
 
Department of Automatic Control 

 

Building dense reconstructions 
with SLAM and Spot 

Ola Nilsson 



 
 

 

 

 

 

 

 

 

 

 

 

MSc Thesis 
TFRT-6158 
ISSN 0280-5316 

Department of Automatic Control 
Lund University 
Box 118 
SE-221 00 LUND 
Sweden 

© 2022 by Ola Nilsson. All rights reserved. 
Printed in Sweden by Tryckeriet i E-huset 
Lund 2022 

 



Abstract

Having access to dense reconstruction of ongoing building constructions provides
insight into the building process and could serve as both a tool for error detection
and documentation of the actual outcome. In this thesis, Spot, the quadruped robot
designed by Boston Dynamics is evaluated as a platform for site inspection. The re-
sult of the thesis was a prototype system built on top of the ROS framework which
integrates the sensors of the robot platform. Combined with the visual SLAM library
RTABMap for robust localization with loop closing capabilities and dense camera
and LiDAR reconstructions, the system provides means for online map building and
data acquisition. The localization performance achieved positional RMSE in the
decimeter range for paths spanning further than 100 meters. The resulting LiDAR
reconstructions provided comparable results to be evaluated against the planned
building model and acheived centimeter accuracy with the current sensor configu-
ration.
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1
Introduction

The use of mobile robots for inspection is increasing as advancements in the field of
mobile exploration are made. The mobile exploration field is multi-disciplinary and
the knowledge involved combines multiple research areas, such as robotics, com-
puter vision and optimization. Simultaneous localization and mapping is a heavily
researched topic within the mobile exploration field which combines all the previ-
ously mentioned disciplines. Simultaneous Localization and Mapping, abbreviated
SLAM, solves the problem of estimating the pose of a robot in an environment
while simultaneously building a map of said environment. SLAM also allows for
navigation in scenarios where GPS tracking is unavailable.

With the design of quadruped robots such as Spot1 that show remarkable mobil-
ity and are capable of traversing rough terrain and dynamic environments in which
conventional mobile robots with tracks or wheels are not, interesting use cases are
made possible by combining a mobile platform such as Spot with previously men-
tioned mapping and localization techniques.

For instance, in the construction field miscommunication and human error even-
tually leads to construction errors which are costly in terms of both monetary loss
and time. In 2018, the Swedish authority Boverket published a report surveying
faults, deficiencies and damages in the construction sector. The annual costs asso-
ciated with faulty construction were estimated to exceed 80 billion SEK [Boverket,
2018]. A mobile robot such as Spot could be utilized for site inspection and build-
ing dense reconstructions with SLAM. Having access to dense reconstructions of
the ongoing construction could provide means for detecting and preventing con-
struction errors. By finding and correcting errors early on in the construction pro-
cess the monetary loss can be reduced. In addition, the reconstructions may also be
used as documentation of deviations by comparing the planned model or blueprint
to as-built.

1 https://www.bostondynamics.com/products/spot Accessed:2022-03-26
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Chapter 1. Introduction

1.1 Objectives

This thesis was carried out in collaboration with the Center for Construction
Robotics at Lunds Tekniska Högskola. The aim of the thesis was to evaluate the
feasability of creating dense reconstructions with the available sensor configuration
on Spot. The main objectives of the thesis were;

• Build a prototype visual SLAM system, which incorporates the available sen-
sor configuration on Spot.

• Benchmark the localization performance of the system by comparing the pose
estimate output from the SLAM system against ground truth measurements.

• Evaluate the accuracy of the reconstructions by comparing the reconstruc-
tions with the building information model.

1.2 Outline

• Chapter 2 presents the theory necessary to understand the SLAM problem
and performance metrics, methods for aligning point clouds and the imple-
mentation.

• Chapter 3 presents Spot and goes into details regarding the implementation.
The chapter is concluded with the results from a working prototype system
and the initial impressions.

• Chapter 4 presents the results of the evaluation of the localization perfor-
mance and the methods for evaluating the reconstructions against a planned
building model.

• Chapter 5 presents the reflections regarding the results.

• Chapter 6 concludes the report with a brief summary, final remarks and pos-
sible further development.
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2
Theory

This chapter presents the theoretical foundation of which this thesis builds upon.
The chapter begins by describing homogenous transformations and is then suc-
ceeded by some fundamental computer vision topics. Continuing, the SLAM prob-
lem and the different paradigms are presented. Finally, the absolute orientation
problem which addresses the problem of aligning 3D point correspondences is de-
scribed.

2.1 Homogenous transformations

Homogenous transformations are useful for representing the position and orienta-
tion of a rigid body as well as changing the reference frame of the representation of
a point or vector. A homogenous transformation H ∈ SE(3) is a 4× 4 matrix that

Figure 2.1 Relating coordinate frames with homogenous transformations.
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Chapter 2. Theory

encodes rotation and translation in a compact representation such that

H =

[
R t
0 1

]
(2.1)

where R ∈ SO(3) is a 3×3 rotation matrix with det(R) = 1, and t ∈R3 a translation
vector. The homogenous transformation has certain properties. H is invertible such
that

H−1 =

[
R t
0 1

]−1

=

[
RT −RT t
0 1

]
. (2.2)

Given two homogenous transformations H1 and H2, the resulting matrix from
the product of the transformations H1 and H2 is also a homogenous transfor-
mation H3 ∈ SE(3). The multiplication of homogenous matrices are associative,
H1(H2H3) = (H1H2)H3, but generally not commutative, H1H2 ̸= H2H1 [Lynch
and Park, 2017].

The mapping of a point acquired in a reference frame b can be transformed into
the reference frame a given the homogenous transformation Ha

b. A small example
for a mobile robot with a camera rigidly attached to the robot body is illustrated in
Figure 2.1. For a point p with homogenous coordinates given in the camera frame,
the representation of p in the world frame is then given by

pworld = Hworld
body Hbody

camerap = Hworld
camerap. (2.3)

2.2 Computer Vision

This section describes computer vision topics that are relevant for understanding
the concepts of camera motion which is a core concept to understand the visual
SLAM problem. The theory presenting the camera model, epipolar geometry and
depth from stereo views is based on the lecture notes [Olsson, 2021].

Pinhole camera model
The pinhole camera model is the simplest camera model. The projection x =
(x1,x2,1)T of a 3D scene point X = (X1,X2,X3)

T onto the image plane is done
by forming a line between X and the camera center C which intersects the image
plane at zcamera = 1. A drawing of the model description is shown in Figure 2.2. The
normal to the image plane is the principal axis of the camera.

The direction of the viewing ray lray may be parameterized by

lray = C+ s(X+C), s ∈ R (2.4)

For simplicity, placing the camera center at the origin C = (0,0,0)T reduces the
expression in (2.4) to

lray = sX, s ∈ R (2.5)
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2.2 Computer Vision

Figure 2.2 The pinhole camera model.

The intersection with the image plane is found by computing s such that sX3 = 1.
This results in

x =

X1/X3
X2/X3

sX3

=

X1/X3
X2/X3

1

 , X3 ̸= 0 (2.6)

The projective mapping from a point in the scene to the image coordinate frame
may be described by the 3×4 camera matrix P

P = K
[
R t

]
(2.7)

where

K =

γ f s f x0
0 f y0
0 0 1

 (2.8)

is the camera intrinsic matrix which maps points on the image plane to pixel co-
ordinates. γ , f , and s denote the aspect ratio, focal length and skew, respectively.
(x0,y0) is typically referred to as the optical center or principal point. [R t] are the
camera extrinsics which describe the relative rotation and translation of the camera
to a refence frame. The projection may now be described by

x = K
[
R t

]
X = PX (2.9)

Epipolar geometry
The problem of recovering both 3D points and camera matrices is referred to as the
two-view structure from motion problem [Olsson, 2021]. Given two sets of point
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Chapter 2. Theory

Figure 2.3 An illustration of the geometry of the epipolar constraints, inspired by the figure
in [Olsson, 2021].

correspondances x and x̃, both 3D points and the relative camera motion may be
recovered through exploiting the epipolar geometry of the problem. Figure 2.3 il-
lustrates the setup of the problem.

