, norm 10-12
was used, 2265 meals were available and it ran for 50 000 episodes. The weights differed
on 3 constraints in all of those, marked in green, there was a considerable improvement,
indicating that weights have the desired effect and can influence the priority of constraints.
However the case wb achieves to fulfil one more constraint than wr does and performs
slightly better overall in this case.

The influence of weights on the selection can be seen clearly in Figures 4.4a and 4.4b,
were both types of constraint are illustrated. The red selection, which has a higher

3This is a highest recommended intake.
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weight for the compared nutrients, has a higher average level of polyunsaturated fat
and a lower average level of saturated fat than the blue selection. This is a desired
outcome since polyunsaturated fat is a lower limit constraint that one wants to
exceed while saturated fat is a upper limit constraint that one wants to stay below.

(a) The plot displays the average level of polyun-
saturated fat for two selections, red and blue line,
for each episode during training. Both runs are
identical except for the weight setup. The red line
has a weight of 5 for polyunsaturated fat compare
to the blue line that has a weight of 1 for polyun-
saturated fat. The constrain is a lower limit one
and the threshold level is marked with a dashed
line.

(b) The plot displays the average level of satu-
rated fat for two selections, red and blue line,
for each episode during training. Both runs are
identical except for the weight setup. The red
line has a weight of 5 for saturated fat compare
to the blue line that has a weight of 1 for satu-
rated fat. The constrain is a upper limit one and
the threshold level is marked with a dashed line.

Figure 4.4: Comparing the evolution of the average value of polyunsaturated (a) and sat-
urated (b) fat in two selections during training. Training for both was performed with
hyperparameters α = 0.1 and ε = 0.3, a budget of 16 kr, a selection of size 30 and it ran
for 30 000 episodes. Only difference is that the red selection has a five times higher weight
for both nutrients compare to the blue selection. In both figures the red selection with the
higher weights performs better as it takes higher values in (a), a lower limit constraint,
and it takes lower values in (b), an upper limit constraint. Displaying that the priority of
constraints can be altered with weights.
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4.5.2 Data Set B

The experimental setup for data set B can be seen in Table 4.12, the weights differ
here in six cases.

Constraint wb wr

Energy 1 5
Carbohydrates 1 8
Fibre 1 3
Polyunsaturated Fat 1 3
Saturated Fat 1 3
Vitamin D 1 2

(a) Weights for different constrains used for
the blue selection, wb, and the red selection,
wr, all weights that are omitted has the value
1.

Parameter Value

Size of selection 30
α 0.1
ε 0.3
Norm 10-12
Available meals 10000
Budget 18
Training episodes 50000

(b) Parameters used in this section for data
set B.

Table 4.12: All weights and parameters used for the experimental setup, the results of the
selections can be seen in Table 4.13.

The outcome of both selections are stated in Table 4.13, the six constraint for which
the weights differ have been highlighted. The desired effect is clearly shown in four
of the cases, highlighted in green. In the other two cases, highlighted in red, no
improvements are seen but they do not shown a much worse performance either.
Since saturated fat is just slightly worse for red and neither red nor blue fulfils the
constraint. Red also has a worse value for vitamin D but it is above the threshold,
same as blue. Overall wr achieves a better results as it completes 12 out of 14
constraints while blue only achieves 9 constraints.
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Constraint Norm wb wr Unit

Cost - 12.7 14.4 kr
Energy 2700 2367 3421 kJ
Protein 24 27.59 28.41 g
Fat 24 29.99 43.24 g
Carbohydrates 77 43.8 75.51 g
Fibre 8 6.48 11.35 g
Salt 1.8 3 0.79 0.52 g
Polyunsaturated Fat 5.5 4.98 14.18 g
Saturated Fat 7 3 7.35 7.41 g
Vitamin D 3 5.0 4.0 µg
Vitamin C 15 44.1 22.3 mg
Iron 3.3 8.5 5.2 mg
Folate 60 600 100 µg
CO2-eq 1.0 0.95 0.91 kg
Achievement ratio - 9/14 12/14

Table 4.13: Comparing the result of two different weight setups, wb and wr, all rows were
the weights differed are highlighted in green when wr performed better than wb and in red if
the opposite was true. Training was performed with hyperparameters α = 0.1 and ε = 0.3,
a budget of 18 kr, a selection of size 30, norm 10-12 was used, 10 000 meals were available
and it ran for 50 000 episodes. The weights differed on 6 constraints, in four of those,
marked in green, there was a considerable improvement and in two cases, marked in red,
there was a slight decrease in performance. However vitamin D is above the threshold in
both setups and for saturated fats it is only a minor difference in wb’s advantage. Finally
as a whole the wr setup performs better as it fulfils three more constraints than wb.

