
BACHELOR’S THESIS 2021

A study of development
collaboration in a
water-gile-fall organization
Astrid Jansson

ISSN 1650-2884
LU-CS-EX: 2021-01

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

KANDIDATARBETE
Datavetenskap

LU-CS-EX: 2021-01

A study of development collaboration in a
water-gile-fall organization

En undersökning av
programvaruutvecklingskoordinering i en

water-gile-fallorganisation

Astrid Jansson

A study of development collaboration in a
water-gile-fall organization

Astrid Jansson
nat15aja@student.lth.se

January 19, 2021

Bachelor’s thesis work carried out at

the Department of Computer Science, Lund University.

Supervisor: Lars Bendix, lars.bendix@cs.lth.se

Examiner: Emelie Engstöm, emelie.engstrom@cs.lth.se

mailto:nat15aja@student.lth.se
mailto:lars.bendix@cs.lth.se
mailto:emelie.engstrom@cs.lth.se

Abstract

In this empirical study, we investigate root causes for loss of adaptiveness and
e�ciency along with solutions to eliminate these in an agile middle-sized project
with several teams highly a�ected by the traditional waterfall structures that
infuse other parts of the company.

Based on interviews with employees from varying roles and teams, 60 issues
are identified and grouped into nine areas. Root cause analysis is performed on
three of these areas. E�ciency and adaptivity are found to be negatively a�ected
by unclear code ownership between teams and faulty implementation of Scrum.
This drives the codebase to become more complex and more expensive to develop
and maintain.

Solutions recommended include introducing clear ownership between the
teams, improve the implementation of Scrum, focus on process improvement, as
well as enforcing and supporting team self-organization.

Keywords: Scrum, agile, waterfall, e�ciency, development, collaboration

2

Contents

1 Introduction 5

2 Background 7
2.1 Context . 7
2.2 Method . 8

2.2.1 Preparation . 9
2.2.2 Interview method and scope . 9
2.2.3 Data processing . 10
2.2.4 Data gathering other than the interview format 11
2.2.5 Validation . 11
2.2.6 Literature study . 11
2.2.7 Rescoping . 12

3 Results From Investigation Phase I - Organizational Structure 13
3.1 Idea to Production . 13
3.2 Organization . 14
3.3 Team Perspective . 17

4 Results From Investigation Phase 2 - Issues 21
4.1 Summary . 21
4.2 Results . 22

5 Analysis and Design 23
5.1 Agility and Scrum . 23

5.1.1 Analysis . 23
5.1.2 Solution Design . 25

5.2 Collective and Double Ownership . 27
5.2.1 Analysis . 28
5.2.2 Solution Design . 31

5.3 Collaboration Between IT and Business . 33

3

CONTENTS

5.3.1 Analysis . 33
5.3.2 Solution Design . 37

6 Discussion and Related Work 41
6.1 Application and Validity . 41
6.2 Process Reflection . 42
6.3 Result Reflection . 43
6.4 Related Work . 45

6.4.1 Paper Review 1 . 45
6.4.2 Paper Review 2 . 46

6.5 Future Work . 48

7 Conclusions 49

References 51

Appendix A Issue List 55
A.1 Standardization . 55
A.2 Architecture and State of Codebase . 57
A.3 Traceability . 59
A.4 Collaboration Between IT and Business . 60
A.5 Code Ownership Creating Issues . 64
A.6 Code Collaboration and Development Teams 66
A.7 Development and Shortcuts . 71
A.8 Prioritization . 73
A.9 Agility and Scrum . 74
A.10 Other Issues and Statements . 76
A.11 Wishes From Employees . 77

4

Chapter 1

Introduction

Multiple teams developing a product is a task that requires much coordination and collabora-
tion. The strategies used, cultures, industry practices, and employees a�ect the outcome and
success of a development project. The specific aim of the development can vary depending
on the factors mentioned. However, something that many can agree on is that development
done e�ectively, with an easily maintainable product, is more easily said than done.

The purpose of this Paper is to do an empirical study of an organization that is experienc-
ing a decline in e�ectivity and adaptivity in development delivery. The organization is a part
of a company operating in the financial sector. Process and performance will be explored in
a multi-team setup developing a software product. The development teams are using Scrum,
an agile development framework, where the highest possible value tasks are developed during
time-boxed sprints.

These agile teams operate in a department of over three hundred fifty people in an en-
vironment a�ected by bureaucracy regarding certain procedures, many imposed by external
factors. More teams will most likely be added to the development collaboration of the prod-
uct that today consists of 7 teams.

Today the teams’ development processes are considered to be working well and follow
industry standards. Still, there are concerns regarding incoming requirements and changes
being di�cult to include in the already ongoing sprints. These requirements are imposed
outside of the department’s control and need to be addressed.

Teams do not have single responsibility in the product. Instead, some teams are respon-
sible for certain domains while others are responsible for features spanning several domains.
This creates confusion regarding who has precedence. When the current sprint of one team
is changed, due to urgent incoming requirements, not only this team is a�ected. Then, other
teams also need to rescope and change what they are working on in the sprints. This a�ects
the collaboration on the codebase and the organization suspects that the code development
is a�ected by the processes around how the product is developed and maintained.

The initiating problem is that the development teams are becoming less productive and
adaptive in the change process. The goal is to find the root causes for this and explore pos-

5

1. Introduction

sible solutions to improve the e�ciency of the teams, in the context of constantly changing
requirements.

Given the background and the initiating problem, the following research questions will
be explored

• RQ1: What are the root causes of teams experiencing loss in productivity and adaptiv-
ity in the development delivery?

• RQ2: What solutions could help to eliminate some of these root causes?

Investigation findings would provide insight into how the development is a�ected by
factors as collaboration, culture, strategies, and other practices. In answering RQ1 we inves-
tigate issues occurring and their root causes. These insights will, in turn, lay the foundation
for RQ2 where solutions will be explored, and recommendations made. The overarching goal
is to understand what can be done to improve and support collaboration between teams and
employees, and improve the outcome of the development result providing business value.

Semi-structured interviews [7] are the main source in the investigative part of the study
where the organizational structure is documented along with what kind of issues that the
teams and the support around them are experiencing. In the analysis, root causes are investi-
gated answering RQ1. From the results of the analysis, possible solution designs are explored
answering RQ2. Recommendations, statements, and arguments for certain directions are
based on recommendations from related research applied to fit the context of the organiza-
tion observed. Literature studies are performed throughout the preparations of the study,
preparations of the interviews, during the interviews, data processing, analysis, and design
solution composition.

In the following chapters, we first present the context of the organization under study.
Then, the methods used in this work that include preparations, data gathering, data pro-
cessing, validation, literature search, rescoping. In chapter 3 and chapter 4 we move into the
investigative part of the study resulting in an organizational description along with a list of
60 issues grouped into nine areas. From these, we rescope the area of investigation focusing
on three of these nine areas and then analyze root causes addressing RQ1. After that, we
rescope again and explore solution designs addressing RQ2. Finally, we enter the discussion
and reflection of our findings, validity, related work, and future work before we draw our
conclusions.

6

Chapter 2

Background

The goal of this chapter is to give an overview of the context of the organization and the
method used in researching, analyzing, and framing this thesis. This will provide the reader
with an understanding of how the study is performed and what the overall environment that
a�ects the teams collaborating on the solution looks like.

2.1 Context
The company is working in the financial sector and this part of the organization under study
is heavily regulated and have stakeholders that rely on the Software development team to
provide business value. As of today, 7 teams are collaborating on the product. The product
has been merged from separate solutions over a period of 2 years. The separate solutions are
in the same area and had functionalities crossing the solutions. The aim was to make it easier
to do cross-functional changes over several solutions and be able to reuse functionality that
was found very similar. This as the di�erent solutions were operating in the same area, doing
slightly di�erent things.

The team setup is di�ering depending on the team. However, in general, the teams consist
of a product owner, a tech lead, scrum master, business analyst, and multiple developers. The
team setup aims at bringing business and IT employees together and the team then consists
of people from both sides of the organization. The business side consists of the users and
stakeholders of the product. In general team members reports to the manager on either
business or IT side depending on function. The average team size is around 11 members with
the largest team being 13 members and the smallest an outlier of 6. Teams are supported by
a cross-functional architect team as well as other support teams.

Collaborations between the teams are structurally done through the respective roles. Tech
leads align the development and product owners together with their stream lead on the busi-
ness side set and prioritize the task.

The product is supporting the business side and an example of business value provided

7

2. Background

in development is the automatization of manual tasks. The IT solution in general allows the
business to work faster.

Two more teams are being onboarded to the product and more might be onboarded in
the future. The current aim seems to be a total of 10-12 teams.

Clarification
Below we clarify the intended interpretation of terms in this study.

• Organization: refers to a part of the company that is limited to the teams’ department,
in other words, the teams themselves and their close collaborators, support teams,
product users (business), product stakeholders (risk, etc), and department manage-
ment.

• Business: refers to the users of the solution.

• Mono-repo: refers to the repository that is the home to the entire solution or product
that the teams are developing.

• Solution/product: refers to the content in the mono-repo.

2.2 Method
The goal of this section is to present the method used in researching, analyzing, and framing
this thesis. This by giving the reader an understanding of the decisions made in the process
and showing transparency in how di�erent aspects of the work have been performed.

The structure mostly follows the di�erent stages of the working progress. Firstly, the
preparation of scoping the thesis. Secondly, the investigation phase includes stages of prepar-
ing and doing interviews, how the data process is done, and how the result is presented.
Finally, before moving on to the analysis phase there is the validation of results and rescop-
ing performed due to limitations in the thesis timeframe. The analysis includes root cause
analysis, rescopes, and solution analysis.

Figure 2.1: Overview of the process for this study.

8

2.2 Method

2.2.1 Preparation
Given the "initiating problem" (from the Introduction) we did a pre-analysis to define the
research questions, see Figure 2.1. This by consulting with two employees on problems oc-
curring and aligning with what the organization perceives as the most important. The re-
search questions are openly phrased in such a way that the possible answers can be varied
depending on the information provided during the investigation. A more focused question
to be investigated could be too specific for the benefit of the organization intended. This as
the initiating problem domain is very broad and possibly a�ected by many areas.

• RQ1: What are the root causes of teams experiencing loss in productivity and adaptiv-
ity in the development delivery?

• RQ2: What solutions could help to eliminate some of these root causes?

There is a need of understanding the organization at a more detailed level along with
issues that are occurring. The overview of the organization has been created from a walk-
through of the organization with company representatives and details are included based on
the interviews and internal documentation. Simultaneously, issues have been explored using
semi-structured interviews.

2.2.2 Interview method and scope
The goal of the interviews is to provide insight into how the organization function from
di�erent points of view and also bring light to possible issues that are occurring both directly
and indirectly. Therefore, key individuals should be chosen from di�erent kinds of teams
and with di�erent roles to cover many team cultures, knowledge and experience areas, and
possible backgrounds.

The people that have been interviewed cover large parts of the organization, and be-
sides management, employees with di�erent roles have been interviewed covering six out of
the seven teams (all seven teams have been represented when follow-up talks are included).
Furthermore, support teams that are directly collaborating with and a�ect the team’s devel-
opment are included. The people that were interviewed have the following roles: developer,
tech lead, stream lead, and product owner. It would be beneficial to include a Scrum mas-
ter as well, however, the scope of the thesis did not allow this at the time because of the
investigation timeframe and the availability of employees.

The goal in preparing and planning for the interview was to create a strategy for the inter-
views. This to have relevant questions for the di�erent roles of the interviewees, consistency
between the interviews, and issues raised by one person confirmed and further discussed with
others. Interview type is chosen to be semi-structured as it provides the possibility of leading
the direction of the interview easily while allowing the interviewers to speak more freely of
what they consider important: like their working environment, processes, ways to do things,
and possible issues. This makes the interaction more discussion-like with follow up questions
and provides the possibility to dwell on a specific subject.

9

2. Background

Interview Guide
We use the method presented in Kallio et al (2016) [7] to create our interview guide. The
prerequisites of doing a semi-interview are identified as we are studying people’s percep-
tions and opinions along with complex issues related to the initiating problem and research
questions. Retrieving and using previous knowledge (on agile development, configuration
management, collaboration, and software development) is done through researching the or-
ganization’s Confluence and Jira pages, discussion and sparring with company mentors along
with researching best practices on the tools and strategies used in the company.

A preliminary interview guide is formulated with a focus on clear wording, and focus
on the participant, and as few leading questions as possible. The interview guide essentially
contains the main questions with the expectation of the follow-up questions being impro-
vised on the form of what, when, how, who, where depending on the answer and context.
The questions are categorized as general or role-specific allowing for adaptation depending
on the role and background of the interviewee.

The preliminary interview guide is pilot tested using a mix of Expert assessment and
Field-testing where the interviewee answered as a study participant and then provided feed-
back and discussion concerning structure, wording, context, relation, and form. The test pi-
lot interviewee is specialized outside of the team working on close collaboration with them
and therefore has a unique overview of the organization.

The interview guide is updated after every interview with new questions from concepts
and discussion point that has come up and been found interesting, regarding possible issues
or organizational structure, during the interview to be discussed further or confirmed by
others.

2.2.3 Data processing
Each interview requires work in processing the data to create the organizational description
and the issue list. A summary of every interview is made, from the recording, noting all
that has been said by the interviewee. This as we want to have hands-on data and be able
to compare what di�erent interviewees have said on similar subjects. The summary consists
of direct quotes or the information phrasing the discussion as closely to original wording as
possible to better display the intent of the interviewee and the discussion.

Investigation Phase 1 aims to portray the organization’s information to provide the reader
with su�cient information of the organization to be able to understand the setting the or-
ganization works within and the regular processes that are performed regularly. Many of
the interviewees have very di�erent roles and experiences. This will allow for an organiza-
tional description, Investigation Phase 1, that is more detailed and diverse than what could
be provided by one person.

The results of the interviews, the talks, and discussions on issues and problems are pre-
sented in Investigation phase 2 (chapter 4). We group the issues to make it easier to have an
overview of the issue topics.

Each issue follows a template with a description, a motivation, and a comment (optional).
The description presents what the problem is, the consequence of it, and possibly an example.
The motivation proves that it is an issue and presents statements and topics from interviews.
We add a comment on issues that can be connected further or concluded in some way from

10

2.2 Method

other issues or topics that holistically is derived from the interviews. The optional comment
adds context to the issue if when the descriptional and motivational part of the issue needs
further explanation.

For purposes of anonymity, issues are motivated by role only and not what stream or
team the interviewee belongs to. For the same reason, support team members and sometimes
business management employees are generalized, not mentioning a specific role, apart from
architecture support and infrastructure as their roles are very specific in terms of how it
directly a�ects development. This essentially means that referring to a specific role could be
referring to any of the interviewees with that role. If it is relevant for the issue, then info on
the team context is given as well.

2.2.4 Data gathering other than the interview format
It is noticed in parts of the interview data that there is a potential to further develop and in-
vestigate the mentioned topics and issues. We want to gather this information and make sure
is part of the problem domain or has su�cient level details to be added to the organization
description.

Therefore, shorter interviews or talks are performed to get a specific team’s or role’s point
of view on a specific issue. This way we can get comments that extend and cover more of
the area without spending too much time as the timeframe is tight already. Topics that are
initially only mentioned and not dwelled upon in one interview can further be developed
with another employee.

Furthermore, the data document was commented on by support team members regularly,
filling out some parts that were mentioned but not entirely explained by interviewees. This
makes the data more complete regarding everything that comes to light in the interviews.

2.2.5 Validation
We want the results to be trusted and agreed to by employees of the organization. The val-
idation focuses on making sure that nothing in the results go against an employee’s view of
the organization.

The validation of the investigation is done by 2 members of a support team that have an
overview of the organization as their combined experience cover collaboration with teams
directly as well as with the di�erent levels of management. When these two members found
content outside of their knowledge, the interview source was contacted directly to confirm
validity.

As many of the issues overlap statements made by di�erent roles with di�erent perspec-
tives there might be some disagreement on a counterpart’s description. This is documented
and can be used to further develop the issue’s root cause. If the disagreements on statements
are on an interviewee’s own statement, this is fully recognized and changed accordingly.

2.2.6 Literature study
Literature studies are part of the whole process presented in Figure 2.1. Initially, a broad
literature search was performed before the creation of the interview guide. During the inves-

11

2. Background

tigation phase, new concepts introduced by interviewees as well as issue related topics were
explored. Relevant keywords were brainstormed regularly during the study and used to find
articles in research search engines. Papers relevant to this study are sorted out from titles,
then the abstract, then the introduction and conclusions. The further the study progressed,
the more focused searches could be performed. ResearchGate has been used to sort relevant
papers through citations.

2.2.7 Rescoping
A rescope has been performed before the start of the analysis and solution design. To be
able to go more in-depth, specific areas are chosen for analysis of root cause. This so that the
rescope ensures both the organizational and the academic perspective.

The aim is for the rescoping is to reflect the organization’s needs in terms of what issues
are selected for analysis. To reach a spread of opinion, di�erent employees with varied work
responsibilities are asked to partake. The employees have the following roles: developer, ar-
chitect support (tech lead in an earlier role), stream lead, and agile coach (experience working
with all the teams).

Employees were asked to rank the three most important issues in order. The Point system
uses the ranking from these answers (3 points to the most important, 2 points to the next in
line, and 1 to the last). From this, the areas have been ranked, 6 out of the nine areas have
been given points. From this, we initially choose the 4 highest ranked to focus on further,
see Figure 5.1. The Prioritization area is taken out due to the time-frame, benefiting deeper
analysis in the other three areas. Two areas have the same ranking and the reason Agility and
Scrum is chosen over Prioritization is the e�ect it has on the organizational structure and
therefore the collaboration.

Figure 2.2: Employees’ ranking of the most important areas.

The analysis of the now three highest-ranking issue areas is scoped thinner to contain a
specific academic point of view focusing on the theory and research in these areas. The area
Agility and Scrum is “limited” to Agility focusing on identifying root causes where the or-
ganization is not following agile principles. We focus on collaborative ownership around the
organizational structure as well as the area Code Ownership Creating Issues. Collaboration
Between IT and Business is investigated from its relation to development strategies.

Issues from other areas than the three that are the focus are included in the analysis when
appropriate.

Rescoping was furthermore done between the analysis and the solution design. The fo-
cus of the solution design is on the teams’ environment and root causes connected to code
ownership issues and Scrum implementation.

12

Chapter 3

Results From Investigation Phase I - Orga-
nizational Structure

This chapter aims at presenting how the organization functions, is structured, and what
processes are used in creating and setting the direction of the development of the solution in
question. The goal of the investigation phase is to identify issues leading to the development
being less e�ective. Before addressing the issue, we need to understand more about how the
organization works.

In the following, we have a general structure that we follow. First, the steps an idea takes
to get released into production are presented. Second, we will investigate the department’s
structure and overall process to get an overview of the environment that the teams work
within. Lastly, we focus on how one of the teams operate and collaborate with other parts of
the organization. Here we furthermore compare with other teams and point out when there
is something specific to that team. The information that is presented here has been obtained
from processing the interview data, see 2.2.3.

