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Abstract

Evolution is a fundamental and crucial part of life that hinges on two central properties: ro-
bustness and evolvability. Robustness is required to maintain essential traits despite muta-
tions while evolvability produces novel traits that might prove beneficial in survival. While
both robustness and evolvability are necessary, embracing them simultaneously seemingly
leads to an inherent conflict due to their antagonistic goals driven by a shared mechanism,
mutation. This conflict has been partially resolved by distinguishing phenotypic robust-
ness and genotypic robustness. However, the general relationship between robustness and
evolvability across various biological systems and how they are simultaneously facilitated
are still unknown. Here, we study the relationship between robustness and evolvability of
neural circuits using a genotype-phenotype map (GP map) which describes interactions
between genes that ultimately determine the phenotype. We focus on canalization, the
buffering of phenotypes against internal and external variations, to explain the relation-
ship between robustness and evolvability. The pyloric circuit of the crustacean stomatogas-
tric ganglion is used as the model system to study the relationship between robustness and
evolvability. We use information theory to quantify robustness and evolvability and a novel
simulation-based inference technique to examine the GP map which is used as an analog
to a phenotype landscape. While robustness and evolvability are not directly correlated
globally in the pyloric circuit, they are found to be linear with respect to collective traits
of the pyloric rhythm as well as to individual traits. Robustness and evolvability are seen
to be compromising around a region in the GP map, and we hypothesize that the pyloric
rhythm is canalized, leading to local robustness and global evolvability. Multiple indica-
tors of canalization and explicit calculation confirms that the pyloric rhythm is canalized
in this neural circuit. Investigating the topology of the GP map reveals that the local
landscape around the pyloric rhythm is flatter, facilitating robustness. Deviating from the
canalized region leads to highly variable and steep landscape of the GP map, promoting
evolvability. Gradient directions of the GP map at pyloric points are seen to be correlated,
hinting at implicit mechanisms to preserve the biologically relevant behavior. In conclu-
sion, this work demonstrates that the structure of the genotype-phenotype map in the
stomatogastric ganglion facilitates robustness and evolvability through canalization. This
study also establishes a scalable and generally applicable method to examine robustness
and evolvability in any system involving mechanistic models.
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Popular Science Description

Evolution is a vital part of life where organisms better suited to their environment survive
to pass on their genes. Genes encode and largely determine how an organism ultimately
develops, and thus they are considered to be the main factors of evolution. To have a better
chance at survival, organisms must withstand genetic mutations to consistently produce
important characteristics (robustness) such as functional legs for mobility, the correct set of
organs, or the ability to communicate to fellow members in the same species. At the same
time, to be able to adapt to environmental changes, they must innovate their physique or
behavior (evolvability) that gives them a better chance at survival. Both robustness and
evolvability stem from mutations, but their aims are contradicting. Robustness tries to
maintain traits while evolvability changes them, and how biological systems promote both
robustness and evolvability in general is still unknown.

This thesis studies the relationship between robustness and evolvability and the underlying
mechanisms that promote these two evolutionary properties. We examine their relationship
in neural circuits which are core components of many living beings that prompt behavior
among many other crucial functions. As neural circuits largely determine organisms’ be-
haviors, evolution of behavior means evolution of the neural circuit responsible for those
behaviors. We use a model of a neural network responsible for controlling stomach move-
ments in crustaceans, a group of animals that includes crabs and lobsters. This network
performs its function by generating regular and stable rhythm called the pyloric rhythm
and has shown robustness and potential for evolvability in previous works. Robustness and
evolvability are not found to have a direct relationship in this system: they are neither
opposing or supporting each other. However, we see that the pyloric rhythm produced by
the circuit is canalized, meaning that this behavior is protected against small mutations.

To understand how the neural circuit canalizes the pyloric rhythm, we study how model
parameters link to behavior. The structure of this transformation confirms that the un-
derlying mechanisms of the circuit indeed canalize the pyloric rhythm. We find that this
neural circuit supports robustness around the pyloric rhythm, the key biological behavior,
through canalization while deviating from this behavior leads to increased evolvability.
Ultimately, we show that the relationship between robustness and evolvability can be un-
derstood by studying the transformation from genetic information to the resulting traits.
Additionally, this work establishes a generally applicable method that can be used to study
evolutionary properties in any model at any biological scale.
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Chapter 1

Introduction

Evolution is a fundamental and vital process of all living organisms that reveals increasingly
complex interactions and behavior with closer inspection. The wide ranges of observable
characteristics from differences in physical traits to behavior even within the same taxa
reveal the incredible potential and capabilities of biological systems to adapt to changing
conditions [1, 2]. Biological systems impress further considering that the entirety of life is
built up using a common genetic system that determines the behavioral and morphological
characteristics of an individual. These traits then directly affect the likelihood of survival
and the potential to produce offsprings to pass on its genetic material, leading to natural
selection of advantageous traits in the given environment.

While many factors such as the physical environment can affect the final traits of an
organism, the genetic information and how it is expressed largely determine the resulting
traits [3]. This structure of genetic expression to traits has been studied at different scales
in the form of Genotype-Phenotype Map (GP map) [3, 4]. Genotype refers to the genetic
information of an organism and phenotype to the observable traits such as morphology
or behavior. The GP map then is a function that transforms the genetic information to
the resulting characteristics of the organism driven by interactions between genes such as
epistasis and pleitropy [3]. The GP map proves to be a useful model for studying the effects
of genetic interactions on the resulting traits which ultimately impacts survival fitness and
evolution. In addition, the GP map can be used to study how the evolutionary capabilities
of organisms evolve.

The GP map also reveals insight into the evolutionary dynamics at the population level as
the structure of the map determines how genetic variability leads to phenotypic variabil-
ity [3]. The influence of the GP map is evident considering the consistent characteristics of
any given species despite the vast genetic diversity found in the population [1]. This phe-
notypic homogeneity within species confirms that the mechanisms to consistently produce
crucial traits with varying genetic information are contained in the GP map. However,
organisms must also be capable of producing phenotypic variability to adapt to chang-
ing environments as seen in taxonomic evolution over long time scales, also known as
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macroevolution.

Macroevolutionary processes such as speciation events where a species diverges into sister
species require viable mutational paths from a phenotypically homogeneous population.
Since the potential mutational steps are described by the GP map, it can be used to
study evolution of species over time and the underlying structure that determines their
evolution. For example, punctuated equilibrium and phyletic gradualism are theories to
explain taxonomic branching in evolution [5]. Punctuated equilibrium hypothesizes that
observable evolution occurs in discrete time steps where a population undergoes speciation
events but remains phenotypically static otherwise. On the other hand, phyletic gradualism
theorizes that evolution of phynotypes is continuous and gradual, eventually transforming
a species into a new distinct species. Since the GP map holistically describes mutational
effects on the resulting traits, it provides a solid base to study how a population evolves
over time.

1.1 Robustness and evolvability

Successful evolution requires maintenance of key traits as well as development of novel
traits. These two requirements of evolution lead to central evolutionary properties, robust-
ness and evolvability. Robustness refers to the ability to consistently generate essential
phenotypes despite genotypic variation, and evolvability refers to the ability to develop
novel traits that may lead to higher of survival fitness through genetic variation. The
coexistence of robustness and evolvability introduces an intrinsic conflict as they aim to
achieve opposing effects with a shared mechanism [6, 7]. On one hand, robustness requires
phenotypic resistance to mutations while evolvability requires phenotypic variations with
mutations [6]. These evolutionary properties have been examined in various models such
as RNA secondary structure and Boolean models, but no direct and general relationship
between them have been found [6, 7]. The potential of simultaneously promoting robust-
ness and evolvability solely from the encoding of genetic information is limited. Therefore,
there must be additional mechanisms that enable more complex genetic behaviors such as
described by the GP map.

Previous work by Wagner has proposed a solution to this conflict by considering that a phe-
notype can be expressed by many genotypes and distinguishing robustness and evolvability
of genotypes to robustness and evolvability of phenotypes [6]. He argues that a neutral
network, a connected network of genotypes that express the same phenotype, forms a
many-to-one mapping that can promote both robustness and evolvability in phenotypes.
He defines genotypic robustness as the proportion of mutations from a genotype that do
not lead to phenotypic changes and genotypic evolvability as the proportion of mutations
that lead to phenotypic changes. Clearly, the robustness and evolvability of genotypes
are antagonistic by definition. On the other hand, phenotypic robustness is defined as an
average of genotypic robustness of all genotypes within the neutral network of the pheno-
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type, and phenotypic evolvability is defined as the number of distinct phenotypes accessible
through mutation [7].

Using a RNA model, he shows that genotype robustness and evolvability are indeed antag-
onistic, but phenotype robustness and evolvability can coexist and even be correlated [6].
He claims in his work that the size of the neutral network of a phenotype corresponds to the
robustness of the phenotype since a larger neutral network implies a higher proportion of
mutations from the network lead to the same phenotype. In addition, he argues and shows
that a larger neutral network leads to higher evolvability [6, 7]. This increased evolvability
stems from novel pheontypes laying at the boundaries of the neutral network. Larger neu-
tral networks have proportionally large boundaries, ultimately resulting in higher numbers
of distinct and accessible phenotypes. In this sense, populations evolve to be more robust
and evolvable as it drifts around and fills out a neutral network, gaining both properties
simultaneously.

This theory is illustrated in Figure 1.1 where a sizable number of connected nodes shown in
c) allow robustness to mutations within the neutral network, and its extent gives access to
a larger variety of phenotypes at the boundary. In contrast, a) and b) show extreme cases
where mutational steps exclusively lead to the same phenotype or a different phenotype,
respectively. This illustration also shows that the existence of a neutral network of a
phenotype does not necessarily imply higher evolvability. The coexistence of robustness
and evolvability depends heavily on the formation of the parameter space.

Figure 1.1: Depictions of systems with varying interactions of robustness and evolvability
taken from [8]. Each node indicates a genotype that maps to some phenotype indicated
by the color, and the arrows indicate an arbitrary mutation step.

In contrast to Wagner, Mayer and Hansen have argued and shown that the properties of the
GP map determine the relationship between robustness and evolvability and that negative
correlations between robustness and evolvability are possible [7]. Using a Boolean model
they show that robustness and evolvability can be antagonistic across varying topologies of
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the GP map despite distinguishing definitions of robustness and evolvability for genotypes
and phenotypes as Wagner had [7]. The results of these theoretical models show that the
relationship between robustness and evolvability is not universal and further reinforce the
hypothesis that the mechanisms that promote both robustness and evolvability lie in the
GP map.

Genotype-Phenotype Map (GP Map)

Figure 1.2: One-dimensional example of a GP
map taken from [3]. Equivalent changes in
genotype result in different degrees of change
in the phenotype depending on the local
structure.