Plots of the evolution of the selections average value of the six specially considered
nutrients can be seen in Figures 4.5, 4.6 and 4.7.

3This is a highest recommended intake
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(a) The plot displays the average level of polyun-
saturated fat for two selections, red and blue line,
for each episode during training. Both runs are
identical except for the weight setup. The red line
has a weight of 3 for polyunsaturated fat compare
to the blue line that has a weight of 1 for polyun-
saturated fat. The constrain is a lower limit one
and the threshold level is marked with a dashed
line.

(b) The plot displays the average level of satu-
rated fat for two selections, red and blue line,
for each episode during training. Both runs are
identical except for the weight setup. The red
line has a weight of 3 for saturated fat compare
to the blue line that has a weight of 1 for satu-
rated fat. The constrain is a upper limit one and
the threshold level is marked with a dashed line.

Figure 4.5: Comparing the evolution of the average value of polyunsaturated (a) and sat-
urated (b) fat in two selections during training. Training for both was performed with
hyperparameters α = 0.1 and ε = 0.3, a budget of 18 kr, a selection of size 30, 10 000
meals were available and it ran for 50 000 episodes. Only difference is that the red selection
has a three times higher weight for both nutrients compare to the blue selection. In (a),
a lower limit constraint, the red selection with higher weights performs better as it takes
higher values and the red line is clearly above the blue for most parts. In (b), a upper limit
constraint, it is not as clear cut, the red selection stays under the blue one for the most
parts but with little margin and the final solution ends up slightly worse than the blue one.
All details of the training and parameter setup can be found in Table 4.12.
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(a) The plot displays the average level of energy
for two selections, red and blue line, for each
episode during training. Both runs are identical
except for the weight setup. The red line has a
weight of 5 for energy compare to the blue line
that has a weight of 1 for energy. The constrain
is a lower limit one and the threshold level is
marked with a dashed line.

(b) The plot displays the average level of car-
bohydrates for two selections, red and blue line,
for each episode during training. Both runs are
identical except for the weight setup. The red
line has a weight of 8 for carbohydrates compare
to the blue line that has a weight of 1 for carbo-
hydrates. The constrain is a lower limit one and
the threshold level is marked with a dashed line.

Figure 4.6: Comparing the evolution of the average value of energy (a) and carbohydrates
(b) in two selections during training. Training for both was performed with hyperparam-
eters α = 0.1 and ε = 0.3, a budget of 18 kr, a selection of size 30, 10 000 meals were
available and it ran for 50 000 episodes. Only difference is that the red selection has a
higher weight for both nutrients compare to the blue selection. In both figures the red se-
lection with higher weights performs better as it takes higher values in (a) and in (b), both
lower limit constraints. There is a clear trend, in both cases, of the red selection outper-
forming the blue one. All details of the training and parameter setup can be found in Table
4.12.
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(a) The plot displays the average level of fibre for
two selections, red and blue line, for each episode
during training. Both runs are identical except
for the weight setup. The red line has a weight
of 3 for fibre compare to the blue line that has
a weight of 1 for fibre. The constrain is a lower
limit one and the threshold level is marked with
a dashed line.

(b) The plot displays the average level of vitamin
D for two selections, red and blue line, for each
episode during training. Both runs are identical
except for the weight setup. The red line has a
weight of 2 for vitamin D compare to the blue
line that has a weight of 1 for vitamin D. The
constrain is a lower limit one and the threshold
level is marked with a dashed line.

Figure 4.7: Comparing the evolution of the average value of fibre (a) and vitamin D (b)
in two selections during training. Training for both was performed with hyperparameters
α = 0.1 and ε = 0.3, a budget of 18 kr, a selection of size 30, 10 000 meals were available
and it ran for 50 000 episodes. Only difference is that the red selection has a higher weight
for both nutrients compare to the blue selection. In (a) the red selection with a higher
weight performs noticeably better as it mostly stays over the blue line, while in (b) there
are not any clear trends but blue finishes with a higher value, both lower limit constraints.
All details of the training and parameter setup can be found in Table 4.12.
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Chapter 5

Discussion

The goal of this thesis is to try to create an intelligent meal planner that will take
constraints as input and produce a feasible meal plan as output. This is in contrast
to a traditional human approach where a meal plan first is created and just then
can the prerequisite constraints be checked.