3.1 Idea to Production
From idea to developed task used in production, there are a few steps that the collaboration
goes through that can be viewed in Figure 3.1.

The pre-backlog phase is where input comes from stakeholders where ideas are discussed
and reflected upon. These stakeholders have much influence, consisting of management
above the area, risk area, solution stakeholders, etc. From this, stakeholder requirements
are collected and presented more clearly. Then stakeholder requirements are handed over
to Business Analysts and product owners for researching prerequisites and objectives on the
tasks. Based on this, an overall requirement specification is created and when selected for
development it is added to the backlog by the product owner, starting the work done by the
team in the pre-sprint phase.

13

3. Results From Investigation Phase I - Organizational Structure

The pre-sprint phase includes extensive assessment before it can be approved for devel-
opment and release. The backlog is then refined within the teams, meaning that tasks are
discussed within the teams in an iterative process until they are considered ready for devel-
opment by the team and Scrum master, that has the last say on the subject. Then requirement
is picked for the sprint.

During an ongoing sprint, there is an iterative process of tasks being developed, regression
tested, and system tested in SYST. The team is using a Definition of Done to assess if they
consider the backlog item complete. The product owner has the last word on when the task
can be considered ready.

Post-sprint, there is a demo and the tech lead is leading the technical release and tasks go
live into production. After the sprint retrospectives are performed. The release is done once
every 4 weeks.

Figure 3.1: The steps that an idea go through to end up running in
production. Yellow presents steps before tasks are added to the back-
log. Blue boxes represent the team’s work. Approvals are outside of
the team’s control and can take a few months.

3.2 Organization
The organization directly a�ects the teams and the development of the solution. The envi-
ronment and organizational decisions of processes that a�ect the team make it possible to
later understand why things are done a certain way or lead to a certain result. The descrip-
tion will focus on what the organization looks like along with team-spanning processes and
development coordination.

The seven development teams are operating in an agile environment in terms of sprints
and development but above that work lies a waterfall model in terms of deadlines from the
business side where the annual goals and budget is set, the so-called water-gile-fall model.
The water-gile-fall model is a spectrum where one can work more or less agile. The first one

14

3.2 Organization

is strived for in the department. At the same time demands on many tasks makes the teams
less agile.

Figure 3.2: Overview of the area with focus on the two streams. Sup-
port teams are supporting all developer teams not only the 7 teams
that are the object of this study.

The seven development teams are split up into two focus areas, so-called streams. This is
shown in Figure 3.2. Stream 1 contains three teams and stream 2 contain four teams. Team
sizes are the following in order: 10,13,6,12,12,12,10.

The setup of the teams aims at having the business and IT working closely together.
Therefore, all teams have some people with a technical background as developers, tech lead,
and Scrum masters. Moreover, the teams have product owners, Business Analysts, and Scrum
masters with a business background.

The roles and their connections are illustrated in Figure 3.3 where the black arrows point-
ing to the Lead that is being reported to. Scrum masters are recruited from both business
and IT sides. Depending on what faction the people have experience from, that’s where their
manager is. Business report to the Stream leads while IT report to IT leads. These types
of managers have an human resource (HR) relationship. Managing the product is on the
Product owners’ plate.

Stream lead together with IT leads makes sure that the direction of the solution encom-
passes with some strategic elements on the IT leadership side. The manager’s job in the
di�erent levels of the organization includes filtering the noise so that only the important
and relevant things are essentially lifted and spent time on within the teams. This is not
necessarily part of the role but is considered good to work on. Managers’ roles also include
mandatory excessive reporting, assessments, and bureaucracy guiding.

Each stream has a Lead on the business side. Their main source of information regarding

15

3. Results From Investigation Phase I - Organizational Structure

Figure 3.3: The organization from the development point of view.
Roles report to IT or business side leads.

what happens in the teams is the product owners. Besides that, the stream lead also receives
input from stakeholders. With this information, they can provide product owners with in-
formation that can help them set and prioritize tasks.

Each team has a Product Owner that is responsible for delivering as much business value
as possible. Product Owners get input from stakeholders and collaborate with the tech leads
in the teams, as shown by Figure 3.3. Stream Lead relies on Product Owner to receive in-
formation on the IT perspective from the tech lead, as they themselves do not communicate
directly with tech leads.

The stream leads report to the business area lead that is involved only in the most im-
portant issues on the IT side. Stream lead communicates with stakeholder leaders and the
product owner with the stakeholders that have detailed knowledge.

Product owners are the ones prioritizing the tasks given to teams. However, the Stream
Lead has a say in prioritization and gets input on requirements from stakeholders mentioned.
Priorities are also influenced by Business Area Lead and Architecture Support. Product Own-
ers in the team along with Business Analysts have the business knowledge while developers
and tech leads have technological knowledge.

The IT part of the teams usually is mostly involved in the refinement of the tasks, not
the prioritization itself. Product owners motivate the priority within the team up in the
hierarchy, to Stream Lead, using input from tech leads regarding technical requirements and
tasks. Then the priority decision is on a general basis made on whatever seems to bring the
most business value.

16

3.3 Team Perspective

There are four waves (big room planning) of planning per year. Before the wave, the
stream lead has a pre-wave planning session with the stakeholders. Business area lead (that
stream leads report to) and IT lead participate in that talk. Stream lead then asks teams what
they plan on bringing to the wave planning, teams talk to their stakeholders. The plans made
for the wave should not be considered as fixed as unexpected things can happen during the
sprints. The aim is to be clear on the deliverables on the first sprint. As the wave progresses,
uncertainty in the deliverables usually goes up.

Tasks and prioritization of tasks are done by product owners in collaboration with stream
leads. The plans for the sprints build on task estimations, using story points, done by the
development teams themselves. Furthermore, estimations are done di�erently depending on
the team. They all have di�erent views and context on what is the full expectancy of the role is
as a Scrum master, product owner, tech lead, etc. It is not set in stone how to do estimations,
rather it is up to each team to decide. Here Agile Coache and Scrum Master have the job of
guiding the team and give input from observation on what they can improve to get closer to
agile ways of working.

Support to the teams is given from support teams outside of the area. There is a col-
laboration with Scrum masters on improving the agile ways of working. Infrastructure sup-
port regarding configuration and infrastructure is more e�ectively handled by one support
team than having each team acquire this knowledge themselves. Architect support is mainly
concerned that the area and the solution are coherent with the rest of the organization’s
guidelines and architecture. The architecture support is not concerned with the detailed ar-
chitecture in the domains, this in some way falls on tech leads. However, architect support
is available for larger things that need input, development of new features, or if there is a
conflict between teams that cannot be resolved among themselves.

3.3 Team Perspective
The perspective of di�erent teams varies as they operate in di�erent ways and are di�erently
exposed to external pressure. Below is an example from of one the team’s perspectives and at
the end a few comments comparing to other teams will be made. Team 5 operating in stream
2 is chosen and is generally considered to function well. They also have in their favor that
they are more isolated in terms of how much they collaborate with other teams in terms of
shared ownership.

Team 5 has frontend, backend, and full-stack developers, as many of the other teams do.
In planning for the sprints, the developers are given user stories or epics. These come from
the Product Owner and the Business Analyst that has researched prerequisites and objec-
tives. Initially, the product owner receives a business need from the stream lead that is then
discussed with the team, estimations are done and then tasks are prioritized together with
the stream lead.

The refinement sessions are attended by all developers and take place after the Business
Analyst has analyzed what should be done. In other teams, developers sometimes do not
have time to join these, or only a few do. The refinement session can be done before and
also during the sprint. In team 5 during the refinement session, there are discussions and
inputs given. If there are unclarities and things that can be improved, iterations are done,
the Business Analyst finds the details and then a new refinement session will be scheduled. In

17

3. Results From Investigation Phase I - Organizational Structure

the sprint planning session, we expect most things to be evaluated at the refinement session
before and considered to be ready for development.

The procedure of the estimation of tasks is left to the Scrum master to figure out. This
team’s procedure is to do estimation in days, where the daily capacity of the team is consid-
ered, and tasks are given an interval size with best- and worst-case scenarios. Estimations
are done in the planning session and the sizes are rough and could be described by s, m, l,
and xl. This as hours are not worth to estimate in as it cannot be reliable, intervals are more
reasonable from a development perspective. This also creates less stress on the team. The
Scrum master in the team is responsible to estimate team capacity. To make it possible for
di�erent developers to work on the same thing, without disturbing each other, there is an
e�ort put into splitting up larger stories into smaller pieces.

After the sprints there are retrospectives. If there are issues in the development these are
raised here. According to the developer in team 5, they have good communication during
these and are not afraid of talking about problems. Depending on the type of issue it gets
raised either by tech lead if it is development-related or Scrum master of more related to
communication as an example.

When working on a task in the sprint the procedure is to finds out how to do it. If there
are uncertainties within the team tech lead is contacted and from there other teams can join
in the investigation if it concerns them. If there are larger things or mainly that the teams
cannot solve or agree on it between themselves then the architect support team is contacted
for input.

Team 5 has ownership in 3 domains and contributes to 5 domains owned by other teams.
In terms of traceability of the software and the development Team 5 uses the Azure DevOps
tool. They consider it clear and nice in terms of overviewing commits and the di�erent
domains they work in. Other teams have expresses issues regarding the traceability regarding
getting an overview of and go through the history as all teams are committing to the same
repository. Teams are in general able to choose any tool they wish to use.

In the case of team 5 there is no documentation other than task management and commit
information. Old versions of the diagram are referred to in confluence. One member giving
support to the teams has expressed that new features are being documented over the solution
worked on by all teams. In Team 5 they rely on experience to know what they need when
maintaining the solution and it is usually very di�cult for newcomers in the beginning.

Most of the tasks worked upon is providing business value, additionally, there is an aim
to include technical tasks into the sprints. However, technical tasks usually get down priori-
tized because of the pressure or need to provide business value. Sometimes technical sprints
are added so that the team can catch up on dealing with technical depth, about once every
quarter. This is specific for team 5, other teams have wanted to do something similar but
have not come through.

Sometimes in the area, there are hard deadlines even though the aim of the organization
is to work in accordance with the agile framework. The hard deadlines are dealt with by
managing the scope, feature within is spread out over di�erent sprints and then things must
move out from the original sprint planning. In many cases, not enough is moved out and it
happens that the team is pressured. The scope of the hard deadline keeps on getting larger as
the initial promises on the delivery are not clear and can be reinterpreted. There is usually a
huge underestimation of the target that has been promised. These promises are made outside
of the department and development teams are not consulted on the size and e�ort of the

18

3.3 Team Perspective

target.
There is a lot of pressure coming in from the business side to have new functionality and

features, besides the legal requirements that usually have a hard deadline. This is a blend of
legal requirements imposed outside of the organization as well as a need for new or extended
features that improve the e�ectiveness or the functionality of how the business side uses the
system.

However, sometimes it appears that the business side in regard to features do not know
what they ask for and the consequences it has for other tasks being pushed out of the sprints.
The team’s Business Analyst investigates the requests coming in and find out if it is urgent.
Business analyst communicates with the stakeholders regarding the requirements of the is-
sues, collects input from UX-support and risk-support teams. Then the story is prepared, and
refinements are done with support-teams and then the team, iterative refinement processes.
Here the development has some say on the relevance of the technical part of the solution. The
product owner and the business then move tasks considered prioritized into the sprints and
move out tasks accordingly. When it comes to taking in new critical assignments something
must go. The priority here is key.

The collaboration with teams works well in most cases. There are rarely merge con-
flicts between developers in di�erent teams. Communication between developers is mainly
around the pull requests. These must be approved by the owners of the features and owners
of domains. When there is friction it happens usually regarding disagreement on a solution.
One team decides to do things a certain way and the other team doesn’t agree. There is an
unclarity around ownership where one team owns the feature, and the other team owns the
domain where part of the feature resides.

The branching strategy used by the teams is release branching. Before the pull-requests
are created, the solution unit-tests have been performed along with the code review. When
the pull request has been approved the pipeline moves the branch and build the code in the
test environment. If it passes, then it can be moved manually to the SYST environment. All
tasks are merged into master as soon as they are completed so far and are then tested in the
SYST environment. There is a freeze period during regression testing before release. Releases
to production are done once every four weeks. The move of the branch can be done by anyone,
however, the procedure is that it should be approved by tech leads and management.

Feature toggles are used. In the case that something is caught last minute that can be
toggled of and still go to release.

As business requests, in terms of improved and added functionality, are prioritized in the
prioritization of tasks it happens that quick fix-solutions are implemented. According to the
developer in team 5, the consequence of this depends on how bad the quick fix solution is.
For a developer in team 5, a quick fix happens about 2 times every 6 months. In team 5 the
procedure is that after a quick-fix is implemented you should add a task to back-log a task to
fix it with analysis of root cause and there is a lot of collaboration to find the right solution.
This happens, but not every time, or it takes a while. This is a larger problem in some of the
other teams where quick-fix solutions even are maintained and functionality added over a
long time.

19

3. Results From Investigation Phase I - Organizational Structure

20

Chapter 4

Results From Investigation Phase 2 - Issues

In the second investigation phase, we focus on the issues that lead to the development being
less e�ective and adaptive. From understanding what the issues are, we will in the next
chapters investigate the root causes and reasons for why many of these problems occur. We
present the issue list consisting of 9 areas and other results from the investigation. Below is
a summary of the results of the investigation, for more details consult Appendix A with its
11 sections (A-1 -A.11).

4.1 Summary
The problem being addressed is why there is a loss of e�ciency and adaptivity of the develop-
ment teams from the perspective of the employees. Di�erent roles experience several issues
and this is reflected in the interviews. The issues found relate to development practices,
processes, organizational structures, communication, and collaboration. The investigation
has resulted in 60 motivated issues a�ecting development. They have been grouped into the
following 9 areas (section A.1 - A.9):

• Standardization

• Architecture and State of Codebase

• Traceability

• Collaboration Between IT and Business

• Code Ownership Creating Issues

• Code Collaboration and Development Teams

• Development and Shortcuts

• Prioritization

• Agility and Scrum

Due to the limited timeframe of this thesis and the extensive nature of our issue list,
we leave the treatment of several recorded issues and statements as future work. They are
presented in Section A.10. Furthermore, all interviewees were asked to make a statement on
the one thing they considered would improve e�ciency and adaptivity. This collection of
statements is presented in the section Wishes From Employees (A.11).

21

4. Results From Investigation Phase 2 - Issues

4.2 Results
The loss of e�ectivity and adaptivity experienced by the teams links to the issues employees
encounter. How these are intertwined and the specific root causes for these will be explored
in the analysis of the next chapter. Three of the issue areas will be the focus of the analysis.
These are the result of a rescope performed, described in section 2.2.7. A similar analysis for
other issue areas would provide an interesting direction to extend the work of this thesis.

The three areas (A.4, A5, A.9) a�ect the e�ciency and adaptivity in more than one way
and the direct consequences are not always clear due to the complexity of the issues.

The area Collaboration Between IT and Business (A.4) is important due to the close col-
laboration between the two sides of the organization and is particularly interesting due to the
di�erences in processes and structures between them. IT is using Scrum and agile method-
ologies while the business side is working more closely to traditional waterfall strategies.

Code Ownership Creating Issues (A.5) a�ects the teams’ ability to make improvements
to the code and processes. Issues become larger and more di�cult to handle along with rising
costs of maintenance and development.

Agility and Scrum (A.9) is essential for the development strategy to function as intended.
Issues in this area a�ect the development directly and connect to other issue areas amplifying
the consequences of these.

Conclusion
From the result of this investigation of organization and issues, found in Appendix A, we con-
clude that there is room for improvements in aspects around collaboration and process in the
organization. Specifically concerning investigating consequences of organizational structure,
unclear responsibilities between roles, and lack of commitment to strategic processes from
the organization. We now turn to address some of these issues in the next chapter.

22

Chapter 5

Analysis and Design

In this chapter, we aim to analyze root causes and design solutions to these. The analysis is
to focus on problem areas that have been found in the investigation phase. In analyzing root
causes we gain a deeper understanding of how some of these issues occur and why. Further-
more, we can by investigating possible designs to solve the root causes find solutions best
fitted to the environment and the condition of this organization that has been studied.

Firstly, a rescoping of the results from the investigation phase is performed, see 2.2.7.
Three issue areas are analyzed. Each issue has root causes examined with results presented
and design solutions examined with preferable solutions proposed and motivated.

5.1 Agility and Scrum
In this chapter, we analyse and discuss design solutions regarding where the organization is
not following agile principles. This will contribute to answering the research questions. The
structure contains analysis of root causes, where agile principles are matched against the issue
list in Appendix A. The analysis result is followed by a rescope then solution design, see 2.2.6
regarding literature study and 2.2.7 for rescope method.

5.1.1 Analysis
The agile method is principle-based and the agile team is to be guided by these 12 principles
[14]. Agile standards are not fully implemented, see Agility and Scrum (2). Furthermore,
from the result found in this study, we find that at least 8 principles (of 12) are being broken
in di�erent ways.

The organization is committed to using Scrum as a method. Scrum teams should be self-
organizing and self-directed [14]. This part of the Scrum Methodology is not followed as
many decisions are done in higher management and other parts of the organization have a
high impact on the teams’ everyday work. This points to an organizational issue in terms

23

5. Analysis and Design

of how management is expecting the teams to work and how they actually do in reality.
This by committing to working per a methodology without adapting the structure of the
organization to follow through.

The teams are part of a large organization and many structures are inevitably inherited
into the department. The supposedly agile part of the organization is di�erently managed
compared to the business side of the organization. Introducing Scrum into an organization
is similar to entering an organizational change, with great opportunities and also risks.

Decisions should not be made by an authority, rather by people who are a�ected by the
issue at hand [5]. In this case, we find that the business side and management have much
e�ect on the outcome of decisions being made, see 5.4. This creates a di�cult environment
to implement and improve the Scrum method and agile principles. There is lacking a sys-
tematic reflective approach to e�ectivity where issues regarding this do not have a place in
retrospectives or other forums along with Scrum masters not being given the authority or
tools to solve issues that occur. Here we again find the Double ownership as a root cause as
it moves decisions away from the teams.

The agile principles regard the practices that collaborating agile teams should strive for
[14]. Broken principles contain both isolated incidents that point to issues in the collabora-
tion as well as structures that are not strived for because of the business and management
organizational structure.

From the interviews, we have found that strive for continuous delivery is lacking. The
consequence of the issues is partially described in Double ownership and is noticeably a man-
agement decision where it points towards mistrust and misunderstanding on how agile de-
velopment should be done. Here we are refereeing to the rigid approvals that need to be done
before releasing into production.

Furthermore, the high pressure is not maintainable in the teams as this a�ects the solution
while prioritization is performed without the technical necessities considered along with top-
steering decisions on what the teams should spend their time on. The opposite of what the
agile team using Scrum should do. This unfortunately is leading towards down prioritized
technical excellence and good design followed solution becoming more complex and di�cult
to maintain.

Result
The 12 agile principles are matched against the issue list in Appendix A. Below are the eight
principles that are being broken. They are motivated by issues presented in the appendix.

