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Abstract 
 
The naturally occurring, radioactive noble gas radon is known to cause permanent 
damage in lung tissue. As the COVID-19 pandemic showed largely unexplained 
high spatial variation of mortality and infection rates, it was suggested that the 
increased exposure to radon gas damages the lung to a degree, that amplifies an 
infection with SARS-CoV-2 and causes a severe progression of COVID-19, which 
could show as an increase of infections and severe COVID-19 progressions in 
regions of high radon occurrence. Three different time periods were analysed at a 
district level, to test for spatial correlations of case fatality ratio and infection rate to 
radon soil gas concentration. In each period case fatality ratios and infection ratios 
of the total population, population equal to or greater than 60 years and population 
below 60 years were tested for correlation to mean age, mean income, mean living 
space, and mean radon soil gas concentration. An additional spatial regression 
analysis supported the suspected associations, and a possible indication of a weak 
positive spatial correlation between case fatality ratio and radon occurrence was 
demonstrated. Additionally, a weak but significant spatial correlation between 
COVID-19 infection rates and radon occurrence was revealed. 
More sophisticated methodology was suggested, due to several limitations of the 
study project. The need for further research to support the findings and accept the 
hypothesis of spatial correlation between COVID-19 and radon exposure was 
pointed out.  
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Abstract 
 
Das natürlich vorkommende, radioaktive Edelgas Radon ist bekannt dafür, 
langfristige Schäden des Lungengewebes zu verursachen. Da Fallsterblichkeit und 
Infektionsraten der COVID-19 Pandemie große, unerklärte räumliche Unterschiede 
aufzeigten, wurde als mögliche Erklärung vermutet, dass Radon-Gas die Lunge in 
einem Ausmaß belastet, welches eine Infektion mit SARS-CoV-2 begünstigt und 
einen schweren COVID-19 Verlauf verursacht, was sich an höheren 
Infektionszahlen und schwereren COVID-19 Verläufen in Regionen erhöhten 
Radonvorkommens zeigen würde. Um Korrelationen von Fallsterblichkeit und 
Infektionsraten zur Radon-Konzentration in der Bodenluft zu analysieren, wurden 
drei verschiedene Zeiträume auf Landkreisebene untersucht. In jedem Zeitraum 
wurden Fallsterblichkeit und Infektionsraten der gesamten Bevölkerung, der 
Bevölkerung älter oder gleich 60 Jahren und der Bevölkerung unter 60 Jahren auf 
Korrelation mit dem Altersdurchschnitt, dem Durchschnittseinkommen, der 
durchschnittlichen Wohnraumfläche und der durchschnittlichen Bodenluft Radon-
Konzentration geprüft. Die vermuteten Zusammenhänge wurden durch eine 
zusätzliche räumliche Regressionsanalyse unterstützt und es konnten Hinweise auf 
einen möglichen Zusammenhang von Fallsterblichkeit sowie ein schwacher, aber 
signifikanter Zusammenhang von Infektionsraten zu Radonvorkommen aufgedeckt 
werden. 
Wegen verschiedener Einschränkungen des Forschungsprojekts wurde ein 
Erweitern der angewendeten Methodik und weitere Untersuchung vorgeschlagen 
um die Hypothese eines räumlichen Zusammenhangs von Radonbelastung und 
COVID-19 zu bestätigen. 
 
 
Keywords 
 
GIS, Epidemiologie, Deutschland, SARS-CoV-2, COVID-19, Radon, Räumliche 
Regression 
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1 Introduction 
 
 
The COVID-19 pandemic has influenced the world’s majority during the past two 
years. COVID-19 is an infectious disease caused by the novel SARS-CoV-2 virus 
which has spread within a few weeks to every continent and almost every country 
(World Health Organization, 2022). While many infected persons experience none 
or only mild to moderate symptoms of the respiratory system, like a dry cough or 
sore throat, other patients experience life threatening symptoms, the most prominent 
ones being lung complications such as pneumonia or the acute respiratory distress 
syndrome (ARDS). 

Environmental factors such as temperature, relative humidity, wind speed and 
precipitation (Ganslmeier et al. 2021) which influence the transmission of SARS-
CoV-2 virus and the behaviour of the population have been studied by various 
scientists. Radon, which is a radioactive and naturally occurring gaseous element, 
can be found in varying concentrations everywhere in nature and is known to be the 
primary natural cause of lung cancer and thus responsible for most cases of lung 
cancer after smoking (World Health Organization 2021). The exposure to radon 
does not necessarily result in lung cancer, but can cause a variety of respiratory 
diseases, like pneumonitis, lung fibrosis or chronic obstructive pulmonary disease 
(COPD) and a respiratory system prone to infections (Turner et al. 2012). Patients 
with various pre-existing lung diseases have been early identified to be at high risk 
for severe COVID-19 disease progression and an increased mortality (Maragakis 
2021). The impact of meteorological driven exhalation of radon gas into the 
atmosphere (Mudelsee et al. 2020;  Kulali et al. 2017;  Tchorz-Trzeciakiewicz and 
Kłos 2017;  Rey et al. 2022) on the severity of a COVID-19 progression or on the 
transmission of the SARS-CoV-2 virus is unknown.  

Although infections appeared in all regions, mortality rates show large spatial 
variations (Figure 7, Section 3.2.1; Figures 13-20, Appendix), which could be 
correlating with radon occurrence (Figure 1, Section 1.1.3). As the COVID-19 
disease can have a heavy impact on a weakened lung and on a damaged respiratory 
system, it is of interest to analyse if areas of geologically high radon potential or 
times of meteorologically caused high radon exhalation can be linked to higher 
mortality, hospitalization rates or infection rates. 
 
 

1.1 Background 
 
1.1.1 COVID-19 and SARS-CoV-2 
 
COVID-19 is the infectious disease caused by the severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2), first identified in December 2019 in 
Wuhan, China (Huang et al. 2020). The diseases global and fast spread motivated 
the World Health Organization to declare COVID-19 a pandemic disease on March 
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11, 2020 (World Health Organization 2020). At that point of time, more than 
118 000 cases in 114 countries had been registered. 
SARS-CoV-2 is primarily transmitted via respiratory droplets and aerosols, when 
contact to oral, nasal or conjunctival mucosa occurs (Cevik et al. 2020). The virus 
binds to the human receptor angiotensin-converting enzyme 2 (ACE2), which is 
found in lungs, kidneys, heart and intestine (Yan et al. 2020). According to a meta-
analysis by Quesada et al. (2021), the mean incubation period ranges from 5.6 to 
6.7 days, with increasing incubation time at increasing age. While mild symptoms 
like fever, cough, tiredness or the loss of smell or taste are common, COVID-19 can 
also manifest as headache, gastrointestinal disorder, sore throat, pain or in severe 
cases as shortness of breath, confusion, chest pain, respiratory failure, or multiple 
organ dysfunction (National Institutes of Health 2022;  World Health Organization 
2022). The case fatality rate (CFR), which is defined as the ratio between total 
confirmed deaths and total confirmed cases ranges between 0.4 and 15 %, is heavily 
influenced by multiple factors, such as pre-existing diseases, available hospital 
beds, health care expenditure or air pollution (Rajgor et al. 2020), and thus is 
spatially varying between and within countries. Spatial variation could also be 
observed in Germany (Figure 7, Section 3.2.1; Figures 13-20, Appendix). Long-
term effects after an infection, also known as long COVID or post-COVID-19 
syndrome, were at first not noticed, but have shown to range from tissue damage 
and unresolved inflammations to autoimmune disorders (Yong 2021).   
A major factor in containing the pandemic in terms of reducing transmission rates 
and reducint mortality was the successfull development of multiple vaccinations. 
Approximately one year after the beginning of the pandemic, the first vaccination 
against the SARS-CoV-2 virus was conditionally approved by the European 
Commission, soon to be followed by other vaccinations. The effectiveness of the 
vaccines have been assessed to be varying, due to virus mutations, age of patients or 
vaccine manufacturer and vaccination type, but all revealed a partial protection 
against death, effectively reducing mortality (Jabłońska et al. 2021). 
 
 
 
1.1.2 Meteorology, Demography, Socioeconomics 
 
Various studies and research projects have studied the links between meteorological 
parameters and the pandemic. Mean air humidity and COVID-19 mortality have 
shown to be correlated (Biktasheva 2020), but also the influence of temperature and 
wind speed on the spread of the virus have been revealed (Ganslmeier et al. 2021).  
For the first quarter of 2020, COVID-19 cases showed positive associations with 
temperature and negative associations with wind speed, when a 14-day lag has been 
applied (Islam et al. 2021). An absolute humidity of 5-10 g/m³ was suspected to be 
ideal for viral transmission. However, the strongest driver for incidence rate is 
previous incidence rate. The coefficient of determination in a regression only using 
lagged (previous) incidence rate is much higher than in a regression where 
significant lagged humidity or temperature have been used. (Ganegoda et al. 2021). 