The idea was to utilise the extensive meal data that Matilda FoodTech had provided
in combination with modern machine learning algorithms to solve the problem. Us-
ing a Reinforcement Learning approach with Monte-Carlo methods [2] as a founda-
tion, we developed an algorithm to create a meal plan by selecting meals from the
existing data set in such a way that the selection fulfils the specified constraints.

The constraints considered were narrowed down to:

• Cost, the selection should have an average price below budget;

• Nutritional profile, the selection should fulfil a set of nutritional constraints
on average;

• Environmental impact, the selection should have an average CO2-equivalent
below a set threshold.

The algorithm works by computing a relative action value for each meal that repre-
sent each meal’s individual capacity to contribute toward fulfilling the constraints of
the sought meal plan. The process is modeled as a MDP, where different selections
of meals are represented by states while actions correspond to adding meals to the
selection.

Training is done by generating episodes by following an ε-greedy policy. The policy
used always picks the action corresponding to the meal with the current highest
action value. In each training episode the following steps are performed:

1. Generate an episode by following the ε-greedy policy;

35



CHAPTER 5. DISCUSSION

2. Compute a terminal reward based on how well the selection fulfils all con-
straints while being under budget;

3. Updating the action value for all meals involved in the selection.

The ε-greedy approach then ensures continuously exploration through sampling
while exploiting the accumulating knowledge. Updating the action value function
for actions and thus also improving the policy’s choice on an episodic basis.

The method is deemed successful as the results are overall good, in Section 4.2
where the best results achieved for both data sets are presented, 11 and 14 out
of 14 constraints are fulfilled for data set A and B respectively. Illustrating the
the method works with the larger data set, it does not achieve all constraints for
the smaller data set. Although there is no guarantee that the solution had fully
converged for the smaller data set. Neither is it certain that there exist a selection
that fulfils all constraints in the smaller data set. For example carbohydrates, a
nutrient whose constraint, 77 g, have proven to be relative hard to achieve with the
data, has an average value of 40.4 g in data set B compared to 28.1 in data set A.
Another example is salt, whose mean plus a standard deviation, is 1.85 g for data
set B while it is 5.18 g for data set A. So within a standard deviation you achieve
the upper limit of 2 g for data set B while you heavily exceed it most of the time
for data set A. That is to say, the average values of nutrients are further from to the
sought constraints in general for data set A.

The average values for nutrients in the selections oscillated in general quite a lot
through out the training, more so for data set A (Figure 4.1) than B (Figure 4.2).
Indicating that the solution might not be very stable but it could just be a natural
consequence of the none deterministic nature of the method as well. On average
30% of the meals in each episode are selected randomly excluding the best option,
this could be the cause for the heavy oscillations. Since throughout the training the
top picks by the policy should get more cemented but the random picks can cause
sudden devaluations of the policy’s meals, leading to fluctuations. However there is
a clear trend of increasing average values towards the limit and then a stabilisation
above or around it for lower limit constrains. When considering an upper limit
constraint the general behaviour is that the average level tend to return under the
threshold whenever it exceeds it.

Notably many of the selections have a price per portion that is far below budget,
the successful example in Section 4.2.2 for example had a price of 11.43 kr compare
to its generous budget of 18 kr. The algorithm however does not reward selections
more for being cheaper, it only penalise selections over budget. That is selections
with identical properties except for their average price do not get rewarded more if
they are 4 kr below budget compare to 1 kr below. Likewise selections do not get
penalised more for exceeding the budget with 4 kr compared to 2 kr. Thus there is
no incentive for the algorithm to pick the cheapest selection possible. But there is a
clear pattern of relative cheap selections compare to the budget. This could possibly
be an indirect effect of the policy’s interaction with the terminal reward. Since for
meals to stay in the top choice of the policy it is advantageous to be resistant to bad
random picks and price is the biggest factor in the terminal reward. If the random
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picks cause a breach of the budget a large penalising term is added to the terminal
reward and then used for the update of all meals involved. Consequently to stay in
the policy’s top picks it is favourable to be rather cheap in relation to the budget
to create resistance against bad picks by being less susceptible to devaluation by
random expensive sabotaging meals. Another simpler explanation could be that the
general low cost in relation to the budget seen in the results, indicates that the more
expensive recipes in the data used are not necessarily more nutritious.