The genotype-phenotype map is a form of
genetic architecture that captures genetic
interactions to describe the mapping from
genotype to phenotype. The GP map is
relevant in many biological studies such as
breeding and evolution of sex, but it is
an invaluable model for understanding the
evolution of evolvability and its interaction
with robustness as shown by Mayer and
Hansen [3, 7]. The GP map can also be
thought of as a mathematical function from
genotype space to phenotype space. The lo-
cal topology of the GP map determines the
resulting phenotypic variability, directly in-
fluencing robustness and evolvability (see
Figure 1.2). A region in the GP map
with a larger gradient leads to a greater
phenotypic change than a region with a
smaller magnitude given equally sized geno-
typic changes. This idea is demonstrated
in Figure 1.2 in one dimension. A one-
dimensional GP map cannot support both
robustness and evolvability simultaneously
due to dimensional limitations. However,
biological genotypes and phenotypes are of-
ten multidimensional which gives the re-
sulting multidimensional GP map in mul-
tidimensional spaces much greater flexibility to promote both robustness and evolvability
simultaneously.

While the one-dimensional illustration provides an intuition of the impact of the GP map,
highly multi-dimensional biological systems are difficult to interpret. Thus, an additional
transformation from high-dimensional phenotypic information to a scalar quantity allows
easier interpretation of the GP map. This step produces a phenotype landscape given a
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genotype space which can even be used to establish the survival fitness landscape since
survival fitness depends on the phenotype. Treating the GP map as an analog to a pheno-
type landscape also allows analytic investigation of the GP map [9]. Previous work by Rice
has treated the GP map as a landscape arising from a mapping function φ(u) where φ is
some scalar quantity of phenotype and u the parameters of the phenotype [9]. Using this
approach, he incorporates genetic interactions to show evolution of robustness on the map-
ping structure. While such analytical investigations are not done in this work, the ideas
of the landscape of the GP map and its properties such as the gradient will be utilized as
they tie into intuitive ideas demonstrated in Figure 1.2.

The complex evolutionary behaviors arise from the genetic interactions described by the
GP map [3]. While external factors also affect the phenotype during development, this work
only considers an isolated system where the phenotypic expression is driven purely by the
genotype and the GP map. Possible examples of genetic interactions that can attribute
to the complex behavior of robustness and evolvability include pleiotropy, epistasis, and
canalization [3, 4, 8]. Pleiotropy is a phenomenon where a gene is seen to affect more than
one independent trait, causing it to have a greater influence as well as greater potential
for interactions. Epistasis occurs when the effect of a gene on a trait is determined by
expressions of other genes. These various phenomena induce nonlinear transformations of
genetic information onto phenotypes and also allow for variations of genetic architecture
across species and populations [3].

GP map as a mapping structure This work treats the GP map not specifically as
a mapping from genetic information to phenotype, but as a general structure that maps
model parameters to the observables of the model. Hence in the context of this work,
“genotype” and “model parameters” are used interchangeably as well as “phenotype” used
equivalently to “behavior” or “trait.” In addition, while the aforementioned genetic inter-
actions may not apply strictly in their definitions specifically at the genetic level in this
context, their respective mechanisms and effects are still useful to describe GP map in
general.

Canalization

While there are varying interpretations and definitions, canalization generally refers to
phenotypic robustness against internal and external variations [3]. The idea of canalization
dates back to Waddington and the epigenetic landscape and provides an explanation for
how organisms produce consistent characteristics [10]. Canalization is often depicted as
rolling down the epigenetic landscape into canals where the depths of the heavily canalized
grooves render small mutations inconsequential. To exit the canals and produce phenotypic
change, a large perturbation is required. This concept and portrayal can also be applied to
the GP map where the canalized areas form a flatter region in the phenotype landscape.
This idea can be seen in Figure 1.2 where the flatter middle portion of the map can be
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considered to be canalized and phenotypic variance from genotypic changes are constrained.

A corollary of canalization is that sufficiently large perturbation from a canalized state
causes a diverse phenotypic expression [3]. Canalization buffers phenotypes against geno-
typic variance which allows a population to accumulate genetic diversity over time without
harmful mutations. A large perturbation can displace the population from canalized re-
gions in the GP map, at which point the genetic variations once suppressed by canalization
are expressed. This phenomenon has been observed in various biological systems [3, 11,
12, 13]. For example, heat-shock protein Hsp90 is a “chaperone for signal-tranducing pro-
teins,” and incapacitating this protein leads to hidden variations in the signal-transduction
pathway to be expressed [3]. In this case, Hsp90 behaves as a canalizing mechanism to
suppress variations in the signal-transduction pathways [3]. This behavior can be seen
in Figure 1.2 where the larger gradients of the GP map around a canalized region in the
middle result in increased phenotypic variations.

Canalization also coincides with the hypothesis that larger neutral networks promote both
robustness and evolvability. A phenotype supported by a sizable neutral network can
be considered to be canalized, meaning that small mutations within the network do not
affect the phenotype. However, large mutations prompt expression of phenotypes outside
the neutral network as theorized by canalization. Furthermore, a population occupying
an expansive neutral network (thus possessing hidden genetic variation) is prompted to
express a large diversity of accessible phenotypes when greatly perturbed.

In addition to gaining access to diverse phenotypes, moving away from canalized regions
tends to result in increased variability in phenotypic robustness and evolvability. As the
regions of the GP map become less canalized, structural constraints that promote canaliza-
tion are removed. This allows populations on the phenotype landscape to exhibit greater
variety of behaviors in robustness and evolvability depending on their local topology of
the GP map. There could exist small region that is lightly canalized or a large region
that encourages rapid exploration of the GP map. The absence of constraints lead to in-
creased variability in robustness and evolvability. Ultimately, the prominent indicators of
canalization are:

1. phenotypic robustness to internal and external variations (only genetic variations are
considered in this work)

2. increased variety of phenotypes (evolvability) away from canalized regions

3. increased variability in robustness and evolvability away from canalized regions.
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1.2 Stomatogastric ganglion (STG) and the pyloric

rhythm

A system that showcases the biological capacity of evolution is the nervous system and
the brain which exhibit complexity in structure, behavior, and function that ranges orders
of magnitudes across organisms [14]. The brain performs complex computations often
involving multiple sensory inputs in short time scales and is central to the behavior and
internal regulation of many organisms. In addition, neural networks at many levels are
able to exhibit diverse behavior despite physical constraints and shared structures [15]. Its
computational capacity, applicability, and flexibility have even inspired an extensive field
of artificial neural networks where many challenging problems are tackled by leveraging
the potential in the structure of the brain [16, 17].

Previous work has demonstrated computational flexibility of a cricket song recognition
circuit to produce the observed range of biological phenotypes by varying physiological
parameters of the neurons [15]. Crickets have also displayed high level of evolvability during
speciation events where a large variety of species-specific songs are produced [15, 18, 19].
Concurrent to the behavioral flexibility and evolvability, the neural network also showcases
a degree of robustness with distinct sets of parameters yielding the same behavior [15].
The degeneracy of parameter combinations that result in the same phenotype has been
proposed as a mechanism for higher evolvability, and this degenerate phenomenon has been
observed in many neural systems as well as biochemical networks [15, 20, 21]. While the
relationship between robustness and evolvability has been studied in various systems, their
behavior in neural systems remain largely unknown due to the complexity of the neural
systems [6, 7, 22, 23].

The Stomatogastric Ganglion (STG) is a group of neurons that regulate the movement
of the stomach in many crustaceans and has been extensively studied as central pattern
generators [24, 25]. Central Pattern Generator (CPG)’s produce rhythmic patterns when
active and are invaluable systems to be studied due to their functional importance, appli-
cability to other neural systems, as well as behavioral and structural simplicity [24]. Of
the two CPG’s in STG, pyloric and gastric, this work studies the pyloric network and a
simplified model of the pyloric circuit because this network model and its behavior have
been extensively studied both biologically and mathematically. This neural circuit thus
provides a solid foundation to conduct novel studies such as this. A simplified model of
the pyloric circuit as well as its triphasic behavior are shown in Figure 1.3.

The essence of the STG pyloric circuit can be captured in a simple three-neuron model
which only consists of two types of inhibitory connections with different time scales [20].
The three neurons in the model are the lateral pyloric (LP), pyloric (PY), and a coupling
of anterior burster (AB) and pyloric dilator (PD) neurons [20]. The two types of inhibitory
connections are glutamatergic and cholinergic synapses, driven by neurotransmitters gluta-
mate and acetylcholine, respectively. Fast glutamatergic synapses exist in all three neurons
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Figure 1.3: (left) A simplified three-neuron circuit diagram of the STG pyloric network
and (right) the generated pyloric rhythm from extracellular recordings adapted from [17].
The thicker lines in the diagram indicate slow cholinergic connections while the thinner
lines indicate faster glutamatergic connections. The numbers in the pyloric rhythm mark
some of the summary features which are 1) cycle period, 2) phase delay, 3) phase gap, and
4) burst duration. Full list of features can be found in Table 1.1.

to the remaining two with the exception of PY to AB/PD. Slower cholinergic inhibitions
extend from the AB/PD neuron to both the LP and PY neurons. As suggested from
the number of originating inhibitions, the AB/PD neurons are critical to the stability of
pattern generation and are also referred to as the pacemaker neurons [20, 25].

This neural circuit is mathematically expressed as a set of first-order ordinary differen-
tial equations [20]. Each of the neurons in the model contains eight currents: a Na+

current, INA, a fast and a slow transient Ca2+ currents, ICaT and ICaS, a transient K+

current, IA, a Ca2+-dependent K+ current, IK(Ca), a delayed rectifier K+ current, IKd, a
hyperpolarization-activated inward current, IH , and a leak current, Ileak [17, 20]. In addi-
tion, there are seven synaptic connections from the inhibitions which are described by (1.1)
and (1.2) using a standard model of synaptic dynamics [26]. The synaptic current, Is is
given as

Is = gss(Vpost − Es) (1.1)

where gs is the maximal synapse conductance, Vpost the membrane potential of the post-
synaptic neuron, and Es the reversal potential of the synapse [20]. The evolution of the
activation variable, s, is given by
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ds

dt
=
s̄(Vpre − s)

τs

s̄(Vpre) =
1

1 + exp Vth−V pre
δ

; τs =
1− s̄(Vpre)

k−

(1.2)

where Vpre is the membrane potential of the presynaptic neuron, Vth the half-activation
voltage of the synapse, δ the determining variable of the activation curve, and k− the
rate constant for transmitter-receptor dissociation rate [17, 20]. The two different types of
synapses have different values for Es and k− but share the values for Vth and δ. Additional
details can be found in the Methods or the following references where the model was
taken [17, 20].

Robustness and evolvability in the STG pyloric circuit

Previous studies have examined the robustness of the pyloric circuit and found that dis-
parate parameter combinations that differ by multiple orders of magnitude can produce the
pyloric rhythm [20]. They show, simulating more than 20 million parameter combinations
on the same neuronal model, that tightly regulated networks can exhibit functionally same
behavior through compensatory mechanisms which are often found in inhibitory networks.
Hence, the behavior of such networks depend not only on the parameter values but also
the structure that allows interactions between the parameters as previously discussed with
the GP map.