As the spread of the SARS-CoV-2 virus as well as the severity of a COVID-19 
progression have shown correlations to multiple socioeconomic, behavioural and 
demographic factors (Mollalo et al. 2020;  Drefahl et al. 2020), it is necessary to 
normalise and control assumed controlling variables before statistical analysis.  
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For example increasing age, lower income and education levels have shown strong 
correlations to death from COVID-19 in Swedish data (Drefahl et al. 2020).The 
clearly dominating effect of crowding on the infection rates has been identified by 
evaluating New York City’s mean household sizes for each zip code in comparison 
to infection rates (Federgruen and Naha 2021). Another research identified a living 
space of less than 9 m² per individual as the relevant threshold (Universitätsmedizin 
and der Johannes Gutenberg-Universität Mainz 2021).  
 
 
 
 
 
 
1.1.3 Radon 
 
The recently (January 2022) updated soil radon concentration map (Figure 1) of 
Germany is based on over 4000 soil measurements performed over the last 25 
years. These field measurements were taken all over Germany with varying density, 
in dependence of geology and lithostratigraphic aspects, to map the spatial varying 
concentrations of naturally occurring radon (Kemski et al. 2001). Radon originates 
as intermediate product of the radioactive decay chains from uranium-235, 
uranium-238 and thorium-232, which’s concentrations in rock and soil depends on 
geology. Radon can be found everywhere in Germany’s soils and is known for its 
radioactivity. Radioactivity in general has multiple effects on cells, DNA and 
organs (Nanduri et al. 2021). Lung cancer is the most prominent symptom of long-
term radon exposure (Al-Zoughool and Krewski 2009), but also an increased 
mortality from chronic obstructive pulmonary disease (COPD) are known to result 
from radon based exposure (Kang et al. 2019). As the progenies from radon’s 
radioactive decay are not gaseous but solid, these particles can adhere to the 
sensitive lung tissue when inhaled, while radon gas itself is exhaled again (Al-
Zoughool and Krewski 2009). Thus, radon exposure can result in respiratory tract 
accumulations of radioactive decay products: extremely toxic (Ansoborlo 2014;  
Slikkerveer and de Wolff 1989;  Wani et al. 2015) and radioactive isotopes of 
Polonium, Lead and Bismuth. After the decay chain finishes, the stable, non-
radioactive product is toxic lead, which again poses a health risk (Wani et al. 2015).  

At the time of this research (March 2022), there have not been conducted any 
studies pointing to the possible influence of spatially varying radon exposure as a 
factor contributing to the severity of a COVID-19 disease progression or to 
increased infection rates. The only researched existing link between SARS-CoV-2 
or COVID-19 and radon is the increased risk of radon exposure since the beginning 
of the pandemic, due to counter measurements such as social distancing, quarantine, 
and lockdowns: more time spent inside housing, especially when lower ventilated in 
cold months, increases exposure to air of bad quality and potentially higher radon-
concentrations (Maya et al. 2020;  Verde et al. 2022). 

The potential link to COVID-19 has not been researched yet, but patients with 
various pre-existing lung diseases have been early identified to be at high risk for 
severe COVID-19 disease progression and high mortality (Maragakis 2021). 
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COVID-19 patients with a history of radiation therapy (RT) have been found to  
have a poor prognosis, as mortality appeared correlated to the extent of prior lung 
irradiation (Kabarriti et al. 2020) and a link between radiotherapy and a risk of 
hospitalization due to COVID-19 has been revealed (LaPlant et al. 2021). 
Immunological commonalities between a COVID-19 disease and a radiation injury 
have been pointed out, as symptoms and the underlying pathogenesis of the multi-
organ injury caused by SARS-CoV-2 in a severe progression resemble the one’s of 
an acute ionizing radiation exposure (Rios et al. 2020).  

Figure 1 - Radon Soil Gas Concentration, Data: Bundesamt für Strahlenschutz (2022a) 
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1.1.4 Geographical Information Science in Public Health 
 
Already in the year 1854, geographic information was used in a public health 
context, when John Snow mapped a cholera outbreak in London, associating 
disease with spatial data (Snow 1855). Snow showed on a map, that cholera 
mortality peaked in the supply area of a certain drinking water pump, which’s 
decommission by the authorities swiftly ended the cholera outbreak.  

Geographical information science (GIS) acts as a tool to store, analyse, archive, 
modify and visualise spatial and temporal data of various fields such as 
demography, economy, meteorology, geology, environment, infrastructure or health 
and diseases. With today’s increasing availability of spatial and temporal data,  GIS 
in public health becomes an important tool to increase the “understanding of the 
prevalence, aetiology, transmission, and treatment of many diseases” (Richardson et 
al. 2013). Through sophisticated spatial and spatiotemporal statistical analysis, 
correlations between different factors and diseases can be identified and thus 
contribute to better interventions or prevention measurements to enhance public 
health conditions. 

Not only in disease control and prevention, but also in general health management, 
GIS has contributed to public health, for example by calculating adequate 
placement of medical institutions or by introducing public information systems like 
pollen forecasts. 

While spatial analysis has been applied for a few decades in the field of health, the 
addition of a time dimension to geographic data has become increasingly important, 
especially in epidemiology (Musa et al. 2013). The proceeding digitalisation in all 
fields of life revealed many sources of geo-located big data, such as social media 
meta data or cellular mobility data, making spatial data analysis a field with large 
potential for future health research.    

Regarding the COVID-19 pandemic, from early on the beginning of the global 
spread, there have been conducted many analysis in GIS with varying focuses such 
as mobility, politics, environmental variables, social geography, or epidemiological 
prediction (Franch-Pardo et al. 2020).  

 
 

1.2 Scope of Study 
 
This research project aims on assessing the correlation between radon occurence 
and various measures of COVID-19 severity like number of COVID-19 patient 
occupied intense care units (ICU) or the number of death cases per infected, also 
referred to as the case-fatality-ratio (CFR). As the potential drivers and influences 
for increased COVID-19 transmission rates and mortality are numerous and could 
not all be researched, this research project’s scope is spatially and temporally 
limited and focuses only on radon soil gas concentration. Other potentially 
influencing variables like income as a health care measure and population density 
or mean living space as a measure for increased exposure to infected and 
consequently higher transmission risk are additionally evaluated. 
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1.2.1 Study Area 

 
The area of this research project is limited to the inhabited area of the Federal 
Republic of Germany, which is located centrally on the European continent. The 
humid westerlies dominated climate of the country is partly temperate (Köppen-
Geiger class: Cfb) and partly cold (Köppen-Geiger class: Dfb) with warm summers 
and without dry seasons (Beck et al. 2018). While temperatures in summer reach on 
average around 17°C, winter temperatures average around 0°C.  

Germany has sea connection to the Atlantic Ocean via the North Sea and the Baltic 
Sea in the north of the country, which consists of some wetlands and flat terrain, 
formed by the last glacial period. Central Germany’s rougher uplands were partly 
formed by ancient activity of volcanism in the west and merge in the east with the 
Ore Mountains. Topography towards the south shows gradually rising altitudes until 
the high mountains of the Alps are reached at the south borders of Germany. 
While surface geology of the flat north consists primarily of Quaternary 
sedimentary rock deposits, the central and southern regions are rich in granites, 
Palaeozoic black shales and silica-rich volcanic rocks, as well as Triassic 
sandstones and marls (Kemski et al. 2001). The contents of radionuclide in these 
individual geological formations cause spatial variations of radon occurrence, 
which’s soil concentrations range from below 20 kilobecquerel/m³ (kBq/m³) up to 
above 1 megabecquerel/m³ (mBq/m³) (Bundesamt für Strahlenschutz 2022a). 
 