When imposing a low budget relative to the data set, there is a big drop in per-
formance. Around half of the constraints that gets fulfilled with a medium or high
budget gets achieved with a low budget, see Table 4.8 in Section 4.4 for example.
This is an intuitive outcome since a majority of the price interval is essentially re-
moved. The same effect is not seen when comparing medium and high budgets, see
Table 4.9. Where the overall performance is similar for both, that is fulfilling about
the same amount of constraints. There are two obvious plausible reasons for this,
one as mentioned before there are indications that more expensive meals might not
necessarily be more nutritious and two the comparisons are made with the same
amount of episodes of training. But with a high budget there are a lot more valid
combinations available hence it might need more training to utilise that fact. But
the high budget gives better results in general when comparing values for individual
constraints between medium and high budget.

Using weights to manipulate the relative importance of constraints, which is illus-
trated in Section 4.5, worked as intended. Higher weights on certain constraints
resulted in better values, this worked for both types of constraints. Also harder
constraints, that otherwise did not get fulfilled, were achieved by this manipulation,
see Figure 4.4 for example. But the weight setups used are specific to the data and
constraints, so even though they work intuitively it can be cumbersome to find a
setup that achieves the goal. As seen in Table 4.13, increasing the weight on too
many constraints might not have the desired effect on all constraints either. Com-
plex correlations between nutrients exists that might make fulfilling a combinations
of goals adversarial thus leading to complex and unpredictable trade offs. Increas-
ing a single weight too much can also lead to it being more rewarding to fulfil one
constraint than several others thus having a overall negative impact.

Three different terminal rewards are compared in Section 4.3, referred to as the
regular, triangular and inverse Euclidean terminal reward. They do all share prop-
erties with one another but produce varying results. The regular terminal reward
does perform overall best, the triangular terminal reward does very poorly and are
not competitive at all, while the inverse Euclidean terminal reward is competitive
and it yields better results for some nutrients than the regular terminal reward, as
seen in Figure 4.3.

Both the triangular and the inverse Euclidean terminal reward are symmetrical
and rewards the distance to the sought value the same, i.e. ±5% is rewarded the
same. The triangular terminal reward distinguish between upper and lower limit
constraints and centres the triangular function on the norm value for a lower limit
constraints while centring in the middle of the desired interval for a upper limit
constraint. The inverse Euclidean terminal reward centres on the norm value re-
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gardless of the constraints type. But while they handle the reward quite similarly,
they give very different results. The triangular reward does not show a increasing or
decreasing trend during training, it remains quite static around its initial values as
seen in Figure 4.3. While the inverse Euclidean displays clear trends of increasing
towards the norm value, see Figures 4.3c, 4.3d and 4.3f. It is the same kind of
desired behaviour as the regular terminal reward is displaying. But since it does
not distinguish between upper and lower limit constraints, it can end up above in-
stead of under an upper limit, like it did for saturated fat in Figure 4.3b. So even
though both alternative terminal rewards functions in similar fashion, they produce
different behaviours one far more favourable than the other.

The regular terminal reward is simpler in its design. It is either an increasing or a
decreasing function, depending on the type of constraint considered. This might be
the reason why it functions better, it makes for an easier convergation since it does
not penalise bad selections as hard. Essentially all combinations with nutrient levels
above the lower limits constraints, which is the majority of constraints, are left open
while both alternative terminal reward limits the interval of good choices by their
symmetrical property. However that still worked well for the inverse Euclidean, so
no definitive conclusion can be made of this. But it is clear that the solution of the
method is sensitive to the design of the terminal reward.

5.1 Conclusions

Overall the results of the method have been positive, with the selections from the
smaller data set (A), that was primary used for the development of the algorithm,
fulfilling most constraints. Using the larger data set (B), selections fulfilling all
constraints can be found quite easily. This is a natural consequence of the fact
that data set B has, far more combinations to offer and its meals have a better
potential. In other words the average values of nutrients in data set B are closer to
the thresholds of the constraints, thus making it more likely that satisfying selections
exist. Consequently the general notion of, better input data yields better results,
holds true here as well.