They also compared salient features of the pyloric rhythm between the model network
outputs and biological data and distinguished the resulting simulation behaviors into py-
loric, pyloric-like, and non-pyloric rhythms [20]. Rhythms are identified as pyloric-like if
1) the neuron bursts in every period are ordered by AB/PD-LP-PY, 2) a gap exists be-
tween AB/PD and LP bursts, and 3) LP bursts begin before PY burst and ends before
PY burst ends. Pyloric rhythms in this context are a subset of pyloric-like rhythms whose
features are within a range of 2 standard deviations from the mean of the biological data.
The salient features and their values are shown in Table 1.1. All other behaviors such as
different ordering, biphasic rhythms, or partially non-firing neurons, are considered to be
non-pyloric rhythms.

Pyloric rhythms from this study were found to be rare among the simulated behaviors,
but their model parameters were consistent with neuronal properties observed in biological
data [20]. For example, the synaptic strength from LP to PY was narrowly defined for
pyloric rhythms while the other parameters varied larger ranges. The rarity and the vari-
eties of parameter ranges of pyloric rhythms indicate that parameters differ in importance
which would be consequences of the GP map.

More recent work on the system using simulation-based inference has found distributions of
parameter sets that produce pyloric rhythm [17]. The study identifies regions of parameter

9



Table 1.1: Salient traits of the pyloric rhythm and their experimental ranges adapted
from [17, 20]. They are also used as summary statistics in SBI where the Extracted features
were measured from the data while the Derived were calculated from extracted features.

Trait Notation µ σ

Cycle period [s] T 1.509 0.279
AB/PD burst duration [s] dbAB 0.582 0.133
LP burst duration [s] dbLP 0.399 0.113
PY burst duration [s] dbPY 0.530 0.150
Gap AB/PD end to LP start [s] ∆tesAB−LP 0.221 0.109
Gap LP end to PY start [s] ∆tesLP−PY -0.061 0.060
Delay AB/PD start to LP start [s] ∆tssAB−LP 0.803 0.169

E
x
tr

ac
te

d

Delay LP start to PY start [s] ∆tssLP−PY 1.141 0.216

AB/PD duty cycle dAB 0.385 0.040
LP duty cycle dLP 0.264 0.059
PY duty cycle dPY 0.348 0.054
Phase gap AB/PD end to LP start ∆φAB−LP 0.148 0.065
Phase gap LP end to PY start ∆φLP−PY -0.040 0.034
LP start phase φLP 0.533 0.054

D
er

iv
ed

PY start phase φPY 0.758 0.060

space with high likelihood for pyloric rhythm production using a novel technique that allows
Bayesian inference of the entire 31-dimensional parameter space. They corroborate that
the pyloric rhythm can be produced with disparate parameter combinations as previously
shown. In addition, they show that the network behavior is maintained along a line in the
region of parameter space with high likelihood for producing the pyloric rhythm despite
considerable changes in parameter values.

The conserved behavior along a line in parameter space demonstrates that the behavior
of the pyloric rhythm resides as a single contiguous region in the parameter space as
opposed to separate clusters [17]. This structure hints at possible evolutionary paths of
the circuit, but more importantly, it reveals the landscape of the GP map that allows
robust conservation of behavior. The region of high likelihood can be considered to be a
neutral network where internal mutations have no effect on the resulting phenotype. This
idea is further reinforced by novel behaviors found within small deviations from this neutral
region [17].

Previous biological studies have found variability in behavior changes from the pyloric
rhythm when externally perturbed [27]. They show that the pyloric rhythm is reliably
produced during tolerable temperature changes in crabs that are acclimated to different
temperature ranges. The underlying states of the pyloric circuit can be seen to be adjusted
according to the temperature ranges. For example, crabs that were acclimated to higher
temperature ranges preserved the pyloric rhythm up to higher temperatures than crabs
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that were acclimated to lower temperatures ranges. These variances hint that the neural
circuits occupy different regions of the neutral space depending on the acclimatization.
Furthermore, they show that the breakdown of the pyloric rhythm with sufficiently large
temperature changes occurs differently for individual circuits but also for circuits acclima-
tized to various temperature ranges. These variances further reinforce the existence of a
neutral network that expresses a qualitatively identical phenotype with a diversity of novel
behavior found within small perturbations as seen in Gonçalves, et al. [17, 27].

Ultimately, the pyloric circuit has demonstrated its robustness and potential evolvability
through its expression of the characteristic rhythm with disparate parameter combina-
tions, tendency to localize to different regions of the neutral network depending on its
environment, and novel behaviors with sufficient perturbations in both biological and com-
putational studies. However, how these robustness and evolvability arise, the relationship
between the observed robustness and potential evolvability, and the general landscape of
the GP map are yet unknown. The exhibited robustness in the network, simplicity of
the generated pattern, a simple mathematical model involving just three model neurons,
as well as extensive biological studies make the STG an ideal model to investigate the
evolutionary properties in neural systems [17].

1.3 Simulation-based inference (SBI)

High number of variables as well as observables have stunted comprehensive understand-
ing of many mathematical models in computational neuroscience [17]. In addition, the
inverse problem of fitting model parameters to biological data proves to be difficult and
increasingly so with growing complexities of models and data. Commonly used methods
often require accurate intuition of the model from the user and a certain amount of manual
tuning of parameters to yield useful results. These methods lack the ability to be auto-
mated systematically but also inhibit holistic understanding of the parameter space that
may contain more than one parameter combinations that support a given behavior [17].
Statistical inference is considered to be the traditional method for automated parameter
identification in stochastic models, but it is computationally intractable for mechanistic
models with dozens or even hundreds of parameters.

Bayesian inference aims to calculate the posterior over input parameters following Bayes’
theorem given by

p(θ|x)p(x) = p(x|θ)p(θ) (1.3)

where x is some observation, θ the input parameters, p(θ) the prior, p(x) the marginal
likelihood, p(θ|x) the posterior, and p(x|θ) the likelihood function [16]. Intuitively, the
posterior describes the likelihood of some θ given the observation x. Hence, calculating the
posterior is equivalent to finding model parameters, θ, that reproduce biological behavior
or data, x. This description of the Bayes’ theorem is specified to fit the usage in this work,
but the theorem can be applied generally to probabilistic events.
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In the context of this work, Bayesian inference is used as a method to assess the GP
map. The input variables, θ, represent the genotype or the parameters of the STG model,
and the observations, x, are the phenotypes, the traits of the pyloric rhythm. Finding an
accurate and complete mapping from genotypes to phenotypes would require an impossible
number of calculations from parameter samples covering the entire genotype space to their
phenotypes. However, inferring the posterior gives a distribution of parameters that map to
the given phenotype, and this method can be used to accurately characterize relevant parts
of the GP map. Ultimately, Bayesian inference provides an accessible and computationally
efficient method to uncover the GP map.

Obtaining the posterior requires calculation of the likelihood function, p(x|θ), which is
often intractable since it is implicit in mechanistic models [16]. The likelihood function is
calculated as

p(x|θ) =

∫
dzp(x, z|θ) (1.4)

where z denotes latent variables generated during model simulations and p(x, z|θ) the joint
probability density of x and z [16]. In practice, obtaining the likelihood would require in-
tegration over all possible paths within the model simulation [17]. Likelihood-free methods
such as approximate Bayesian computation (ABC) that use simulations have been devel-
oped to bypass the likelihood calculation, but these traditional simulation-based methods
have various limitations such as inability to handle continuous data and exponential scaling
of number of required simulations with increasing data dimensions [16].

Recent developments in Simulation-Based Inference (SBI) have leveraged advances in ma-
chine learning to build a novel technique that does not require the likelihood and is gener-
ally applicable to any model with simulators [17]. Machine learning powered SBI usually
achieves better accuracy, scalability, and amortization by training a deep neural network to
perform density estimations [16, 17]. In this work, we use a variant of SBI called Sequential
Neural Posterior Estimation (SNPE). SBI is a crucial element of the methodology, but
the exact details are impertinent to the scope of this work. Hence, we briefly explain the
workings, but the details can be found in the following references [17, 28, 29].

Simulation-based inference and consequently SNPE use simulations to train a deep neural
network. This foundation allows the method to be flexible in its configuration, inputs,
and working structure that can be better adapted to various systems [17]. The method
requires three inputs: 1) a sample phenotype which can be a selection of summary features
of the phenotype, 2) a mechanistic model that maps parameters θ to some phenotype,
and 3) a prior distribution p(θ). The schematic of the inference technique is shown in
Figure 1.4. Given the prior distribution, a sample phenotype, and the mechanistic model,
SNPE trains a conditional density estimator using a parametric model qφ determined by
a set of parameters, φ [28, 29]. The objective is to train a neural network to serve as the
parametric model, qφ, with weights φ such that p(θ|x) ≈ qφ(θ|x). The network draws
samples from the prior, p(θ), and minimizes the loss given as
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Figure 1.4: Schematic of simulation-based inference using sequential neural posterior es-
timation taken from [17]. Supplied with a mechanistic model, a prior distribution, and
summary data (x), points are sampled from the prior to simulate the model (step 1).
The results are then used to train a neural density estimator (step 2) which approximates
the posterior (step 3). Sequential neural posterior estimate then draws samples from the
learned distribution to further train the network (step 4).

L(φ) = −
N∑
j=1

log qφ(θj|xj) (1.5)

where θj and xj are a set of parameters sampled from the prior and the resulting phenotype
from the parameter set, respectively [28]. The network then learns the posterior over
iterations. SNPE extends this method to allow multiple rounds of training where the
parameter samples, θj , are not drawn from the prior but from the proposal distribution
over parameters, p̃(θ), given by the conditional density estimator, qφ, in the state before the
round (Figure 1.4, step 4) [17]. This method of sampling enhances the learning efficiency
of the network by refining the prior distribution to be more relevant for the model. This
sequential neural density estimation leads to discrepancies in the resulting output, but
various techniques not expanded upon here are developed to mitigate the problems [28].
Ultimately, SBI replaces likelihood calculation by training a sufficiently flexible artificial
neural network, qφ, that can directly estimate the posterior for large number of simulations
such that p(θ|x) = qφ(θ|x) for N →∞ [29].

The resulting method is generally applicable to most models, can handle diverse structures
and multimodal distributions, and also allows rapid amortized inference [17]. Amortized
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inference allows access to the posterior distributions of any given phenotype after the
initial training without requiring additional training for each new phenotype to be studied.
Importantly, this feature can be used to efficiently reveal the underlying genotype network
that support the supplied phenotype. As mentioned previously, the posterior distribution,
a region of high likelihood of a trait, can be thought of as the neutral network of the
phenotype. However, simulating the model with parameter sets from the posterior results
in variations in phenotypes due to numerical variations in the continuous space. This sets
the basis for further investigation into robustness and evolvability as well as the structure
of the GP map.

1.4 Information theory

While robustness and evolvability have been studied previously in various systems, they
still lack commonly accepted mathematical definitions that are generally applicable to any
system of interest [6, 7]. In addition, robustness and evolvability have only been treated in
discrete models and have never been calculated for continuous spaces. Here, robustness and
evolvability are quantified using an information theoretical approach that can be adapted
to any model, continuous or discrete. This measure is particularly useful as it also scales
with high dimensions often found in more complex systems.