Germany’s central position on the European continent, Frankfurt Airport being one 
of the busiest airports in Europe and being a nation, which has strong international 
economic and touristic exchange introduced SARS-CoV-2 at an early stage of the 
pandemic into the country. Within less than eight weeks of the first confirmed 
SARS-CoV-2 infection, the virus spread in over 95% of all German districts 
(Robert Koch-Institut 2020). 
Every identified infection with SARS-CoV-2 must be reported to the public health 
department of the district and all of the over 400 districts report daily to the Robert 
Koch-Institute (RKI), the agency and research institute of the German federal 
government responsible for disease control and prevention. The resulting reports of 
all anonymised infection and death cases are available to the public. A high-
resolution radon soil gas concentration map (Bundesamt für Strahlenschutz 2022a) 
and the source data is also publicly accessible, making it possible to perform this 
research. 
The SARS-CoV-2 records of Germany and other countries revealed a high positive 
correlation between age and mortality (O’Driscoll et al. 2021). Reported COVID-19 
related death cases were extraordinarily high in the southern districts of the states 
Saxony and Thuringia, as well as in the north-eastern districts of the state Bavaria, 
and show a similar pattern (Figures 18-20, Appendix) to the distribution of higher 
radon concentrations (Figure 1), which makes it a very interesting study area. 
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1.2.2 Study Period 
 
To research different conditions the analysis will be performed on 
three time periods: 
 

I. a subset of the reports from 01.01.2020 until 31.12.2020, limited to the 
period before the first vaccinations in Germany, which became effective 
within the first week of 2021. As the vaccinations were not evenly 
distributed within all districts and age groups and there are great spatially 
varying vaccination rates, the time before applied vaccinations is the most 
relevant to perform an analysis. 

 
II. a second subset limited to the 6 weeks of and after a nationwide low-

pressure event (“Sturmtief Ignatz”) from 19.10.2021 until 30.11.2021. Low 
atmospheric pressure increases exhalation of radon from soil into the 
environment (Mudelsee et al. 2020;  Nazaroff 1992) and consequently 
causes a higher radon exposure, which could be shown in increased 
COVID-19 indicators in the weeks after a low-pressure event. Considering 
the average incubation time of 6 days and an average serial interval of over 
4 days, as well as an average time of 11 days after first symptoms until the 
time of death in severe cases (Robert Koch Institut 2021;  Quesada et al. 
2021), a relevant study period of 6 weeks after the low-pressure event is 
assumed. 
 

III. the full dataset containing all reported COVID-19 associated ICU cases, 
infections, and deaths from 01.01.2020 until 01.03.2022. The two subsets of 
period I and period II only cover times of comparatively low nationwide 
infections and subsequently pose a much smaller sample size than the full 
dataset, which includes the very high nationwide infection-rates of the fifth 
wave in Germany. 

 
 
 
1.3 Specific Aim and Added Value 
 
Of uranium’s and thorium’s decay chains, radon is the only element in gaseous 
form, making it possible to exhale from soil and accumulate in the air, where radon 
poses a danger to the lungs.  
The COVID-19 pandemic has shown unexplained spatially and temporally varying 
case-fatality-ratios (Sorci et al. 2020) and hospitalization rates, motivating scientists 
to investigate various potential risk factors. As radon causes diseases of the 
respiratory system and considering the research results mentioned in 1.1.3, which 
are pointing to a link between radon exposure and severity of COVID-19, I 
wondered, if the damage caused by radon exposure poses a risk to be higher 
susceptible to an infection with SARS-CoV-2 or to the development of a severe 
progression of COVID-19 and possibly even cause a high mortality risk.  
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If the possibility exists, that radon exposure caused lung tissue and health damage 
has an impact on the spread of SARS-CoV-2 or on the severity of a COVID-19 
progression, can these impacts be detected on spatial and temporal distribution of 
death cases and infection rates? 
To produce reliable results, I will test, whether possible associations can be isolated 
from other potentially influencing factors such as age distribution, population 
density or low health care indicated by low income. 
I will test the following hypothesis: 
 
1: High COVID-19-associated case-fatality-rate is spatially linked to high 

radon concentration in soil air. 
2: High COVID-19-associated ICU admission rate is spatially linked to high 

radon concentration in soil air. 
3: High COVID-19 infection rate is spatially linked to high radon 

concentration in soil air. 
 
The results of this project can be used for further research and could consequently 
help individuals to reduce health risks, by focusing on the use of radon exposure 
mitigation strategies, like periodic ventilation, radon insulation and sealing or 
installing radon pumps, which suck radon out of the soil, before it can enter and 
accumulate in a building, 
Additionally, this project could be used by public health authorities to improve 
strategies for reducing health impacts or assessing other environmental health risks.  
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2 Data 
 
In this section I describe the structure, content, and source of the data used to 
perform the analysis. Germany’s governmental agencies provide most non-personal 
data to the public according to an ‘Open Data Act’, the E-Government-Gesetz  
EGovG (Bundesrepublik Deutschland 2013). Especially spatial data is largely 
available due to the INSPIRE Directive (INfrastructure for SPatial InfoRmation in 
Europe), which acts as a framework for boundary-crossing utilization of spatial 
information in Europe (Bundesamt für Kartographie und Geodäsie 2022). 
 
 

2.1 Administrative boundaries 
 
Administrative boundary data (Bundesamt für Kartographie und Geodäsie 2020)  
were acquired from the German Federal Agency for Cartography and Geodesy 
(Bundesamt für Kartographie und Geodäsie, short BKG). The administrative level 
used in this research is the “KREISLEVEL” (Figure 3). A “Kreis” or “Landkreis” 
corresponds to the EU’s Nomenclature of Territorial Units for Statistics (NUTS) 
Level 3 (Districts). 
 

 
 

Figure 2 - Administrative Divisions of Germany (David Liuzzo, CC BY-SA 2.0 DE), relevant Level highlighted. 

 
The European Union uses the NUTS classification system to hierarchically divide 
its territory for the application of uniform statistics and comparable regions. NUTS 
1 population sizes are usually between 3 and 7 million, NUTS 2 regions have 
between 800 000 and 3 million inhabitants and NUTS 3 regions between 150 000 
and 800 000 inhabitants. In Germany NUTS Level 1 corresponds to the federal 
States (“Bundesländer”), NUTS Level 2 to governmental districts 
(“Regierungsbezirke”) and NUTS Level 3 to rural and urban districts, as well as the 
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three special cases of city states (Berlin, Bremen, Hamburg), which are NUTS 1, 2 
and 3 at the same time (Figure 2). 
 

 
 
The used district shapefile contains spatial extend, district name, the NUTS 3 code, 
cadastral area, and population data, for the reference date 31.12.2020. The data is 
published by the German Federal Statistical Office, also referred to as Deutsches 
Statistik-Informationssystem (Destatis).  
Additionally, administrative boundaries with population data from 31.12.2019, just 
before the start of the pandemic, is available in BKG’s archive. All data is 
referenced in the coordinate reference system (CRS) EPSG:4326. 
 

Figure 3 - NUTS3 Regions of Germany (grey) and adjacent countries; Data: European 
Commission – Eurostat/GISCO (2021). 
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2.2 Demographics and Socioeconomics 
 
High resolution census data, gathered by Destatis for the year 2011 is available for 
every 1km² as *.csv dataset, showing amongst others, the number of inhabitants. 
Each km² is uniquely identified and corresponds to a grid cell of a regular 
EPSG:3035 referenced grid. Due to privacy, Destatis performed some alteration of 

individual cells, but the overall population is not changed: only cells with one 
person are shown as cells without inhabitant (value= -1), cells with two inhabitants 
as cells with 3 inhabitants. This dataset can be used to identify demographic 

Figure 4 - Mean Age of Population per District. 
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disparities and create weightings based on population distribution within single 
districts. 
 
The German Federal Statistical Office calculates annually mean population age 
(Figure 4) derived from the 2011 census by assessing annual new births, deaths, and 
migration. The dataset can be acquired from the German Statistical Bureau and 
contains the mean age of the population for every NUTS3 level (Statistische Ämter 
des Bundes und der Länder 2019).  

 

Figure 5 - Mean Income per Inhabitant in 2019; Data: Statistisches Landesamt Baden-
Würtenberg (2020). 
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Additionally more detailed population data for specific age-groups was used 
(Statistisches Bundesamt 2020) for analysing case fatality ratio of specific age-
groups and account for a spatially heterogeneous distributed demography. 
Mean income per inhabitant (Figure 5) is available from Destatis (Statistisches 
Landesamt Baden-Würtenberg 2020). Age and income will be used as a potentially 
influencing factor, as Swedish data have shown a higher risk of death from COVID-
19 for high age groups and lower income households (Drefahl et al. 2020) . 
 

Figure 6 - Mean Living Space per Inhabitant in m²; Data: Statistische Ämter des Bundes und 
der Länder (2022). 
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As the available living space has been shown to significantly pose a risk for 
infection with SARS-CoV-2 (Federgruen and Naha 2021;  Universitätsmedizin and 
der Johannes Gutenberg-Universität Mainz 2021), the district level aggregated 
mean living space per inhabitant (Figure 6) is incorporated in this research.  
 