Let P1 and P2 be the camera matrices with camera centers C1 and C2 respec-
tively. The viewing ray l resulting from the projection of a 3D point X into camera
P1 can be parameterized as

X(λ ) =

[
λx
1

]
(2.10)

The projection of (2.10) into camera P2 is then described by

P2A(λ ) =
[
A t

][λx
1

]
= λAx+ t (2.11)

The line in (2.11) is referred to as an epipolar line. All points X that project to x
must lie on this line. This forms the epipolar constraint. The epipoles e1 and e2 are
the projections of the camera centers into the cameras, meaning

e1 = P1C2

e2 = P2C1
(2.12)

Now, since all viewing rays l formed by projections into P1 intersect C1 from (2.4)
it follows that all epipolar lines will intersect in e2. From the parametrization of the
epipolar line in (2.11) letting λ = 0 results in

e2 = t (2.13)

{
lT t = 0

lT (Ax+ t) = 0
(2.14)
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2.2 Computer Vision

Since l is perpendicular to both t and Ax+ t it follows that

l = t× (Ax+ t) = t×Ax (2.15)

Inserting (2.13) into (2.15) we obtain

l = e2 ×Ax = [e2]×Ax (2.16)

Now we can define the fundamental matrix

F = [e2]×A (2.17)

which maps a point x in image 1 to lines in image 2. If x and x̃ are point correspon-
dances then the epipolar constraint may be expressed as

x̃Fx = 0 (2.18)

The camera P2 can now be extracted from F

P2 =
[
[e2]×F e2

]
(2.19)

Depth recovery from stereo views
For a camera pair with known camera matrices, the depth can be estimated for each
pixel in an image where pixel matches can be found in both views. Combining the
results from Section 2.2 and the fact that the camera matrices are known, the search
for pixel matches can be constrained to searching along the epipolar line.

For the special case of a stereo camera, the two views are rigidly coupled and
separated by a translation along the x-axis such that t = (b,0,0)T with camera ma-
trices

P1 = K
[
I 0

]
P2 = K

[
I t

] (2.20)

Figure 2.4 shows an illustration of the setup. The projection of a 3D point X into
both views results in

x1 = P1X =

γ f X1 + s f X2 + x0X3
f X2 + y0X3

X3


x2 = P2X =

γ f (X1 +b)+ s f X2 + x0X3
f X2 + y0X3

X3

 .

(2.21)

From Equation 2.21 it is shown that the y-component of the pixel value for both
projections are equal for any corresponding point. It then follows that the epipolar
lines for the setup are horizontal e.g., parallell to the x-axis. The difference between
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Chapter 2. Theory

Figure 2.4 An illustration of the stereo view problem inspired by the figure in [Olsson,
2021].

the x-component of the pixel value for both projections is called disparity and is
given by

d = x1 − x2 =
γ f b
X3

(2.22)

The depth of the point can then be recovered from the computed disparity by solving
for X3 in equation 2.22.

Visual features
A common way of finding point correspondences between images are by matching
visual features. A visual feature is a local interest point in an image. The location of
the feature in an image is often referred to as keypoints. The keypoints have associ-
ated descriptors which describes the region in the image surrounding the keypoint
by the local pixel gradients. The keypoint descriptors are then used for matching
visual features between images [Lowe, 2004].

2.3 Simultaneous localization and mapping

Simultaneous localization and mapping addresses the problem of building a map
of the environment, while simultaneously estimating the pose of the robot in said
environment. Initially proposed in [Leonard and Durrant-Whyte, 1991] and builds
on the idea of the Extended Kalman Filter [Julier and Uhlmann, 2004] where a
single state vector is used to represent the estimated pose of the robot and a feature
set collected from the environment together with a covariance matrix which is used
to represent the associated uncertainty in the pose estimate and features. While the
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2.3 Simultaneous localization and mapping

robot traverses the environment and takes measurements the covariance matrix is
updated with the EKF. The state vector grows as new features are observed. The
drawback of EKF-SLAM is mainly due to the non-sparsity and quadratic size of
the covariance matrix ((3+ 2N)× (3+ 2N), N features, 2D-space) which in turn
produces a large computational load as the number of features grow [Thrun and
Leonard, 2008].

The probabilistic SLAM formulation
The SLAM problem can be defined in a probabilistic manner [Thrun and Leonard,
2008] [Grisetti et al., 2010]. Let the robot pose at time t be described by xt =
(X̄,Θ)T where X̄ = (x,y,z)T is the 3D position of the robot and Θ denotes the
orientation. The path of the robot XT = {x0,x1, . . . ,xT} is then characterized by the
sequence of poses the robot undertakes from the initial pose x0 up to time T . The
odometry reading ut is the relative motion of the robot between time t − 1 and t.
The odometry could for example be given by a motion model where the robot is
actuated by a control signal, estimated by visual odometry computed from images,
scan matching with a LiDAR or for a wheeled robot, wheel encoder readings.

Let UT = {u1,u2, . . . ,uT} be the sequence of odometry readings up to time T . In
theory, the sequence UT would be enough to recover the path XT from x0. However,
since measurements may be corrupted by noise and the robot may be subjected to
external disturbances such as wheel slip, the recovered path may be suffering from
significant drift.

Now, let the map of the environment be denoted by m, which contains land-
marks or features which could be objects, geometric shapes and m are their loca-
tions. The robot senses the landmarks through measurements zt . Assuming the robot
samples the environment at every timestep t, the sequence of measurements ZT up
until time T are then given by ZT = {z1,z2, . . . ,zT}. The SLAM problem is then
the problem of recovering the robot path XT from UT and ZT while simultaneously
modelling the map of the environment m [Thrun and Leonard, 2008]. Figure 2.5
illustrates a graphical model of the SLAM problem.

Online and Offline SLAM The map estimation and the path can be estimated over
either the full posterior or up to the current time step. The former is referred to as
offline SLAM and the latter is referred to as online SLAM. Online SLAM seeks to
recover the present pose xt and map m from measurements and odometry sequences
ZT , UT and may be formulated as a probability distribution p(xt ,m | Z1:t ,u1:t).
Offline SLAM seeks to recover the full robot path XT and map m from the full
measurement and odometry sequences. The offline SLAM problem may also be
formulated as a probability distribution p(XT ,m | ZT ,UT ) [Thrun and Leonard,
2008]. In both instances, the goal is to maximize the probability of the estimated
path and map given the measurements and odometry readings.
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Chapter 2. Theory

Figure 2.5 A graphical model of the SLAM problem. The drawing is inspired by Figure
37.1 in [Thrun and Leonard, 2008].

Graph based SLAM
In recent years, graph based approaches to the SLAM problem have gained traction
as advancements have been made in the field of sparse linear algebra as well as
new insights into the structure of the SLAM problem [Grisetti et al., 2010]. The
advantage of graph based SLAM over EKF-SLAM is the ability to scale to high-
dimensional maps [Thrun and Leonard, 2008].

The graph approach solves the SLAM problem by nonlinear sparse optimization
where nodes in the graph correspond to poses and associated measurement of the
map at the pose. The edges correspond to spatial constraints produced by odometry
readings. If we let the edge constraint be ei j between nodes i and j then the pose
graph optimization seeks to minimize the cost function

∑
ei j

∥Ci −Tei j C j∥2
(2.23)

where C represents the camera pose and Tei j represents the rigid body transforma-
tions between the poses [Fraundorfer and Scaramuzza, 2012].