A fundamental measure of information is given by Shannon entropy, H(X), given as

H(X) = −
N∑
i

P (xi) logP (xi) (1.6)

where P (xi) denote the probability of possible outcomes xi from a discrete random variable
X [30, 31]. While the actual value of Shannon entropy, also referred to as information en-
tropy, has no unit, the base of the logarithmic function determines the unit of information.
For example, log2 would result in information in bits while ln would result in units of nats.

Due to the generality of the formulation and applicability to statistical distributions in
multiple dimensions, information entropy is used in many fields such as communication
theory and machine learning. However, using information entropy for continuous variables
introduces complications. Continuous entropy, also known as differential entropy, lacks
certain compelling properties of Shannon entropy such as non-negativity and invariance
under change of variables [31]. Differential entropy, h(X), is given as

h(X) = −
∫
χ

p(x) log p(x) (1.7)

where the equation differs from (1.6) only in that the integral over the support of a con-
tinuous probability distribution, χ, replaces the summation over possible outcomes. While
differential entropy may lack certain desirable qualities, it still functions well as a measure
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of information especially for the usage within the scope of this work. Principally, informa-
tion entropy is used as a measure for robustness and evolvability as well as canalization.
While there are formal differences in the formulations of entropy for discrete and contin-
uous variables, no specific distinction is made for entropy as a measure between the two
cases in this work. The distinction is omitted due to the lack of necessity from the simple
usage within this scope. However, the working system is continuous, and further utilization
of these entropy measures potentially requires examination into their formalities.

Entropy is a measure of uncertainty [30]. Intuitively, a probability distribution that spans
a larger area in a bounded space is more uncertain than a more constrained distribution.
The wider distribution with greater uncertainty thus has higher entropy than the narrower
distribution. This intuition can be applied to interpretations robustness and evolvability.

Robustness and evolvability Supplied with a posterior estimate from SBI for a given
phenotype, robustness can be calculated as the entropy of the posterior distribution. The
shape of the distribution as well as their ranges determine the value of the entropy. In-
tuitively, posterior distributions of robust phenotypes will span a wider region in the pa-
rameter space and thus have higher entropy. Hence, a higher entropy indicates higher
phenotypic robustness.

Evolvability is calculated as the entropy of the phenotype distribution resulting from sim-
ulating sampled points from the posterior. Larger phenotypic variation, indicating higher
evolvability, results in wider distributions in the phenotype space which result in higher
entropy.

Canalization Canalization can also be quantified using entropy. Often, canalization is
quantified as a ratio between measures of phenotypic change and genotypic change, which
lends to the idea of a measure calculated as a ratio between robustness and evolvability [32,
33]. However, as explained in Section 2.4, this work uses a fixed genotypic variation in
quantifying canalization, making the robustness in the ratio constant. Hence canalization
in this scope only depends on the phenotypic variability. Since the aim of canalization is
to locally reduce phenotypic variability, we calculate canalization as the inverse of entropy
of the phenotype distribution stemming from a fixed genotypic variation. Intuitively, this
inverse entropy measure describes how tightly distributed the phenotypic variations are
in relation to a fixed perturbation, directly reflecting the definition of canalization. The
measures of evolvability and canalization are thus cognates in the sense that they are
both calculated from phenotypic distributions. However, the origin of the genetic variation
distinguishes evolvability and canalization. Genetic variation in evolvability arises from a
neutral network, the posterior distribution, of a given phenotype, while genetic variation
in canalization arises from a fixed perturbation.
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1.5 Summary and objectives

Robustness and evolvability are seemingly conflicting properties that can be simultane-
ously promoted by the genetic structure and its interactions which compose a genotype-
phenotype map. Consideration of a large neutral network can resolve this conflict. Most
small mutations from a genotype in the neutral network will preserve the phenotype, mak-
ing the phenotype robust. At the same time, a large neutral network supports evolvability
since it increases the diversity of accessible phenotypes within small perturbations at the
boundary of the neutral network. The pyloric circuit of the stomatogastric ganglion ex-
hibits a robust behavior despite variations in parameters of multiple orders of magnitude
through compensatory mechanisms in the circuit [17, 20, 34]. Although evolvability has
never been studied explicitly for the STG, the diversity of novel behaviors found with
sufficiently large perturbations from different circuit states hint at a neutral network that
also supports evolvability. A novel inference method enables a systemic and holistic ex-
amination of the GP map using information entropy as a general measure of robustness,
evolvability, and canalization.

Building on these foundations, this work aims to develop a framework for studying ro-
bustness and evolvability in neural networks using the STG pyloric circuit as the model
system. Using novel information theoretic definitions of robustness and evolvability, the
relationship between these two properties in the pyloric circuit is first studied. Specifically,
robustness and evolvability of different phenotypes are quantified throughout the GP map.
We use these phenotypic robustness and evolvability to study their relationship. Addition-
ally, we study how robustness and evolvability behave with respect to individual traits of
the pyloric rhythm as well as collectively. Finally, the GP map is thoroughly charted to
understand the underlying structure or mechanisms that facilitate robustness and evolv-
ability in the pyloric circuit. Canalizing behavior is specifically examined as a feature of
the GP map to understand how the circuit robustly produces the pyloric rhythm.
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Chapter 2

Methods

The following sections describe the methods used for two experiments which are 1) in-
vestigating robustness and evolvability in the GP map and 2) studying the structure of
the GP map using fixed genetic perturbations (mutations). The first investigation is done
by determining phenotypic robustness and evolvability of evenly-spaced points around the
phenotype space through posterior estimation. The second study aims to unveil the struc-
ture of the GP map by mapping a wide coverage of the parameter space to the phenotype
space. These approaches are prefaced by explanations of SBI usage and quantification of
robustness and evolvability which are used commonly across the two studies.

2.1 Simulation-based inference and the STG network

The main purpose of SBI in this work is to predict and draw samples from the poste-
rior distribution of the STG model. The resulting distribution is composed of parameter
samples that satisfy the given model output. The samples are simply drawn by supply-
ing a trained SBI network with a set of desired model outputs, x. The resulting output
distribution is a user-specified number of samples from the the posterior distribution of
parameters, p(θ|x). Each of the sampled parameter combinations theoretically map to
the supplied phenotype with varying likelihood. This work largely used the computational
implementation of the STG network and the SBI framework for studying this system in a
previous work by Gonçalves, et al. [17]. The code of their implementation including the
mechanistic model of the STG circuit and the usage of SBI where this work was based
upon is available on Github [35].
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STG model

The three-neuron STG model is described by the standard method of synaptic dynamics
as previously mentioned [17, 20, 26]. In total, the model includes 31 parameters, of which
24 are maximal membrane conductances of each of the eight currents for the three neurons
independently. The remaining 7 parameters are maximal conductances of the synapses.
These 31 parameters span a 31-dimensional parameter space for the model. The synaptic
conductances span uniform spaces from 0.01 nS to 1,000 nS logarithmically except the
synapse from AB/PD to LP which spans from 0.01 nS to 10,000 nS [17]. The ranges
of the maximal membrane conductances are shown in Table 2.1. The glutamatergic and
cholinergic synapses in the model share two parameters, Vth = −35 mV and δ = 5 mV [17].
The two distinct parameters, Es and k−, are set as -70 mV and 1/40 ms for glutamatergic
synapses and -80 mV and 1/100 ms for cholinergic synapses respectively [17].

Table 2.1: Ranges of the maximal membrane conduc-
tances used as parameters in the STG model. All val-
ues are in [mS cm−2]. Taken from [17].

Neuron: AB/PD LP PY

Membrane plow phigh plow phigh plow phigh

Na 0 500 0 200 0 600
CaT 0 7.5 0 2.5 0 12.5
CaS 0 8 2 12 0 4
A 0 60 10 60 30 60
KCa 0 15 0 10 0 5
Kd 25 150 0 125 50 150
H 0 0.2 0 0.06 0 0.06
Leak 0 0.01 0.01 0.04 0 0.04

The behavior of the STG circuit
is simulated as described in (1.1)
and (1.2) for 10 s with a step size
of 0.025 ms. The voltage traces re-
sulting from the model were used
to extract the 15 summary statis-
tics as shown in Table 1.1 by lo-
cating spikes using a threshold.
The usage of summary statistics
as opposed to the entire generated
data allows the network to learn
more relevant features, increasing
training efficiency and making the
eventual interpretation easier.

The summary statistics include
features that describe the rhyth-
mic activity of all three neurons
in the network: pulse period, burst durations, gaps between bursts, and delays between
bursts which are extracted from the voltage traces. The remaining traits are calculated
from the extracted traits. Duty cycles are found as ratios between burst durations and the
cycle period of respective neurons. Phase gaps are similarly found as ratios between the re-
spective end-to-starts and the cycle period. Start phases are ratios between start-to-starts
and the cycle period.

Three features were added to the summary statistics to describe the maximal duration of
each neuron with its voltage above -30 mV to distinguish traces with plateaus during the
burst onset around -10 mV [17]. These features were set with a minimum of 5 ms. These
features were used by Gonçalves, et al. to train the network, but they are omitted in our
analysis as the scope of the work focuses on more biologically relevant data. Emphasis in
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this work is not on the specifics of the traits but rather the general phenotypic behavior in
the GP map.

Distinctions are made between pyloric and non-pyloric rhythms in this work. In this
case, pyloric rhythms are behaviors whose traits are within 2σ of the experimental mean
according to Table 1.1, while behaviors that do not fit into this window are considered non-
pyloric. We use an extended range of phenotypes (µ±4σ) to sample points from phenotype
space, and valid rhythms with traits that do not fall into ±2σ of the mean are considered
to be non-pyloric. In addition, pyloric points are used to refer to points in both phenotype
space and genotype space. Pyloric points in phenotype space are defined as previously
mentioned. Pyloric points in the genotype space refer to points in the 31-dimensional
parameter space that maps to pyloric behavior when used in the STG model.

Simulation-based inference

This work uses an implementation of SBI called delfi (http://www.mackelab.org/delfi),
now succeeded by sbi (https://www.mackelab.org/sbi). delfi was used to study the
STG circuit in previous work by Gonçalves, et al., and this work builds on the framework
provided.

Training SBI requires initial training using three components: a prior distribution, a
mechanistic model, and the resulting data or optionally, a user-specified summary statis-
tics [17]. With the base configuration of SBI already given for the system from earlier work
by Gonçalves, et al., an instance of SBI network was trained using the same structure and
parameters [17]. The implementation used SNPE-C and masked autoregressive flow for
training and density estimation [17]. As with their implementation, the neural network had
three layers of 100 hidden units each. This trained SBI instance was used for all further
posterior sampling. The prior distribution used is a 31-dimensional uniform distribution
that spans [−

√
3,
√

3] in each dimension that corresponds to the 31 parameters of the STG
model normalized in logarithmic space. The 15 traits as shown in Table 1.1 as well as
the three additional features were used as summary statistics to train the network. The
network was trained for 10 rounds and 2 epochs using 10 data points each round.

Distance measures Distances in both phenotype and genotype spaces are calculated as
the Manhattan distance to mitigate the effects of higher dimensionality [36]. The Manhat-
tan distance between two points x and y in either spaces is given by

∑N
i=1 |xi − yi| where

N is the dimensionality of the respective spaces.