Given a decent data set, such as data set B for instance, with a reasonable number
of meals fulfilling the goal, it was not that hard for the algorithm to find feasible
solutions. Selections fulfilling all 14 constraints have been found with only 10000
meals available and 50000 episodes of training at times. Increasing the available
meals to 75 000 yielded feasible solutions most of the times at an increased cost in
computational time.

Notably many of the selections have a price per portion that is far below budget
even thought there is no direct incentive from the terminal reward to be more than
just under budget, i.e. their is no incentive to pick the cheapest selection possible.
This can be an indirect consequence of the interaction between the policy and the
terminal reward or it can be an indication that the more expensive recipes in the
data used do not necessarily make it a more nutritious meal.
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It is a universal truth, in machine learning as well, that algorithms only learn what
they are told to learn. It is crucial to find a mathematical representation that
corresponds to the goal of the developer, since a computer has no notion of what
a nutritious meal is. In this case the terminal reward represents the algorithms
full knowledge of what a desirable selection constitutes of. Its only goal is to pick
meals with the highest action value at any given instance, so it is essential that the
action values represents their intended meaning. As seen here when three different
but quite similar terminal rewards, designed with the same goal in mind, produced
varying results that corresponded both to success and failure.

The algorithm behaves logically and has a predictable behaviour at large. Decreasing
the budget made it harder to fulfil all constraints while increasing the budget made
it easier, as expected. Increasing weights for certain constraints gave the intended
effect but using it to optimise the selection too much are likely not worth the time
investment. Since manipulating several weights leads to less predictability when
the algorithm juggles the complex correlations of nutrients within meals against the
constraints. Although if a clear priority of only a few constraints exist, then weight
manipulation should have a plain use.

In conclusion, the general ambition has been fulfilled, the method provides a selection
that adheres to the defined constraints. While the method also has a intuitive
behaviour in regards to weight and budget manipulations. The algorithm can with
a decent data set find selections for a realistic scenario that are:

1. Under budget;

2. Achieves all nutrient constraints, 12 considered;

3. Below average levels of CO2-eq of the data set.

5.1.1 Outlook and Practical Considerations

The method has shown great potential for a new more automated approach to meal
planning. The selection of the algorithm could serve as a first recommendation
of a meal plan for many base cases and the internal ranking, that all meals get
from the training process, can be used to suggest substitutions for unwanted meals.
Furthermore, training on data subsets that are customised for its intended use would
likely speed up training and yield better results. That is only train with meals tagged
as school lunches when looking for such a meal plan, thus avoiding meals created to
fit other groups needs and taste, like elderly care.

There are more dimensions to this problem than considered in this thesis. Resources
needed for cooking the meals such as ovens, heated storage, staff etc imposes con-
straints ignored here. Time is another unaccounted factor in this. So even if the
algorithm’s selection fulfils all nutrient constraint and the CO2 constraint while be-
ing under budget, there is no granite that it will work in practice since a lot of
practicalities have been disregarded.
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It is probably possible to include some of the resource aspects in a extended version
of this terminal reward. But since it would add more complexity, it is likely more
advantageous to deal with it by considering subsets of the data once again, only
searching within meals that are feasible resource-wise for a particular kitchen facility.
Thus trying to have those resource constraints implicitly fulfilled by the data subset.

Moreover fulfilling the desired nutritional profile lies on the assumption that the
school kids, eat their planned share of a meal. In other words there is a popularity
aspect here since meals need to account for the eaters preferences. A problem like
this could however probably be mitigated by using data subsets intended for specific
types of eaters.

Another practical concerns to the method is that it needs to retrain whenever a
constraint is changed. Making it rather inflexible since training can take a long
time. This could be worked around to some degree by having some pre-trained
standard cases, e.g. using national recommendations for school lunches for different
age ranges for a couple of budgets. An user that is planning a meal plan could then
pick the closest alternative and use that meal plan as a starting point. One could
also use the selected alternative as a starting point for a new training process with
some modified constraints.

So the method has a big drawback in that it is sequential, and there are no obvious
parallelisation to be done since each episode depends on the results of the previous
episode. Otherwise this would be a standard approach to speed up the training
process. Transferred learning might thus be the more natural approach to achieve
a faster training process in this case.
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