• Principle 1 (early and continuous delivery) is broken as the teams are not delivering
early and continuously, see Agility and Scrum (5) in Appendix A.

• Principle 5 (give support and a good environment, trust the people, build a project
around motivated individuals) is broken when team is not given an agile-friendly en-
vironment and support, they as well are not being trusted “getting the job done”. This
is seen as a consequence of ownership structure in issues under Code Ownership Cre-
ating Issues (1-6). The creation of a dysfunctional environment in Code Collaboration
and Development Teams (1), lacking trust and overruling team decisions regarding
development in Development and Shortcuts (4).

24

5.1 Agility and Scrum

• Principle 7 (working software is the measure of success) is broken when working soft-
ware isn’t the primary measure of success. The teams are enforced to work with a
bureaucratic approvement process, see Code Collaboration and Development Teams
(12)

• Principle 8 (sustainable development, stakeholders and developers shall maintain a
constant working pace) is broken when sponsors, developers, and users are not main-
taining a constant pace indefinitely. Teams working overtime is a symptom of this rule
being broken. Blockers found can be in the approval process (Future work), when test-
ing cannot be done as stated in Code Collaboration and Development Teams (13). Part
of the organization not even aware of how it should work and constantly will break it,
see Collaboration Between IT and Business (2, 5).

• Principle 9 (attention to technical excellence and good design) is broken as technical
e�orts are overshadowed by the endless stream of business requests. This issue appears
in Development and Shortcuts (1, 2, 3). Teams are not dedicating enough time for
refactoring, see Collaboration between IT and business (4, 7), see Code Collaboration
and Development Teams (11).

• Principle 10 states that simplicity is essential. Being broken when system complexity
rises, see Architecture and State of Codebase (3) and Collaboration Between IT and
Business (7).

• Principle 11 implies that self-organizing teams should be strived for as this allows bet-
ter architecture, requirements, and designs. Self-organization is lacking as teams do
not operate in isolation, are managed from above and decisions made in the team can
be overruled. Please see issues Code Ownership Creating Issues (6), Prioritization (2),
Agility and Scrum (4), Collaboration Between IT and Business (2). For misunderstand-
ing on what teams are expected to deliver and at what pace, see Collaboration Between
IT and Business (5).

• Principle 12 regards regular reflections on process improvements, action to optimize
and adjust process and behavior accordingly. For issues regarding regular reflection
and improvements on e�ectivity and adjustments accordingly, see Agility and Scrum
(3, 4).

5.1.2 Solution Design
From the results of the analysis, we find that many of the agile principles have been broken
from the issues found in Investigation 2 and many are related to how Scrum and agile princi-
ples are implemented into the organization. In the design, we explore possible improvements
to the Scrum process to improve some of these with the focus of empowerment of the em-
ployees. The focus that is chosen to discuss is solutions for the violation of principle 5 and
principle 11 as these revolve around the team and its environment and is connected to code
and collective ownership issues.

The use of Scrum does not directly introduce productivity, unlike what many corpo-
rations seem to believe. Rather the method used properly makes problems transparent so
that they are solvable and once solved productivity may rise. Self-organizing teams are one

25

5. Analysis and Design

of the core necessities in using the Scrum method. To derive the benefit from Scrum self-
organization is a necessity[5] and in agile development is reflected by principle 11. Several
improvements can be introduced into the organization and the teams that operate around
the mono-repo (solution). In the structural support and the environment, the team operates
in, as well as the trust it receives from stakeholders and its management as mentioned in
principle 5.

Team members having very clear responsibilities and the power to enforce their decision
is an important part and should be included in management responsibilities in supporting
the teams. To be self-organized there is a need for clear structure and responsibilities. A
single product owner needs to have the singular power to make decisions concerning the
product in the team [5].

It is reasonable that the product owner base decisions on objective criteria and the stake-
holder wishes to benefit the stakeholders and business side of the organization: area lead,
stream lead to name a few. The product owner is making the decisions based on external
and internal input from the team regarding technically related, business-related, and other
tasks. In no case would someone else (including management) make decisions overruling the
product owner on decisions regarding the product [5].

From the results of the analysis, we find that managerial and business-related functions,
individuals, or teams want to control the teams in an inappropriate way. This works against
the agile principle 11 for enforcing self-organizing teams or shows a lack of trust working
against principle 5. This is something that happens in other companies as well. Examples of
corporate functions that can contribute to this usually include concept development, soft-
ware architecture, quality assurance, and process management [5].

Other parties acting to solve or influence the team’s decisions regarding tasks and issues,
is not acceptable when using Scrum. Issues and tasks should be solved by the team itself.
If other parties want to contribute, they need to join, as regular members, the development
team[5]. If there are any doubts as to why this would be the case, or someone would like to not
abide by the rules “just this time” one should keep in mind that there is a di�erence between
what is good for one individual or team and what is good for overall corporate success. Scrum
works well when decisions are being made, on a well-coordinated and clear product vision,
by a product owner and not by someone that has a perspective from outside of the team.

The teams and the organization that is being studied are under much pressure in terms
of what needs to be done. What has come forth during the interviews is mistrust between
the development teams and other parties. Teams are not being trusted to do their job and
are therefore being top-steered.

The pressure will not move away, and it might be overwhelming for all parties and might
feel impossible to change. Even if it is not a possibility to change the pressure, it is not an
excuse to move away from the decided upon development strategies, we here refer to Scrum
and agile principles that are being broken. Moving away from these and cutting corners in
this area does not solve the problem, rather makes it worse as the benefits that an organization
wants in using Scrum and agile development will not appear.

When trust is lacking organizations try to build up control systems that are close to im-
penetrable [5]. This has been shown in this organization as well, for example in how decisions
are being made outside of the team. Even decisions regarding development and solutions
around it have on occasions been overruled by upper management in specific cases.

Trust is something that is a core requirement for the Scrum method to work and it goes

26

5.2 Collective and Double Ownership

both ways. Then decision-making authority can go to the appropriate level: the product
owner. To make this fair for all parties that have a stake in the development teams everything
should pass through the product owner. Management or business should not have direct
access to team members. Scrum demands that all requirements are submitted to the product
owner that is the only person to sequence and prioritize those requirements [5]. By following
this, a vicious cycle circumventing the process by communicating directly with developers
can be broken. If not, then the benefits of Scrum are lost. Therefore, enforcing trust between
all parties should be of the highest priority.

A possible way to improve in that matter is to move the responsibilities of the decision to
the product owner, along with solving the double ownership as this is a pre-requisite for it to
work e�ectively, see 5.3. Without single ownership, there would be more than one Product
Owner. Teams need to be given the trust to work agile and be protected from all parties
that might prevent them from doing so. If not, there might be a reason to consider other
strategies of development than Scrum and the agile approach. However, similar issues will
most likely still appear and the reason for using Scrum is that if properly implemented issues
become visible and consequentially approachable.

Summary
• Improving the implementation of Scrum is necessary for the indirect benefits of in-

creasing productivity. Therefore, management’s focus on encouraging self-organizing
teams is recommended to be focused on and continuously encouraged.

• Team members with clear responsibilities and the authority to introduce change in
the process can improve the self-organization of the team. To successfully implement
self-organizing teams mutual trust in the organization is essential.

• The product owner is always the decisionmaker on everything regarding the product:
technically or business-related and makes decisions based on information from team
management and stakeholders.

• All parties that are outside of the team, including stakeholders and management, are
recommended to not be allowed to influence or communicate ideas directly to the team
outside of proper channels. The product owner is the link that all requests should go
through. If one wishes to contribute one can join the teams as a regular member during
sprint events.

5.2 Collective and Double Ownership
In this section, we discuss root causes and possible design solutions to the area Double Own-
ership and the organizational solution setup from a collective ownership perspective. This
will contribute to answering the research questions. Each part of the subtitles in the analy-
sis section contains an analysis of root causes ending with a summary. Lastly, we reflect on
design solution.

27

5. Analysis and Design

5.2.1 Analysis
Collective Ownership
Collective ownership is having one team as an entity responsible for the code, allowing all
team members to change in the team’s code. Results from research have highlighted the ben-
efits of collective ownership [8]. Collective ownership is practiced properly within the teams
in the organization as all members take collective ownership with their respective ownership
responsibility, see 3.

However, we can conclude from the results of this study that the collective ownership
does not have boundaries as a team can own code in other teams’ domains as well as other
teams having code ownership in their domain, as seen in the organizational description in
Investigation Phase 1. This has a consequence of the setup and coordination between teams
in regard to that collaboration between teams simulates what is expected of individuals in a
team, as seen in Code Ownership Creating Issues (1, 2, 3, 5, 6).

In practice, there are clear boundaries of the solution’s development teams on paper.
However, we find that in practice the teams are operating as a larger entity. Essentially,
the borders of the teams are not fully set as the current setting requires much cross-team
collaboration. Therefore, the organization cannot control how “large” the teams are in day
to day work.

Team size is ideally 5-10 individuals according to most experts. Larger teams are consid-
ered ine�ective in delivering as well as unwieldy [1]. In the organization being studied the
size of most teams is closer to 10 or more. Therefore, in terms of size, it is already on the
upper scale.

Hence, a root cause for the teams being ine�cient, that stems from double ownership, is
either the misinterpretation of collective ownership or the size of the team. If the teams were
smaller or the teams were more isolated the issue would be less severe. About 20 percent of
developers’ productivity is lost for every additional project that is added [5]. Something that
a�ects the e�ectiveness of the teams when developers have responsibilities outside the team.

Summary
• Most team sizes are too large.

• Collective ownership is misunderstood and team structure does not have boundaries.
This can be seen as the catalysts, or root cause, that keep the teams from working in
isolation. About 20 percent of a developer’s productivity is lost for every additional
project they work on. Teams do not have collaborative boundaries that allow them to
work e�ciently and be adaptive. Unclear boundaries a�ect the "real" team size that
appears in practice.

• Double ownership is a catalyst that keeps teams from working without disturbances
from other teams.

Double Ownership
The advantages of having clear code ownership are in the establishment of a clear and single-
minded vision for the area under ownership [14]. In using double ownership, as described

28

5.2 Collective and Double Ownership

in the organizational description in Investigation phase 1, this will not be the case as will be
shown below. What will be shown is that it creates issues in collaboration, code development,
and incorrect ownership. Furthermore, there is a deviation from optimal pressure on teams,
team adaptiveness being reduced, increased work overhead for teams, and solution a�ected
regarding complexity and maintainability.

The design of a system (solution) may be defined as the intellectual activity that creates a
useful whole from its parts [3]. The teams that are working on the mono-repo are essentially
the parts that create the whole and the intellectual activity is the team’s development process,
collaboration, and communication.

The collaboration of the mono-repo being investigated has an organizational structure as
described in Investigation phase 1. The double ownership issues that are described in Code
Ownership Creating Issues (2, 3, 5, 6) is shown to a�ect both the collaboration between the
teams and in the organization as a whole as seen in Code Collaboration and Development
Teams (1, 3, 4, 5) and Development and Shortcuts (4, 5, 6). Furthermore, it in extension
a�ects the solution that is being developed as seen in Code Collaboration and Development
Teams (7). The ownership is split between domains and features. Domains contain features
that are owned by another team other than the one owning the domain.

Unclear boundaries on who has ownership will be reflected in the code design and collab-
oration around it. The organization chosen strategy to have the double ownership structure
is therefore far from optimal. It leads to the unintended consequence that is described in
Collective Ownership above. Furthermore, it leads to many issues that take much time from
all people involved in the development. Mention of this is found in Code Collaboration and
Development Teams (3).

The reason to have smaller sizes of teams is to have individuals or smaller groups working
in isolation as this is an advantage in terms of producing results e�ectively as it limits the
overhead work compared to organizing and collaboration in larger teams.

The right team do not always have correct ownership, see Code Ownership Creating Is-
sues (1). This stems from the fact that there is a high continuous demand for maintenance and
development. If something is considered prioritized along with many other issues and most
of these are within the same team domain, then it happened that another team is given the
task to develop. Then another team will own the feature in someone else’s domain. When-
ever a new task regarding that feature will come in then it would be redirected to the feature
owner, not the domain owner. From this, we consider the double ownership a root cause for
the situation as the coordination required has consequences for future collaboration in the
solution as seen above.

The consequences of this however are not limited to double ownership. The lack of team
boundaries mentioned in Collective ownership points towards an unstructured organization.
Moreover, as mentioned by [3] the solution and collaboration around it will reflect this. We
argue that the issues presented in the collaborative ownership are a symptom of a root cause
connected to how the organization is organized as a whole (This will be discussed more in
Collaboration between IT and Business). About 20 percent of a developer’s productivity is
lost for every additional project added[5].

The pressure is related to double ownership and the consequences relate to the team’s
ability to e�ectively maintain the solution in the long haul. [10] mentions an optimal point
where the amount of pressure on a development team is as e�ective as possible. The further
away from this point, the e�ort of development will growingly increase, and when the pres-

29

5. Analysis and Design

sure is enforced developers will eventually burn out and end up taking more time to finish
their work. Pressure in relation to this is viewed in Code Ownership Creating Issues (3).
The consequences of these are dire for the development and maintenance of the solution.
Therefore, too much external pressure on teams becomes a root cause for teams to be less
e�ective over time. Other issues related to pressure can be seen in Code Collaboration and
Development Teams (6, 7), Development and Shortcuts (2).

Structure wise there a large amount of overhead work that the teams are experiencing.
Some of these derive from the pressure described above. Even if there is a strive to uniform
the way teams are doing certain things and create a component for it many of the domains
have similar functionalities that are upheld and maintained separately. Some teams do their
own thing and sometimes do not follow technical standards, some of the teams have the
knowledge and others don’t.

Furthermore, on the topic of overhead work, many of the domain have similar functional-
ities that are upheld and maintained instead of improvements being made, here we find that
external pressure is a root cause for this as well as technical tasks are being down prioritized,
see Code Collaboration and Development Teams (11). Along with double ownership mak-
ing it di�cult to change it as described in Code Collaboration and Development Teams (3).
Therefore it is a problem that this team in Architecture and State of Codebase (2), and most
likely others, avoid dealing with team-crossing technical architecture issues due to complex-
ity. What we derive from this is signs of lack of adaptiveness as changes seem to be di�cult to
do. Examples of this we can find in Code Collaboration and Development Teams (14) where
it is found that the solution has a bad foundation for scaling. For more on adaptiveness, we
refer to Agility and Scrum.

Work overhead can furthermore be found in Development and Shortcuts (3, 4, 5, 6) re-
garding maintenance of development shortcuts, pull requests, and collaboration issues that
are a direct consequence of the double code ownership. Developments shortcuts cause main-
tenance to be more expensive and add complexity to the solution. Pull requests are taking
unnecessary time from development as teams do not have single ownership to code and need
to involve other teams in changes and a�ects adaptiveness. When changes are made multiple
parties need to be involved, agree, and approve. Collaboration wise this, then, creates the risk
of friction between teams, as seen in issues Code Collaboration and Development Teams (4,
5).

The success of software projects relies mostly on people. Having highly skilled people that
coordinate e�ectively is more important than tools and methods [1]. Therefore, the coordi-
nation issues created by the increasing work overhead regarding coordination are a�ecting
the resulted outcome heavily.

The double ownership strategy is a root cause for many of the issues found in this study
and covers multiple areas. Furthermore, the impact of this as mentioned above from these
issues is a�ecting the team’s ability to coordinate e�ectively as well as creating a need for
much overhead work from individuals, leading to organizational issues and a�ects the code
in terms of solution maintainability, complexity, and scalability. Thus, closely related the
adaptiveness and e�ectivity of the teams as the results today will a�ect the results being
done tomorrow.

30

5.2 Collective and Double Ownership

Summary
• Double ownership leads to an increase in overhead work for employees.

• Double ownership as well as incorrect team ownership a�ect the teams’ collaboration
and the maintainability of the solution.

• An unstructured organizational team structure with lacking boundaries is a root cause
for issues regarding adaptiveness and e�ectivity and is reflected in the solution (in
terms of scalability and complexity) and the collaboration between the teams.

• High complexity along with the double ownership that even could be triple or more
when refactoring in the solution leads to teams avoiding working on improving the
solution.

• Double ownership along with too much pressure on teams is a root cause for teams
increasing work overhead that a�ects the team’s e�ectiveness.

• As the solution has a bad foundation for scaling adding more teams to the solution will
further introduce more complexity and work overhead to the teams if the root causes
described above are present.

• E�ective coordination (and communication), one of the most important parts of a
software development project, is lacking and therefore a�ects the solution maintain-
ability, complexity, and scalability.

5.2.2 Solution Design
The team sizes are initially too large and the collaborations going on with other teams is
increasing the “e�cient” team size in practice. This a root cause that has been found to be
closely connected to the root cause of double ownership between teams. Improvements made
to these root causes would improve the e�ciency and the adaptivity of the organization as
having been mentioned in the results of the analysis.

From the organization perspective, it has been di�cult to enforce strategic decisions that
have been mentioned in other parts of this paper, see 5.4.1. In improving the implementation
of Scrum many of these issues that are mentioned in this study can be solved. To do this
there is a need for team structure and size to move towards what is recommended in Agility
and Scrum. For this to be possible the culture around communication and structure needs
to change along with the Ownership of the teams clarified.

A challenge for the company is transforming and removing the double ownership is the
complexity of the solution where we from the interviews draw the conclusion that the cohe-
sion could be higher, and the coupling could be lower. The feature and domain ownership
needs to be split and changed in the code itself, and the encouragement of cleaning up the
solution is recommended to be prioritized.

Below we present modularization as a possible solution to change the current structure to
one that will allow changes to be made without jeopardizing future maintenance and changes.
Furthermore, we discuss the challenges of development in an environment heavily a�ected
by traditional waterfall structures and how this was dealt with in another company operating
in a similar context as the organization in this study.

31

5. Analysis and Design

Modularization can be used to improve flexibility and comprehensibility of a solution
and at the same time improve the e�ectiveness of development. This is however much de-
pendent on the conditions that modularization is performed, aka the criteria. Furthermore,
it is depending on how the modules transfer control between each other on how negatively
a�ected a solution is if the criteria are not fitting for the solution [11].

We have from interviews found that the requirements in the code domains are constantly
changing and that the solution has many domains and features that create a complex and
intertwined system. [11] proposes that the initiation point in structuring modules begins
with finding where the di�cult design decisions are as well as where the design decision is
likely to change. The modules should be designed to hide this complexity from other modules.

To create an e�cient implementation, one should allow features and subroutines to be
assembled code from di�erent modules, rather than thinking that a module is one or more
subroutines. In the solution kernel there has been an e�ort of creating a module that can be
used by multiple domains, although the criteria for the creation is unknown, we find that
there has been a strive to modalize certain functionality. The first step to be done is to give
the teams the time to implement it.

Furthermore, we find that the changes to the requirements resulting in new features and
existing ones that are being changed should be modularized in accordance with the criteria
around changing designs.