Graph based approaches usually break down the SLAM problem into two sep-
arate parts, constructing the graph and optimizing the graph [Grisetti et al., 2010].
The graph construction is usually referred to as the front-end and the graph opti-
mization is usually referred to as the back-end. The front-end is tasked with data
association by handling the odometry and measurements of the environment to be
added as nodes and edges in the graph. The back-end then solves for the most likely
configuration given the soft constraints added by the front-end [Grisetti et al., 2010].
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2.3 Simultaneous localization and mapping

Visual SLAM
Visual SLAM utilizes visual sensors to map and localize within an environment.
Visual SLAM relies mainly on initialization, tracking and mapping. During initial-
ization a global coordinate system is defined and initial map of a part of the envi-
ronment is built in the global coordinate system. During tracking the camera pose
is estimated with respect to the map by tracking the reconstructed map in the im-
age. This is done by feature matching between image and map. The camera pose is
then estimated from feature correspondences. During the mapping the current map
is expanded from 3D reconstruction. To avoid failure of tracking during fast camera
motions or other external disturbances relocalization may be used to increase the
robustness of the visual SLAM implementation. To correct for drift during map-
ping where errors in the estimation of camera movement accumulate global map
optimization is often used. By rediscovering features in previously visited locations
loop constraints may be formed to suppress error in the global map optimization
[Taketomi et al., 2017].

Loop closure Visual loop closure algorithms often rely on visual bag of words
for forming loop closures [Labbé and Michaud, 2013]. In the visual bag of words
approach images are reduced to visual words by the computed image feature de-
scriptors. A vocabulary of visual words can either be pre-trained on a priori aquired
image data or formed incrementally [Labbé and Michaud, 2013]. For a vocabu-
lary of k words a vector representation Vd of an image may be formed where
Vd =(t1, t2, . . . , tk) and ti is the weighted word frequency computed by the frequency
term – inverse document frequency [Sivic and Zisserman, 2003]

ti =
nid

nd
log

N
ni
. (2.24)

Here, nid is the number of occurences of word i in Image d, nd is the total number
of words in Image d, N is the number of images in database, ni is the number of
occurences of word i in the whole database. A loop closure is formed by comparing
a query image Vq to the images in the database. The similarity of two images are
determined by the normalized scalar product between the query image Vq and Vd
[Sivic and Zisserman, 2003].

Metrics for evaluation
To evaluate the performance of SLAM algorithms and visual odometry approaches,
the estimated poses are generally compared quantatively to a ground truth measure-
ment. One commonly used metric is the absolute trajectory error (ATE) [Zhang and
Scaramuzza, 2018], which computes the root mean squared error along the whole
trajectory. For a sequence of ground truth positions p = {pi}, i = 0,1, . . .N, and
rotations R = {Ri}, i = 0,1, . . .N, and the corresponding estimates p̂ = {p̂i} and
R̂ = {R̂i}, the trajectories are aligned using the initial states by forming the rigid
body transformation
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Chapter 2. Theory

R′ = R0R̂T
0

t′ = p0 −R′p̂0
(2.25)

and applying it to the position and rotation estimates to retrieve the aligned position
and rotation estimates

R̂′ = R′R̂
p̂′ = R′p̂+ t′.

(2.26)

The absolute trajectory error for the position and rotation is defined in [Zhang
and Scaramuzza, 2018] as

AT Epos = (
1
N

N−1

∑
i=1

∥∆pi∥2)
1
2

AT Erot = (
1
N

N−1

∑
i=1

∥∠(∆Ri)∥2)
1
2

(2.27)

where the positional error ∆pi and the rotational error ∆Ri between ground truth
and aligned estimate are given by

∆Ri = Ri(R̂′
i)

T

∆pi = pi −∆Rip̂′
i

(2.28)

Another metric is the relative pose error (RPE) which instead measures drift
over subsets of the trajectory. By dividing the trajectory into sub-trajectories and
varying length of the sub-trajectories the pose error can be evaluated over varied
distances and as such, allows for additional statistical analysis [Zhang and Scara-
muzza, 2018].

There are both advantages and disadvantages to using either metric. The ATE
provides a single number for the RMS error of the pose which in turn makes it useful
for direct comparison. However, the magnitude of the error depends on where along
the trajectory the drift occurs. Deviations at the start of the trajectory will have a
greater affect on the magnitude of the error than a deviation near the end of the
trajectory [Zhang and Scaramuzza, 2018]. The relative pose error gives additional
error metrics and can be used to extract statistical information such as mean and
standard deviaton for varying trajectory lengths, but is relatively hard to compute.

2.4 Absolute orientation problem

The absolute orientation problem is the problem of aligning two sets of points where
the point sets are acquired in different reference frames [Lourakis, 2016]. For ex-
ample, points measured in a local reference frame that needs to be mapped into a
global reference frame such as a GPS, or the reference frame of a building informa-
tion model. Given two sets of N ≥ 3 point correspondances {xn},n = {1,2 . . . ,N}
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2.4 Absolute orientation problem

measured in a local reference frame, {yn},n = {1,2, . . . ,N} given in a global refer-
ence frame, an affine transformation may be found such that

x̄n = λRxn + t (2.29)

where x̄n are the transformed local points. The transformation is then obtained by
minimizing the least squares error

N

∑
n=1

∥yn − x̄n∥2 (2.30)

The weighted means or centroids of respective clouds are given by

xm =
1
N

N

∑
n=1

xn

ym =
1
N

N

∑
n=1

yn

(2.31)

It is shown in [Arun et al., 1987] that the solution which minimizes the least
squares error in (2.30) is obtained by forming

qn = xn −xm

q′
n = yn −ym

H =
N

∑
n=1

qnq
′T
n

(2.32)

and computing the singular value decomposition of H where H = UΣVT .
The rotation and translation that minimizes the least squares error in (2.30) is

then given by

R = VUT

t = ym −Rxm

λ =

√
∑(yn −ym)

T (yn −ym)

∑(xn −xm)T (xn −xm)

(2.33)

Note that λ = 1 when there is no scale ambiguity, for example when the points
are obtained by LiDAR scans.
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3
System

This chapter begins by presenting Spot and the available sensor configuration. The
chapter then presents the software used and the integration of Spot into the ROS
framework. Next, the details regarding the implementation and the packaging of the
system into a Docker container for deployment onto the SpotCORE. The chapter is
concluded with the results from a working prototype system.

3.1 Spot

Spot is a quadruped robot designed and built by Boston Dynamics. Spot has twelve
degrees of freedom (three per leg), weighs 32.5 kg and can reach a max speed of 1.6
m/s. The mobility of Spot makes the robot useful for exploration and inspection of
environments where conventional mobile robots with tracks or wheels are not able
to traverse. Figure 3.1 displays Spot and the current payload configuration. The base
model only has visual perception through the depth cameras mounted on the robot
body. The payloads consist of a Velodyne VLP-16 LiDAR, a Spot CAM pan-tilt-
zoom camera and the SpotCORE, a small form factor PC for onboard computing.
Spot can be controlled with the provided tablet and through teleoperation. However,
Spot is not bound to operator input and can navigate autonomously by setting up
autowalk missions with the tablet.

Cameras
Spot is equipped with five built-in depth cameras. The cameras on Spot are grey
scale IR depth cameras and offer reliable depth sensing up to four meters. The IR
projection allows the cameras to estimate depth in feature sparse environments. Fig-
ure 3.2 shows a stitched view of all five depth cameras and corresponding depth
map. The brightness and contrast of the depth map has been increased for the pur-
pose of visualization. Figures 3.3, 3.4 and 3.5 show the two front facing cameras,
back facing camera and right facing camera, respectively. The left facing camera has
been omitted but is mounted in a mirrored configuration to the right facing camera.
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3.1 Spot

Figure 3.1 Spot with the current payload configuration.

Figure 3.2 Stitched grey-scale image and corresponding depth map.

Table 3.1 Camera extrinsics for each of the depth cameras w.r.t the body frame.