 
 
 

2.3 Radon 
 
Geogenic radon potential (GRP) has been defined in several ways (Petermann et al. 
2021), but expressing GRP as function or radon concentration in soil gas and soil 
gas permeability (Neznal et al. 2004) is widely applied and also used in the updated 
geogenic radon potential map of the German Federal Office for Radiation 
Protection (BfS).The database of GRP measurements in Germany, performed 
between 1992 and 2020 (Bundesamt für Strahlenschutz 2022b), counts 6293 
locations, with data of a soil gas permeability and radon concentration in soil gas, 
derived from a standardized in-situ measuring method (Kemski et al. 2001). 
Combined with geological data, soil characteristics and climate, a machine learning 
approach (Petermann et al. 2021) was used to estimate radon concentrations in 
Germany at a 1km² resolution (Figure 1, Section 1), represented in thousands 
Becquerel/m³ (Bq/m³). The dataset is published by the BfS as GeoJSON dataset 
(Bundesamt für Strahlenschutz 2022a).  
 
  
 

2.4 SARS-CoV2 / COVID-19 
 
For each district, age group and gender, the counts of new confirmed COVID-19 
infections, recoveries and fatalities are daily reported (Appendix 8.6) and available 
as CSV dataset with over 4 million lines (March 2022) at the Robert-Koch-
Institute’s (RKI) published dashboard on opendata.arcgis.com. 
A COVID-19 fatality counts as such, if both, the SARS-CoV-2 has been positively 
tested and the death could not be excluded to be caused by the infection and its 
consequences. 
From this relatively large dataset, infection rates, mortality rates, transmission rates, 
for each district, age group or gender for every desired time step can be processed. 
 
Additionally to infection, mortality and recovery numbers, the German 
Interdisciplinary Association for Intensive Care and Emergency Medicine (DIVI) 
constantly monitors the occupancy of ICU by COVID-19 patients. The CSV dataset 
contains for every district daily numbers of COVID-19 patients in ICU and the 
number of ventilated COVID-19 patients in ICU, i.e. cases of moderate and of 
severe disease progressions (Robert Koch-Institut & DIVI e.V. 2020). The DIVI 
dataset does not contain age or gender information of treated patients, thus cannot 
be used for an age- or gender-specific analysis.  
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2.5 Vaccinations 
 
Vaccination data, similarly to infection and fatality data published by the RKI 
(Robert-Koch-Institut 2022) as counts for every district, age-group and vaccination 
status (Appendix 8.5) is used for the study periods II and III, in which vaccinations 
have been administered. In study period I, there have not been any vaccinations 
administered, and vaccination quotas per district and age group can be neglected. 
This dataset can only give indications about the vaccination quota in a district, as 
the report contains the district, where a vaccination has been administered not 
where the patient is living in.   
 
 
All spatially, temporal and content wise relevant data for this research is available 
to the public at no cost, but for detailed statistical analysis and testing, the data will 
need further processing and preparation. 
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3 Methods 
 
In this section, the data import, preparation, creation, as well as handling of data 
inconsistency is documented, followed by the description of used exploratory and 
explanatory statistical methods and the regression model. 
 
 
 

3.1 Data pre-processing 
 
3.1.1 Importing & preparing data 
 
As the study uses multiple large tables, which are too large for editing in 
conventional spreadsheet software like Microsoft Excel, the datasets are imported in 
a PostgreSQL database management system. PostgreSQL is an Open-Source 
relational database management system (RDBMS) which is compliant to the quasi-
standard Structured Query Language (SQL) for creating, managing, manipulating, 
or querying complex or large datasets in databases 
PostgreSQL uses the PostGIS extension, to handle spatial information of datasets. 
Shapefiles are imported via a dedicated Shapefile-to-PostGIS function. Tables were 
created via SQL-query and filled with data from CSV files.  
For visualising in QGIS, an Open-Source GIS software, datasets in the PostgreSQL 
database can be selected as layer-source, making it possible to access and edit large 
datasets directly within the GIS software. 
 
After import the datasets needed to be homogenized: reported infections, ICU 
numbers and population datasets all use different nomenclature and codes for the 
districts. The relevant tables were joined in the SQL database for further processing. 
 
Special care was given to avoid problems caused by common (German) special 
characters in file or path names or an inconsistent use of decimal separator in 
datasets or calculations. 
 
Radon soil concentration data, which is available as a regular-grid structured 
GeoJSON shapefile, was rasterized, to match the 1 km² grid of the census dataset, 
containing the demographic information. This included a reprojection, as the 
German national standard projection system used for the radon soil concentration 
data differs from the EU standard projection system used for census data. 
 
The census 1x1 km regular-grid shapefile was joined with the data from tables 
containing population counts and age distribution data for each km².  . After the 
preparation of the grid-shapefile with census information, the data was imported 
into the SQL database via PostGIS Shapefile Import Manager.  
 
The shapefile with administrative boundaries containing the polygons of each 
district was imported to the PostgreSQL database in the same way and was updated 
with various new columns, which will be discussed in section 3.1.2 Data creation. 
City-district Eisenach (NUTS3-ID: 16056) within rural district Wartburg united to 
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one district with the surrounding district „Landkreis Wartburg “(NUTS3-ID:16063) 
in the year 2019. As population counts were taken from before the COVID-19 
pandemic (year 2019), the population dataset from Destatis was still based on the 
old district organization, but the RKI-corona infection and mortality register uses 
the new administrative districts. I solved this case of data inconsistence by summing 
up the population counts of the originally two districts and merging the polygons 
during the process of data preparation. 

District aggregated mean living space per inhabitant (Statistische Ämter des Bundes 
und der Länder 2022) from the year 2011 nationwide census is acquired as a 
shapefile and joined according to the NUTS3 code to the district table in the SQL 
database. The special cases of the City-States (Berlin, Hamburg, Bremen) use in the 
mean living space dataset their NUTS1 code and must be manually transformed to 
NUTS3 code for a successful table join. 
 
Since the last census a large restructuring and merging of districts has happened in 
the state of Mecklenburg-Vorpommern in Germany, which made it necessary to 
manually assign the mean living space to be the mean of the merged districts. 
 
The mean age per district table needed the same manual adaption for the three City-
States like the living space per inhabitant data. 
 
Income data (Statistisches Landesamt Baden-Würtenberg 2020) for each district 
was extracted from an *.xlsx spreadsheet and imported as a new table in the 
PostgreSQL database, where the data was joined with the district dataset according 
to the NUTS3 code. Like the mean living space per inhabitant or the mean age per 
district datasets, the City-States needed special attention. 
 
The vaccination dataset contains information for each district about age-group, 
vaccination status, date, and count of vaccinations. The vaccination status is either 1 
for first vaccination, 2 for a full vaccination and 3 for a booster vaccination. 
Additionally, there are two special cases for the district ID value: 
17000, meaning the vaccination has been applied by a governmental institution 
which does not report district ID; ‘u’ for unknown or not reported. These special 
cases make up 0.4% of all vaccinations. The data for governmental institutions and 
unknown locations were not used in this research which introduced a neglectable 
error.  
 
The RKI does for reasons of privacy not publish data when a reported count is 
below 5. Missing counts will be aggregated until the day they exceed the count of 5 
and will be assigned to that date. This minor data bias can be neglected, because no 
single but multiple days were evaluated. As the vaccination reports are split into 
various age-classes, the following two relevant groups will be merged and 
evaluated: greater than or equal to 60 years and below 60 years.  
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3.1.2 Data creation 
 
 
For statistical analysis, a variety of potentially dependent and independent 
explanatory variables was deduced from the existing datasets on a district scale and 
added as new columns to the administrative boundary shapefile: 
 
Independent variables: 

- Mean Rn soil concentration and cumulative sum for each district, as 
described in more detail in section 3.1.2.1 

- A population-count weighted Rn soil concentration mean, as described in 
more detail in section 3.1.2.1 

- Population count 

 
For comparison, other potential independent variables will be added: 

- Mean age  
- Mean population density 
- Mean income per inhabitant 
- Mean living space per inhabitant 
- Full vaccinations per inhabitant 
- Booster vaccinations per inhabitant 

 
Dependent Variable columns are created by SQL queries: 

- Infection counts per inhabitant 
- Case fatality ratio (CFR) defined as deaths per registered infection 
- Counts of ICU per registered infection 
- Counts of ventilated ICU per registered infection 

 
The variables case fatality ratio, infections per inhabitant and vaccinations are 
created for the total population, for the population greater than or equal to 60 years 
and below 60 years. The required population data is available at Destatis, and the 
Robert-Koch-Institute’s register has all infection, death case and vaccination reports 
classified in corresponding age groups. 

 
The Divi register for ICU numbers does not contain information about the patients 
age and will not be evaluated for specific age groups, but only for the total 
population. 
 