In [4] we find a study about an organization operating in a similar external environment
to the traditional waterfall approach model. The teams are geographically distributed as is
similar to the current organization where developers and teams are in di�erent countries and
most development is done online due to the ongoing covid pandemic.

[4] takes a stance where one of the issues is related to flooding of change requests to the
teams due to weak project management or shared responsibility between 2 project managers.
The projects in [4] are trying to keep up with documentation causing work e�ciency to
go down and experiencing di�culty keeping documentation up to date. Furthermore, there
were issues in lack of or constantly changing requirements, described as a barrier in capturing
business requirements easily and e�ectively.

In one of the projects lack of management maturity and understanding of agile practices
a�ect the development life cycle where immature decisions caused rework and overtime from
the whole team leading to defects impacting software quality [4]. In the ability to success-
fully do the retrospective exercises the teams found ways to improve current processes. This
making it possible to improve the team maturity and implementation of agile principles and
Scrum practices [4].

We find that many of the issues found in [4] are similar to issues found in this study
on collaboration, lack of requirements documentation, and management (or business) not
adapted to the use of agile practices. Thus, a�ecting the development e�ciency.

The organization must be more aware of the reasons for adopting agile principles. The
teams need support, from management and surrounding organization, to self-organize. In the
ability to successfully do the retrospective exercises, the teams could improve and streamline
their working process. We find that proper retrospectives are an important prerequisite for
the teams to be able to improve their way of working. Therefore, measures should be taken
to make sure that retrospectives are performed and facilitated in accordance with the Scrum
method.

The teams, when given clear ownership over domains and modules, then have the pos-

32

5.3 Collaboration Between IT and Business

sibility of improving their agile practices using the retrospectives. Once these are found the
teams additionally need to have the tools to be able to implement these changes into their
own work processes, as they can be if the Scrum method and agile principles are adopted and
structurally followed by both management and the teams being encouraged to self-organize.

Summary
• We recommend the use of modularization with proper criteria to hide complexity.

Furthermore, identify and deal with often changing code and changing requirements.
This will require much e�ort looking into the code but would be an improvement for
the development e�ciency long-term.

• Encourage teams to deal with technical issues before issues that are di�cult to identify
appear. Thus enforcing a mindset of working in a preventative manner, focusing on
the essential underlying challenges rather than the visible issues.

• Retrospectives are key to the implementation and improvement of Scrum processes
and self-organization, supported by management, allows teams to implement changes
and becoming more adaptable.

5.3 Collaboration Between IT and Business
In this chapter, we will analyze and discuss design solutions related to issues in collaboration
between IT and business. This will contribute to answering the research questions. The
structure contains an analysis of root causes ending with a summary followed by a solution
design that relates to the area and follows up on earlier solutions in this chapter.

5.3.1 Analysis
That there exist collaboration issues between business and IT has come up in most interviews
from the investigation phase. The issue is viewed di�erently depending on the perspective of
the employee. What most of them agree upon is that some things need to improve. What we
have found is that there seem to be complex issues that have much to do with communication
and background experience between teams or employees from both IT and Businesses. These
issues are allowed because of the organizational structure set in place that is both strictly
hierarchical as well as unclear on responsibilities and therefore fluent. Many issues are being
fixed on an ad hoc-basis where priority is unclear.

Conway already in 1968 in [3] stated and showed how a solution is heavily dependent on
the organization and its structures, processes, etc. If a solution is then to be dependent on
best practices within software development, the structure around and within the creation
must be tailored to it.

What has been shown during many of the interviews is that this is far from the reality of
the 7 teams that are working and collaborating on one single product. This happens even as
the organization has an agile development strategy in the form of Scrum. In many cases, the
managerial and organizational structure is ad hoc based and evolves around the stakeholders
and business side first-hand.

33

5. Analysis and Design

Soft factors highly a�ect the performance of development teams [12]. As the organization
evolves around the business and the stakeholders these have been given much power micro-
managing teams using the managerial hierarchies that exist in the organization. When the
business side is not happy with a decision made on the IT side, the conflict is escalated up
the ladder of management.

Moreover, the fate of the product in terms of the prioritization of technical and other
tasks lies outside of the IT domains control, leading to increasing technical depth as well
as no room and time to improve existing processes so that teams can work more e�ective
long term, instead, they are on a road where tasks will take longer and longer to perform
[6]. This is a consequence of the issues that are mentioned in IP2: Collaboration with IT and
business, Code Collaboration and Development Teams (9), and Development Shortcuts. This
undermines the organization’s strategic decision of using the Scrum method in developing
software. We refer to Agile and Scrum for more on how this a�ects the organization and the
product it develops.

In the organization, there is a department objective to have IT and business work closely
together and part of that is to incorporate having both business and IT employees within the
same team. From the interviews, there has been some di�erentiation in the answers from
business leads and leads on the IT side. When the team structure was implemented there
initially where some friction and e�ort have been made to bring people together and see
each other’s point of view. This was done through communication and informal education.

There is a clear di�erence traditionally between both sides and how they operate. In
many ways, the issue is considered to have been overcome using communication, and what
there now is in place is a larger understanding between them. A stream lead has mentioned,
“I can regarding a feature ask both IT- and business-people and get almost the same answer”.
However, similar conflicts still appear when people come in, either from the IT or the busi-
ness side, who are not used to working this way.

We find here that the issue will continue to be a problem as employment rotation is
inevitable. The same issues will continue to take more and more time from all people involved
as the symptoms are being treated, rather than the root causes. The goal of having IT and
business in close collaboration is noble, this is handled by the Scrum method in terms of
Business Analysts and product owners in the team. Why is there a need for the whole team
to be in contact with the business side in other circumstances than specific follow up on tasks
where the business knowledge is not in the team already?

One thing to notice is that the prioritization is being made not only on a business level
but also on a technical level and we find that the communication of the importance of tech-
nical issues is failing. This relating to who is doing what and the hierarchy structure. The
organization structure leaves open for decisions being made by employees that are not in the
scope of the knowledge needed for those decisions, while the people with the knowledge to
do so doesn’t have jurisdiction to overrule or not even given the chance to raise their concern
on a decision before it is solidified. The consequences of this can be seen in all areas of this
chapter as we find that the pressure, that is allowed to be created as a result of IT not being
able to “push back”, a�ects the solution to its core in terms of development, processes, quality
and the team’s e�ectiveness.

Something that has come up in the interviews is that demands are being pushed from
business and that IT lacks push back on the technical side. This is considered to be a reason for
the undermining of the solution being technically developed in a sustainable matter following

34

5.3 Collaboration Between IT and Business

technical standards and practices. The pushback seems to be expected so that decisions can
be made with both IT and Business needs in mind.

A conclusion that has been drawn by people in the organization is that the empowerment
of people is low, especially on the IT side, and that the structures of the organization and how
the solution is developed in terms of prioritization is not supporting the IT side as they do
not have a channel to provide this information to stream lead.

The stream leads are the main decision maker for the full product and mostly communi-
cate with the product owner. It is a problem that the IT side does not have a channel directly
to this decision-maker with the power to make decisions spanning the entire solution. Tech
leads can of course within the team, work with the product owner on these matters, but if
the product owner is not empowered to decide on this then it falls on the stream lead on the
business side. Product owners that have taken part in the interviews have mentioned that it
is di�cult to fully motivate the value of technical tasks. This suggests being a root cause for
the view that IT is not pushing back enough. The organization and how it is structured does
not allow IT to do it.

We have found that important decisions can be made without the teams that have own-
ership over the solution. As have been pointed out in Agility and Scrum all communication
should go through the Product owner, otherwise, it a�ects the teams in terms of e�ectiveness
and the benefits of using Scrum. In this, we find that the structure of the organization and
the working culture seem to be out of control as any kind of informal communication with
the team is accepted and might even be encouraged.

Teams should not need to push back on the IT side as the Scrum method is used and all
decisions then are to be made in the team by the product owner that has both the techni-
cal, business and other stakeholder knowledge from entities outside of the team. The root
cause then seems to be that the Scrum method is not implemented properly in that teams
are not self-organized and too dependent on others along with the product owner lacking
empowerment on decisions.

Not only the product owners su�er from this. We have further found from the many
procedures and issues discussed that certain responsibilities seem to be falling between chairs
of di�erent people, one root cause being the management structures and roles that are not
tailored after the product development needs.

What we find in terms of structure and how decisions are being made is a way of working
that is unique for the organization and is not based on the methods (Scrum and agile) that it
markets itself to be using. The deviation from strategic decisions is a root cause for the con-
flicts that appear. This might briefly be beneficial for the business side in that they get more
functionalities done faster in the short-term however is devastating in terms of maintenance
and the future delivery of the development teams.

The consequence of the issues found is that the organization does not prioritize technical
excellence or quality. High-quality delivery is a requisite for long-term productivity [12],
and therefore the organization’s e�ciency will continue to decline. The consequences of not
acting and allowing issues like these to be unsolved, the problems slowly creep in more and
more, a�ecting the development and the organization. This will continue until a decision is
taken and then much e�ort will have to be spent in aligning a larger department, compared
to if the decision had been taken from the start. Just the same as with most other technical
reasons and decisions to develop IT solutions a certain way. The later an issue or a problem
is corrected the more money has to be spent to correct it [6].

35

5. Analysis and Design

We can further relate this to issues in Development Shortcuts when development short-
cuts are implemented commonly over the entire technical solution. A root cause for this
would further then appear to be the lack of action in aligning the department in the strate-
gic decision of using Scrum. This can however in part also be explained by the rapid growth
of the department.

However, if Scrum was properly implemented then this would not be a problem as the
teams would be responsible for their own work. Inappropriate organizational structures
might still exist, and practices would be happening on a less complex scale, be more visi-
ble and easier to fix, as this is the reason for using Scrum [5]. Self-organizing teams that have
clear responsibilities (that they do not share with others) are not as a�ected by organiza-
tional structures as much and this would be less of a problem. In that case, we come into
the possibility of the root cause being that the teams do not have clear ownership and not
being self-organized, something that would allow the teams the freedom to fully take their
own decisions. This leading to minimal need for overseeing the practical parts of the team
with less imposed decisions from the top.

Summary
• The managerial and organizational structure is ad hoc based, and decisions revolve

around the stakeholders and business side first-hand with less consideration of tech-
nical tasks.

• The organization’s strategic use of Scrum is undermined by the organizational struc-
ture and how decisions are made.

• Conflicts that come from the di�erentiation between IT and business will continue to
diverge, even if e�orts are done to bring them together, due to employee rotation.

• The organization structure leaves open for decisions being made by employees that are
not in the scope of the knowledge needed for those decisions. And the people with the
knowledge can be overruled or even unknowing of the decision being made.

• IT does not have the means to push back the way that the business side does. IT does
not have a communication channel to decision-makers in practice.

• As Scrum is used IT should not need to push back higher up in the managerial structure
as teams by default should be self-organized and any team product decision is done by
the team product owner. The main root cause then is that Scrum is not implemented
properly.

• The deviation from strategic decisions is a root cause for conflicts that appears be-
tween IT and Business. This might briefly be beneficial for the business side in that
they get more functionalities done faster short-term however is devastating in terms
of maintenance of the product and the future e�ciency of the development teams.

• Many other issues appear as well as a consequence for the lack of alignment on how
Scrum should be implemented. Organizational structure issues a�ect the organization
more as a consequence of Scrum not being implemented properly. This ties well into

36

5.3 Collaboration Between IT and Business

double ownership being a root cause as well as clear ownership work well with product
and code ownership and would make top steering of the teams superfluous.

5.3.2 Solution Design
An organization designing a solution will produce designs that are copies of the communica-
tion structures of the organization itself [3]. How the organization organizes itself and how
the communication structures look like is therefore essential in term of how the solution turn
out. This structure is a root cause for issues in terms of both the solution itself and friction
between teams.

From the analysis, we have found that one main root cause, for many of the structural
issues that lead to conflicts, is the faulty implementation of Scrum that ties in with unclear
ownership. Solution design is discussed in Agility and Scrum as well as Collective and Double
Ownership on this topic. For the focus of this design part, we look into what can be done to
increase trust in the area. This is beneficial for the organization as a whole and as mentioned
in Agility and Trust necessary to be able to improve the implementation of Scrum.

For di�erent reasons, it happens that people work against each other, no matter if it is
conscious or not [5]. People have a di�erent point of view on how things are to be done.
This can be seen in the conflicts between IT and Business as well. Furthermore, there are
signs of a lack of trust between IT and other parts of the organization like the business and
other stakeholders enforcing control systems and top steering that works against the Scrum
method.

From situations that have been expressed from multiple interviewees with di�erent per-
spectives, both management on IT as well as business, shows the empowerment of the indi-
viduals within the teams and their close management to not be empowered enough to make
important decisions to the development.

Occasionally it happens that situations, where there is disagreement on something, get
escalated to management not only one step up in the hierarchy but more. In the end, the
decision might be done by someone who does not have a detailed overview and this person
does most likely not have the time to get that detailed understanding for a technical solu-
tion or the decision a�ecting it. Here we refer to the decisions that must be done but for
some reason are not done by the appropriate management level. Reasons for this are as men-
tioned before that the imperfect implementation of Scrum and the double ownership leads
to multiple decision-makers both on the IT and the business side.

Teams communicate with their stakeholders regarding what is and what they might need.
From a few of the interviewees, there has been discussed that stakeholders when they perceive
they do not get the answer they would like, sometimes escalate issues to their managers. Then
the managers on the business take it up with the managers on the IT side. Then the managers
are dealing with an issue that has already been dealt with, where the detailed knowledge is,
and then unnecessarily need to be dealt with again.

No matter the outcome, of the situation above, the company will lose time and e�ort
from the employees. There is most likely a reason that the request was rejected the first time,
the request either did not present the business need correctly or it is not a priority compared
to other tasks. What happens here is that stakeholders on the business side can raise the
issue again and force a solution from upper management. If the product owner already has
weighted the business value compared with other tasks then that should be final, as it is in

37

5. Analysis and Design

the product owner’s job description to prioritize.
Trust is a foundation that an organization needs in order to implement Scrum properly.

One way to enforce trust is to put e�ort into a common vision that everyone can fall behind.
If the vision can be trusted so will then the people and the teams who embody it[5]. Product
owners should be trusted to do what is best for their product using both external input from
business or other stakeholders and internal input from the team.

In general, an IT team should not need to defend itself in the manner we have observed
happening. Business needs to trust IT to do what they are there for. Business value is de-
pendent on the product working well and being adaptable in the future for further changes.
How things are done is just as important as why. Therefore, there is business value in having
a healthy IT solution and trust within the organization for others to do their part. The longer
time goes before something like this is handled, the worse it will get, as distrust feeds more
distrust and becomes part of the culture.

Not addressing the influence the business currently has in IT development decisions will
highly a�ect the future of the organization. Misconduct in the teams will be a consequence.
For examples, of how external influence a�ects the teams see Code Collaboration and De-
velopment Teams (1, 6, 7, 9, 11) and Development Shortcuts (2, 4). This also applies to the
misunderstanding of the purpose of a wave plane.

To overcome distrust is a di�cult task. A common thing that is mentioned in compa-
nies when there is mistrust is that employees need to be empowered. The empowerment of
employees has been a topic of discussion with many of the interviewees. Empowerment is
something commonly mentioned in other companies when the issue is distrust[5]. To only
empower people in the organization is however not enough as the attitude is on a higher scale
than the team level. One part is to improve the skill of the development teams’ employees
to make sure that they have what is necessary to develop the product in the strategic manner
that is decided upon, allowing the business side to trust IT to be skilled in developing the
product using Scrum. It can involve Scrum education both on a technical level as well as
seminars to change people’s attitudes. To be on the safe side one can train all employees in
the core topics. A cost-benefit analysis is helpful to find out what the training should contain
[5].

Among the IT teams, we find that especially retrospectives can improve as these generally
do not follow the Scrum guidelines causing the process improvement to be neglected. The
organization is recommended to expect an understanding of the common vision from the
business side, and if members from the business are to be closely connected to IT it should
be expected that they do not concern themselves with influencing what the team does or how
they work. If this is found to still be the case then training is one possible way to deal with
it.

Rather than focusing on general Scrum training for business employees one should focus
on why it is used and how it should work from the business perspective: how business is
expected to act in order to be compliant with the Scrum method that the product and col-
laboration depend upon. This way IT can trust the business side to be clear and know how
to communicate what they need.

Another way to improve the attitude is open communication and convincing people of
what is important for the area and not only from their perspective. In having a clear product
vision and trust among the people in the area the established processes, models, systems, and
practices that are normalized but contradict the product vision can then one by one be solved

38

5.3 Collaboration Between IT and Business

and changed [5].

Summary
• Decisions made on the team-level should be respected and management should not al-

low requests being pushed up the management hierarchy. The product owner is trusted
to have weighted the business value against other requests or tasks.

• Trust is a needed foundation for Scrum and should be a high priority. Overcoming
distrust solutions include improving the skill of the employees, Scrum education, and
seminars to improve attitude within the area. Cost-benefit analysis can be used to find
out what to include in educational e�orts.

• Within the development teams, retrospectives should be the focus of education as it
is the process for how the teams improve their way of working, thus improving all
development processes. The business side can focus on the common vision and educa-
tion regarding why Scrum is used and how business can act to be in compliance with
the Scrum method that the collaboration and specifically the solution that provides
business value long-term depends on.

• To change the attitudes from mistrust to trust the recommendation is to communicate
openly and convince people of the goals and common vision. Furthermore, enforce
structures that do not encourage individual performances over the success of the area.

39

5. Analysis and Design

40

Chapter 6

Discussion and Related Work

In this chapter, we aim to describe the significance of our findings, how these stand in terms
of validity, the application, and other results in the research field. Furthermore, in interpret-
ing the processes and results along with exploring future work the study behind this paper is
reflected upon. This will bring understanding and an overview of the study as a whole and
how it presents itself in this field. The general and specific application of this study is dis-
cussed along with validity. Furthermore, processes and results are reflected upon along with
related and future work.

6.1 Application and Validity
What has been included in the data collection are issues and problems in the area of the orga-
nization being studied. The spread of the interviewees covers the entire area, where all teams
are represented at least once. Furthermore, employee roles of all kinds are interviewed, both
management, team members, and support teams. The roles that were not interviewed in-
clude Scrum masters and Business Analysts. Interviewing these might have brought a deeper
understanding to some of the issues but as product owners, tech leads, and agile coach are in
close collaboration with these much of the information from many of the interviews broadly
covers issues experienced by these roles as well. Therefore, the intended area has been covered
as all the teams along with representatives for collaborators have been interviewed.

The content in the interviews concerns possible issues around e�ectivity and adaptivity.
Most of the issues found focus on relation to e�ectivity and includes many areas that are
a�ecting this. Most of the issues and statements mentioned in the interviews have been
followed up and expanded with comments from other roles and teams to increase accuracy,
dept, and possible variations in answers. These results, organization description and issue list
in chapter 3 and 4, have been written and then validated by employees from the organization.