However, since a reference point in the form of the natural behavior exists in the system and
the posterior distribution of this phenotype can be estimated, distance in parameter space
can also be calculated as the log-likelihood of a point on the posterior distribution. Using
SBI, 1,000,000 samples were drawn from the posterior using the experimental mean of the
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biological pyloric data as the target phenotype (see Table 1.1). The distribution was trans-
formed to a Gaussian Kernel-Density Estimate (KDE) using scipy.stats.gaussian kde

with bandwidth ≈ 0.674. These distances in the parameter space were then calculated
using the logpdf method of gaussian kde. While this method is not used extensively
in this work, it provides a potentially more relevant description of the parameter space
especially given the high dimensionality and is used in Appendix C.

2.2 Quantification of robustness and evolvability

As mentioned in Section 1.4, robustness and evolvability are quantified using information
entropy. While entropy is a useful property of probability distributions, calculation of
entropy from samples drawn from non-parametric and arbitrary distributions remains a
non-trivial task [31]. The posteriors generated by SBI are often such probability distri-
butions which requires the use of non-parametric entropy estimators [17]. The entropy
estimator used for this work is an implementation of the k-nearest neighbor algorithm and
can be found in the following Github repository [37, 38]. All entropy calculations used the
get h function with k = 1 and are given in natural units, nat.

Figure 2.1: Performance of entropy esti-
mation in accuracy (red) and estimation
time (blue) with varying number of Gaus-
sian samples. Samples were drawn from a 31-
dimensional Gaussian distribution with co-
variance of the posterior distribution of the
pyloric rhythm.

Entropy estimation performance Es-
timating entropy naturally leads to a cer-
tain level of uncertainty. Using a the co-
variance matrix of the posterior distribu-
tion of the pyloric rhythm, varying num-
bers of samples were drawn from a 31-
dimensional Gaussian with the aforemen-
tioned covariance. The discrepancy be-
tween estimated entropy of the distribution
and analytic entropy from the same distri-
bution in PyTorch were calculated and is
shown in Figure 2.1. A clear compromise
between accuracy and calculation time can
be seen. These measures were used along
with computation times to determine sam-
ples sizes.

Robustness is quantified by the entropy of
the posterior distribution estimated from
SBI given a trait. All robustness calcula-
tions were done using 100,000 parameter
samples drawn from the posterior. Evolv-
ability is quantified as the entropy of the
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distribution in phenotype space resulting from simulating the model with the sampled pa-
rameters from the posterior. The contexts where robustness and evolvability are calculated
can be seen in Figure 2.2. In calculating evolvability, 50,000 points were sampled from the
posterior to be simulated due to computation times in model simulation. The number of
resulting points in the phenotype space varied due to a large proportion of invalid map-
pings. Invalid mappings arise from the network failing to produce correct rhythms, most
likely due to incompatible parameter combinations [20].

Normalization Entropy is an extensive measure, whose maximum value scales with
the size of the system. Robustness and evolvability correspond to the entropy of the 31-
dimensional parameter space and the 15-dimensional phenotype space, respectively. To
compare entropy of spaces with different dimensionalities, entropy values were divided by

the maximal entropy of the respective spaces: Hθ,x
normalized =

Hθ,xi

Hθ,xmax
. The maximal entropy

was estimated from 100,000 samples drawn from uniform distributions that span the geno-
type or phenotype space (derivation in Appendix F). Maximal entropies of parameter and
phenotype spaces were found to be Hθ

max = 46.979 and Hx
max = 96.037, respectively. The

maximal entropy of the genotype space is found to be lower than that of the phenotype
space despite more than a two-fold increase in the number of dimensions. The higher
maximal entropy of the phenotype space is caused by significantly larger ranges in all
phenotypic dimensions.

2.3 Robustness and evolvability in the GP map

To study the trends in robustness and evolvability around the GP map, the 15-dimensional
phenotype space spanning 4 standard deviations around the mean was sampled using a
Sobol sequence, a quasi-random generator that results in a more even coverage of the space
than random uniform sampling [39]. While the pyloric range spans two standard devia-
tions, four were taken for a holistic view of the GP map which would capture nearly all
potential behaviors assuming that the traits are normally distributed. 2,048 Sobol sam-
ples were drawn in the phenotype space (Figure 2.2, left) and used as the target traits to
sample points from their posterior distributions using SBI. The robustness of each target
trait (phenotype) was calculated as the entropy of the resulting posterior distribution of
parameters (genotype) (Figure 2.2, middle). For each target trait, the posterior samples in
parameter space were then used to simulate the STG model to yield a distribution in phe-
notype space. The evolvability of the original target traits were then quantified as entropy
of these distributions in phenotype space (Figure 2.2, right). The same procedure was done
with two standard deviations of range and 1,024 Sobol points to examine robustness and
evolvability within the pyloric window.
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Figure 2.2: Schematic of investigating robustness and evolvability in the GP map. Posterior
distributions (middle) of Sobol-distributed points (left) are drawn using SBI. The points
are then used to simulate the STG circuit, resulting in a distribution of behaviors arising
from the parameter combinations (right). The entropy of the posterior distributions and the
resulting phenotype distributions are quantified as robustness and evolvability, respectively.

Filtering invalid behavior While many points in parameter space simply do not map
to a phenotype leading to invalid mapping, some resulting phenotype traits are found to
be biologically impossible. These phenotypes are excluded from all analyses. The criteria
for omission are: 1) the sum of burst durations of all three neurons exceeds cycle period,
and 2) any burst durations are negative.

2.4 Structure of the GP map and canalization

To holistically examine the structure of the GP map and possible supported behaviors,
the GP map was thoroughly charted using Sobol-generated points as centers for Gaussian
sampling [39]. First, the covariance matrix of the posterior distribution of the pyloric
rhythm is found to be used as an estimate of mutational step size. Then, 4,096 Sobol-
generated points are drawn in the parameter space. These Sobol-generated points are
then used as centers for Gaussians with the same covariance as the posterior distribution
of the pyloric rhythm. 50,000 samples were drawn from each Gaussian (Figure 2.3, left).
The use of Gaussian sampling around Sobol-distributed points produces a a comprehensive
coverage of the GP map with 4,096 sets of 50,000 parameter samples. These sets of 50,000
parameter combinations were used to simulate the STG circuit, yielding 4,096 distributions
of phenotypes. Canalization was calculated as the inverse of the entropy of these phenotype
distributions in each set (Figure 2.3, right).
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Figure 2.3: Schematic for charting the GP map. Gaussian samples seeded from Sobol-
distributed points in parameter space (left) are used to simulate the STG circuit. The
resulting phenotype distribution (right) is then quantified to yield an explicit measure of
canalization.

This approach is distinct from what is described in Section 2.3 to study robustness and
evolvability by studying the local topology of the GP map directly without consideration
of any target phenotype. As shown in Figure 2.2, the posterior distributions of a given
trait describes a particular region of the parameter space relevant to that specific trait.
This skews the interpretation of the GP map towards the given trait. On the other hand,
this approach shown in Figure 2.3, samples equal portions of the genotype space that
result in varying degrees of phenotypic variation. Effectively, this is equivalent to the
visualization in Figure 1.2 in higher dimensions. We take equal portions of the genotype
space (∆g, Figure 1.2), and study the phenotypic variation (∆p, Figure 1.2) stemming
from this fixed genotypic variation which is given by the covariance of the Gaussian in this
instance. Ultimately, this approach unveils the local topology of the GP map around the
Sobol-generated points, which evenly represents the GP map.
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Chapter 3

Results

3.1 Relationship between robustness and evolvability

No global trend between robustness and evolvability

We first examine the global relationship between robustness and evolvability in the pyloric
circuit. The base assumption is that robustness and evolvability are negatively correlated
in general due to their intrinsic conflict despite some models showing positive correlation.
Figure 3.1 shows the distribution of phenotypic robustness and evolvability found as de-
scribed in Section 2.3 where each point indicates a Sobol-generated phenotype. No evident
trend can be seen between robustness and evolvability among the samples across the GP
map. If they were either positively or negatively correlated, clear linear trends with pos-
itive or negative slopes, respectively, would be seen. However, this distribution indicates
that robustness and evolvability in this neural circuit are not directly related globally as
seen in other systems. Rather, a balance between robustness and evolvability seems to be
favored in the system as indicated by the grouping of phenotypes around robustness and
evolvability values of roughly 0.8. The marginal distributions also show that the points are
grouped around the point with robustness and evolability roughly at 0.8. Ultimately, we
find that there is no global relationship between robustness and evolvability in the pyloric
circuit.

Linearity of robustness and evolvability

Initial investigation failed to identify a direct global relationship between robustness and
evolvability in the pyloric rhythm. We hypothesize that the global balance of robustness
and evolvability arises from local trends of robustness and evolvability at the level of
individual traits. Linear regression was performed on robustness and evolvability of Sobol-
generated traits to examine if any particular traits were indicative of either robustness or
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Figure 3.1: Distribution of normalized phenotypic robustness and evolvability. Each dot
represents a Sobol-generated point in phenotype space. (r = 0.09, p = 0.006)

evolvability. Linear regression was performed using all 15 traits after standardization to
reduce the effects of varying orders of magnitude among traits.

Figure 3.2 shows how robustness (purple) and evolvability (orange) in the network depend
on individual traits. No clear anti-correlations are seen in most traits. Most traits behave
linearly and are coherent to varying degrees in slopes of robustness and evolvability whether
they increase or are kept at the same level. On the contrary, the phase gap AB/PD end to
LP start, ∆φAB−LP , seems to show clearly opposing slopes. These opposing slopes indicate
relative importance of this phase gap where this particular trait heavily modulates the final
behavior by compensating for deviations in the rhythm caused by other parameters.

Both robustness and evolvability clearly increase with cycle period, T (top left corner).
Since cycle period is an overarching trait that defines the rhythmic window, longer period
could be a foundation to support more diverse intra-rhythm behaviors, leading to increased
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evolvability. The increased number of data points for longer period also indicates that a
larger variety of rhythms can be accommodated in longer cycle periods. Increased robust-
ness could also be facilitated by longer cycle periods as the flexibility to deviate while
maintaining the characteristic triphasic rhythm increases.

Figure 3.2: (upper) Normalized robustness and evolvability per trait of the pyloric rhythm.
Each dot represents a Sobol-generated point (phenotype), and the lines indicate linear fits.
r- and p-values of the fits can be found in Appendix A. (lower) Slopes from linear regression
of robustness and evolvability using the full 15 phenotypic traits.
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Stemming from the predominantly linear trends in robustness and evolvability across the
traits, we investigate the linearity of the global robustness and evolvability. Here, we use
the linear regression of robustness and evolvability on the full 15 traits. The slopes from
linear regression per trait are shown in the lower plot of Figure 3.2. Analogous to the
trends per trait, the majority of the coefficients are small in magnitude, and no overall
trend can be found over the entirety of the 15-trait vector. Cycle period and phase gap are
again the most distinct, reinforcing their importance in modulating the pyloric rhythm.
The results coincide qualitatively when looking at phenotypes generated within the pyloric
range. These trait-specific trends of robustness and evolvability suggest that most traits
have minor contributions to global relationship of robustness and evolvability. However,
certain key traits show more notable behavior that hints at their impact in determining
the global relationship between robustness and evolvability.