 
 
3.1.2.1 Independent or explanatory variables 
 
 
To weight radon soil concentration with population, it is necessary to create a grid 
with each km² percentage (weight) of the total district population. 
This is calculated by rasterizing the districts with the values of their total population 
and then dividing the census grid with it. 
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The result is a district - population weight raster, which can be multiplied with the 
radon dataset to receive a weighted radon mean for each district’s polygon. 
The use of a population density adjusted radon soil concentration incorporates the 
effects of heterogeneity in space. By weighting with population, bias for the mean 
radon concentration will be reduced. For example, a cell containing 20% of a 
district’s population will proportionally impact the district’s mean radon soil 
concentration.  
 
The original radon data is converted from a json-shapefile with a regular 1km² grid 
to a raster dataset, conserving its original resolution, but reprojecting to the 
population raster’s projection. The unit of the radon concentration is thousands 
Bq/m³. 
 
To add the sum or mean of the radon data to the district shapefile, a zonal statistic 
tool is used, which creates new columns for each method (sum, mean, max, min…). 
QGIS can perform this process directly on the PostgreSQL database. 
 
Additionally, mean age of a district’s population, mean living space, mean income 
and population density are added as new columns to the district shapefile, to 
account for these variables. 
 
 
 
3.1.2.2 Dependent Variables: 
 
Variables for each district were calculated and added with pgAdmin, the graphical 
user interface (GUI) for administrating PostgreSQL databases. 
 
Samples of SQL-queries, for example to derive the sum of total death cases per 
district from the Robert-Koch-Institute’s dataset and fill the result in a new column 
are attached in Appendix 8.4. 
 
With SQL-queries, for each study period new columns are created and filled with 
processed data for: 
 

- Total and each age groups sum of death cases, 
- Total and each age groups ratio of infections per inhabitant, 
- Total and each age groups case fatality ratio (CFR), 
- Total sum and ratio of ICU cases per infection  
- Total sum and ratio of ventilated ICU cases per infection 

 
Another special case, that needed manual adaption, was caused by the fact, that the 
RKI- COVID-19 reports split the special case of City-State Berlin into multiple 
various NUTS3 codes, which don’t exist in the administrative boundary dataset. 
The Berlin counts had to be summed up and filled into the table by an individual 
SQL-query (Appendix 8.4). 
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3.2 Analysis 
 
To perform statistical analysis of the existing and created spatial datasets, the 
powerful Open-Source spatial analysis software GeoDa was used. GeoDa, is a 
leading tool for exploratory analysis, to create scatterplots and scatterplot matrices, 
assess spatial autocorrelation and perform a spatial regression. GeoDa’s provides a 
graphical user-friendly interface with a focus on spatial data analysis (Center for 
Spatial Data Science 2022) and can access directly the data within the PostgreSQL 
database. 
 
For a spatial analysis and assessing spatial autocorrelation, a weight matrix, 
defining the weight of interactions between neighbours, was created. In this study, 
one contiguity based and two distance based approaches were chosen: 
 
  - k-nearest neighbour, where k = 4 
  - Euclidian distance neighbour, where d = 30km 
  - first order queen contiguity  
 
In spatial analysis, to assess the similarity of a point of interest to its neighbours 
(spatial autocorrelation, Section 3.2.1.1), the neighbourhood can either be defined 
by the sharing of borders (contiguity decay) or by (centroids) being within a certain 
distance (distance decay). 
The queen continuity defines polygons which share vertices as a neighbourhood. 
A first order contiguity includes only direct neighbours. The chosen distance of 30 
km is the maximum distance of 80 % of German commuters (Bundesministerium 
für Bau- Stadt - und Raumforschung 2019) and yielded comparable results to the 
distance decay of 4 nearest neighbours and first order queen contiguity. Converging 
results from both approaches have been remarked by others (Aturinde 2020;  
Anselin 2020). 
 
The COVID-19 CFR and infection rates of the total population, of the age group 
greater than or equal to 60 years and of the age group less than 60 years for time 
periods I, II, and III will be analysed. 
 
 
3.2.1 Exploratory Analysis and Geovisualisation 
 
After preparation and creation of the datasets mentioned in 3.1, GeoDa Software 
was used to discover patterns and perform statistical analyses, while corresponding 
maps in QGIS were designed for a visual comparison of the distributions in 
Germany: Where are districts of high mean age (Figure 4, Section 2), low mean 
income (Figure 5, Section 2)? Where are districts of high infections rates (Figure 8; 
Figures 21-28, Appendix), high case fatality ratios, (Figure 7; Figures 13-20, 
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Appendix) or regions of high counts of COVID-19 caused occupation of ICU 
(Figure 11, Section 4.1)?  
Which district have a high mean radon soil concentration (Figure 30, Appendix), 
which districts have a high population weighted mean radon soil concentration  
 

Figure 7 - Case Fatality Ratio of Total Population in Period I. 
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(Figure 29, Appendix)? Chosen histograms, scatter plots and tables of basic 
statistical properties are presented in the results and the appendix. 
 

Figure 8 - Infections per Inhabitant of Total Population in Period I. 
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I  Moran’s criterion,  
n number of objects in space, 
X̅  a mean value of an attribute, 
xi, xj values of an attribute for 

objects i and j, 
w a spatial weight for a pair of objects, 
W  the sum of spatial weights. 

Equation 1 - Calculation for Moran's Criterion. 

 
 
 
 
3.2.1.1  Global Spatial Autocorrelation 
 
Spatial autocorrelation is a phenomenon also described as spatial dependence. 
Methods for testing in nonspatial statistics commonly rely on the hypothesis, that 
samples are randomly chosen, and the observations are independent, but in spatial 
data this hypothesis must often be rejected (Grekousis 2020).  
Tobler’s first law of geography states that: 

“Everything is related to everything else, but near things are 
more related than distant things” 

 (Tobler 1970) 

 
This law is the foundation of spatial autocorrelation and the phenomenon, that 
observations at locally close samples can be influenced by neighbouring samples. 
 
Datasets in which I suggested clustering or hotspots, were checked to verify the 
rejection of a null hypothesis of spatial randomness. An ideal statistical index to 
assess global spatial autocorrelation, i.e. influencing neighbourhoods, is Moran’s I 
(Oden 1995). Moran’s I compares each observation with the observations at its 
spatial neighbourhood and indicates the mean of all these comparisons in a dataset 
(Equation 1). A perfect positive spatial autocorrelation results in a Moran’s I of 1, 
spatial randomness in a Moran’s I of 0 and a perfect negative spatial autocorrelation 
in a Moran’s I of -1 (Figure 9). 
 

 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 9 – Spatial Autocorrelation from Perfect Positive via Spatial Randomness to Perfect Negative Spatial 
Autocorreleation}. 
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Typical epidemiological studies focus on identifying and explaining spatial and 
temporal hotspots and outbreaks (Shaweno et al. 2018). Due to the high attention 
COVID-19 has received, hotspots and outbreaks were constantly monitored through 
the published incidence rates of each district and the focus in this study should lay 
on explaining hotspots and the reasons for clustering. 
 
I refrained from the assessment of Local Spatial Autocorrelation, as individual 
districts correlation to their neighbours is not relevant in this project. 
 
 
 
3.2.1.2 Scatter Plot  
 
A Scatter Plot or multiple ones in a Scatter Plot Matrix (SPLOM) can be used to 
visualise bivariate relationships between various pair combinations of variables and 
can give indices to explanatory variables or the strength of correlations. Although 
several variables can be explored, this method is not multivariate but rather 
bivariate (Anselin 2020). This method was useful to choose other variables than 
radon soil concentration to perform correlation tests with mortality and infections 
on. 
GeoDa also implements a linear regression fit to the scatter plot and can 
additionally add a smoothed local, non-linear regression fit, which helps identify 
non-linear relationships (Cleveland 1979). A Parallel Coordinate Plot (PCP), 
suggested to visualise multivariate clusters (Inselberg 1985) and a common tool and 
method in multivariate analysis (Anselin 2020), did not produce clear patterns for 
the clusters and I refrained from the further use. 
 
 
3.2.1.3 Hypotheses Test 
 
To verify the three hypotheses: 
 
1: High COVID-19-associated case-fatality-ratio is spatially linked to high 

radon concentration in soil air. 
2: High COVID-19-associated ICU admission rate is spatially linked to high 

radon concentration in soil air. 
3: High COVID-19 infection rate is spatially linked to high radon 

concentration in soil air. 
 