Camera x[m] y[m] z[m] q0 q1 q2 q3
Front
left 0.3839 0.0318 -0.0423 0.1417 0.8096 0.2216 0.5247

Front
right 0.3869 -0.0422 -0.0441 -0.1465 0.8074 0.2296 0.5234

Left -0.0895 0.1114 0.0405 -0.8007 -0.0034 0.0005 0.5990
Right -0.0919 -0.1106 0.0335 0.7912 0.0107 0.0003 0.6114
Back -0.4196 0.0362 0.0131 0.5645 0.5621 -0.4307 -0.4241

Camera extrinsics When quering an image sensor on Spot, the image response is
accompanied by the homogenous transformation from body frame to image sensor
frame. Table 3.1 lists the camera extrinsics relating the image frame to the body
frame. The translation is given in meters. The rotation is given in unit quaternions
(q0,q1,q2,q3). The extrinsics have been obtained by querying each sensor. Since
the depth image is registered to the image frame, the same transformation is used.
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Figure 3.3 Front cameras. Figure 3.4 Back camera. Figure 3.5 Right camera.

Figure 3.6 An image collage illustrating Spot’s posing during the calibration rou-
tine.

Camera intrinsics Spot has its own automatic calibration procedure for estimating
the camera intrinsics. A board with charuco markers1 is used, placed horizontally.
During the calibration Spot positions itself accordingly see Figure 3.6.The camera
intrinsics are stored on Spot. The camera intrinsics for a given sensor may then be
extracted from the data received by querying the image sensor.

Payload configuration
As mentioned previously, Spot is equipped with the SpotCORE and a LiDAR, see
Figure 3.7. The SpotCORE and LiDAR are bundled into what is referred to as the
Enhanced Autonomy Package (EAP). The LiDAR extends Spot’s ability to local-

1 https://docs.opencv.org/4.5.5/df/d4a/tutorial_charuco_detection.html Accessed:2022-02-27
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Figure 3.7 The SpotCORE and VLP-16 LiDAR.

ize during autonomous missions in feature sparse environments where the cameras
provide insufficient information.

LiDAR The LiDAR sensor is a Velodyne VLP-16. The VLP-16 has a range of
up to 100 meters, a 30 degree vertical field of view and measures roughly 300 000
points per seconds. The measurements have a range accuracy of ±3 cm.

SpotCORE The SpotCORE is a small form factor PC and comes preconfigured
with Ubuntu 18.04. The hardware includes an 8th generation Intel i5 processor, 16
GB of RAM and 512 GB of SSD storage.

Frames
During operation certain frames2 are known to Spot. The frames can be sectioned
into inertial frames, robot frames and sensor frames. An inertial frame is a static
frame. Two inertial frames are available, odom and vision. Both inertial frames are
defined at the starting location of Spot. However, the intertial frames do not nec-
essarily coincide. Issues related to the placement of the intertial frames and the
solution are further elaborated on in Section 3.3. The robot frames consist of the
body frame and actuator joints. The body frame is placed in the middle of the robot,
between the hip joints. The joint positions are given in the body frame. The sensor
frames relate the optical centers of the cameras and velodyne position to the body
frame.

The position of the body frame in either intertial frame is continously estimated
during operation. The estimated position of the body frame in the odom frame is
purely based on the kinematic model of the robot. The estimated position of the
body frame in the vision frame is based on the kinematics and an internal visual
odometry approach using the depth cameras.

2 https://dev.bostondynamics.com/docs/concepts/geometry_and_frames Accessed:2022-03-26

25



Chapter 3. System

Figure 3.8 One of the two DB12 ports on Spot which provide the payloads with power and
access to the internal network.

Networking
Communicating with and operating Spot requires a network connection to the robot.
Spot hosts its own IP network. The network may be accessed either through a direct
connection with an RJ45 cable or by connecting to the wireless network provided
by the onboard WiFi access point. The onboard payloads have access to the network
through the payload ports which also provide power.

3.2 Software

This section aims to preface the implementation by describing the software that has
been used in this thesis and the motivation behind the usage. The following subsec-
tions go into detail regarding the Spot SDK, ROS, RTABMap as the selected SLAM
solution and finally the usage of docker for deployment of the written software.

SDK
Interfacing with and programming Spot is done through the Spot SDK 3. The SDK
is available as a Python API, and this implementation relies on SDK version 2.3.6
and Python 3.7. The SDK provides extensive functionality and is divided into three
types of services: core, robot and autonomy. The core part of the SDK handles low
level services such as authentication for acquiring access to higher level services,
time synchronization for correcting time drift between the internal clock and an
application clock, and a lease for acquiring motor control. The robot service handles
access to the robot state, sensors, and robot command. The autonomy services give
the user high level control of the robot for setting up missions and autonomous
navigation through GraphNav. The services are accessed through a service-client

3 https://dev.bostondynamics.com/docs/concepts/readme Accessed:2022-01-02
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model, where applications that want to access the services register a corresponding
client.

The extent of which the SDK is used in this thesis is limited to the core and
robot services for authentication and extracting odometry, RGB-D images, and
point cloud data. The functionality of the autonomy services have thus not been
explored.

Robot Operating System
The Robot Operating System [Quigley et al., 2009], abbreviated ROS, is despite
its name a software framework rather than an operating system. ROS is designed
to ease process communication as well as cross-system communication. The com-
munication is peer-2-peer based. The processes referred to as nodes, registers with
a ROSmaster service which handles the look-up. Nodes are typically simpler pro-
grams that handle single tasks. Information shared between nodes are sent and re-
ceived as messages. Messages are transmitted and received using message topics
which the nodes can either subscribe or publish to.

One of the advantages of ROS is the generalized sensor message format used.
Having the sensor data adhere to a generalized message format makes the integra-
tion of a sensor into a system rather trivial.

RTABMap
The implementation in this thesis relies (solely) on RTABMap as the SLAM library
for building dense reconstructions. Since it was not clear at the start of the thesis
whether or not the payload configuration would be available or to what extent, the
focus was directed towards existing visual SLAM solutions where the depth cam-
eras on Spot could be integrated. The visual SLAM package ORB-SLAM [Campos
et al., 2021] was considered a candidate early on in the thesis since it supported
RGB-D cameras and had ROS support. Unfortunately, ORB-SLAM only outputs
sparse feature maps, which made it unsuitable for this task. Ultimately the deci-
sion was made to use RTABMap due to its many features, including ROS-support.
LiDAR-only SLAM solutions were not considered at all due to the previously men-
tioned reasons.

RTABMap was originally proposed as an apperance-based loop-closure solution
[Labbé and Michaud, 2013] but has developed into a full online graph-based visual
SLAM solution with multi-camera support and dense scene reconstruction [Labbé
and Michaud, 2019]. RTABMap only works with cameras that have depth infor-
mation, such as stereo or RGB-D image sensors. Although mainly a visual SLAM
solution, RTABMap can also utilize 2D laser scans and 3D LiDAR pointclouds for
ICP odometry, link refinement in the graph optimization and for generating occu-
pancy grid maps. The LiDAR pointclouds can also be used for generating dense
reconstructions. RTABMap can be used with external odometry instead of the in-
cluded visual odometry. The external odometry may for instance be generated from
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a motion model of the robot or from a separate visual odometry approach. When
external odometry is used, the visual information provided is only used for finding
loop closures and during map reconstruction. The loop closure algorithm uses the
visual bag of words approach [Labbé and Michaud, 2013]. However, the vocabulary
is not pretrained but built during operation. RTABMap is available as both a C++
library and as a ROS package.

Docker
Docker is a solution for packaging software into smaller, isolated environments
called containers. Similiar to virtual machines, a Docker container is a system en-
vironment that is isolated from the host system, but can allocate resources from
the host system. The full environment can be packed into a Docker image which
can then be deployed onto any host system that also runs Docker. The image con-
tains a file system with all dependencies and configurations that is needed to run
the software. For ease of development and testing, Docker was chosen early on
for deploying the software onto the SpotCORE since the development, testing and
building the environment could be done on a separate machine.