Figure 3.3: Linear regression predictions of robustness (left) and evolvability (right) for
the pyloric range (µ ± 2σ; top) and extended range (µ ± 4σ; bottom). The brown lines
indicate perfect prediction.

We now examine the regression performances to investigate the global behavior of robust-
ness and evolvability with phenotype. Figure 3.3 shows the predictions from the linear
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regression for robustness (left) and evolvability (right) for both pyloric (µ ± 2σ; top) and
extended ranges (µ ± 4σ; bottom). The linear fits successfully capture the dominating
trends of robustness and evolvability. With all of the r2 values above 0.53, global robust-
ness and evolvability are largely linear with respect to the pyloric rhythm traits. The
global linearity further supports the idea that robustness and evolvability at individual
scales aggregate to determine the global trends.

However, there are systemic errors indicated by consistent deviations near the extreme
values. For example, the robustness in the pyloric window tends to diverge from the
prediction with decreasing robustness. These deviations indicate nonlinear behavior with
decreasing robustness and hint at a lower bound of robustness for pyloric rhythms. A
lower bound would signify that the pyloric rhythm is produced only when a certain level
of robustness can be achieved, possibly to protect the rhythm from small perturbations.
Similarly, the asymptotic increase of evolvability for the extended range (bottom right)
hints an upper limit for producing novel behavior. An upper limit of evolvability indicates
that even a large neutral network is limited to a certain number of accessible phenotypes.

3.2 Canalization around the pyloric rhythm

Robustness and evolvability indicate canalization

We have found that robustness and evolvability are not correlated globally but that they are
distributed around a specific point that balances robustness and evolvability. We further
see that robustness and evolvability are globally linear with respect to the pyloric rhythm
traits which arise from combinations of linear trends of robustness and evolvability at the
level of individual traits. Furthermore, we see systemic limits of robustness and evolvability.
We hypothesize that the pyloric rhythm is canalized in the GP map that promotes local
robustness near pyloric points but evolvability away from pyloric points.

Using the same data shown in Section 2.3, we examine the behavior of robustness and
evolability as a function of distance from the pyloric rhythm mean in phenotype space (as
shown in Table 1.1). Since the pyloric rhythm is the natural biological behavior that the
circuit evolved to produce, we assume that the circuit should be optimized to robustly
produce the pyloric rhythm. Figure 3.4 shows robustness and evolvability for Sobol-points
sampled within the pyloric (left) and the extended (right) ranges (see Section 2.3). The
lower plots show the changes in variance of points grouped in x-axis slices.

The two different ranges show that the pyloric rhythm is a robust optimum. In both
ranges, evolvability tends to increase with distance. This increasing evolvability signifies
a systemic aim to rapidly explore the GP map to discover an optimum when not near
an optimum. The notion of exploring the parameter space in search of a viable optimum
of the GP map is aided by increasing variability of evolvability and robustness in both
ranges. Canalization requires that the GP map evolves to tightly regulate target behaviors
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Figure 3.4: (upper) Trends in normalized phenotypic robustness and evolvability with in relation to distance from the
mean of the pyloric rhythm, the biological behavior of the system. (lower) The standard deviations of the distribution of
points in x-slices for both robustness and evolvability. Left plots show points within the pyloric range (µ± 2σ) while the
right plots show points in the extended range (µ ± 4σ) according to Table 1.1. r- and p-values of the fits of robustness
and evolvability in the upper plot can be found in Appendix A.
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which naturally forms a uniform and flat topology in the landscape. However, deviating
from such areas removes the constraints that canalize behaviors. The lack of constraints
allows more variety in the structure of the GP map, resulting in increased variabilities in
robustness and evolvability. Both the increasing evolvability and increasing variabilities are
corollaries of canalization and support the hypothesis that the pyloric rhythm is canalized.

In the narrower, pyloric range, robustness decreases with distance. This behavior suggests
that the pyloric rhythm is maximally robust to parameter perturbations locally within the
pyloric range. Contrary to the pyloric range, robustness in the extended range is seen to
increase. Given the slight decreasing trend in the pyloric range, the concurrent increase
of robustness and evolvability in the extended range could be driven by larger neutral
networks. Likewise to increasing variability, moving away from canalized region removes
constraints and gives access to increasingly diverse landscapes of the GP map.

Pyloric rhythm is canalized in the GP map

Deviations from linear behavior at lower values of robustness, increasing robustness with
distance, along with increasing variabilities for robustness and evolvability with distance all
indicate that the pyloric rhythm is canalized. We now directly examine canalization in the
GP map to confirm that the pyloric rhythm is indeed canalized. Canalization is calculated
following the method described in Section 2.4. The resulting values of canalization as a
function of distance to the pyloric posterior mean in the parameter space are shown in
upper plot in Figure 3.5. The plot shows that canalization clearly decreases with distance
from the pyloric posterior mean. The negative slope directly shows that canalizing behavior
exists and that the degree of canalization increases closer to the pyloric rhythm.

The lower part of Figure 3.5 shows a histogram of Gaussian sample sets that yielded no
phenotype after simulation. In other words, these samples were drawn from neighborhoods
of invalid mapping where none of the parameter combinations leads to behavior. It can
be seen that there are no invalid mappings close to the pyloric posterior mean, suggesting
that the regions of the GP map around the biological behavior are well-behaved.

We now verify that the observed canalization is specific to the biologically evolved behavior,
the pyloric rhythm, and not merely a consequence of a fortunate reference point. To this
end, random points were generated in the parameter space to serve as the reference point
instead of the pyloric posterior mean. The trends of canalization in relation to the random
reference points were found as shown in upper Figure 3.5. A linear fit was done on the
distribution of canalization, and canalization score was calculated as the negative of the
regression slope. This canalization score describes the trend in canalization with distance
to the reference point. A high canalization score indicates that canalization is more drastic
around the reference point. Negative canalization score indicates that the reference point
is not canalized; that is, canalization can be seen to increase away from the reference point.
The canalization scores are shown in Figure 3.6 as a function of distance from randomly
generated points to the pyloric posterior mean in parameter space.

30



Figure 3.5: (upper) Canalization as a function of distances
in parameter space. Red line shows a linear fit where
decreasing slope indicates less canalization as distance in-
creases (r = −0.26, p < 2 × 10−56). (lower) Number of
Gaussian sampling sets that did not result in any behavior
after simulation.

Figure 3.6: Distribution of canalization scores for ran-
domly generated, non-pyloric references points in the pa-
rameter space. Red line indicates a linear fit of this data
(r = −0.31, p = 0.0), and the brown line indicates the canal-
ization score of the pyloric rhythm as a reference.
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Canalization score clearly decreases with distance between the randomly generated refer-
ence point and the pyloric posterior mean. This decreasing trend shows that the extent of
canalizing behavior decreases with increasing disparity in parameters to the pyloric behav-
ior. In addition, the canalization score at the pyloric posterior mean can be seen act as an
upper limit with some exceptions. These exceptions could stem from taking the reference
point of the pyloric rhythm in the parameter space as the mean of the 31-dimensional
posterior distribution. The high dimensionality as well as non-standard shape of the dis-
tribution could cause some randomly generated points in the parameter space to overlap
with the canalized region. This hypothesis is further supported by the lack of exceptional
points at significantly further distances from the pyloric posterior mean. These assessments
confirm that canalization is specific to the pyloric rhythm.

Analysis of canalization as shown in Figure 3.5 was also done using the log-likelihood of
the random point on the posterior of the mean pyloric rhythm as the distance metric. The
results are in qualitative agreement (Appendix C). The log-likelihood as a distance measure
gives a more formally accurate understanding as the neutral region in the parameter space
is not isotropic around the posterior mean. Testing against randomly generated reference
points as in Figure 3.6 was not done as a randomly generated point in parameter space
lack a posterior distribution that can be used to calculate likelihood of canalization points.

Properties of the GP map reveal canalizing mechanisms

We next aim to understand how the GP map exhibits canalizing behavior. We hypothesize
that the local topology of the GP map enables canalization with flatter regions around
the pyloric points promoting robustness. To examine the topology of the GP map, we
extensively chart the GP map as described in Section 2.4.

We first look at the log-likelihood, `(θ;xp), of all sampled points in genotype space on
the posterior of the pyloric rhythm, xp, to verify that pyloric points lie in regions of high
likelihood. As expected, pyloric points score significantly higher compared to the wide
range found from non-pyloric points shown in Figure 3.7. While this result seems trivial, it
hints at the distribution and possible network of pyloric points in regards to the posterior.
Since there is a large discrepancy in sample sizes for pyloric and non-pyloric points, the
significance of these distributions were verified by over- and under-sampling (Figure E.1).

To characterize local topology that may give rise to canalization, gradients of the GP map,
∂`(θ;xp)/∂θi, were calculated at each of the sampled points with respect to the parameters.
We assume that our sampling method involving Gaussians around Sobol-generated points
(see Section 2.4) thoroughly cover the GP map resulting in a comprehensive assessment
of GP map gradients. We expect that the gradient magnitudes at pyloric points are more
constrained than those at non-pyloric points. In addition, gradients at pyloric points are
expected to have smaller magnitude, signifying flatter region of the GP map with higher
robustness. Greater gradient magnitude would indicate a steep region in the GP map where
genotypic variation results in a large deviation of phenotype from the pyloric rhythm.
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Figure 3.7: (upper) Distribution of log-likelihoods of pyloric and non-pyloric points on the
posterior of the pyloric rhythm. (lower) Magnitude of the gradient vector evaluated at
pyloric and non-pyloric points. These plots reflect the true sample sizes of pyloric and
non-pyloric points, and under- and over-sampled comparisons for verification can be found
in Appendix E.

The magnitudes of the gradients for pyloric and non-pyloric points are shown in the lower
Figure 3.7. The average gradient magnitudes for both pyloric and non-pyloric are very
similar. However, the variance in the magnitudes is much larger for non-pyloric rhythms,
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indicating that the local topology around the pyloric points is more uniform and con-
strained. The large proportion of non-pyloric points with similar gradient magnitudes
as pyloric points suggests that the GP map has one or more significant regions that are
moderately inclined. Potential for substantial phenotypic change seems to only exist for
non-pyloric points as evident by a number of gradient magnitudes that are multiple orders
of magnitude higher than the average.

The statistical significance of gradient magnitude distributions were also verified by over-
and under-sampling and are shown in Figure E.2. In these sampling, the average gradient
magnitudes for pyloric and non-pyloric points are still identical. However, both under- and
over-sampling results in higher variance in gradient magnitudes at pyloric points. This
result rejects the hypothesis that canalization arises from constrained gradient magnitudes
of the GP map at pyloric points. Since neither the average nor the variance of gradient
magnitude differ between pyloric and non-pyloric points, the gradient magnitude itself
cannot explain how the GP map evolves to canalize the pyloric rhythm.

We still suspect that the topology of the GP map including its gradient enables canaliza-
tion. We now hypothesize that specific gradient directions shared among pyloric points
allow canalization. To test this hypothesis, we calculate the correlation between gradient
components across gradients at pyloric points and non-pyloric points separately.