The null-hypothesis of a not statistically significant Pearson Correlation needs to be 
rejected, which is allowed if the p-value is below the chosen significance level of 
0.05.  
The Pearson Correlation is used to measure the strength of a linear relationship 
between two variables. As the relationship between radon and COVID-19 severity 
indicators could be non-linear, the Scatter Plots helped to give further indications 
about potential non-linear correlation types and significance of correlations, which 
were then used for modelling, described in the next chapter. 
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While the correlation does not give information about causality, the directional 
relationship between the variables is apparently assumed as stated in the 
introduction. 
 
 
3.2.2 Spatial Modelling  
 
 
3.2.2.1 Regression 
 
Regression models are commonly used in statistical analysis to quantify the 
relationships between multiple predicting variables and a dependent variable. For a 
regression model, it is crucial, that predicting independent variables show very little 
to no collinearity (multicollinearity), to reduce the standard error. Multicollinearity 
is present, when predicting variables are correlated to each other. 
In the field of geographical information, a common approach for a regression 
analysis is the spatial regression, because a regular, non-spatial regression model 
neglects the effects of spatial autocorrelation. 
Based on the findings in the exploratory analysis a spatial regression was used to 
predict for each study period the COVID-19 severity indicators case-fatality-ratio 
and infections per inhabitant. To account for the identified spatial autocorrelation, a 
spatial lag model was chosen. The neighbourhood weight matrix was defined by a 
first order queens contiguity approach as described in section 3.2. 
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4 Results 
 
In this section, I will present the results of spatial autocorrelation and correlation 
analysis of independent and dependent variables. Furthermore, I will present the 
results of the performed regressions. 
 
 

4.1 Global Moran’s I 
 
The assessment of each independent and dependent variable’s spatial 
autocorrelation revealed if data is randomly distributed, or patterns of clustering are 
present. 
 

Table 1 - Moran's I of independent Variables. 

  Moran's I Neighbourhood Model 

  
Variable 

4 Nearest 
Neighbours 

 30km Distance 
Decay 

Queen 1st 
Order 

In
d

ep
en

d
en

t 
V

ar
ia

bl
es

 Mean Radon Soil Gas Concentration 0.7 0.7 0.72 

Population Weighted Mean Radon 0.68 0.71 0.69 
Mean Income per Inhabitant 0.52 0.5 0.48 

Mean Age of Population 0.53 0.45 0.56 
Mean Living Space per Inhabitant 0.5 0.45 0.54 

 
All independent variables showed a relatively strong positive spatial 
autocorrelation, which justified the use of a spatial regression instead of a standard 
linear regression. 
 
Vaccination rate indicators, which were defined as applied second vaccinations 
(fully vaccinated) per inhabitant and applied booster vaccinations (boosted) per 
inhabitant, showed some weak negative spatial autocorrelation (Table 2).  
 

Table 2 - Moran's I of Vaccination Rates. 

    Moran's I   Neighbourhood Model 

      
4 Nearest 

Neighbours 
 30km Distance 

Decay 
Queen 1st 

Order 
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/ 
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h
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Period 
II 

Total 
Population 

fully vaccinated -0.15 -0.29 -0.18 
boosted 0.13 0.08 0.14 

Population 
>= 60 years 

fully vaccinated -0.17 -0.28 -0.20 
boosted 0.17 0.13 0.16 

Population < 
60 years 

fully vaccinated -0.12 -0.26 -0.14 
boosted 0.12 0.06 0.14 

Period 
III 

Total 
Population 

fully vaccinated -0.15 -0.29 -0.19 
boosted -0.05 -0.14 -0.07 

Population 
>= 60 years 

fully vaccinated -0.17 -0.28 -0.2 
boosted -0.05 -0.14 -0.08 

Population < 
60 years 

fully vaccinated -0.12 -0.27 -0.16 
boosted -0.03 -0.13 -0.05 
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The data source for vaccinations does not contain the residency district of 
vaccinated individual, but the district of vaccination administration. As public large 
vaccination centres, which accounted for a large quantity of administered 
vaccinations, were not offered in every district, vaccination rates were higher in 
districts with vaccination centres and lower in the surrounding or neighbouring 
districts (Figure 10. Due to the fact, that some districts have higher numbers of 
administered vaccinations than numbers of inhabitants, values above 1 are present. 

Figure 10 - Administered Full Vaccinations in Period III. 
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Both ICU admission rates, regular ICU and invasive ICU, also showed a weak 
negative spatial autocorrelation (Table 3), resulting in a checkerboard-like pattern 
of high and low ICU admission rates between neighbouring districts. This is caused 
by the fact, that patients are often not admitted to ICU in the districts they are 
residing, but in neighbouring districts with larger hospitals and more available ICUs 
(Figure 11). 
ICU counts and vaccination rates therefore were not further used in this research. 

Figure 11 - ICU Admissions in Period III. 
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Table 3 - Moran's I of ICU and Invasive ICU Admissions of COVID-19 Patients. 

  Moran's I   Neighbourhood Model 

  
    

4 Nearest 
Neighbours 

 30km Distance 
Decay 

Queen 1st 
Order 

IC
U

 a
d

m
is

si
on

s Period I 
regular ICU  -0.1 -0.21 -0.1 

invasive ICU -0.09 -0.21 -0.09 

Period II 
regular ICU -0.08 -0.21 -0.05 

invasive ICU -0.05 -0.15 -0.03 

Period III 
regular ICU -0.06 -0.18 -0.06 

invasive ICU -0.06 -0.17 -0.05 

 
Table 4 - Moran's I Infections per Inhabitant. 

  Moran's I Neighbourhood Model 

   
Variable 

4 Nearest 
Neighbours 

 30km Distance 
Decay 

Queen 
1st Order 

In
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Period 
I 

Total Population 0.69 0.68 0.7 

Population >= 60 years 0.68 0.68 0.69 

Population < 60 years 0.67 0.66 0.69 

Period 
II 

Total Population 0.81 0.77 0.87 

Population >= 60 years 0.79 0.75 0.84 

Population < 60 years 0.8 0.76 0.86 

Period 
III 

Total Population 0.73 0.68 0.79 

Population >= 60 years 0.76 0.71 0.81 

Population < 60 years 0.72 0.67 0.78 

 
Infection rates showed a strong spatial autocorrelation and clustering in all periods 
and age groups (Table 4), in contrast to the case fatality ratio, which showed 
varying spatial autocorrelation in the different study periods and age groups (Table 
5).  
 

Table 5 - Moran's I Case Fatality Ratios. 

  
Moran’s I 
  

Neighbourhood Model 

   
Variable 

4 Nearest 
Neighbours 

 30km Distance 
Decay 

Queen 1st 
Order 

C
as

e 
F

at
al

it
y 

R
at

io
 

Period 
I 

Total Population 0.3 0.32 0.27 
Population >= 60 years 0.16 0.18 0.134 
Population < 60 years 0.09 0.1 0.04 

Period 
II 

Total Population 0.26 0.31 0.26 
Population >= 60 years 0.13 0.15 0.14 
Population < 60 years 0.03 0.05 0.01 

Period 
III 

Total Population 0.55 0.6 0.55 
Population >= 60 years 0.33 0.38 0.32 
Population < 60 years 0.29 0.39 0.25 
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4.2 Correlations 
 
In this section, the main findings of the correlation analysis will be presented. 
Correlation factors with a significance level of P < 0.05 are marked with one 
asterisk, a P-value < 0.01 is marked with two asterisks  

 
Figure 12 - Scatter Plot Matrix of Standardised Independent Variables and Correlation Coefficient: Weighted 
Mean Radon Soil Gas Concentration, Mean Income, Mean Age, Mean Living Space; Units are standard 
deviations (σ) . Districts represented by Blue Dots; Value Range in Histograms Split into Twenty Differently 
Coloured Bars.  

 
In the scatter plot matrix (Figure 12) weak correlations between the four chosen 
independent variables were identified at significant levels. For better comparison, 
each variable values have been standardized so that the mean equals zero and the 
standard deviation equals 1. Consequently the units in figure 12 are standard 
deviations (σ). Population weighted mean radon soil gas concentration and mean 
income have a significant, but low correlation of 0.192, while the non-weighted 
mean radon soil gas concentration has a correlation of 0.230. Especially the 
variables mean age, mean income and mean living space per inhabitant indicate a 
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weak multicollinearity. The histograms revealed positive skewed distributions of 
radon and income. 
 
 
 
 
 

Table 6 - Correlations between Infections per Inhabitant and Radon Soil Gas Concentration. 