Rescoping performed before analysis limits the scope to the areas Agility and Scrum, Col-
lective and Double Ownership, Collaboration between IT and Business. Root cause analysis

41

6. Discussion and Related Work

is focusing on these three areas. From the root causes found the focus of the design sugges-
tions essentially relates to agile implementation and clear code ownership and how they can
be applied from this organization’s prerequisites specifically. Analysis and design results are
in a resonate form where the root causes of issues from the investigative phase are discussed
and analyzed along with possible design solutions. Validity lies in the data collection along
with the validity of the sources used to compare with the organization, specifically [5], around
implementation and the use of Scrum.

The application of the result is connected to the organizational settings and the culture
that exists in the organization. There might be applications that are similar in companies that
similarly are not satisfactory implementing Scrum or a company using multiple incompatible
code ownership strategies, which might lead to some of the communicational and collabora-
tion issues found in this study. These are explained in detail in chapter 4 and by comparing
with the organizational description in chapter 3 the application in another context can be
determined.

The identification of similar issues that are related to the same root causes as the ones
found in chapter 6 allows the application of possible solutions as well, although it is much
tailored to the organization in question in this study. With that said, by understanding the
organizational setting and why the issues are appearing one can determine the possible ap-
plication of this study in another context. The issues related to the main root cause of Scrum
being imperfectly implemented can be seen in other studies and especially is common when
Scrum is being implemented in an organization heavily a�ected by traditional waterfall-
structures.

6.2 Process Reflection
In the preparation of the study, the initiation problem of teams becoming less e�ective and
less adaptive led us to research questions RQ1 and RQ2, see 1. The first research question
being answered in Investigation phase 1 and 2 eventually leads us to an organizational de-
scription and 60 issues group into 9 areas. There are too many to research in the given scope
and therefore a rescope is performed at the beginning of the analysis and design phase. After
the rescope four areas are chosen and later become three due to the aim of focusing more and
going deeper in analysis and design to achieve more depth.

The investigation phase result was reached through data extraction from interviews and
talks with employees. The interview guide used to prepare and perform interviews were
initially very close to the actual interview questions asked during the interviews. For every
iteration, the more detailed the follow-up questions around the questions became due to our
growing understanding and knowledge of both the organizations and the issues that are being
found.

Many interviewees received questions that follow-up on what other people have said, ei-
ther they then confirmed with the same thing or gave a new point of view on the matter
improving the context of the problem. To be able to cover the whole collaboration of the so-
lution as much as possible it was from start focus on the importance of issues and workings of
the organization being discussed with many kinds of people in di�erent roles. Therefore, the
initial nine formal interviews are covering di�erent management and di�erent roles within
the teams and also aiming for a spread of representatives over the seven teams and the two

42

6.3 Result Reflection

streams that they belong to.
Some of the topics brought up in the interviews were still not fully confirmed by multiple

people and whenever it was found that an issue is related to a certain team or role follow-up
talks were performed. Then specific questions were asked around these and then the focus was
not on following the interview guide. In the end, 15 people contributed to the data presented
as the 60 issues and the organizational description. All teams have had a representation of
some form along with management outside of the teams and representatives for architecture
support and infrastructure chapter that collaborate closely with the teams.

This way of aligning how the organization is represented has been necessary to receive a
good overview. On the other hand, the amount of work it contributes to in retrospect makes
it a little too ambitious for the scope of a bachelor’s degree thesis. The more data that comes
out of the investigation the more work goes into data extraction and combining the data
from di�erent interviews. Furthermore, extra time was needed for RQ2 to be answered, this
motivating rescoping several times both at the beginning of the analysis phase and before the
design parts of the di�erent areas.

In retrospect the research questions could have been more focused, however as the scope
would have been smaller less varied results would have been found, perhaps less valuable for
the organization as many of the issues found are over-arching the entire solution collabora-
tion. The positive part of performing it this way has been that the spread of data broadly
covers the entire area (solution).

Another possibility would have been to limit the research questions to a team or a stream.
This would most likely not have led to overarching collaboration and product-spanning struc-
tural issues. This as the data would depend on the specific part of the solution collaboration
the investigation would have been limited to. As is now the results of the study can inspire
possible solutions and further work on analysis and improvements on the solution collabo-
ration as an entity rather than a specific team or stream.

6.3 Result Reflection
The results of the study and answer to RQ1 and RQ2 is essentially the issue list that is under-
standable through the organizational description and the analysis of some of the root causes
of these issues along with solution suggestion to handle the root causes to solve issues found
in the list.

From the preparation for the interview and from what I learned from my mentor at
the company there were some expectations on certain issues. Even as the questions initially
were very open and broad, we find that many of the interviewees brought up some of these
issues and also added more details. Furthermore, I found that interviews sometimes gave
me completely di�erent answers taking me in entirely new directions. This is most likely
as a consequence that the broad spectrum of both di�erent teams, roles, and management
includes people with very di�erent ways of perceiving the issues. We were initially expecting
more issues in the development practices as originally, the understanding was that that the
development was becoming more ine�cient.

Something that early on was a surprise is how well many parts of the development in
terms of detailed technical practices that are done by the team. Many of the engineers and
programmer finds that the technical part of the development is working very well. It is

43

6. Discussion and Related Work

not until collaboration between teams must be done or other external things like pressure
from business, overhead communicational work, waiting to be allowed to do testing on the
shared test servers and another bottleneck is the approval process to release into production
that can take months. Therefore, after a few interviews, it became clear most of the issues
came from communication, collaboration, and the organizational structure around the teams.
This a�ecting how development is done in practice. This is a good thing as by enforcing the
solutions presented in this study a large part of the issues that the area has will most likely
be dealt with.

In the general sense, we find by looking at the analysis and design that can be perceived
as the main root causes are the imperfect implementation of Scrum along with the code
ownership not being clear. The two main root causes connect to other root causes leading
to issues that have been found in investigation phase 1. These a�ect many parts of the or-
ganization, for example in communication, collaboration and code development processed:
a�ecting e�ciency, adaptivity, and the relationship between development teams as well as
between Business and IT.

In focusing solutions on the main root causes there is the possibility of dealing with many
of the issues that exist in the area. In working with three analysis and design parts everything
is intertwined and essentially leads back to the main root causes. This was not expected
initially as the e�ort was to analyze and design solutions separately in the three areas. Instead,
the areas can be read in parallel and they contribute to each other in that the analysis and
design of one area contribute to the next due to the intertwinement of issues and that the
root causes found eventually lead to the main two: imperfect Scrum implementation and the
unclear ownership found in all of the three areas eventually is a�ected by the other as the
combination of issues e�ect on the area.

As rescoping was performed the designs in the three areas are much dependent on each
other as they are combining a solution that deals with the two main root causes. In the design
part in Agility Scrum mistrust is a recurring theme that leads to many agile principles being
broken and a�ects the Scrum implementation within the teams. Therefore, the design in
Collaboration Between IT and Business focuses on handling this by suggesting possible ways
to enforce trust in the area in both directions.

This study focuses much on the development e�ciency and therefore what is not working
for the development will eventually a�ect the business side and the organization in terms of
what is produced and expensive it will be to maintain. As is a common theme in development
is that whenever development maintenance becomes too di�cult the management chooses
to redo the solution from scratch will cost the organization to spend even more money [3].

The underlying hope of this study is to clarify the issues that are leading the project in
this direction of becoming more and more complex, expensive, and di�cult to develop. In
understanding the issue from a development perspective, it can be dealt with. Traditional
companies that move into IT are many times strangers to how the way development should
work, how fragile the development becomes as soon as the traditional ways of working start
controlling the development.

Developing using Scrum, or other development strategies is a long-term commitment
that requires continuity, discipline, and in the case of a Scrum constant improvement mindset
in the retrospectives to receive the benefits from the strategy. Done right the company can
create a better solution, work environment, and improve the collaboration that benefits the
area, teams, and the company as an entity.

44

6.4 Related Work

6.4 Related Work
In setting the context of this study in relation to the field and related works two papers
have been chosen to be presented and reviewed. These two papers are specifically chosen
as the research generally relates to the content of this report and the organization that the
results relate to. The first paper by Masood et al (2020) is describing the variations in Scrum
implementation and when they are acceptable or not. Chosen as the classifications of issues
are related to and possibly applicable to issues found in this report. The second paper by
Conboy and Carroll (2019) has a focus on challenges and how to address these in large scale
agile framework transformations. Chosen for the implications of an agile-framework change.
We have in this report found the current implementation faulty and a framework change is
being prepared within the organization. Both paper reviews include a summary of the paper,
an evaluation, and the relation they have to this study.

6.4.1 Paper Review 1
Summary
The research problem the paper [9] explores is the lack of clarification on variations in Scrum
implementations both by the book and in practice. The di�erences in how Scrum is to be im-
plemented “by the book” and how it is implemented in practice is something that is recorded
in research, in other words, variations.

However, these findings are in the context of aligning research and not usually the focus
itself. The contribution to the field includes investigating what the variations look like, when
they occur and how they vary from the expected use of Scrum. Five teams in di�erent ar-
eas and their Scrum practices are observed and 45 semi-structured interviews are performed
with members of these. From the variations found from the investigation compared to the
expected implementation of Scrum “by the book”, the study presents classifications to deter-
mine variation type. This to find out whether a variation is motivated by context or misuse of
Scrum, for example, if certain variations stem from a clear misunderstanding of the method.

Variations to be accepted are the ones explicitly described in the Scrum book for reference
and necessary deviations that come from the book being vague or ambiguous. Another varia-
tion that should be considered accepted is contextual that allows temporary contradiction to
the Scrum method. Whenever there are clear deviations, in the form of frequent or ongoing
variation these are to be considered an excuse for poor implementation and not acceptable.
These are labeled as abuse or misuse depending on whether the deviation is intended or not.

Evaluation
The di�erences in how Scrum is to be implemented “by the book” and how it is implemented
in practice is something that is recorded in research, in other words, variations. The paper
investigates a relevant area. The result with the classification of variations deepens the un-
derstanding of types of variations. It appears throughout the paper as these classifications
could also be used in practice however are explicitly stated in the conclusions to only be used
to understand them. This is surprising as the authors’ aim is to lay the foundation for future

45

6. Discussion and Related Work

work and the classifications are specific and approachable. If the classifications are not to be
used, then this is misleading for the reader.

As the focus in the article is on roles, specific Scrum practices, and reasons for why they
are working a certain way it is surprising that some Scrum variations, for example, retrospec-
tive are considered out of scope. This as retrospectives are essential for the transparency and
possible improvement on processes and essential to the areas of variations investigated in the
organizations themselves. Moreover, the teams that were investigated did not have significate
variations in retrospectives, quality assurance, and design and implementation. This makes
the study of these teams homogenous. The study data would have benefited from a broader
and more diverse representation. This might be an explanation for the authors’ reluctance
on committing to the classification’s broad use in practice.

Relation to this study
The paper is reflecting on a classification that potentially could be used to motivate some of
the variations from the standard way of using Scrum that has been found in this study. How
[9] investigate the teams in question is semi-structured. It is a similar approach that has been
used in this study with the di�erence being the smaller scope and observation on teams in
their everyday work environment.

The classifications can help in determining whether issues in the implementation of
Scrum should be accepted or not as future work from this study. The classification of roles
in the Scrum team is applicable in our study on issues related to responsibilities on roles and
issues that come from these, for example, product owner responsibilities split between Prod-
uct Owner and Stream Lead. We then find that as they have not been temporary, they fall
into the clear deviation classification, should not be accepted and instead dealt with.

Reported reasons from the interviews and observations in the papers furthermore con-
firm that many deviations that appear are a result of habits from traditional ways of work-
ing as well as perceived e�ciency. In relation to our study, we have similarly found that
when Scrum is not working that traditional process lies behind and works against the Scrum
method. Furthermore, when issues are moving up the management ladder there might be
perceived that e�ciency in certain areas is improving as specific things are escalated. How-
ever, this is not the case for the area as the Scrum method is undermined and other (more?)
important tasks will be done later.

Furthermore, the results of the paper contain variations around the breaking down of
user stories, work-assignment, back-log refinement, and prioritization. This aligns with some
of the issues and discussions with interviewees in this study. It would be beneficial for the
teams to look more into an e�ort of streamlining and improving the teams’ internal Scrum
processes. These very much depend on the individual teams and therefore have been touched
upon in the interviews but not investigated further in this study, rather left for future work.

6.4.2 Paper Review 2
Summary
The problem the paper [2] addresses the empirical evidence the how the adoption of a large-
scale agile framework is used along with the e�ectiveness and the challenges of its implemen-

46

6.4 Related Work

tations. The paper introduces nine challenges and recommendations to handle these when
implementing large-scale agile frameworks.

The research includes 15 years of observing 13 organizations going through all parts of
adopting agile frameworks, some more successful than others. The results of the paper are
based on long-term observations, interviews and internal data, documentation, and tools.
The nine challenges identified and recommendations to reflect and handle these are encour-
aged to specifically be used by organizations considering implementing or are in the process
of implementing a new framework. The application of the recommendation is encouraged
to be used in a context that combines di�erent employee and stakeholder groups.

In applying the result, the reflection can expose challenges however, the complete removal
of some of them might be di�cult. A limitation of the recommendations is that not all might
be applicable for every individual case, so an evaluation of what applies to the organization
side is needed.

Evaluation
The paper is addressing an important part of the research area. This when empirical evi-
dence on challenges of the implementation of large-scale frameworks is much scarcer than
more general investigations and detailed inquiries into specific problems. The authors use
well-known companies in di�erent industries for data extraction over a 15 year period that
provides a significant contribution to the empirical study.

The methods for how the results are provided are generally explained and therefore dif-
ficult to evaluate specifically however generally seem to provide a good base for the intended
use. Claims made by the paper is clearly stated and exemplified, results are presented through
context and citations from interviews. The paper is (appreciatively) very short, and concise.
Personally, we would have liked to see a more detailed method description along with more
details in how the companies using this paper should rank and exclude challenges.

Relation to this study
While this study focuses on issues, root causes, and solutions the paper focuses on challenges
around the transformation into a large-scale agile framework. This is very much applicable
to the organization in question that shortly is going through a reform into a large-scale agile
framework. The new framework is adapted from one of the frameworks of this study.

This paper investigates companies in a similar context. Specifically, regarding the frame-
work (that is being adapted) used in a heavily regulated context. It is a mention of this
framework being di�cult to merge with traditional organizational structures, where the de-
velopment perhaps is not as adaptive as in more generic IT companies. Results in the paper
are also relevant for example on how progress is measured, the di�culty of maintaining devel-
oper autonomy as well as the di�culty of seamlessly blend software development processes
with customer (business) processes. In relation, we can compare this with what has been
shown in this study.

When the development in relation to the traditional process has created many issues that
are undermining strategies and the work being done on the code base a�ecting both commu-
nication and collaboration. Therefore, many of the issues that are found in the organization
today will most likely not be dealt with as a result of the framework change unless an e�ort

47

6. Discussion and Related Work

is made to deal with these challenges mentioned in the related work along with solutions
for dealing with the two main root causes that are presented in this study. Furthermore,
The paper can be used to evaluate the challenges the framework change will impose on the
organization.

6.5 Future Work
The area is currently going through a reorganization that will take place after the turn of
the years. In the process, certain roles are being empowered, for example, the product owner.
This is one of the issues that move the teams away from the implementation of self-organized
teams in the old structure. Some of the issues might be solved by the restructuring of the area.
This reorganizational process would benefit from being closely observed to make sure that
the Scrum implementation is further being enforced in the process.

The reorganization is also in some way addressing the double ownership as new teams are
being formed and some things will change. This however is at this point not resolved. How
this will turn out will very much a�ect the development as it connected to the team structure
and therefore Scrum as well. There is a risk here that the new ownerships are di�cult to
establish as part of the issue still will be that features are spanning several domains no matter
how the ownership is arranged. These features that require ownership need to be dealt with
through for example modulization. Further investigation should include follow-up on if the
issues that have been found that remains after the reorganization as well as possible new issues
that potentially will be introduced.

The issues in the implementation that have been pointed out in this paper are framed
around the issues that have been come forth during the investigation and the focus has been
the collaboration, double ownership, and agility. Therefore the analysis and designs are re-
flecting this. More things that are related to for example the product vision could be inter-
esting to investigate to see if it is as clear as it needs to be along with more investigation into
how the stakeholder chapters and approval process framework is a�ecting the implementa-
tion of Scrum. Furthermore, continuous delivery is something that would be very beneficial
for the e�ciency and adaptivity of the product, how can the area introduce it while the rigid
approval processes are in place.

48

Chapter 7

Conclusions

In investigating root causes, for the teams experiencing loss in productivity and adaptivity
(RQ1), we identified 60 issues a�ecting the development of the solution. The issues have been
grouped into nine areas where the three most important ones are Agility and Scrum, Col-
laboration Between business and IT, and Code Ownership Creating Issues. From the issues
found the root causes of these can be traced to two main root causes: Scrum not being imple-
mented properly and unclear code ownership. The codebase becomes expensive to maintain
and complex due to communicational and collaborative issues that stem from Scrum guide-
lines not being followed. The imperfect code ownership furthermore a�ects the overhead
work of the employees along with the solution scalability and complexity to a di�cult future
(and present) maintenance and expansion.

In investigating solutions, to eliminate root causes for the teams experiencing loss in
productivity and adaptivity (RQ2), the solutions dealing with the root causes for the problem
revolves around solutions to improve the e�ciency and agility of the teams. The solutions
include enforcing clear ownership between the teams, improve the implementation of Scrum,
process improvements, as well as enforcing and supporting team self-organization.

Based on the results from the study answering the two research questions, we recom-
mend the organization to separate the code ownership through modularization along with
improving the implementation of Scrum from the business value providers perspective, to
allow for long-term e�cient and adaptive development implementation. The reason for this
is that the better the technical solution, the easier maintenance and scalability, and the more
business value the developers can produce. Therefore we recommend the focus of the organi-
zation should be on prioritizing technical excellence, and constant e�ort to not only follow
the Scrum structure but also embracing the mindset and principles of the strategy.

49

7. Conclusions

50

References

[1] Olalekan Akinola and Babatunde Ayinla. An empirical study of the optimum team size
requirement in a collaborative computer programming/learning environment. Journal
of Software Engineering and Applications, 07:1008–1018, 01 2014.

[2] K. Conboy and N. Carroll. Implementing large-scale agile frameworks: Challenges and
recommendations. IEEE Software, 36(2):44–50, 2019.

[3] M.E. Conway. How do committees invent, 1968.

[4] M. Cristal, D. Wildt, and R. Prikladnicki. Usage of scrum practices within a global
company. In 2008 IEEE International Conference on Global Software Engineering, pages 222–
226, 2008.

[5] Maximini Dominik. The Scrum Culture: Introducing Agile Methods in Organizations.
Springer Nature, 2018.

[6] Bill Haskins, Jonette Stecklein, Brandon Dick, Gregory Moroney, Randy Lovell, and
James Dabney. 8.4.2 error cost escalation through the project life cycle. INCOSE Inter-
national Symposium, 14(1):1723–1737, 2004.

[7] Hanna Kallio, Anna-Maija Pietilä, Martin Johnson, and Mari Kangasniemi. System-
atic methodological review: developing a framework for a qualitative semi-structured
interview guide. Journal of Advanced Nursing, 72(12):2954–2965, 2016.