Figure 3.8: Correlation matrices of gradient directions for non-pyloric (left) and pyloric
(right) points.

Figure 3.8 shows correlation matrices between the gradient directions across (left) non-
pyloric and (right) pyloric points. Clearly, there are no apparent correlations between
gradient directions at non-pyloric points. On the contrary, few strong correlations as
well as a considerable number of weak correlations between gradient directions are found
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for gradients at pyloric points. The distribution of correlation coefficients are shown in
Figure 3.9.

Figure 3.9: Distribution of correlation coeffi-
cients between gradient directions at pyloric
points as shown in Figure 3.8.

The lack of correlations in gradient direc-
tions for non-pyloric points is unsurpris-
ing as no inherent properties are shared
among non-pyloric behaviors. The corre-
lations found in gradient directions at py-
loric points signify that the local topology
of the GP map at various pyloric points
are similar. The specific gradient directions
with strong correlations likely indicate mu-
tational directions that preserves the traits
of the pyloric rhythm. However, these cor-
relations are not conclusive evidence for
mechanisms that enable canalization.

With the gradient direction correlations
hinting at a mechanism in GP map gra-
dients to enable canalization, we examine
the GP map gradient magnitude as a func-
tion of distance to the nearest pyloric point.
This approach is similar to that of Fig-
ure 3.4 with the difference being that now
we examine gradient magnitudes as indica-
tors of robustness and evolvability as opposed to calculated values. Additionally, this
approach searches for canalizing behavior in parameter space, not phenotype space. If the
GP map gradients are mechanisms of canalization, we expect constraints in gradient mag-
nitudes in close proximity to pyloric points. We can also expect that gradient magnitudes
will increase with distance as deviation from canalized areas typically result in greater
phenotypic variation.

Figure 3.10 shows that the gradient magnitude increases with distance to the nearest pyloric
point in parameter space. This trend reinforces the conclusion that the pyloric rhythm is
canalized in the GP map and also supports the idea that the structure of the GP map, its
gradients enable canalization.

The gradient magnitude variability is reduced closer to pyloric points, consistent with the
behavior seen in robustness and evolvability. Constrained gradient magnitude near the
pyloric points support the depiction of the GP map with constrained flat regions in the
vicinity of pyloric points that promote robustness, enabling canalization. The gradient
magnitude variability otherwise shows quadratic behavior and reach a maximal variance
before decreasing. The quadratic trend in variance shows that the robust flat areas are
followed by a large diversity of gradient landscapes resulting from lack of constraints in
the GP map and high dimensionality of the system. Ultimately, the landscape becomes

35



Figure 3.10: (upper) Distribution of gradient magnitudes with respect to their distances to
the nearest pyloric point in parameter space. Red line indicates a linear fit (r = 0.14, p =
0.0). (lower) Log of standard deviations of magnitudes in x-slices. Blue line indicates a
quadratic fit.

less varied, possibly due to the map not being defined beyond a certain region or the lack
of samples at such great distances.
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Chapter 4

Discussion and Outlook

This work aimed to study the relationship between two evolutionary properties, robustness
and evolvability. By employing information theoretic and analytical approaches as well as
a novel simulation-based technique, we quantified robustness and evolvability in a model
neural network and characterized their relationship across the genotype-phenotype map.
While a straightforward relationship does not exist between robustness and evolvability in
the pyloric circuit, we found that they are linear with respect to individual traits as well
collectively. Additionally, we found that the network balances robustness and evolvability
around a point in the GP map. Thus, we hypothesize that robustness and evolvability in
this neural network are promoted by canalization around the pyloric rhythm, the biological
behavior that the GP map evolved to exhibit.

We found evidence of canalization in trends of robustness and evolvability away from the
pyloric point, and calculating canalization around the GP map confirmed that the pyloric
point is canalized. We then searched for mechanisms that facilitate canalization in the
topology of the GP map. The hypothesis that gradient magnitudes at pyloric points will
be smaller was disproved, but examining the correlations of gradient directions revealed
possible implicit mechanisms of the GP map at pyloric points that could preserve the
pyloric rhythm. Finally, looking at gradient magnitudes as a function of distance to the
nearest pyloric point showed identical behaviors to robustness and evolvability in relation
to distance to the pyloric rhythm mean. Robustness and evolvability are distinct indicators
of demonstrated canalization, which illuminates gradients of the GP map as promoter of
canalization.

Ultimately, the relationship between robustness and evolvability in the pyloric circuit was
not found to be direct as in other systems [6, 7]. A particular evolutionary effect, canaliza-
tion, was identified which elucidated the relationship between robustness and evolvability
in the pyloric network. We find that the pyloric rhythm is canalized as a consequence of
the topology of the GP map. These results suggest that evolutionary properties in complex
systems such as neural circuits require consideration of the underlying GP map to fully
understand their behaviors and driving mechanisms.
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Potential combination of this investigation with biological phylogenetic data can reveal
potentially relevant structures in the GP map that can replicate evolution over time. For
example, phylogenetic knowledge of a speciation event can be used to recreate the genetic
and phenotypic structures at those time points. The subsequent evolution of biological
behavior can then be modeled to progress concurrently as mutational trajectories in the
GP map. These studies could also potentially answer dynamics of evolutionary change
such as punctuated equilibrium.

The STG pyloric circuit used in this study exhibits one characteristic rhythm and is thus
simple in both model and behavior. The existence of a single behavioral optimum has
potential simplifying effects on the GP map. However, many neural systems are more
complex and exhibit a diversity of behaviors. The cricket’s song recognition network, for
example, has multiple behavioral preferences, and hence applying the basis of this study
to more complex systems could yield more dynamic structures in the GP map such as
multiple canalized optima.

Additionally, while the individual traits of the rhythmic phenotype were not the focus of
this work, examination into the details of the STG model would be necessary to explain the
various behaviors of traits and their relative importance at the model level. Understanding
specific compensatory mechanisms in the neural circuit should be the basis for explicit
knowledge of parameter interactions for any specific model.

Further investigation into the structure that embeds pyloric points in the genotype space
could yield insight into a possible neutral network structure within the system that can
further aid in the understanding of evolutionary properties (See Appendix B). Examination
of the underlying network structure can also uncover mutational potential around the GP
map (see Appendix D). This will give explicit information on potential phenotypes through
mutation as well as possible mutational trajectories around the GP map.

Finally, the methods used in this work can be applied generally to any system involving
a mechanistic model. Various simulation-based inference techniques allow accurate and
efficient posterior estimation in higher dimensional space. Information entropy as a measure
for robustness and evolvability can be applied to any discrete or continuous system and can
easily be scaled to any number of dimensions. Considering the GP map as an analog to
phenotype landscapes allows compelling mathematical analysis involving multiple genetic
interactions, of which only a select few were used in this work [9]. These developments
in theory and method set the foundation for future studies of evolutionary properties in
complex biological systems.
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[19] T. Blankers, A. K. Lübke, and R. M. Hennig. “Phenotypic Variation and Covariation
Indicate High Evolvability of Acoustic Communication in Crickets”. In: Journal of
Evolutionary Biology 28.9 (2015), pp. 1656–1669. issn: 1420-9101. doi: 10.1111/
jeb.12686. url: https://onlinelibrary.wiley.com/doi/abs/10.1111/jeb.
12686 (visited on 01/09/2022).

[20] Astrid A. Prinz, Dirk Bucher, and Eve Marder. “Similar Network Activity from
Disparate Circuit Parameters”. In: Nat Neurosci 7.12 (12 Dec. 2004), pp. 1345–
1352. issn: 1546-1726. doi: 10.1038/nn1352. url: https://www.nature.com/
articles/nn1352 (visited on 08/09/2021).

[21] Gabrielle J. Gutierrez, Timothy O’Leary, and Eve Marder. “Multiple Mechanisms
Switch an Electrically Coupled, Synaptically Inhibited Neuron between Competing
Rhythmic Oscillators”. In: Neuron 77.5 (Mar. 6, 2013), pp. 845–858. issn: 0896-6273.
doi: 10.1016/j.neuron.2013.01.016. url: https://www.sciencedirect.com/
science/article/pii/S0896627313000822 (visited on 01/09/2022).

[22] Mark S. Goldman et al. “Global Structure, Robustness, and Modulation of Neuronal
Models”. In: J. Neurosci. 21.14 (July 15, 2001), pp. 5229–5238. issn: 0270-6474,
1529-2401. doi: 10.1523/JNEUROSCI.21-14-05229.2001. pmid: 11438598. url:
https://www.jneurosci.org/content/21/14/5229 (visited on 09/20/2021).

[23] Jacob Ratliff et al. “Neuronal Oscillator Robustness to Multiple Global Perturba-
tions”. In: Biophysical Journal 120.8 (Apr. 20, 2021). However, all biochemical re-
actions are temperature dependent, so every physiological property that underpins
neuronal and circuit function will be altered by a temperature change. For this reason,
we refer to a temperature perturbation as a global perturbation.
This simple example illustrates why increased variability is expected near a transition
point in a dynamical system: ongoing, internal noise perturbations cause variability
in the system’s dynamics. As the system approaches a transition, its sensitivity gener-
ically increases, and the impact of the internal noise becomes more visible.

42

https://doi.org/10.1073/pnas.1912789117
32471948
https://www.pnas.org/content/117/48/30055
https://www.pnas.org/content/117/48/30055
https://doi.org/10.7554/eLife.56261
https://doi.org/10.7554/eLife.56261
https://doi.org/10.1038/433375a
https://doi.org/10.1038/433375a
https://www.nature.com/articles/433375a
https://doi.org/10.1111/jeb.12686
https://doi.org/10.1111/jeb.12686
https://onlinelibrary.wiley.com/doi/abs/10.1111/jeb.12686
https://onlinelibrary.wiley.com/doi/abs/10.1111/jeb.12686
https://doi.org/10.1038/nn1352
https://www.nature.com/articles/nn1352
https://www.nature.com/articles/nn1352
https://doi.org/10.1016/j.neuron.2013.01.016
https://www.sciencedirect.com/science/article/pii/S0896627313000822
https://www.sciencedirect.com/science/article/pii/S0896627313000822
https://doi.org/10.1523/JNEUROSCI.21-14-05229.2001
11438598
https://www.jneurosci.org/content/21/14/5229


Robustness to temperature and pH in the environment, pp. 1454–1468. issn: 0006-
3495. doi: 10.1016/j.bpj.2021.01.038. url: https://www.sciencedirect.com/
science/article/pii/S0006349521001478 (visited on 09/20/2021).

[24] Eve Marder and Dirk Bucher. “Central Pattern Generators and the Control of Rhyth-
mic Movements”. In: Current Biology 11.23 (Nov. 27, 2001), R986–R996. issn: 0960-
9822. doi: 10.1016/S0960-9822(01)00581-4. url: https://www.sciencedirect.
com/science/article/pii/S0960982201005814 (visited on 12/22/2021).