 
 
Compared to the mean radon soil gas concentration, the use of the population 
weighted mean radon soil gas concentration yielded in all ages and periods a higher 
correlation to infections per inhabitant (Table 6). The coefficients suggest a weak, 
but significant correlation between radon and infection rates. 
In comparison to the unweighted radon mean, the weighted radon mean also 
showed slightly stronger correlations to the case fatality ratio (Table 7). Although 
the correlations increase in period II and III, the coefficients indicate no to very low 
correlations in all periods.  
 
 
 

Table 7 - Correlations between Case Fatality Ratio and Radon Soil Gas Concentration. 

   Radon Soil Gas Concentration 

  Correlation Mean population weighted mean 

C
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e 
F
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it
y 

R
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 Period I 
Total Population 0.18** 0.2** 

Population >= 60 years 0.09 0.1 

Population < 60 years -0.01 -0.04 

Period II 
Total Population 0.21** 0.23** 

Population >= 60 years 0.16* 0.16** 

Population < 60 years 0.04 0.07 

Period III 
Total Population 0.28** 0.31** 

Population >= 60 years 0.2** 0.21** 

Population < 60 years 0.19** 0.22** 

 
 
 
 

   Radon Soil Gas Concentration 

  Correlation Mean population weighted mean 

In
fe

ct
io

ns
 p

er
 I
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it
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t 

Period I 
Total Population 0.37** 0.41** 

Population >= 60 years 0.39** 0.42** 

Population < 60 years 0.36** 0.39** 

Period II 
Total Population 0.38** 0.38** 

Population >= 60 years 0.4** 0.4** 

Population < 60 years 0.37** 0.37** 

Period III 
Total Population 0.35** 0.38** 

Population >= 60 years 0.41** 0.45** 

Population < 60 years 0.34** 0.36** 

    
     

 

 
 

  

 
  

 
  

 
 

  

 
  

 
  

 
 

  

 
  

 
  



 

33 
 

There were no significant or only weak negative correlations between mean living 
space per inhabitant and case fatality ratio, the strongest being -0.2 during period II 
in the age group greater than or equal to 60 years. 
In contrast, but in line with other research (Universitätsmedizin and der Johannes 
Gutenberg-Universität Mainz 2021), the negative correlation between mean living 
space and infection rate was stronger and in all periods significant, ranging between 
-0.251 up to -0.42 (Appendix 8.1.3). 
 

Table 8 - Correlations between Case Fatality Ratio and Mean Age. 

  Correlation Mean Age 

C
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e 
F

at
al
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y 

R
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io
 Period I 

Total Population 0.43** 
Population >= 60 years 0.02 

Population < 60 years 0.14* 

Period II 
Total Population 0.33** 

Population >= 60 years 0.1 
Population < 60 years 0.02 

Period III 
Total Population 0.6** 

Population >= 60 years 0.29** 
Population < 60 years 0.3** 

 

 
The scatterplots of mean age versus case fatality ratio (Appendix 8.1.5) indicated 
especially in the total population sample of each period a medium strong positive 
correlation of up to 0.599 (Table 8), whereas the correlation to infections per 
inhabitant showed no consistency within age groups and periods (Table 9). Only 
period II showed a significant correlation between mean age and infections per 
inhabitant. 
 
 

Table 9 - Correlations between Infections per Inhabitant and Mean Age. 

  Correlation Mean Age 

In
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Period I 
Total Population -0.07 

Population >= 60 years 0.03 
Population < 60 years -0.09 

Period II 
Total Population 0.25** 

Population >= 60 years 0.22** 
Population < 60 years 0.31** 

Period III 
Total Population -0.03 

Population >= 60 years 0.14* 
Population < 60 years 0.09 
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Table 10 - Correlations between Infections per Inhabitant and Mean Income. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 11 - Correlations of Case Fatality Ratios to Mean Income. 

  Correlation Mean Income 

C
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e 
F
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y 

R
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 Period I 

Total Population -0.16** 
Population >= 60 years -0.04 

Population < 60 years -0.2** 

Period II 
Total Population -0.24** 

Population >= 60 years -0.18** 
Population < 60 years -0.15** 

Period III 
Total Population -0.31** 

Population >= 60 years -0.24** 
Population < 60 years -0.29** 

 
 
While mean income showed no significant correlation to infections per inhabitant, a 
negative correlation to case fatality ratio was present in all three periods (Tables 10, 
11). Contrary to other research findings (Wong and Li 2020;  Rocklöv and Sjödin 
2020), a consistent correlation of population density and infections per inhabitant 
could not be identified (Table 12). 
 
 

Table 12 - Correlations of Infections per Inhabitant to Population Density. 

  Correlation Population Density 

In
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nh
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Period I 
Total Population 0.24** 

Population >= 60 years 0.12* 
Population < 60 years 0.27** 

Period II 
Total Population -0.17* 

Population >= 60 years -0.18** 
Population < 60 years -0.18** 

Period III 
Total Population 0.09 

Population >= 60 years 0 
Population < 60 years 0.04 

    

 

 
  
  
  

 
  
  
  

 
  
  
  

  Correlation Mean Income 

In
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it
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Period I 
Total Population 0.1* 

Population >= 60 years 0.07* 
Population < 60 years 0.11* 

Period II 
Total Population 0.01 

Population >= 60 years 0.04 
Population < 60 years -0.02 

Period III 
Total Population 0.11* 

Population >= 60 years 0.03 
Population < 60 years 0.07 
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Especially in the total population and in the age group equal to or greater than 60 
years infections per inhabitant showed weak correlations to case fatality ratio in all 
periods (Table 13).   
 

Table 13 - Correlations of Infections per Inhabitant and Case Fatality Ratio. 

  Correlation Case Fatality Ratio 
In

fe
ct

io
ns

 p
er

 I
nh
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Period I 
Total Population 0.25** 

Population >= 60 years 0.33* 
Population < 60 years 0.03 

Period II 
Total Population 0.33** 

Population >= 60 years 0.28** 
Population < 60 years 0.06 

Period III 
Total Population 0.27** 

Population >= 60 years 0.37** 
Population < 60 years 0.21** 

 

4.3 Regression Analysis 
 
Based on the findings from the correlation analysis and the assessment of spatial 
autocorrelation, I chose to perform spatial regressions: 
 

- to predict total case fatality ratio with the predictors: 
o mean income, mean age, weighted mean radon soil gas concentration 

 
- to predict total infections per inhabitant with the predictors: 

o  mean living space and weighted mean radon soil gas concentration 

Detailed regression reports can be found in the Appendix (Section 8.3). 
 
Variation of the dependent variable case fatality ratio could be explained between 
22% and 59% by the predictors, depending on the study period (Table 14). In 
period I, the variable mean income showed a non-significant coefficient, in period 
II, the constant-variable of the regression model had an insignificant coefficient, but 
in period III, all variable coefficients were significant at least at the 0.01 level 
(Appendix 8.3.1). 
 
 

Table 14 - Regression Indicators for Total Case Fatality Ratios. 
 
 
 
 
 
 

 

 
Adding the infections per inhabitant variable as a predictor to predict CFR 
improved in all periods the regression model at a neglectable level. 

   

    

    

    

    

  Case Fatality Ratio 

Regression Period I Period II Period III 

Akaike Info Criterion -2559 -3408 -3669 

R-Squared 0.27 0.23 0.59 

Log Likelihood 1285 1709 1840 
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When analysing the population equal to or greater than 60 years, the regression 
model to predict CFR without the predictor mean age (Table 15) yielded less robust 
results in comparison to the regression model with infections per inhabitant added 
as predictor (Table 16) 
 

Table 15 - Regression Indicators for CFR in Age Group greater than or equal to 60 Years. 
 

 

 

 

 

 
 
 

Table 16 - Regression Indicators for CFR in Age Group greater than or equal to 60 Years; Infection Rate as 
Additional Predictor. 

  

CFR Age Group greater than or equal to 60 
Years 

Regression Period I Period II Period III 

Akaike Info Criterion -1732 -2109 -2356 
R-Squared 0.13 0.13 0.3 
Log Likelihood 871 1059 1183 
(Predictors: Population Weighted Radon Mean, Mean Income, Infections per 
Inhabitant)  

 
In all study periods over 70% of the variability in infections per inhabitant could be 
explained with the independent variables mean living space and population 
weighted mean radon soil gas concentration (Table 17). The variable’s coefficients 
were all significant at the 0.01 level except in period II, where they were significant 
at the 0.05 level (Appendix 8.3.2). 
 

Table 17 - Regression Indicators for Infections per Inhabitant in All Periods. 
 
 
 
 
 
 
 
 
The regressions to predict the separate age group’s infections per inhabitant 
produced similar results. In period II the coefficient of determination was the 
highest and in the age group greater than or equal to 60 years, the model showed 
stronger results than in periods I and III.  
 