3.3 Implementation

This section describes the implementation and integration of Spot’s sensors into
ROS and packaging of the software into a Docker container for deployment onto the
SpotCORE. First, the architecture and design choices regarding the implementation
are described. Secondly, the docker deployment is briefly described. Finally, the
initial impressions from a working system mapping an office space are presented.

Architecture
The architecture is built upon ROS for data acquisition and intraprocess communi-
cation with the ROS implementation of RTABMap. The architecture can be divided
into two different pipelines. Acquiring sensor data and robot state information will
be referred to as the sensor pipeline and the mapping process will be referred to as
the SLAM pipeline.

Sensor pipeline The sensor pipeline wraps the SDK calls and converts the ac-
quired sensor data into ROS messages. The ROS messages are then published to the
respective topics. A ROS node exists for each “sensor” type for fetching RGB-D
data, LiDAR pointclouds and odometry. At launch the ROS nodes follow the same
procedure and can be summarized in the following steps:

• Read ROS parameters

• Authenticate
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Figure 3.9 An illustration of the deployed system.

• Initialize ROS node

• Publish data

At the intial step the ROS parameters are read from a launch file which specifies
the robot IP address and credentials. For the camera node, the positioning of the
camera, e.g., “frontleft” is also specified. At the authentication step, a SDK object is
created which specifies the client to be registered, and the credentials for accessing
the robot is passed through. During the initialization step, the ROS node is registered
and the publishers are created. In the last step of the procedure the program enters
the loop in which the calls to the SDK are made for acquiring data. The data is then
handled and packaged into ROS messages and published.

SLAM pipeline The SLAM pipeline handles the configuration of RTABMap and
the sensor topics. An illustration of the SLAM-pipeline is shown in Figure 3.10.
The pipeline is additive in the sense that any amount of cameras may be used. For
each camera, the output topics are synchronized into RGBDImage messages us-
ing the RTABMap rgbd_sync nodelet which packages the RGB, depth and camera
info into a single message. This is done to allow RTABMap to subscribe to mul-
tiple depth camera topics. RTABMap also subscribes to the odometry provided by
the odometry node and the pointcloud from the LiDAR. The pipeline utilizes the
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Figure 3.10 An illustration of the SLAM pipeline.

tf_static package which publishes the static transformations from the body frame to
the camera optical frames. During the mapping RTABMap outputs the pose graph
estimate and the current map. The default update rate of the pose graph is set to
1 Hz and determines the rate of which the keyframes are read. Faster update rates
allow for more dynamic behavior and finding more loop closures. However, the
computing power available constrains the update frequency and as such, sets an
upper bound on the update rate under which realtime issues are avoided. Realtime
issues occur when the time it takes to update the pose graph exceeds the set update
rate of the graph.

Nodes
For every type of “sensor” in the sensor pipeline, a ROS node has been written.
Specifically, a camera node which handles the depth cameras, a velodyne node
which publishes the LiDAR point clouds, and an odometry node which publishes
the robot odometry and transformations.

Camera The camera node registers an image client service from which RGB and
depth images are acquired. When registering the image client, the camera position
is specified. Additional options exist for fetching rectified images and depth images
which are pre-registered to the RGB frame. This eliminates the need for using ad-
ditional rectification and depth registration pipelines, although ready ROS solutions
exist such as image_proc4. The image data consists of numpy arrays and are cast

4 http://wiki.ros.org/image_proc Accessed:2022-01-02
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into the OpenCV format. The image data can then be directly converted into ROS
image messages using the ROS-OpenCV bridge.

As mentioned in Section 3.1 the camera intrinsics have been retrieved in ad-
vance and stored in a YAML file. When the node is launched, the YAML is loaded
and read and the contents are written to a CameraInfo message. Since the depth
image is registered to the RGB frame, the same camera intrinsics are used as for the
RGB image.

The camera node is set to publish at a rate of 30 Hz, which the system seems to
handle when using a single camera. However, using all five cameras the data trans-
mission seems to saturate the network and the increased bandwidth usage lowers
the received message rate to roughly 17 Hz.

Velodyne The Velodyne node registers a velodyne_pointcloud_client to poll for
pointcloud data. The pointcloud data is recieved as numpy array, and are written to a
PointCloud2 message. The frame of which the retrieved pointcloud were registered
in caused a great deal of confusion during this part of the implementation. After
some investigation it turned out that the pointcloud were given in the inertial odom
frame, and not the frame of the velodyne. The documentation does not specify the
reason behind the frame usage. One explanation could be that Spot uses the LiDAR
for localization when visual odometry can not be computed. It could be that if the
visual odometry is unavailable the robot tries to estimate its movement based on the
kinematics and ICP odometry and as such, uses the odom frame.

Odometry The odometry node publishes odometry messages which maps the
body frame in the vision frame. The odometry node registers a robot state client. The
client returns robot state messages where the robot pose, velocities and frame trans-
formations can be extracted. The information acquired is packaged into a Nav_msg
/Odometry message and published.

As previously mentioned, the pointcloud from the velodyne is registered in the
odom inertial frame. For RTABMap to use the pointcloud, the transformation from
the odom frame to the vision frame need to be known. Since the transformations
from both inertial frames to the body frame are available in the robot state message,
the transformation from the vision frame to the odom frame can simply be found by
computing the transformation

Hvision
odom = Hvision

body (H
odom
body )

−1 (3.1)

Finally, Hvision
odom is published as a tf message.

Software deployment
The software written in this thesis has been packaged into a Docker image.
The Docker image is built using the Ubuntu 20.04 base image. The image con-
tains the RTABMap binaries, a ROS Noetic workspace environment with the
launch files, nodes and a Python3.7 virtual environment in which the SDK is
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installed. Since the RTABMap binary available in the ROS repository does not
have multi-camera support RTABMap had to be built from source with the flag
-DRTABMAP_SYNC_MULTI_RGBD=ON .

The software is deployed onto the SpotCORE by exporting the image as a tar file
and transferred onto the SpotCORE. The image is then loaded by importing the tar
file. When running the container certain permission flags have to be set, specifically
the

• –net==host flag which exposes the host network to the container.

• –env="DISPLAY" which allows the container to use the XServer of the host
system.

• –volume="$HOME/.Xauthority:/root/.Xauthority:rw" which mounts the
host Xauthority in the container.

• -v <host folder>:/path/to/container/folder which mounts a folder on the
host file system into the container for shared access.

3.4 Initial test and impressions

After having a working system for data collection and mapping a test run was per-
formed. The robot was operated manually with the tablet during which the odome-
try, camera data and LiDAR pointclouds were recorded to a rosbag. After the run,
the data was replayed from the rosbag to RTABMap. After the mapping proce-
dure, RTABMap saves the keyframes, pose graph and odometry estimates and re-
construction to a database file. The database file may then be read by the rtabmap-
databaseViewer tool. From here, the odometry and pose graph estimates and camera
and LiDAR reconstruction were exported.

Figures 3.11, 3.13 and 3.15 illustrate the reconstruction from the depth cameras.
The point cloud has been downsampled a factor of 4 and the max depth has been
set to 1.5 m. The map created from the depth cameras is deemed inadequate. Due to
the orientation of the cameras where they all face slightly downwards, surfaces that
are close to and higher than Spot are hard to capture. The depth information suffers
from increased noise for longer distances. However, the geometry that is captured
seems correct. For instance, points that should lie on a plane do seem to lie on a
plane, such as the ground, walls and other plane surfaces.

Figures 3.12, 3.14 and 3.16 illustrate the LiDAR reconstruction from the LiDAR
pointclouds captured during the same test run. The pointcloud has been downsam-
pled a factor of 2 and the cloud has been manually segmented using CloudCompare5

for illustration purposes. The reconstruction seems very accurate. This did not come

5 https://www.danielgm.net/cc/ Accessed: 2022-02-25
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Figure 3.11 A top view of the camera re-
construction.

Figure 3.12 A top view of the LiDAR re-
construction.

Figure 3.13 A side view of the camera re-
construction.

Figure 3.14 A side view of the LiDAR re-
construction.