[25] Allen Selverston. “Stomatogastric Ganglion”. In: Scholarpedia 3.4 (Apr. 2, 2008).
scholarpedia overview, p. 1661. issn: 1941-6016. doi: 10.4249/scholarpedia.1661.
url: http://www.scholarpedia.org/article/Stomatogastric_ganglion (vis-
ited on 08/09/2021).

[26] L. F. Abbott and Eve Marder. “Modeling Small Networks”. In: In C Koch and I
Segev, Editors, Methods in Neuronal Modelling. Mit Press, 1998, pp. 361–410.

[27] Lamont S. Tang et al. “Robustness of a Rhythmic Circuit to Short- and Long-Term
Temperature Changes”. In: J. Neurosci. 32.29 (July 18, 2012), pp. 10075–10085. issn:
0270-6474, 1529-2401. doi: 10.1523/JNEUROSCI.1443-12.2012. pmid: 22815521.
url: https://www.jneurosci.org/content/32/29/10075 (visited on 01/30/2022).

[28] David Greenberg, Marcel Nonnenmacher, and Jakob Macke. “Automatic Posterior
Transformation for Likelihood-Free Inference”. In: Proceedings of the 36th Interna-
tional Conference on Machine Learning. International Conference on Machine Learn-
ing. PMLR, May 24, 2019, pp. 2404–2414. url: https://proceedings.mlr.press/
v97/greenberg19a.html (visited on 01/16/2022).

[29] George Papamakarios, David Sterratt, and Iain Murray. “Sequential Neural Likeli-
hood: Fast Likelihood-free Inference with Autoregressive Flows”. In: Proceedings of
the Twenty-Second International Conference on Artificial Intelligence and Statis-
tics. The 22nd International Conference on Artificial Intelligence and Statistics.
PMLR, Apr. 11, 2019, pp. 837–848. url: https : / / proceedings . mlr . press /

v89/papamakarios19a.html (visited on 03/02/2022).

[30] C E Shannon. “A Mathematical Theory of Communication”. In: (), p. 53.

[31] Andrew Feutrill and Matthew Roughan. “A Review of Shannon and Differential
Entropy Rate Estimation”. In: Entropy 23.8 (8 Aug. 2021), p. 1046. doi: 10.3390/
e23081046. url: https://www.mdpi.com/1099- 4300/23/8/1046 (visited on
09/29/2021).

[32] Günter P. Wagner, Ginger Booth, and Homayoun Bagheri-Chaichian. “A Popula-
tion Genetic Theory of Canalization”. In: Evolution 51.2 (1997). mutation reveals
variation
Rate of canalization, pp. 329–347. issn: 1558-5646. doi: 10.1111/j.1558-5646.
1997.tb02420.x. url: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.
1558-5646.1997.tb02420.x (visited on 12/09/2021).

43

https://doi.org/10.1016/j.bpj.2021.01.038
https://www.sciencedirect.com/science/article/pii/S0006349521001478
https://www.sciencedirect.com/science/article/pii/S0006349521001478
https://doi.org/10.1016/S0960-9822(01)00581-4
https://www.sciencedirect.com/science/article/pii/S0960982201005814
https://www.sciencedirect.com/science/article/pii/S0960982201005814
https://doi.org/10.4249/scholarpedia.1661
http://www.scholarpedia.org/article/Stomatogastric_ganglion
https://doi.org/10.1523/JNEUROSCI.1443-12.2012
22815521
https://www.jneurosci.org/content/32/29/10075
https://proceedings.mlr.press/v97/greenberg19a.html
https://proceedings.mlr.press/v97/greenberg19a.html
https://proceedings.mlr.press/v89/papamakarios19a.html
https://proceedings.mlr.press/v89/papamakarios19a.html
https://doi.org/10.3390/e23081046
https://doi.org/10.3390/e23081046
https://www.mdpi.com/1099-4300/23/8/1046
https://doi.org/10.1111/j.1558-5646.1997.tb02420.x
https://doi.org/10.1111/j.1558-5646.1997.tb02420.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1558-5646.1997.tb02420.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1558-5646.1997.tb02420.x


[33] Vincent Debat and Patrice David. “Mapping Phenotypes: Canalization, Plasticity
and Developmental Stability”. In: Trends in Ecology & Evolution 16.10 (Oct. 1,
2001), pp. 555–561. issn: 0169-5347. doi: 10.1016/S0169-5347(01)02266-2. url:
https://www.sciencedirect.com/science/article/pii/S0169534701022662

(visited on 12/12/2021).

[34] Eve Marder, Marie L Goeritz, and Adriane G Otopalik. “Robust Circuit Rhythms
in Small Circuits Arise from Variable Circuit Components and Mechanisms”. In:
Current Opinion in Neurobiology. SI: Brain Rhythms and Dynamic Coordination 31
(Apr. 1, 2015). Degeneracy aids in robustness
Large enough systems have degeneracy, pp. 156–163. issn: 0959-4388. doi: 10.1016/
j.conb.2014.10.012. url: https://www.sciencedirect.com/science/article/
pii/S0959438814002128 (visited on 09/20/2021).

[35] Training Deep Neural Density Estimators to Identify Mechanistic Models of Neu-
ral Dynamics. mackelab, Mar. 12, 2021. url: https://github.com/mackelab/

IdentifyMechanisticModels_2020 (visited on 12/31/2021).

[36] Charu C. Aggarwal, Alexander Hinneburg, and Daniel A. Keim. “On the Surpris-
ing Behavior of Distance Metrics in High Dimensional Space”. In: Database Theory
— ICDT 2001. Ed. by Jan Van den Bussche and Victor Vianu. Red. by Gerhard
Goos, Juris Hartmanis, and Jan van Leeuwen. Vol. 1973. Lecture Notes in Com-
puter Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 420–434.
isbn: 978-3-540-41456-8 978-3-540-44503-6. doi: 10.1007/3-540-44503-X_27. url:
http://link.springer.com/10.1007/3-540-44503-X_27 (visited on 12/06/2021).

[37] Paul Brodersen. Entropy Estimators. Dec. 28, 2021. url: https://github.com/
paulbrodersen/entropy_estimators (visited on 12/31/2021).
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Appendix A

Performance of linear regression

Table A.1: r- and p- values of linear regression per trait shown in upper Figure 3.2.
Robustness Evolvability

r p r p
T 0.55 0.00 0.46 0.00
dbAB 0.19 0.00 0.35 0.00
dbLP 0.13 0.00 0.11 0.002
dbPY -0.07 0.04 0.11 0.001
∆tesAB−LP 0.21 0.00 0.13 0.00
∆tesLP−PY 0.12 0.00 0.02 0.51
∆tssAB−LP -0.07 0.06 0.07 0.06
∆tssLP−PY -0.11 0.002 -0.22 0.00
dAB 0.01 0.77 0.06 0.11
dLP 0.15 0.00 0.02 0.52
dPY 0.04 0.28 -0.03 0.43
∆φAB−LP 0.41 0.00 -0.40 0.00
∆φLP−PY 0.01 0.80 -0.10 0.01
φLP -0.09 0.01 0.16 0.00
φPY -0.04 0.28 0.09 0.01

Table A.2: r- and p- values of linear regression per trait shown in upper Figure 3.4
Robustness Evolvability
r p r p

Pyloric range -0.06 0.15 0.31 3× 10−13

Extended range 0.12 7× 10−4 0.27 1× 10−15
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Appendix B

Distribution of pyloric points in
genotype space

Figure B.1 (left) shows the distance from one pyloric point to the nearest pyloric point
in the parameter space within the generated samples that maps to a valid phenotype.
The right plot shows the distribution of all pairwise distances between the pyloric points.
Both of these distance distributions are fairly normal and not particularly indicative of the
structure of the neutral network.

Figure B.1: (left) Distribution of distances in parameter space from one pyloric point to
the nearest pyloric point. (right) Distribution of all pairwise distances in parameter space
between pyloric points. Sobol indicates a Sobol-generated points intended to represent a
uniform grid in parameter space. Bimodal indicates samples generated from two Gaussians
centered at opposite ends of the parameter space.

Comparing the distribution of pyloric points to other examples gives a slightly better
picture. Sobol-distributed points, representing a uniform grid, and bimodallly distributed
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points are also shown in Figure B.1. All pairwise distance of the bimodal distribution
can be clearly seen as bimodal while Sobol points are similarly Gaussian with a slightly
lower mean. With a lower mean and larger variance in closest distance than Sobol points,
the distribution of pyloric points can be thought to be slightly less uniformly distributed
around the parameter space, possibly forming sparse clusters.

The distribution of pyloric points among non-pyloric points can be seen in Figure B.2. The
vastness of the non-pyloric points effectively shape the bounds of the parameter space, and
consistent with Figure B.1, distribution of pyloric points is even throughout the space with
higher concentration towards the center. However this method compresses 31 dimensions
into two, destroying a large proportion of information and potentially misconstruing the
actual distribution.

Figure B.2: PCA view of pyloric points (green outline) distributed across the parameter
space.
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Appendix C

Likelihood as a distance metric

Figure C.1: Canalization shown as a function of likelihood; analogous to Figure 3.5.
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Appendix D

Diverse distribution of behaviors in a
mutational step

Figure D.1 shows examples of resulting phenotype distributions from Gaussian sampling
as discussed in Section 2.4. The pulse and pause durations, understood to be key traits in
acoustic communication and rhythmic behavior, are extracted from the firing of a neuron.
As evident by the stark differences in the distributions, the local topology of the GP map
has significant influence on deviations in parameter space. These distributions directly
show the influence of GP map on robustness and evolvability. While the data shown are
extracted from one neuron, data from other neurons were qualitatively similar.

Figure D.1: Diverse range of behaviors arising from same-sized Gaussian sampling on
different regions of the GP map.
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Appendix E

Over- and under-sampling of
likelihood and gradient norm

Figure E.1: (top) Pyloric samples were oversampled to match the non-pyloric sample size,
and non-pyloric samples were under-sampled to match the pyloric sample size (bottom).
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Figure E.2: (top) Pyloric samples were oversampled to match the non-pyloric sample size,
and non-pyloric samples were under-sampled to match the pyloric sample size (bottom).
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Appendix F

Derivation of maximal entropy

As used in normalization of entropy, the maximum entropy of a bounded space is given by
the entropy of a uniform distribution that spans the space. The below derivation shows
that for a bounded system with no other constraints, a uniform distribution that spans the
entire space has the maximum entropy. While the derivation is of a one-dimensional case,
it can be generalized to higher dimensions. Considering a one-dimensional space spanning
[a, b], the entropy of a uniform distribution is calculated as

H(x) = −
∫ b

a

p(x) log p(x)dx (F.1)

. Introducing a Lagrange multiplier, λ,

L = −
∫ b

a

p(x) log p(x)dx+ λ

∫ b

a

p(x)dx− λ (F.2)

∂L
∂p(x)

= −1− log p(x) + λ = 0⇒ p(x) = exp (λ− 1) (F.3)

⇒
∫ b

a

e1−λdx = 1⇒ λ = 1− log

(
1

b− a

)
(F.4)

p(x) = exp

[
1− 1 + log

(
1

b− a

)]
⇒ p(x) =

1

b− a
(F.5)

. Hence the distribution that yields maximal entropy in this space is given by a uniform
distribution spanning the domain.
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