[8] Likoebe Maruping, Xiaojun Zhang, and Viswanath Venkatesh. Role of collective own-
ership and coding standards in coordinating expertise in software project teams. EJIS,
18:355–371, 08 2009.

[9] Zainab Masood, Rashina Hoda, and Kelly Blincoe. Real world scrum a grounded theory
of variations in practice. IEEE Transactions on Software Engineering, 09 2020.

[10] N. Nan, Donald E. Harter, and Tara Thomas. The impact of schedule pressure on soft-
ware development: A behavioral perspective. 2003.

51

REFERENCES

[11] David Parnas. On the criteria to be used in decomposing systems into modules. Com-
munications of the ACM, 15:1053–, 12 1972.

[12] Goparaju Sudhakar, Ayesha Farooq, and Sanghamitra Patnaik. Soft factors a�ecting the
performance of software development teams. Team Performance Management, 17:187–205,
06 2011.

[13] Adam Trendowicz and Jürgen Münch. Factors influencing software development pro-
ductivity - state-of-the-art and industrial experiences. Advances in Computers, 77:185–
241, 12 2009.

[14] Laurie Williams. Agile software development methodologies and practices. Advances in
Computers, 80:1–44, 12 2010.

52

Appendices

53

Appendix A

Issue List

In the second investigation phase, we focus on the issues that lead to the development being
less e�ective and adaptive. By understanding what the issues are, we will in analysis be able
to investigate the root causes and reasons for why many of these problems occur.

The issues are drawn from the interviews and statements or data related to these, see data
processing method in 2.2.3 and validation in 2.2.5. Some issues are raised by the interviewees
themselves. Other issues are the result of discussions and points made by multiple interviews.
The issues are described and then motivated from the source directly or through resonate
motivation that initiates from the source. Lastly, we present the wishes the interviewees
made regarding the solution.

A.1 Standardization
1. Lacking standardization in many areas
Standardization is lacking across the 7 teams. They are developing a single solution and
many of the teams have the freedom to use any processes or tools they prefer. This becomes
more of an issue the bigger the organization is. A larger organization needs to organize itself
more in terms of procedures to not lose e�ciency. Here we are not referring to hierarchal
structures, rather taking decisions on strategic ways of doing certain things, from the business
value providers’ perspective. If this does not happen then the development moves to be more
chaotic, a�ecting both results and the work environment.

The issue has been mentioned by one of the tech leads and has been followed up upon in
interviews with architect support and agile support. Lack of standards can be seen at di�erent
levels. It regards both technical standards and how things are done. Architect support´s take
on the matter at hand: “Giving freedom to so many people and hoping they will establish a
common standard is utopic. Imposing something from the top with a certain disconnection
to reality could have an even worse e�ect. A consequence of the reason for many of the

55

A. Issue List

decisions on standards to have been left out is the rapid growth of the department. This
would have taken its toll on people and all the decisions that should have been made weren’t,
as many new people kept on coming in, management structures changing and it just became
too much to deal with along with the other pressing matters. Teams are very free to do and
work how they want: regarding libraries, the latest and greatest tools, etc. A two-edged
sword, too much freedom or too much structure is bad.”

2. No common backlog and no common way to present the sprint
development
Even though the teams are working on the same solution there is no common backlog for all
teams and all teams have di�erent ways of communicating about their sprint. This makes it
very di�cult for anyone outside the team to understand the state of development.

The issue is discussed with a support team member: “If it is hard for me as support having
an overview and close collaboration, one can imagine how di�cult it is for outsiders not
working directly with the teams.”

We can here compare this with the lack of isolation of the team’s work. If teams were
isolated and only working on their own things, then it would make more sense to have sep-
arate ways of doing things. However, this is not the case as the solution is one product, and
the code is very coupled and seems to require extensive communication and collaboration. It
makes the job of coordinating the development over these 7 teams harder and inevitably will
make the development to be ine�ective.

3. Product owners have no common way of prioritizing and dis-
playing tasks
Product owners can prioritize and use any method they like in tracking the team’s issues,
generally, they don’t share this outside the team. As there is no common standard of doing
this, there is no transparency to other teams and stakeholders that have an interest in the
progress but might also have a say on priorities.

The source mentioning this is a product owner. This person works on his own team’s
prioritization and chooses to have it numbered and the most important going on top. This
is a personal working document that in general is not available. We have spoken with the
support team that mentioned that the prioritization depending on team might not be what
is expected of an agile development team. The transparency especially is lacking as they, as
support, do not know how the prioritization works in the teams.

We can connect this with that it is coherent with IT-development and makes it easy for
developers to pick the most important issue on the top. However, that strategy is not imple-
mented in all the teams and adds to the di�culty of having an overview of the development
of the solution.

4. Teams breaking standard using infrastructure support for in-
frastructure related implementation and configuration
Some teams do not follow the set standard in the area of having infrastructure and config-
urations handled by the infrastructure support. The reason this decision was made to have

56

A.2 Architecture and State of Codebase

the support team doing this is that they have specific knowledge of how it is implemented
correctly. Here, there has been a clear decision that is expected to be followed. When a set
standard is broken, this leads to the expected implementation to move from what is really be-
ing implemented, a�ecting the teams involved and requires extra work if the implementation
was not done correctly the first time.

The issue is raised by the infrastructure support mentioning incidents where teams de-
velop these parts themselves and when issues, in this part of the solution, are picked up by
the support, support finds that they have to redo it as the implementation was not done right
the first time. It is unnecessary to implement something twice and go through the steps more
than once.

5. Teams breaking communication standards set for the benefit
of Infrastructure support
One team has been breaking standards when directly contacting infrastructure support in-
stead of sending emails. It follows that the issue at hand might not be prioritized along with
other tasks on the infrastructure team side and instead done before other things that have
been prioritized.

This issue is discussed with developer of one of the teams. According to him, many prefer
talking to the infrastructure team directly rather than emailing, that is the practice, and they
are generally able to help. Infrastructure support confirms that this happens regularly.

We argue that something else is being done besides the set standard and that it might
undermine the planning and e�ciency of the support team. There might however be a reason
for things being a done a certain way, diverging from the o�cial communication channel,
and it would require investigation into why this is preferred, perhaps the current standard
could be improved. It might be that more teams are having the same practice.

6. Teams not following communication standards set
It happened that teams are rushing what they are doing and miss to communicate this to
the other teams. The consequence of this may di�er, however, essentially undermines the
teamwork being done around the development of the product, making it more di�cult for
everyone involved.

An example mentioned by Tech lead: “sometimes teams are not informed of important
decisions, for example, a last-minute change made by another team after regression testing
before going to production. There are channels for this kind of information.” The result in
these cases was that someone found issues in the added parts of the code that had already been
regression tested before. This added unnecessary work in finding out what had happened.

A.2 Architecture and State of Codebase
1. State of the codebase
The codebase is tightly coupled, change history is bad. Sometimes merges can be di�cult
and time-consuming. Motivated by tech lead and architecture support.

57

A. Issue List

There is too much spaghetti-architecture in the detailed part of the architecture, as code
has many development shortcuts, coupled code, and technical debt. This has been discussed
with three tech leads and comes from them.

A consequence of many other issues in this document. We argue that all of this is a big
loss in business value as it makes the solution very expensive, ine�cient to maintain and
develop as teams. A further consequence will be the inability to develop it e�ciently.

2. Difficulties in cleaning up the solution code-wise
Teams have been added to the solution over time. This to adjoin how the di�erent function-
alities are implemented and to make sure that functionality is not implemented more than
once and do not maintain the same functionality in di�erent parts of the organization. As
this is one of the goals, surprisingly, we find that specifically, this seems very di�cult to do.
E�orts to unify the way certain things are implemented across the teams is very di�cult and
takes too long. This unfortunately has the consequence that it will not be done.

This issue is raised by the infrastructure support team member. Earlier e�orts have been
made on their part to aid the teams in this. A minor e�ort became major. This as the pull
request had to be reviewed by many teams and took too long. In the time the pull request had
been approved, major rework had been done, approved, and committed by others. Further-
more, as these were error-prone made it very di�cult to get a pull request in time. Merging
the changes, spanning multiple domains, before more changes were committed was di�cult
needing approval. The team spent time preparing the merge over and over again. This led to
the infrastructure deciding on never doing something similar again.

We would like to argue here that the teams, that are pushed to provide business value
rather than taking care of the existing solution, are not given enough time to focus on these
issues. And if the reason for having the teams in the same solution, namely that things do
not have to be redone in di�erent parts of the solution, why is this strived for? If this goal
is strived for, then the developers should be given a chance to incorporate it properly. This
will cost. On the other hand, the cost of fixing an issue rises exponentially with time [6], so
doing it later will cost more.

We would like to further explore the possibility of micro-services to solve the issue with
the solution being so intertwined and di�cult to improve structure-wise. The goal should
be to separate everything as much as possible.

3. Architecture responsibilities unclear (A)
No one individual or team has an overview responsibility for the solution architecture, not
even architects as they are considered a support and mostly concerned with architecture
decisions made on a higher corporate level. The consequences of this can be seen as there is
no one driving decisions from an architect’s point of view directly in the team. This leading
to the solution gaining complexity while at the same time becoming harder to maintain.

Raised by a product owner: “There is no clear big picture of how the solution should
look like as a whole. More clear and communicated architecture would be nice”. From the
developer’s perspective, they only contact Architect support for things that are not solved
among the teams themselves. As a developer mentioned: “Architect support is contacted for
larger things and mainly when we can’t solve it between the teams”.

58

A.3 Traceability

Our interpretation of this is that compared to how the organization structure looks like
today, there is confusion on who is responsible for what. If everybody has responsibility, is
there really anyone responsible? This can be seen in other areas as well with responsibilities
between Product Owners and stream leads for example.

4. Architect responsibilities unclear (B)
Architect and team lead responsibilities on architecture are unclear. The architect support
does not have the possibility to be part of all the detailed architecture in all the team and it
varies how proactive tech leads are in taking lead on the detailed architecture.

Discussed as a follow up with a manager higher up in the organization: “The idea is that
they work together, but I see that it is too unclear where one role stops their work and the
other one takes over. It is also a big di�erence between the tech leads and how skilled and
interested they are in architecture so that is another challenge”

A follow-up question on this is: is it reasonable that tech leads have the responsibility of
architecture when the ownership strategy makes no one fully responsible?

5. Confusion and contradiction on Architecture responsibilities
Coordination of the architecture between the teams seems to be lacking in that they are
not aligned. The consequence of this is that the solution will not be able to incorporate the
common direction for the solution that is expected and needed. It also seems to be some
confusion on the matter. There are contradictions on what has been said from tech leads
and others on who is responsible for driving the architecture. One says tech leads are part of
taking responsibility while another says the architect support is driving the decisions.

Architecture support has mentioned: “Not all tech leads have understood that they also
are architects”. Stream lead has also mentioned: “The tech leads need to coordinate across
the squads that what they are building actually fit with the architecture”. Another stream
lead expects the architect support to be the one that should set the direction.

This aligns with issues of unclear responsibilities, as well as consequences for common
directions across the organization not being set. Other people than team leads expect those
team leads to take action even though it is not fully included in the tech lead responsibilities.
This is an example of when the expectation of management is not aligning with how the
teams actually work.

A.3 Traceability
1. Technical documentation lacking
Lack of technical documentation means that all aspects of an application are not available
for employees and many of the benefits of having documentation are lost. The knowledge
of how the application is supposed to work will either not be transferred fully (or even at
all) or will be done so in an ine�cient way. This can for example make it di�cult for new
employees to get up to speed in their new job or when an employee starts working in another
team’s domain, as it frequently occurs in this organization.

59

A. Issue List

The lack of documentation of the technical solutions has been discussed with a developer
in one of the teams and a member in one of the support teams. Most of the solution has no
documentation. However, new features are being documented by Business Analysts. These,
unfortunately, lack technical details consequently. Outdated diagrams are referred to in some
parts of Confluence.

2. Missing code history and overview difficulties
If it is di�cult to get an overview of the code and its history. This essentially a�ects all work
that employees do in understanding the code, solving issues, improving code structure, etc.
It a�ects both product quality and the time employees spend on these aspects.

This issue has been discussed with three tech leads and one developer. The history is dif-
ficult to go through as there are many commits pushed to the repository. Getting an overview
is hard because of the size and the number of solutions within the repository. One tech lead
has mentioned that some history is missing as Team Foundation at one point was used along-
side Jira. Another Tech Lead has commented that information is missing only in certain
tools used and that all the information in their team is viewable in Git. Moreover, he com-
ments that a reason for some information not being found is dependent on the tools that the
developer uses. Many use embedded tools instead of Git.

3. Lacking traceability between Jira task and the code changed
There is no traceability between a given Jira task and the code changed other than the commit
message. The e�ect of this is connected with the issue above. It means it will take developers
a long time to solve the issue at hand, because of the time spent on finding the code that has
been changed.

This has been mentioned by a member of the support team and a tech lead. To find the
code that has been changed, one must go into the repository and browse through the commit
history. There is a plugin that instantly presents the code changed in the Jira task. The plugin
is used in other parts of the organization but has not been paid for by the Atlassian team for
this department, so it is not used by the 7 teams developing the solution.

A.4 Collaboration Between IT and Business
1. Collaboration issue between IT and business (A)
The communication on the stakeholder/business level is not clear or even faulty on issues
that they want to implement. It happens that they change their mind after e�orts have been
put into developing a solution. This a�ects the development, in the aspect that unnecessary
time is put into something that might have to be redone later. Developers need to know the
requirement, which should be checked for accuracy beforehand so that they can direct their
resources properly and develop e�ectively.

The issue has been raised by a tech lead and presented as follows: “Sometimes stakeholders
(business) do not know what they ask for. This is a huge thing for the team where they really
try to make stakeholders understand beforehand. It has become essential to put it in writing”.
We have confirmed this in other interviews as well. How severe the issue is and whether it

60

A.4 Collaboration Between IT and Business

is a problem seems to depend on the team, its stakeholders, and the environment the team
operates in.

2. Collaboration issue between IT and business (B)
There is a misalignment in collaboration between business management and IT where there
is a lack of understanding of what the other parts need and how it works. This a�ects the
overall development e�ciency in that the whole organization is not working towards the
same goal. Can they collaborate better, if they do not understand each other’s work and
what is needed for them to succeed?

This is mentioned by one of the tech leads: “Seems to be miscommunication between
how management thinks the teams work and how they actually work.” The management on
the business side also mentions that sometimes “IT goes in another direction (on tasks) than
business has set. This ends up being something that the business can’t use”.

What we derive from the business manager’s comment is that it has a dependency with
(A), in terms that members of IT have raised that requirements aren’t clear where the result
can be shown here as well. From what can be assessed from the overall interviews, is that
this seems to be a consequence of miscommunication on how things are to progress and that
something needs to be done here in making both sides come together as one and work in
the same direction or perhaps separate their relation when that is not possible. As business
is setting the direction for and managing IT, this becomes an organizational decision that
negatively a�ects the development (see other issues on collaboration that can be found in this
document). One might think that the development decisions should be left to IT. Business
is their client and should prioritize the deliverables they want and then perhaps stay away
and leave the development teams to do their work, to keep the development as e�ective as
possible.

3. Lack of discipline in commiting to requirements leads to re-
quirements changing
There is a lack of discipline concerning requirements as they are allowed to change, even dur-
ing development. Starting to develop something and at the same time changing requirements
is wasting the time of the developers, a�ecting their e�ciency. Changing requirements that
are not done properly from start undermines all the hard work that has gone into planning
and it makes the estimation less accurate.

It is an issue raised by one of the tech leads. The e�ect of this issue, as he sees, depends
on the progress reached. If the development has not started, then it is usually not a problem.
When requirements change during the development phase, it is frustrating for the team,
things take longer, and it interrupts the sprint. Other interviewees have been asked to give
their point of view on this issue. One of the support members with much experience of
working in the area and now supporting mentioned the following: “Business wants so much
to be done. Therefore, they make proposals. They usually do not know the consequences of
what they ask for.” This can be compared to issues where IT is not pushing for their point of
view to be heard.

Team success example

61

A. Issue List

Another team mentioned that it is not allowed within their team to change tasks within
sprints, if a change is required then it is pushed to the next sprint. From what is interpreted
from the interviews, it seems that the team that does not allow for changes has team members,
including the Product Owner, that are setting boundaries for this. This is good, as it handles
the problem within this team. However, what is the causing issue is that business can deviate
and if not handled, then there is a direct problem for the development team that will require
resources where it should not, either on e�ect on development, most costly for the solution,
or extra e�ort to handle it.

4. Collaboration issue between IT and business (C)
There is inequality between IT and business on how much both sides are heard in terms of
communication regarding issues management, prioritization, and development. This a�ects
the product in the aspect of important technical tasks getting down prioritized.

One of the stream leads formulates that the voice from IT is not heard while Business is
pushing on and on. “More push back from the IT side to keep working on technical issues and
solution, as well as the tasks that business wants to implement, so that we minimize technical
debt and keep good practices”

5. Collaboration issue between IT and business (D)
Stakeholders directly collaborate with development teams while not understanding the ap-
proaches that are used in Agile complex technical environments. The consequence is the
strategic element of using Scrum and Agile work methods are undermined in its core. This
a�ects relations between IT and stakeholders and results in time being taken from develop-
ment in trying to communicate to someone who is not used to or don’t understand this way
of working. This a�ects the team’s environment, and therefore their work when stakeholders
do not understand why agile practices and Scrum is used in IT. This is an issue that seems to
be spanning across the whole solution, a�ecting many of the teams.

This issue was firstly discussed with a tech lead that mentions: “stakeholders sometimes
think that landmarks in wave-plan or even sprint plan are hard deadlines”. This is further
discussed with and motivated by a stream lead that adds that Business Analysts then think
that the sprint deadlines are hard and promised results. This is done without consideration to
more critical tasks might have to be done instead, and therefore, other tasks get pushed aside.
He adds that this becomes a very stressful environment for the teams. A Product Owner
from another stream agrees that there are times where the stakeholders do not understand
the uncertainty of the plan on when tasks are to be developed and released. Instead, they
took it as something certain.

Stakeholders sometimes have expectations on IT in terms of delivery, which is not re-
flected in the reality of how development work. How much IT can perform can only be
compared to how IT has performed earlier. One of the Product Owners describes it as “Busi-
ness (stakeholders) want things to be done faster than they are. They want so much done.
Therefore, they make proposals. We argue that it should not be on the teams to educate on
this or should need to do the explanation on certain tasks in communication with stakehold-
ers. If there is a priority system, then this should be determining the order a task is developed.
Preferably this could be communicated or educated by someone else so that the team’s e�ort

62

A.4 Collaboration Between IT and Business

could be spent on their tasks. The less disturbance the teams experience the more e�ective
they will be in producing results and business value in the solution.

6. Collaboration issue between IT and business (E)
IT and Stakeholder sides are misaligned in the collaboration and lack mutual understanding
for the other’s situation and working environment. IT appears from the business side to not
understand that some things have to be done or it will have consequences for the organization.