Figure 3.15 Close up view of dining area
in the camera reconstruction.

Figure 3.16 Close up view of dining area
in the LiDAR reconstruction.

as a great suprise given the range accuracy of the LiDAR. However, the clouds are
still captured from a moving platform which could introduce slight misalignments.

Figure 3.17 shows the robot path in the X-Y plane for the odometry and pose
graph output. Without any actual ground truth for the path, it seems reasonable
compared to what was observed visually during the test run and when considering
the layout of the space. Slight misalignment between the odometry and the pose
graph can be deduced from the figure and the misalignment seem to be at its largest
when the robot made sharp turns, such as in the top half of the figure.

The conclusion that was drawn from the initial test was that the combination of
LiDAR and visual information would be the way forward. As mentioned, the cam-
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Figure 3.17 The robot path in the X-Y plane estimated by the odometry and pose graph
during the test run.

era reconstruction was deemed inadequate for any real usage in the comparison to
the building information model or for acquiring any meaningful geometric informa-
tion other than the layout of the space visited. However, the visual information is
still useful for localization purposes and for finding loop closures to correct for the
odometry drift. The pointcloud captured by the LiDAR provides seemingly accurate
reconstructions. The only drawback is that the pointclouds are untextured and can
be hard to interpret without some additional manual intervention.
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Results

This chapter presents the results from the experiments conducted to benchmark the
localization performance of the system and evaluating the accuracy of the recon-
structions. The results are two-part. Section 4.1 describes the localization exper-
iments conducted at Brunnshögs stationstorg where positional ground truth data
were collected using GPS tracking. Section 4.2 describes the evaluation of the re-
constructions produced from data collected at the construction project Vipan.

4.1 Localization

This section describes the experiments conducted to evaluate the localization per-
formance of RTABMap when utilizing the odometry output from the robot. The
experiments were conducted at Brunnshögs stationstorg, Lund. The location was
chosen to minimize interference from reflections on the GPS signal since the sur-
rounding environment is flat and void of tall structures. See Figure 4.1 for an image
of the location.

Experimental setup
The robot was equipped with two realtime-kinematic global positioning systems
(RTK-GPS), see Figure 4.2. The RTK system can track the position of an object
in realtime. The measurements are then corrected against a fixed station which is
located in the vincinity. The fixed station continously sends GNSS information to
Swepos 1. Under the right conditions, the measurements from the RTK-GPS system
may acquire a precision in the range of centimeters 2.

The intention was to track the robot’s position using the GPS and estimate the
heading of the robot by computing the yaw from the two measured GPS signals. The
measured pose would then serve as ground truth for the experiment from which the

1 https://www.lantmateriet.se/en/maps-and-geographic-information/gps-geodesi-och-
swepos/swepos/om-swepos/ Accessed: 2021-01-10

2 https://www.lantmateriet.se/en/maps-and-geographic-information/gps-geodesi-och-swepos/GPS-
och-satellitpositionering/Metoder-for-GNSS-matning/RTK/ Accessed: 2022-01-10
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Figure 4.1 An image of the location in Brunnshög where the localization experiments were
conducted.

ATE and RPE could be computed. To aid RTABMap in finding loop closures, three
fiducials were taped to separate wooden boards and placed around the starting loca-
tions of the experiments. See Figure 4.3 for the placement of the fiducials. Multiple
experiments were performed. The robot was operated manually with the tablet dur-
ing which the GPS data, odometry and sensor data were recorded. The paths taken
during each experiment started and ended in the same location.

Clarifications regarding the experimental data
Accurate and reliable ground truth measurements are not always easy to acquire.
During the experiments at Brunnshög the difficulties related to tracking a moving
object in realtime with global positioning made themselves evident. First off, the
GPS measurements from the RTK system placed at the front could not acquire a
high enough resolution which resulted in frequent jumps in the positioning. The
placement of the antenna close to the Spot CAM seem to have caused additional
reflections and as such rendered the measurements unusable. The GPS receiver
mounted on the back of the robot was afflicted by the same jumps in the positioning
during parts of the trajectories. Due to time constraints the experiments could not
be repeated or refined within the scope of this thesis. Instead of discarding all the
results, the descision was made to evaluate the performance of the localization on
the available data. Since the measurements from the GPS system placed at the front
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Figure 4.2 The two GPS systems mounted on Spot.

Figure 4.3 Placement of the fiducials during the localization experiments.

could not be included the heading had to be estimated using only the signal, i.e,
the GPS system placed at the back. Therefore, only selected parts of the robot path
where the ground truth measurement was smooth were used in the evaluation.

Method
To compare the estimated pose with the ground truth measurement, the estimated
poses and ground truth had to be registered to a shared coordinate frame. The odom-
etry, pose graph and GPS signal have been aligned by manually picking point cor-
respondances and solving the absolute orientation problem, as presented in Section
2.4. See Appendix A.1 for the python implementation. The resulting alignment for
one of the experiments are shown in Figure 4.4 in the x-y plane and in the x-z plane
in Figure 4.5. The figures make the previously mentioned issues related to the GPS

37



Chapter 4. Results

Figure 4.4 The robot path in the XY-plane measured by GPS and estimated by
odometry and pose graph.

tracking clear. However, notice that the jumps in the positioning is mainly affecting
the position on the z-axis. Also, note the scale of the axes.

Since the odometry and pose graph estimates are given in current ROS time and
the GPS measurements in world clock the data had to be manually aligned in time.
Figure 4.6 illustrates the aligned x-y-z trajectories for the same experiment.

The yaw angle is estimated by computing the difference in measured x and y
position between samples. The yaw angle θn at sample n is given by

θn = arctan
(

yn+1 − yn

xn+1 − xn

)
. (4.1)

The time- and position-aligned data is then written to a file to be used with the
evaluation methods presented in Section 2.3 and described in the paper by [Zhang
and Scaramuzza, 2018]. The paper is accompanied by a toolbox written in Python
and is available at github3. The toolbox provides functionality for selecting parts
of the trajectories to be used in the evaluation and alignment of the ground truth

3 https://github.com/uzh-rpg/rpg_trajectory_evaluation Accessed: 2022-01-02
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Figure 4.5 The robot path in the XZ-plane measured by GPS and estimated by
odometry and pose graph.

and estimate. The estimated yaw angle has been used to fine tune the alignment of
the trajectories using the SE3 setting which computes a translation and a rotation
around the z-axis.

Performance
The results from three experiments are presented here. As previously mentioned,
only parts of the experiments are presented due to the issues related to the GPS
measurements. The error metrics for the orientation have been omitted in the pre-
sentation of these results. This is motivated by the uncertainty of the ground truth
measurements since the heading had to be estimated from a single GPS signal.

Figures 4.7, 4.8, 4.11, 4.12, 4.15, and 4.16 illustrate the aligned paths in the
XY plane for the ground truth and pose graph and ground truth, and odometry,
respectively. The odometry is Spot’s own pose estimation based on the kinematics
and visual information from the depth cameras. The pose graph is the estimated
pose that RTABMap outputs with the odometry from Spot and the depth cameras as
input.

The first experiment ran on a stone and concrete path with a slight slope. The
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Figure 4.6 The robot trajectory measured by GPS and estimated by odometry and
pose graph.

path included multiple turns and made circular patterns. The pose graph deviated
slightly more from the ground truth towards the end of the path. The deviations
are due to no global loop closure being found, meaning no constraint was added
between the starting and ending location. However, the circular path taken resulted
in multiple local loop closures which corrected for the drift along the path.

The latter two experiments followed roughly the same path, in the shape of a
square along the paved road. Global loop closures between starting and ending lo-
cation were found during both experiments. It is interesting to note the significant
shift in performance between the second and third experiments since the conditions
for the experiments were the same. No other explanation to the worsened perfor-
mance besides the increased odometry drift in the third experiment has been found.