This was raised by a Product Owner and a member of the support teams, they added that
many of the challenges that IT struggles with are really a problem and that some of these
processes that halter the development progress are self-imposed on both IT and business-
side. Issue closely related to (B).

7. Technical tasks value and priority
The IT capability in communicating the value of certain tasks is lacking, while Product Own-
ers and Stakeholders seem to not understand the long-term consequences of systematically
down prioritizing technical tasks and technical business value.

The architecture support frames it as follows. “When technical tasks are down priori-
tized, then agility and the expansion of the system will su�er. An expansion will be more
expensive. We will have a more rigid system, more complex and we all know complexity kill.
Possible solution: it is all about understanding each other. Certain things are easy to under-
stand while some are not. Better language and explanations from the IT side to make other
parts of the organization understand. And stakeholders need to listen!”

8. Misalignment between IT and business
There is a di�erence between business and IT goals. It shouldn’t be as such, as they are both
collaborating on the same solution. What harms the IT solution will eventually be noticeable
for business in terms of how expensive the development and maintenance will become, as well
as the stability of the system.

One Stream lead was asked to comment on this issue (Development shortcuts: examples):
“We expect the tech leads and architects to give info on possible solutions so that we can
make an educated decision. As a Stream lead, I am not strict about how things are built. If I
only know the time perspective, I will take the fastest solution possible.” The member of the
support team commented, that this shows the duality between the Business who want the
product in production as fast as possible IT who wants the most robust and maintainable
solution”. Another tech lead adds that if the tech lead is not speaking up then that is not
considered in the process.

From this, we can conclude that in a case where stream leads are taking decisions on
how something gets developed it fails if they are not given the proper information. At the
same time, Product Owners have stated that it is di�cult to motivate why technical tasks are
important over business tasks. This is a contributing factor that makes the issue more severe
as there isn’t, in general, an established collaboration between Stream leads and tech leads.
It generally goes through a middleman, the Product Owner in this case.

63

A. Issue List

9. What is maximizing business value?
It is not clear for the stakeholders what business value can be found on the technical side.
The architecture support mentioned that, in another role, it was very di�cult to take out
time in a sprint to do technical tasks. This as business wants to maximize "business value"
only and have to ability to do so.

We would like to argue that having a system that is cheaper to maintain when making
changes as it has good architecture and less technical depth, is a business value as well. In the
long haul, it will lead to more traditional business value being added faster as the development
will be more e�ective.

10. IT is missing communication channels, and technical infor-
mation is not reaching decision-makers.
Managers on the business side seem to not have enough information when making decisions
when they are above Product Owners in the hierarchy of the organization. This will lead to
decisions being made without the technical perspective in mind, a�ecting the solution and
unintendedly make it more expensive to maintain in the long run.

One stream lead mentions that if tech leads and architects’ info on possible solutions is
not provided, it is hard to make an educated decision. If only the time perspective is known,
then the fastest solution will be chosen. IT experts are expected to speak up on technical
issues without having a proper channel to decision-makers, here referring to the Stream leads
that mostly communicate with Product Owners that are expected to give the teams technical
perspective without having a technical background. Product Owners have in turn mentioned
the di�culty of presenting arguments for technical tasks, due to lack of understanding.

This is regarding decisions being taken above Product Owners in the hierarchy. We derive
that, if decisions are being made on a higher level than Product Owners on the business
management side, then it becomes very di�cult for the IT to speak up on decisions that are
being made already and going in a bad direction.

We argue that overall, it seems like there is a division between IT business, being two
separate organizations and lacking transparency in the process. This while there is an ongoing
e�ort to have them work together. It could be worse, probably, but it also could be much
better.

A.5 Code Ownership Creating Issues
1. Double ownership (A)
Wrong ownership of features is given to teams because some teams are under more pressure
than others. When this happens the team, that picks up the task instead, suddenly has a
feature to maintain in someone else’s domain. This a�ects the team’s e�ciency in terms of
producing results in a long term, as the work overhead needed increases.

This has been raised by a tech lead and confirmed by tech leads in other teams. Following
is claimed: “It happens that the feature is not owned by the right squad as new development
features are given out and prioritized in the sprints. So, if one team knows the codebase but
is busy another team might have to pick it up”. Another tech lead mentions that it has also

64

A.5 Code Ownership Creating Issues

happened that features ended up in the wrong domain, but the team should still take part in
the review of the pull request. A Product Owner added that there also is no clear structure
on what team should pick up which the task. The work overhead consequence is motivated
in (B).

From this, we can conclude that the structure and the ownership are most likely causing
the teams to spend unnecessary e�orts in working around these, either because the ownership
falls on a team without the knowledge of that area or the team has to deal with that someone
else owns something in their domain that shouldn’t even be there. In other words, the original
team that should have gotten the issue either spend time on introducing the other team to the
code base and both teams will forever after, spend time on reviewing and aligning decisions
on this part of the codebase along with any refactoring that might be wished to be performed,
for example cleaning up technical depth.

2. Double ownership (B)

As some teams have large features on other teams’ domains, there is no control over how
this a�ects the team’s ability to maintain the product. It is more di�cult and takes more
resources to make changes to code that is co-owned with others.

Teach lead brought up the issue as follows: “Many large features in our domain are owned
by other teams. This is not considered or stated anywhere”. There are features and code in
the domain where the owner does not have an overview of it. Therefore, it is di�cult to
maintain the solution properly as it requires a lot of collaboration and e�orts from other
teams as well. A developer in one of the teams considered to communicate well has pointed
out that if there is friction, it usually happens regarding something that is partially domain-
owned by one team and partially feature-owned by another. Someone decides to things a
certain way and then others do not necessarily agree.

3. Double ownership (C)

Feature and domain ownership strategy creates issues in the sense that pull requests contain-
ing code that do not live up to standards of what it should look like. This has the consequence
of culminating technical debt and other work overhead, causing the teams to be less e�cient
and adaptive to changes.

When another team forces this, it is left to the domain owner to deal with the added cost
of maintenance. The issue is discussed in one of the teams where it constantly occurs that
other teams put bad code into their domain, as the teams are under pressure themselves from
their stakeholders. The tech lead concludes that the double ownership can only be handled
if pull requests live up to the expectations, in terms of where the feature belongs, that the
code is done well, and there is no pressure in merging features that do not live up to these
standards for whatever reason.

What is concluded from this and what can be synthesized from the interview discussions,
is that the double ownership fails as teams are being pressured, development misconducts are
forced, and regularly has become expected in consensus as a way of working by managers and
teams.

65

A. Issue List

4. Double ownership (D)
The ownership strategy is making the development ine�cient and making the scaling di�-
cult as there is no clear ownership.

This is a consequence of the issues above (A, B, C) mentioned by one of the tech leads
that “if more than one (team) have ownership then essentially the result is that none of the
teams really own the solution”.

5. How issues are handled from double ownership and very cou-
pled code
As code is very coupled and ownership is unclear, developers within a team and outside teams
are constantly in need to “bother” each other making changes in each other’s domains.

The architect support mentions that change history is bad and when merges occur, it is a
painful process, and it is the individual responsibility to handle it. There have been issues and
it has happened that people, not knowing the code very well, tried to solve it and this is very
dangerous according to architecture support. As a developer, it feels as if you are working in
a very large repo even when you are doing small changes.

6. Double ownership should not be part of the strategy for the
organization
Teams are not working in isolation. This highly a�ects the e�ciency of the development, as
the more people are involved, the more over-head work will have to be performed on a daily
basis in terms of e�ort regarding organizing, communication, etc.

We can conclude this from the interviews and the e�ect that it has on the teams. A
Product Owner has mentioned that it happens that one team gets a�ected by another without
knowing about it and that it needs to be communicated before. We would like to argue that
it is unnecessary from start, that so much time is going into this handling of an issue, that
could be avoided if teams worked more in isolation from each other and had fully separated
ownership responsibilities.

A.6 Code Collaboration and Development
Teams

1. Collaboration issue between Teams (A)
Collaboration between teams in the di�erent streams is sometimes lacking in the sense that
if teams are helping others with things that are not within their sprint, it is not accounted for.
This makes some not willing to help and other teams then take longer to solve the problem
or end up solving it improperly.

Stream lead describes it: “Sometimes di�cult in the collaboration between teams in the
di�erent streams. We have succeeded in creating visions for the streams, however, we perhaps
lacked to articulate that we are not a success if only one of the streams is completing the
deliverables. Especially when time pressure is up, we see that barricades come up”.

66

A.6 Code Collaboration and Development Teams

2. Collaboration issue between teams (B)
Communication between teams regarding preparation for the sprints can improve and pro-
cesses for this are lacking. The consequences of this a�ect the benefits of agile ways of working
and the Scrum system in place is undermined making teams less e�ective. This is related to
(C) below.

Product owner comment on this is that teams can improve in knowing what other teams
are working on early on. The later it is discovered that something that someone else is work-
ing on is a�ecting you the more di�cult to take it into account.

We argue here that one way to solve the issue is as the Product Owner suggests. However,
this can also be a way of treating the symptoms rather than the underlying issue, referring
to issues on Double ownership, or it might another reason altogether. The consequences of
handling the symptoms are expensive in overhead work required by employees and therefore
worth looking into.

3. Collaboration issue between teams (C)
The e�ectiveness goes down the more teams are doing development in other domains, as
learning time and extra coordination must be put aside by the developers. This is a conse-
quence of how the collaboration structure looks like.

The issue raised by a Product Owner points out that, when all teams have one solution
they are working on, as it looks like today, you do things in domains other than your own.
This Product Owner gives an example of this, where the planning was not close enough to
reality, and much more time than expected had to be put in by the team, that was given a
task in someone else’s domain.

Here we observe that the time of the team looking into the issue is spent along with the
team owning the domain.

4. Friction between teams (A)
Friction between teams occurs on multiple levels. For example, when some teams are guard-
ing their code harder than others, then friction can occur between many of the counterparts
as the issue is escalated up the ladder. This kind of thing happens all over the solution.

Raised by a tech lead, who says: “Some squads are protective about their code and do
not want others to make changes in their domain”. According to a stream lead, this happens
across all teams, even those who are part of the same stream. If something needs to be pushed
out and isn’t fixed immediately, that can cause friction between two developers, tech leads,
or eventually product owners.

5. Friction between teams (B)
Teams have overhead work that is not considered in the plans and estimation or the team’s
performance. The consequence of this can be that some teams are reluctant in helping each
other out and collaborate.

A Tech lead describes multi-team tasks in the backlog: “Many of the tasks in the backlog
require collaboration and coordination between the squads. And if one is doing 80 % and
another 20%, the one that isn’t taking lead on the task, might have to postpone other tasks that

67

A. Issue List

are not as critical”. A Tech lead has mentioned that some teams are not always collaborating
as well as others would wish, leading to that their team has to put a lot of extra code into
their domain as they are more open to it., see (A).

We would here like to argue that this happens as a consequence of the code being coupled
and the code ownership does not belong to one team, see issues on double ownership. This
will take more of the teams’ time to collaborate, will be harder, and require more e�ort to
plan the development along, with requiring more flexibility than stakeholders seem comfort-
able with, as there are e�orts on the IT part to make sure that the plans are not considered
deadlines by external stakeholders. Furthermore, we would like to add that the teams that are
not as collaborative, do not do this without reason. Rather, it becomes a way to protect the
integrity of their teams, plans, estimations, code base, and sustainability. This as the teams
operate in an environment that has many issues structure-wise (where some can be found in
this very document) and that leads to the teams becoming more ine�cient the more they
collaborate with others. This relates to all issues under Collaboration Between Teams and
Collaboration between IT and Business.

6. Pressure and development shortcuts
Teams want to go with shortcut solutions whenever there is time pressure.

This is raised by the Architecture support who adds that sustainable solutions should be
advocated for as much as possible.

7. Development shortcuts
Some teams are being pressured by hard deadlines promised to business. This causes them
to put code of poor quality into theirs and other team domains according to Tech Lead.
Development shortcuts also happen when teams disagree on a solution.

A Tech lead gives two examples where more than one team was involved, and the collab-
oration has faltered. As a result, a decision was made by the management to do the solution
that took the shortest time: “In one case (within one team) the architects drew a solution
while the squad presented a quick solution for the same problem, then the business decided
that they needed it now, and chose the quick solution. In another case (two teams) the squad
was ordered to do it the wrong way due to a disagreement between the architects”

A developer mentioned on another topic that it has happened that sometimes the archi-
tected solution does not solve the problem, that sometimes architects become detached from
reality. This might be related to why the result in the situation above was handled as it was.

8. Plan milestones are mistaken for hard deadline
There is confusion regarding plans on scope of delivery, being plans, and not hard deadlines.
The department is operating in an agile environment in terms of sprints and development but
is surrounded by a waterfall model in terms of deadlines from the business side. A Waterfall-
model is used when setting the budget and annual goals.

According to a Tech Lead, this, mixed with Agile sprints, seems apparently to create con-
fusion on why tasks haven’t been finished. Usually, the case is that after sprints are finished,
some of the original tasks in the sprint are not finished as other more critical tasks that were

68

A.6 Code Collaboration and Development Teams

not scheduled, comes up. Stream lead comments as follows: “We do what we can to mitigate
in the quarter (wave) that the plans are not fixed as impediments occur can happen during
the sprints. We should be clear on the first deliverables but as we progress further in the wave
(plan timeline), the uncertainty goes up.”

We argue that the issue happens in a way that is di�cult to control and that more should
be done to make sure it is contained. See Issue on Hard deadlines and pressure on teams.

9. Hard deadlines and pressure on teams
Putting on hard deadlines happens commonly, and pressure makes teams less Agile.

A Tech lead says the following: “Demands on many tasks makes us less agile. It might be
that too much is promised to the business by the management. We should not say it can be
done at a certain date while working Agile.” A Stream Lead has been asked about the issue as
well and adds that certain things have to be done and agrees that sometimes there are hard
deadlines: “We are working in sprints and we do have fixed deadlines, we also have fixed
requirements. These do not necessarily mix. It’s hard to combine the Agile ways of working
with the “real” world and many times Agile principles are compromised. If it’s a regulatory
requirement, then there is a hard deadline “. A Product Owner mentions that there aren’t
often hard deadlines on tasks within sprints, rather it is a larger milestone. There is one
coming up in a few months.

10. Code collaboration
Teams are communicating ad hoc regarding the development. This a�ects the risk for mis-
takes, miscommunication, and misunderstanding. It will also a�ect newcomers and how fast
they will get up to speed into their work as they will learn by doing, including making mis-
takes, rather than being introduced into a structured way of working.

A Tech lead has mentioned it as “Not all teams agreed on a conduct regarding commu-
nication”. A Developer, when asked about communication, mentions that people rely on
experience to know whom to communicate with regarding some issues.

11. Kernel not used
The existing kernel that has been developed is not used! A kernel is a shared codebase with
features that are generic and can be used by multiple teams that need a certain functionality.
The kernel is supposed to provide functionality in one place so that solutions of the same
functionality are not maintained in di�erent places. This would lower maintenance and
development costs.

Raised by a tech lead who adds that the reason for the kernel not being used, is the rapid
flow of issues the teams take on. An e�ort hasn’t been done in moving and allowing the teams
to take time to implement the kernel into their code.

We argue that this issue exists as technical tasks systematically are down prioritized.

12. The way from development to production is too long
The approval process is taking too long and the way it is done is ine�cient, as everything is
treated generally the same, no matter if it is a simple or a more critical change. This does not

69

A. Issue List

concern reviews rather bureaucracy and the extensive process of code going into production.
A Tech lead states that it takes too long to get something from development into produc-

tion: “A semicolon takes weeks to get into prod”. This has to do with the extensive review
and approval process that is many times slower than the actual development of the product.

13. SYST-environments

There are too few environments, only one SYST environment used by 7 teams. This halters
development and testing.

SYST is under freeze the days before release and according to the tech lead, some teams
often have prioritized things to test, meaning that often it cannot be used. Another tech
lead agrees and adds that in the last year the freeze periods, when regression testing was
done, had more than doubled. A third tech lead mentions that regression testing is done
manually, that it takes too long, and most likely it is not very fun for the ones doing it. The
consequence of this is, according to the third tech lead, that teams cannot test and move
forward in integrating with other solutions. Comment: There are plans in motion on adding
more SYST environments.

14. Is communication a solution for everything?

There is a bad foundation for scaling the solution, a�ecting the solution in the long term and
the organization’s intention of bringing more teams into the solution repository as well.

A developer has mentioned that the solution to avoid issues (that stem from double own-
ership, big pull requests, and code dependencies) is communication. We can then observe
that this is very common in the sense that everything that might be considered an issue is
handled by communicating more between the teams. This will lead to, that the bigger the
solution the more of the employees’ time has to be put into communicating with each other,
taking time from developing the solution. In other words, extinguish fires instead of working
on preventing them.

15. No filter in production release

Anyone in any of the teams can release code to production from master before regression
testing is done. Then there is a risk of a mistake being made, or malignant action performed
that end up in production.

Raised by tech lead: “Technically it is possible to move a branch to release after a feature
is merged to master before regression testing is done. This is not procedure however there
is nothing in place stopping it from happening.” Support team member adds that freedom
has a cost and that more rigidity of the process might slow the process of getting things from
development to production even more.

70

A.7 Development and Shortcuts

A.7 Development and Shortcuts
1. Temporary shortcuts (technical issue) tends not to be fixed
A lot of code is tightly coupled as a result of shortcuts taken when a lot of requirements are
coming in. It is then hard to fix the structure and the architectural issues as these tend to be
moved lower down on the backlog. There seems not to be a clear incentive to keep up with
technical tasks. The consequences of this are that the solution will become more complex,
will cost more to maintain, and fixing it afterward will be more costly than doing it right the
first time. This as the cost of errors escalates over time in a project [6].

This is an issue raised by the tech lead. Another tech lead agrees that unfortunately a
proper solution is in general not enforced to replace the quick-fixed (development shortcut)
one. The decision lies on the Product Owner; if the tech part of the team is not disagreeing
and if it involves other teams and the issue is not solved on the Product Owner level, then
the issue moves up to the Stream lead. A Product Owner adds that an e�ort is made to weigh
how poor the quick fix is against proper solution and also consider the time: “We have redone
quick fixes before. We went with a quick-fixes and used them until we figured out how to
do it properly (sounds like prototyping and should not be a permanent solution). However,
in general, putting in place the correct solution is down prioritized.” This is probably a con-
sequence of the business setting the tasks and prioritizing those which gives customer value,
according to a Product Owner: “If a feature has to go into another domain and is too big,
then there is a re-evaluation going on. If product owners cannot solve it, the issue moves a
step up to the Stream Lead. In wave planning (big room planning), we try to find out who is
dependent on who, so that time is set aside for helping others.”

A stream lead was asked about this and added that many times there are conversations
about making a better solution later, but that is not followed through with: “We say that
we do the quick-fix solution in one month and then do the proper one after that during 3
months. However, what usually happens is that we have the first one working and then move
on to the next task”.