Figures 4.9, 4.10, 4.13, 4.14, 4.17 and 4.18 illustrate the position drift between
ground truth and pose graph and ground truth and odometry in x-y-z, respectively.

Tables 4.1 and 4.2 present the absolute trajectory error statistics for the pose
graph and odometry, respectively. It is clear from comparing the tables that the pose
graph reduces the absolute trajectory error for all experiments. Sub-meter accuracy
is acheived for paths longer than 100 meters. Similar ATE is acheived for two dif-
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Figure 4.7 Path of the robot in the XY-
plane measured by GPS and estimated by
pose graph during the first experiment.

Figure 4.8 Path of the robot in the XY-
plane measured by GPS and estimated by
odometry during the first experiment.

Figure 4.9 The position drift between GPS and pose graph during the first experi-
ment.

Figure 4.10 The position drift between GPS and odometry during the first experi-
ment.
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Figure 4.11 Path of the robot in the XY-
plane measured by GPS and estimated by
pose graph during the second experiment.

Figure 4.12 Path of the robot in the XY-
plane measured by GPS and estimated by
odometry during the second experiment.

Figure 4.13 The position drift between GPS and pose graph during the second
experiment.

Figure 4.14 The position drift between GPS and odometry during the second ex-
periment.

ferent scenarios where the first experiment found multiple local loop closures and
the second experiment had no local loop closures but instead a global loop closure
at the end of the path. See Appendix A.2 for the resulting reconstructions from the
experiments.
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Figure 4.15 Path of the robot in the XY-
plane measured by GPS and estimated by
pose graph during the third experiment.

Figure 4.16 Path of the robot in the XY-
plane measured by GPS and estimated by
odometry during the third experiment.

Figure 4.17 The position drift between GPS and pose graph during the third ex-
periment.

4.2 Vipan

Vipan is an ongoing construction project in south-eastern Lund. The ground floor
of the building has been used as a test bed for this project. Figure 4.19 shows the
model of the planned building. The available building information model, abbrevi-
ated BIM, is used for comparison when evaluating the accuracy of the reconstruc-
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Figure 4.18 The position drift between GPS and odometry during the third exper-
iment.

Table 4.1 The absolute trajectory error of the pose graph estimate for the transla-
tional part for Experiments 1-3.

Run RMSE [m] Std.dev [m] Mean [m] Max [m] Min [m]
1 0.3018 0.1593 0.2564 0.7834 0.0497
2 0.2579 0.0783 0.2457 0.4982 0.1172
3 2.0282 1.5864 1.5864 5.308 0.0428

Table 4.2 The absolute trajectory error of the odometry estimate for the transla-
tional part for Experiments 1-3.

Run RMSE [m] Std.dev [m] Mean [m] Max [m] Min [m]
1 0.5475 0.2782 0.4716 1.5709 0.0869
2 1.1837 0.7302 0.9317 3.4865 0.2475
3 3.2131 2.3062 2.2373 7.8008 0.1708

tion. For this purpose, a pointcloud has been sampled from the BIM. The points are
sampled on every surface of the ground floor at a density of 20 points per square
meter. Figures 4.20 illustrate two views of the pointcloud sampled from the BIM.

The data used in the reconstruction has been collected during a mission created
using the autowalk function available in the tablet. Spot navigates autonomously be-
tween predefined positions in the building. During the mission the odometry, RGB-
D images, and LiDAR pointclouds are recorded to a rosbag.

Reconstruction
Figure 4.21 illustrates the resulting LiDAR reconstruction from a recorded au-
tonomous mission. The mapping is done in "pseudo realtime" where the input data
to the SLAM pipeline is played back from the rosbag. After the mapping, the map,
keyframes and odometry are saved to a database file and read with the provided
rtabmap-databaseViewer tool. The pointcloud is then exported to a .pcd file. The
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Figure 4.19 A front view of the building information model of Vipan.

Figure 4.20 A top view and side view of the sampled BIM.

pointcloud has been post-processed using the free software CloudCompare4 where
the cloud has been manually segmented to remove certain parts of the reconstruc-
tion such as the floor and ceiling to ease visualization. Light rays are then projected
along the z-axis using the ambient occlusion tool which results in a color gradient
in the cloud, also for the purpose of visualization.

Aligning reconstruction with model
To get an overall impression of the resulting reconstruction from the mapping, the
reconstruction was aligned to the pointcloud sampled from the BIM. Figure 4.22 il-
lustrates the reconstruction aligned to the pointcloud sampled from the BIM. Here,
the pointcloud from the reconstruction is first roughly aligned by picking a num-
ber of point correspondences with the point selection tool in CloudCompare. The
resulting rotation and translation are then used as an initial guess to the fine registra-
tion tool in CloudCompare which uses iterative closest point (ICP) for additional
alignment of the pointclouds.

4 https://www.danielgm.net/cc/ Accessed: 2022-02-25
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Figure 4.21 The reconstruction visualized in CloudCompare.

Figure 4.22 Reconstruction (blue) aligned with BIM pointcloud (white).
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4.2 Vipan

Accuracy
To answer the question: "How accurate is the reconstruction?", two very rudimen-
tary approaches were used in the evaluation. First, distances between known geom-
etry in the reconstruction are compared to the same geometry in the BIM. Secondly,
the resulting LiDAR cloud registration from the mapping is evaluated. This is done
by selecting pieces of the reconstruction where the geometry of the scene is known.
A geometric feature is fitted to parts of the reconstruction. The distance between the
points that make up the geometry and the feature model is then computed.

Distances The distances in the reconstruction and the BIM are measured in Cloud-
Compare using the point selection tool from which distances between two selected
points can be computed directly. The procedure for one such feature, in this case a
wall, is illustrated in Figure 4.23. Here, two points on the top wall have been selected
in the reconstruction and the corresponding wall in the BIM. The reconstruction is
placed in the top part of the image and the sampled BIM is placed in the bottom
part. See Appendix B.1 for visualization of the remaining measurements. Table 4.3
presents the measured distances and the deviation between the reconstruction and
the BIM for multiple walls.

Table 4.3 The measured distances in the reconstruction and sampled building
model.

Wall dreconstruction [m] dBIM [m] ∥ ∆d ∥ [m]
1 63.8795 63.8966 0.0171
2 16.3243 16.3181 0.0062
3 12.1694 12.0769 0.0925
4 11.7613 11.6002 0.1611
5 17.9853 18.0001 0.0148
6 17.8677 17.9677 0.1000
7 2.8410 2.8914 0.0504

Point to plane Ideally, points that are measured on a plane surface should lie on
the plane that makes up the surface. In practice, the measurements are always sub-
jected to noise to some extent and the platform from which the measurements are
made is moving which in turn may introduce errors as a result of misalignment
during the scan. In Figure 4.24 the selected geometry in the reconstruction is high-
lighted. The geometry is constituted by walls. The reason being that since the wall
is a plane surface in the relative sense, the points that are measured on the wall
should lie on a plane. For each selected section of the reconstruction, a plane is fit-
ted to the points. The point-to-plane distance is then computed. Positive distance is
in the direction of the normal of the plane towards the inward of the reconstruction.
Figures 4.25, 4.26, 4.27 and 4.28 display the resulting histograms of the distances
between the points and the corresponding plane fit. The mean distances and stan-

47



Chapter 4. Results

Figure 4.23 The measured distance in reconstruction (top) and sampled building
model (bottom).

dard deviations between the points and the corresponding planes are presented in
Table 4.4.

Table 4.4 The computed point-to-plane mean distances and standard deviation.

Wall Mean [m] Std.dev [m]
1 -0.0005 0.0263
2 -0.0007 0.0172
3 -0.0006 0.0246
4 -0.0006 0.0166
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4.2 Vipan

Figure 4.24 The selected surfaces (highlighted) in the reconstruction used for
plane fitting.

Figure 4.25 The resulting histogram of
computing the point-to-plane distance for
Wall 1.

Figure 4.26 The resulting histogram of
computing the point-to-plane distance for
Wall 2.
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Figure 4.27 The resulting histogram of
computing the point-to-plane distance for
Wall 3.