Architects support comments that: “it is always a problem catching up with technical
issues. As soon as the business value is received, then the stakeholders are happy. Iterations
need to set aside time for technical tasks”.

We argue here that there should exist incentives and reasons for keeping up with tech-
nical tasks. However, this needs to be clarified in terms of costs, of not doing those, for
the decision-makers. Every time a shortcut is implemented, the development takes up fu-
ture costs of maintenance and also for further developments. Somehow, a mentality of pay
now or more pay later should be encouraged. This should be considered in the decision and
prioritization process.

2. Development shortcuts are common
Developments shortcuts are common, and it gets worse when teams are under pressure. This
a�ects the solution integrity and maintenance cost in the long haul.

Too often, it happens that shortcut solutions are pushed rather than a good solution code-
wise. This was raised by a tech lead who adds that some squads have been really pressured
and then have made some bad solutions or taken on debt as a consequence. According to this

71

A. Issue List

tech lead, it should not be pressure on merging features that do not live up to standards.
We observe here that there is a lot of future costs that have been taken on when allowing

development shortcuts to be common and not fixed. The cost will show in terms of mainte-
nance, e�ectiveness in the teams, and functionalities of the system. Essentially the mentality
of pay now or pay more later.

3. Temporary shortcuts are maintained

Developments shortcuts that are supposed to be temporary are maintained and even extended
as new requirements are coming in. Because of this, there is extra work in maintenance as it
is not the intended way of loading the information and managing the information is done
manually as a consequence of this. It is a never-ending story that drains the team’s e�ort.

This issue is raised and discussed with tech leads and architect support. Some teams are
more heavily a�ected than others.

4. Encouragement to approve bad pull requests

Teams have been pressured by the management to approve pull requests that the team does
not consider good enough for approval. This undermined the point of having review filters, as
the goal of these is to protect the codebase from bad code. It connects to the issue of coupled
code. The system allows this in that when stakeholders are not happy with the answer they
get from IT, they can escalate the problem to the closest management and then the next
management level, until someone decides to overrule the initial position that came from the
development team.

The issue has been discussed with the support team and the tech leads. A tech lead makes
an example, mentioning one of the team’s domains, where other teams have implemented
features with a lot of shortcuts taken, and pull requests forced to be accepted that have a
lot of poor quality code in it. This, as management, say: “we need this feature now”. As
a consequence, this team has a lot of poor quality code and features implemented. Some
features are very large, and they aren’t owned by that team but others, making it even more
di�cult to fix it afterward. For more on this, we refer to issues in Double Ownership.

5. Pull request (A)

The review of pull requests is sometimes not done by the person who knows the code the
best. The owner of a domain or feature must approve and any person in the team can be
an approver, according to the tech lead. The review of pull requests usually takes too long,
although that has improved.

The issue is raised by a tech lead. The Member of the support team has added that it
might be very common for tech leads, as they are leading the team.

We can observe that review filters are there to handle code that is faulty or not being
up to standards and protect the codebase from careless changes. This is undermined when
reviewers don’t know the code, they then approve code changes they don’t know.

72

A.8 Prioritization

6. Pull request (B)
Reviews take too long. This has been improved in terms of new channels of communication
where things regarding review can be communicated. This is an example of handling the
issue with communication.

7. Pull request (C)
Pull requests are too large. This adds to the overhead work the development teams have as
branches become more long-lived. This is not following the Agile principles, which is part
of the area strategy.

This is raised by a tech lead and discussed with others. This could be a reason for (B).
According to a developer, there have been e�orts put into splitting them up as much as
possible, but in many cases, a review contains only one feature and is di�cult to split into
smaller pieces.

A.8 Prioritization
1. Too many prioritized tasks
Too many tasks are prioritized. This essentially undermines the point of prioritizing issues.

The issue is raised by tech lead that adds that this can be viewed in some of the team’s
sprints on confluence as well.

We argue that prioritization works best if there is a clear prioritization list, as this makes
it very clear what should be worked on.

2. Product Owners’ job of prioritization is not clear and therefore
more difficult than necessary
It is di�cult for a business person to prioritize technical tasks and often, they get down pri-
oritized. This leads to uninformed decisions when a Stream Lead or higher management is
taking decisions, as their source is only the Product Owner, that is the person they commu-
nicate most with, and not teach leads on the IT side.

This is raised by a Product Owner: “It is di�cult to prioritize tech things for a busi-
nessperson. I rarely completely understand the technical improvements. And it is di�cult
to motivate tech stu� over business requirements when this is done ‘upwards’. It is easier to
convince when the tech lead says we must do this now otherwise the system will break down.
We try to fit it in here and there, but it will also be down prioritized if there is other stu� to
do.”

We observe here that it happens that decisions are raised upwards and the technical
knowledge might not reach a decision-maker higher up as tech leads communicate mostly
with their Product Owner.

We argue that Product Owners should have the last say on prioritization in the team’s
area, not people above in the hierarchy. This, as they are close to both their Stream lead
and Tech leads, getting both the business and technical input. However, this works more
e�ciently if the domains are isolated from other teams’ influence.

73

A. Issue List

3. No solution spanning standard on prioritization on value against
cost on technical issues
There are no guidelines for prioritization in terms of weighing cost against value. Product
owners, and other decision-makers, are not provided with information on the costs of down
prioritizing technical tasks. Therefore, they are not considering this enough in terms of pri-
oritization. The prioritization is mainly regarding benefits for the business or the case of
severe technical tasks.

Following is a Product Owner’s own reasoning in weighing requirements: “Legal require-
ments go on top. Other business tasks underneath that and then the tech. It is di�cult to
convince the stakeholders on the business side. The stream lead is in close collaboration with
them.” Example of a case: “If there is a new feature against a technical task, I identify business
needs so the new feature will go on top”. Another case: “Development added functionality
to an already implemented tasks compared to a technical task then the last one usually wins.
The closer we are to a severe technical dept the more we prioritize it”. This Product Owner
points out that it is about the benefits as he sees it being the highest. When the new task is
added then, things to be processed are identified, and the alternative is to do it manually and
costly for the organization. That is why it is a higher priority; the benefit is high. When a
functionality already exists then the benefit is lower if the task is only a tweak of the already
existing functionality.

A.9 Agility and Scrum
1. Incorrect implementation of help processes
Estimations, sprints, and plans are not used properly. Too much is expected to be solved by
the teams without having laid the groundwork. The consequence of this is that the expecta-
tion of the teams do not reflect the reality of the team’s capacity, resulting in pressure on the
delivery, leading to shortcuts being taken. Closely related to issues in Collaboration Between
IT And Business.

A Product Owner points out that the team works a lot and has a lot on their plate. The
team is part of the planning, estimations, and is part of this process in the discussion of what
we can do. It is suggested that estimations could be done more conservatively.

What we observe from the interviews is that it is a common theme, that estimations
do not seem to have the desired e�ect on either the teams or stakeholders. Are estimation
points done properly and measured? Then an interval can be viewed on the history of how
many points the team has finished in historical sprints and from there, a more reasonable
measurement of the team’s capacity could be used.

2. Agile standard not fully implemented
Agile principles are not implemented properly.

A Product Owner mentions that some teams are not fully involved in following the Agile
principles and some are perhaps missing some of the planning. Business analysts sometimes
think that sprints are hard deadlines. This adds to the issue as well, when part of the organi-
zation is not on board on the way the teams should work. A Stream Lead comments on this

74

A.9 Agility and Scrum

as follows: “We need to stop to work with fixed scope and deadlines. Go back to a discovery
phase. We try to make sure that everything we deliver is split into small parts. How can we
slice it even thinner, so that we deliver something of value as soon as possible?”

We argue here that the team’s environment, in some cases, does not allow or require teams
to operate accordingly. Furthermore, this is also pushing back on the use of Agile principles,
as the other parts of the organization, using waterfall methodology, are not used to this way of
working and perhaps do not understand the value or the strategic reason for it. It is possible
that the environment the teams are in does not allow them to follow those principles.

3. Issues are either not being raised or clarified enough
Issues seem to be raised mainly in retrospectives and then only in regards to the work itself,
as it seems. There isn’t naturally an awareness or an ongoing improvement of processes that
are not related to product delivery. This becomes an issue if the structure does not allow
for employees to be open-minded and bring out-of-the-box suggestions. Furthermore, if the
team collaboration fails then issues will not be raised if they are not in the direct responsibility
of the team or closely related to tasks.

This is something that has come out, as questions have not been fully answered by the
interviewees, on the subject: either because of its absence or that it hasn’t been investigated
enough. It might be worth to be mindful of when there are signs of lack of innovation re-
garding what could improve.

4. Empowerment of Scrum Masters
Scrum Masters are considered by others to deal with improvements that are not of a technical
character. However, they are not empowered enough to actually be able to solve these issues
and implement solutions in the teams. Therefore, even if issues are raised, most likely things
will not improve.

Scrum Masters are not empowered to deal with things that could be improved. A Product
Owner, when asked whom the team relies on for improvement or ideas, said it should be the
Scrum master that then can take it up with other team’s Scrum masters. Member of support
team adds that they are not empowered enough from his observation to live up to that fully.

We argue here from what has been seen in the investigation phase, that there might be a
similar problem as that of the Product Owners, where there are managers outside of the team
that has influence and therefore the boundaries on responsibilities become unclear. Another
possible explanation could be rooted in that, the teams are not isolated and therefore do not
have full control over their working process.

5. No continuous delivery
The production release is done only once per month. This goes against the principle of con-
tinuous delivery and the benefits of it.

A Tech lead adds that it would be nice to have an AB-solution for releases: two versions in
prod, one that is currently used and accessed by users along with one containing new features.
Easy switch. This change is a management decision. A member of the support team adds that
it would be possible and that he does not see impediments to implement this infrastructure

75

A. Issue List

change. Teams could then prepare releases during working hours, test those, and then flip
the switch when allowed.

A.10 Other Issues and Statements
Some issues came up in the interviews, which cover many statements already discussed in
other issues or there has not been time to investigate further. These can be found below.
Sources are tech leads and stream leads.

• The solution will become too big at some point. Not as scalable as it could be.

• Bad Tools: Too many ad hoc tools are used in procedures behind the release. Se Investi-
gation phase 1. The tools and methods used by developers are vital to the productivity
of software development processes [13].

• Not easy to reproduce the PROD/SYST-environment locally (front-end developer).

• Tools could be better organization-wide: tool for internal service requests, release
overview tools, change advisory board that approves and has processes with redundant
information being over and over. Some of these have become better.

• Stressful environments for developers and some teams who are pressured too much.

• Handling the fact that some things need to be done and have hard deadlines. Hard
requirements accepted and solved by scoping

• Too many have access to all the code! Mono-repo contains the code of the whole solu-
tion.

• Some teams are better than others when it comes to the product owner prioritizing
and making sure the team is not overworked. This needs to be improved.

• “One big issue is the misalignment in regards to the architecture, where we set out to
create a feature that gets the job done, but also introduces technical depth and is not
reusable, not fit to the architecture, developed into a domain owned by a team that
does not think this code should be there. This causes friction.”

• Automated testing is lacking. If we had more automation, issues could be identified
earlier.

• The backlog is too large and seems to contain things that might never be done. Many
of those issues which seem to never be done are technical tasks.

• A good thing about the mono-repo (teams share one repository) is the overview of the
entire solution and the induced ownership. A tech lead mentions on the inducement
ownership goal (internal document: tech forum presentation based on data analysis of
mono-repo survey answered by the teams) that it is terrible to strive for development-
wise. “If everybody owns, then nobody owns”

76

A.11 Wishes From Employees

• There is more communication going on where there were silos before. Improvements
have been made.

• “We get requests all over the place regarding features and things to be developed. The
more teams we onboard, the more requests we get”.

A.11 Wishes From Employees
Every participant in both interviews and shorter talks, in the end, was asked an out of the
box question: “If they would be imagining the best improvement for the solution, to make
adaptivity and e�ciency as good as possible, from their point of view; what would that look
like?“. Find their interesting answers below.

Tech Lead
All the pains addressed, especially communication issues, that we have discussed in the in-
terview. Automated testing in place so that issues can be identified earlier. More than one
SYST environment for testing. It happens that external dependencies don’t work. Others
are doing work that is prioritized or even during freeze when regression testing is ongoing.
As there is only one SYST environment today, it is sometimes not possible to use it and it
makes the development take longer time. The Test environment is not su�cient sometimes?
SYST does not contain all the data that prod. It has happened that something that wasn’t
caught in SYST, appeared in PROD.

Tech Lead
The ability to do continuous integration, no living branches. We need to complete automated
testing.

Each team is the consumer or provider of APIs. All teams are working in isolation.

Tech Lead
“If we had automatic testing (regression today), more SYST environments, and AB-solution
in prod, then I think we would have a pretty good workplace. This would just ease our day
and could get us to work very fast”.

Product Owner
IT and business seem not to be on the same page. It is not clear on their side. A wish would
be for them to be more pro-active and take ownership in their area.

77

A. Issue List

Product Owner
We should be better at including chapters: Risk, UX, etc. It happens that we think we can
solve it ourselves. We come up with something UX related on our own. The consequence is
that we have to start over and redo the work. We should be better at delegating things like
this. UX support is part of the refinement session and is also available, we should use them.

Stream Lead
Improve the way we organize. Remove the silos and have one organization where IT and
business are close collaborating colleagues. For example, having the same leaders.

Stream Lead
We need a better channel to push things to production. It means that we cannot push features
out and toggling them o�. A better release channel and automated testing. We need to
improve this if we want to do continuous integration and development.

Support Team Member
More frequent releases, with close involvement and collaboration with stakeholders.

Infrastructure support
In the future, all infrastructure stu� should go through the infrastructure support. Sometimes
teams decide to do it on their own, there have been issues related to this and afterward, they
come to us and ask why it is not working. There used to be errors that then proves costly as
it wasn’t done right from start.

Developer
Fewer people working on the codebase (less collaboration and communication between teams).
It is hard to talk to so many people. It becomes much easier with fewer people when mak-
ing decisions (the reason for the tech forum). We have experienced while dealing with many
teams, that we are adding more but not a big deal as we already know what to do, in terms of
communication. Less mess with only 2-3 people. There is a mess also because of the mono-
repo. Too many commits when so many people are working on the same. Many merge con-
flicts, many changes. It is not possible to checkout services from di�erent branches for testing
purposes before PR on local. We do not want them to change or we want to isolate our work.

Developer
An easier way to see what the customer is seeing. Better ways to reproduce issues. It is too
di�cult to set up PROD/SYST-like environments on the workstations.

78

A.11 Wishes From Employees

Architect support
Smaller scopes and more iterations. Business analysts and product owners want too much at
once. If we would be satisfied with less and do more iterations on the solution, we could in-
crease our cadence, improve our velocity, and become more e�ective. Do less at the same time.
More iterations and smaller tasks. More frequent deployments, reducing working progress
(Idea to PROD).

What kills large organizations is not the blocker, it is the backpressure. When communi-
cating on tasks, when things stop and you are not progressing, you are generating the back-
pressure as new tasks are always coming from above. We always should make sure that things
are flowing. To continuously deliver keeps the flow going and minimizing backpressure.

You can see as we are growing in our area: things are cluttering up, become more rigid,
and things are slowing down. This is due to complexity, but also backpressure. Everything
around the teams is slowing down the development in this sense. For example, with the
communication in upper levels of management: when things are discussed and then conflicts
are pushed up to the manager next in line. People have a lot to do and this slows everyone, less
back pressure should make everyone happy. Work clutter-up and it also comes from teams
growing.

79

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2020-12-16

EXAMENSARBETE A study of development
collaboration in a water-gile-fall organization
STUDENT Astrid Jansson
HANDLEDARE Lars Bendix (LTH)
EXAMINATOR Emelie Engstöm (LTH)

Challenges of development teams in a
water-gile-fall organization

POPULÄRVETENSKAPLIG SAMMANFATTNING Astrid Jansson

Root causes and solutions are investigated in a multi-team software development setup
losing efficiency and adaptivity. The codebase is becoming more complex and expen-
sive to maintain, due to faulty implementation of Scrum and unclear code ownership.

In the study processes and performance are in-
vestigated in a multi-team setup developing a soft-
ware product. The teams are using Scrum and op-
erate in an environment affected by bureaucracy
regarding certain procedures, many imposed by
external factors.
There are concerns in the department about

how efficiency and adaptivity in teams are decreas-
ing even as IT processes are considered to work
well and follow industry standards. Incoming re-
quirements, and changes being difficult to include
in the already ongoing sprints, are common. These
requirements are imposed outside of department
control, and therefore need addressing.
Teams becoming less productive and adaptive

in the change process is the initiating problem ex-
plored by the following research questions.

• RQ1: What are the root causes for the teams
becoming less productive and less adaptive
regarding the use of the mono-repo?

• RQ2: What solutions could help to eliminate
some of these root causes?

In the analysis, root causes are investigated an-
swering RQ1. From analysis results, possible so-
lution designs are explored answering RQ2.
In investigating RQ1, we identified 60 issues af-

fecting the development. The issues are grouped

into nine areas where the three most important
ones are Agility and Scrum, Collaboration Be-
tween business and IT, and Code Ownership Cre-
ating Issues. Two main root causes are discov-
ered: Scrum not being implemented suitably and
unclear code ownership. The codebase is expen-
sive to maintain and complex due to communi-
cational and collaborative issues that stem from
Scrum guidelines not being followed. The imper-
fect code ownership furthermore affects the over-
head work of the employees, the solution scalabil-
ity, and complexity. Leading to a difficult future
(and present) maintenance and expansion.

In investigating RQ2, the solutions include en-
forcing clear code ownership, improving processes
and the Scrum implementation, as well as enforc-
ing and supporting team self-organization.

Based on the results, we recommend the orga-
nization to separate the code ownership through
modularization and implement Scrum from the
business value providers’ perspective, allowing for
long-term efficient and adaptive development im-
plementation. The organizational focus striving
to prioritize technical excellence, with the effort
to not only follow the Scrum structure but also
embrace the mindset and strategy principles.

	Introduction
	Background
	Context
	Method
	Preparation
	Interview method and scope
	Data processing
	Data gathering other than the interview format
	Validation
	Literature study
	Rescoping

	Results From Investigation Phase I - Organizational Structure
	Idea to Production
	Organization
	Team Perspective

	Results From Investigation Phase 2 - Issues
	Summary
	Results

	Analysis and Design
	Agility and Scrum
	Analysis
	Solution Design

	Collective and Double Ownership
	Analysis
	Solution Design

	Collaboration Between IT and Business
	Analysis
	Solution Design

	Discussion and Related Work
	Application and Validity
	Process Reflection
	Result Reflection
	Related Work
	Paper Review 1
	Paper Review 2

	Future Work

	Conclusions
	References
	Appendix Issue List
	Standardization
	Architecture and State of Codebase
	Traceability
	Collaboration Between IT and Business
	Code Ownership Creating Issues
	Code Collaboration and Development Teams
	Development and Shortcuts
	Prioritization
	Agility and Scrum
	Other Issues and Statements
	Wishes From Employees