Figure 4.28 The resulting histogram of
computing the point-to-plane distance for
Wall 4.
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5
Discussion

This chapter concludes the report with discussion regarding the prototype SLAM
system and the results of the experiments conducted. To serve as a reminder, the
three main objectives of the thesis were:

• Build a prototype visual SLAM system which incorporates the available sen-
sor configuration on Spot.

• Benchmark the localization performance of the system by comparing against
ground truth measurements.

• Evaluate the reconstuction accuracy.

The result of the work carried out during the thesis is a prototype system which
integrates the passive features of Spot into the ROS framework. The system built and
tested performs satisfactorily given the available sensor configuration. By leverag-
ing the existing SLAM library RTABMap, the prototype system with the current
sensor configuration and odometry creates dense reconstructions with relatively
high accuracy. The loop closing capabilities of RTABMap adds robustness to the
localization even in the presence of significant drift in the odometry. The drift is
corrected by the added loop constraints in the pose graph optimization. The ob-
jectives set have thus been completed to some extent. The following sections will
further present the reflections regarding the experiments and evaluation methods,
results and suggested improvements.

5.1 Localization performance

First off, the unreliability of the ground truth for the localization experiments has
to be addressed. There are multiple introduced uncertainties in the measurements
and the following evaluation which may have a significant impact on the results of
the localization performance. Since ground truth orientation could not be acquired
due to the loss of measurements from one of the tracking systems, the yaw had to
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Chapter 5. Discussion

be estimated from a single signal. The lacking orientation also meant that the poses
had to be aligned by manually picking point correspondences and solving the abso-
lute orientation problem. Further improvements to the experimental setup would be
possible but could not be realized due to the lack of time. One such improvement
would be to mount the antennas in a more appropriate configuration such that ad-
ditional signal reflections would be minimized. Another improvement would be to
either introduce a calibrated IMU (inertial measurement unit) to also measure pitch
and roll or a third GPS setup.

When disregarding the flaws of the experimental setup for the localization ex-
periments, the results seems to indicate that the pose graph approach is robust to
significant odometry drift. The results from the localization experiments show that
the loop closure detection of RTABMap corrects for large amounts of drift. When
the localization is evaluated with the absolute trajectory error metric, the RMSE
acheived were in the decimeter range in two of the experiments for paths longer
than 100 meters.

5.2 Reconstruction accuracy

The LiDAR pointclouds registered to the estimated position of the robot from the
pose graph produce seemingly accurate reconstructions. The alignment of the recon-
struction to the sampled building model gives an indication of the scale accuracy.
By visual inspection the scale of the reconstruction compared to the model gives the
overall impression that the scale appears to be correct. This notion is further ampli-
fied by measuring certain geometry in the reconstruction and the corresponding ge-
ometry in the building model. The magnitude of the deviations range between cen-
timeters and decimeters. The evaluation method may be considered flawed, mainly
due to two aspects of the method used. The points used in the measurements are
selected manually which increases the uncertainty. The reconstruction is also evalu-
ated against the planned building model. Therefore, it is inconclusive whether or not
the deviations are due to the manual selections of points, errors in the reconstruc-
tion or actual deviation from the planned model. A suggestion for a more reliable
evaluation would have been to use a total station to acquire the measurements of
distances between geometric features. However, this could not be realized within
the scope of this thesis. Some consideration should also be taken to the fact that the
measurements are made from a moving platform with the associated uncertainty in
the positioning of the sensors.

The evaluation of the accuracy by computing the point-to-plane distance shows
that for subsets of the reconstruction, the scan alignment of the points are at least as
accurate as the LiDAR system that measured the points. Combined with the fact that
the standard deviation of the point-to-plane distance falls within the specification
of the range accuracy of the LiDAR, the assumption can be made that the scan
alignment does not introduce any significant errors
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6
Conclusion

The work carried out in this thesis has laid the necessary foundation to leverage
existing SLAM solutions with the Spot robot platform to build dense reconstruc-
tions of the environment. The designed and tested prototype system integrates the
sensor configuration of Spot into the ROS framework. Combined with the visual
SLAM library RTABMap for robust localization with loop closing capabilities and
dense camera and LiDAR reconstructions, the system provides means for online
map building and data acquisition. The onboard depth cameras were deemed inad-
equate in providing any meaningful comparison to the building information model
due to both the resolution and mounting on the platform. However, the visual in-
formation proved to be useful when utilized for localization purposes by detect-
ing loop closures during mapping. The resulting LiDAR reconstructions provided
comparable results to be evaluated against the planned building model and acheived
centimeter accuracy with the current sensor configuration. The results from the eval-
uation of the reconstructions seem to indicate that the range accuracy of the LiDAR
system is the limiting factor. Thus, the current solution is not sufficient to be used
for site inspection. However, the reconstructions could still be useful for tracking
the progress of ongoing constructions.

Further development

A feature which could improve the utility of the system in real world applications
would be automatic registration of the reconstructions to the coordinate frame of
the building model. This could be done by initializing the mapping in relation to a
known landmark where the position of the landmark has been accurately measured
in reference to the coordinate frame of the building model. The landmark could for
instance be an aruco marker or any other easily identifiable type of landmark.
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A
Localization

This appendix contains the python code written for solving the absolute orienta-
tion problem as described in Section 2.4. The appendix also contains the resulting
reconstructions from the localzation experiments presented in Section 4.1.

A.1 Python implementation for solving the absolute
orientation problem

import numpy as np

gps = np . l o a d t x t ( ’ g p s _ c o r r . c sv ’ , d e l i m i t e r = ’ , ’ )
g raph = np . l o a d t x t ( ’ g r a p h _ c o r r . c sv ’ , d e l i m i t e r = ’ , ’ )
xm = np . a r r a y ( [ np . mean ( g raph [ : , 0 ] ) ,

np . mean ( g raph [ : , 1 ] ) , np . mean ( g raph [ : , 2 ] ) ] )
ym = np . a r r a y ( [ np . mean ( gps [ : , 0 ] ) ,

np . mean ( gps [ : , 1 ] ) , np . mean ( gps [ : , 2 ] ) ] )
qn = np . t r a n s p o s e ( g raph − xm)
qn_prim = np . t r a n s p o s e ( gps − ym)

H = np . z e r o s ( [ 3 , 3 ] )
f o r i in range ( np . s i z e ( qn , 1 ) ) :

qn_s = np . r e s h a p e ( qn [ : , i ] , ( 3 , 1 ) )
qn_pr im_s = np . r e s h a p e ( qn_prim [ : , i ] , ( 1 , 3 ) )
r e s = np . matmul ( qn_s , qn_pr im_s )
H = H + r e s

H = 1 / np . s i z e ( qn , 1 ) * H
u , s , v = np . l i n a l g . svd (H)
R = np . matmul ( np . t r a n s p o s e ( v ) , np . t r a n s p o s e ( u ) )
t = ym − np . matmul (R , xm)
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A.2 Reconstructions

A.2 Reconstructions

Figure A.1 The resulting LiDAR reconstruction from the first experiment at
Brunnshögs stationstorg visualized in CloudCompare.

Figure A.2 The resulting LiDAR reconstruction from the second experiment at
Brunnshögs stationstorg visualized in CloudCompare.
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B
Vipan

This appendix contains the figues illustrating the selection of corresponding points
in the sampled building information model and reconstruction as described in Sec-
tion B.1.

B.1 Measured distances

Figure B.1 Measured distance in reconstruction and BIM.
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B.1 Measured distances

Figure B.2 Measured distance in reconstruction and BIM.

Figure B.3 Measured distance in reconstruction and BIM.
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Appendix B. Vipan

Figure B.4 Measured distance in reconstruction and BIM.

Figure B.5 Measured distance in reconstruction and BIM.
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B.1 Measured distances

Figure B.6 Measured distance in reconstruction and BIM.
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