 

  

CFR Age Group greater than or equal to 60 
Years 

Regression Period I Period II Period III 

Akaike Info Criterion -1702 -2092 -2329 

R-Squared 0.06 0.1 0.25 

Log Likelihood 855 1050 1169 

(Predictors: Population Weighted Radon Mean, Mean Income) 

  Infections per Inhabitant 

Regression Period I Period II Period III 

Akaike Info Criterion -3192 -2952 -1922 

R-Squared 0.72 0.84 0.76 

Log Likelihood 1600 1480 966 
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Table 18 - Regression Indicators for Infections per Inhabitant in Age Group greater than or equal to 60 Years. 

 
 
 
 
 

Table 19 - Regression Indicators for Infections per Inhabitant in Age Group below 60 Years. 
 

 

 

 

 
 
 
Hypothesis:   
 
2: High COVID-19-associated ICU admission rate is spatially linked to high 

radon concentration in soil air. 
 
was not further tested, because available intensive care unit admission data was 
biased and did not support conclusions. 
 
The hypotheses: 
 
1: High COVID-19-associated case-fatality-rate is spatially linked to high 

radon concentration in soil air. 
and  
 
3: High COVID-19 infection rate is spatially linked to high radon 

concentration in soil air. 
 
cannot be rejected. Weak influences of radon soil gas concentration on case fatality 
ratio are indicated in period III and supported by the regression analysis. Weak 
correlations of radon and infection rate exist in all periods and age group at a 

  

Infections per Inhabitant greater than or equal 
to 60 Years 

Regression Period I Period II Period III 

Akaike Info Criterion -3145 -3336 -2345 

R-Squared 0.69 0.8 0.79 

Log Likelihood 1576 1672 1176 

   

    

    

    

    

   

    

    
    
    

  Infections per Inhabitant below 60 Years 

Regression Period I Period II Period III 

Akaike Info Criterion -3153 -2772 -1757 
R-Squared 0.7 0.83 0.75 
Log Likelihood 1581 1390 883 
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significant level. Especially for period II, the regression model using radon soil gas 
concentrations yielded better results when predicting infections per inhabitant.  
 
The regression models to predict CFR in the separate age groups and periods had all 
relatively low coefficients of determination, except in period III, indicating a 
correlation between radon and CFR. 
 
While population weighted mean radon soil gas concentration significantly 
improved the regressions for both, predicting case fatality ratio and predicting 
infections per inhabitant, the improvement was relatively low in comparison to the 
predictors mean living space for infection rate and to the predictors mean age and 
infection rate for case fatality ratio. 
 
In the following, I will discuss my interpretation of the results and limitations of 
this research. 
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5 Discussion 
 
In accordance with results of previous studies, I identified cramped or crowded 
housing conditions as a key driver for increase infection rate (Federgruen and Naha 
2021;  Universitätsmedizin and der Johannes Gutenberg-Universität Mainz 2021). 
My findings of income and age being correlated to case fatality ratio are consistent 
with the results of studies on Swedish data (Drefahl et al. 2020) and multi-national 
data (O’Driscoll et al. 2021). My approach of additionally accounting for radon soil 
gas concentration increased the predictive power of the regression models in all 
periods for both, case fatality ratio and infection rate.  
 
The weak but significant correlations between radon soil gas concentration and 
infections per inhabitant (Table 6), can be interpreted as an indication of a higher 
infection rate caused by higher radon exhalation. Although the   higher coefficients 
of determination of the regressions in period II are suggesting a higher infection rate 
after a nationwide low-pressure phenomenon (“Sturmtief Ignatz”), the smaller 
correlation coefficients between infection rate and radon soil gas concentrations in 
period II suggest no increase in radon exhalation caused by the low-pressure 
phenomenon. 
 
The regression to predict case fatality ratio with the predictors mean age, mean 
income, and population weighted mean radon soil gas concentration showed a 
relatively high coefficient of determination in period III (Table 14). The much 
larger sample number of period III in comparison to periods I and II can be 
interpreted as a support of the conclusion, that effects of radon on the case fatality 
ratio are visible especially in a large scale and long-term analysis.  
 
I consider both findings reasonable and the conclusions suggest a support of 
hypotheses 1 and 3. I refrained from further testing hypothesis 2, because the 
underlying data for ICU-admissions was biased at the district level.  
 
However, the identified existing weak positive correlations between infections per 
inhabitant and case fatality ratio (Table 13) indicate, that in regions of high overall 
infection rates either the health system was overburdened, or mild progressions 
were less reported and the number of unreported infections was much higher, or 
that a combination of both conditions was present. This leads me to discuss the 
limitations of the research methodology and the used data. 
 
The COVID-19 reports used in this research are not the total population of COVID-
19 cases, but only observations (registered cases). The number of unreported or 
undetected cases for both, infections and death cases is not known. One large study 
(Universitätsmedizin and der Johannes Gutenberg-Universität Mainz 2021) 
conducted by the University Medical Center of the Johannes Gutenberg University 
Mainz in Germany identified over 40% of unregistered infections within 
participants. An additional finding of said study was a more frequent testing among 
younger population, resulting in a bias of detected COVID-19 infections depending 
on age groups. 
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As multiple factors influence COVID-19 transmission, disease progression and 
mortality, the exclusion of other controlling factors can result in wrong indications 
(data artifacts). Transmission has been shown to be dependent on multiple 
socioeconomic factors (Qiu et al. 2020). In this research I did not account individual 
lifestyle, amount of social interaction, or acceptance of virus transmission counter 
measurements like wearing filtering face pieces and face covering as well as 
keeping physical distance and getting regularly tested for SARS-CoV-2. 
Areas of high incidence and mortality in Germany have been shown to be highly 
correlated to areas of high voting quotas of a right-wing political party (Richter et 
al. 2021). This party is known to be voted from people with low acceptance of 
COVID-19 counter measurements and a distrust in governmental structures, 
suggesting a bias. Interestingly, in some districts, mobility data has shown an 
increase in mobility during lockdowns and travel restriction times (Balterman et al. 
2021), pointing to a high denial of lockdown and countermeasure rules, which 
could have led to higher infections, possibly unregistered and thus a higher number 
of fatalities or a higher case fatality ratio.  
 
I had to refrain from accounting for vaccinations in study periods II and III, because 
the vaccination data is not representative for the districts vaccination rate. 
High CFR and infection rates could entirely be caused by and within the group of 
not-vaccinated individuals. The vaccination quotas are varying between States by 
up to 25% (Robert Koch-Institut 2022). The varying transmission and mortality of 
virus variants (SeyedAlinaghi et al. 2021) is also not accounted for and could be 
cause of a large uncertainty. Before drawing any conclusion from the indication of 
correlations between radon soil gas concentration and case fatality further analysis 
is necessary. 
 
Although associations of mortality and transmission to meteorological and climatic 
factors have been identified, the findings were inconsistent (Kerr et al. 2021). 
Considering, that Germany is separated in two different Köppen-Geiger climate 
classifications, the climatic differences should not be neglected. For a detailed 
analysis of meteorological effects, the temporal dimension should be included, 
which would have exceeded the scope of this thesis. The missing time component is 
also critical, as infection rates are strong associated to previous infection rates 
(Ganegoda et al. 2021). This autoregressive characteristic has been neglected in this 
research. The increased infection rate in period II could also be caused by a 
previous high infection rate and does not prove increased infection rates after an 
event of increased radon exhalation.    
 
While I analysed not only the total population of each district, but also the age 
groups equal to or greater than 60 years and below 60 years, the demographic 
within these age groups can still vary greatly. With the publicly available data, a 
more age-specific analysis was not possible, due to varying age classifications of 
COVID-19 reports and census data. Median age is a better indicator in 
demographics than mean age, but the use as independent variable instead of mean 
age was due a lack of data not possible.  
 
Data for mean living space per inhabitant and for the grid of population counts per 
1km² was based on the census 2011 and were at the point of this research outdated 
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since a decade. The bias introduced through potential change in the structure of 
living situations and population distribution was neglected. 
 
A significant clustered surplus of men, especially in younger generations, has 
developed within the last decades in the states of former East-Germany 
(Institut der Deutschen Wirtschaft Köln 2017). Researchers early identified male 
sex as a risk factor for death and ICU admission, after meta-analysing over 3 
million cases from 46 countries (Peckham et al. 2020). This sex-bias was suggested 
to be caused by multiple sex-based differences like amongst others immune 
response suppressive effects of testosterone or an accelerated immune aging in 
males, as well as behavioural or socio-cultural differences based on gender identity. 
To account for the influence of sex, the genders of each age group should be 
separately analysed. The open available data for gender and age-group specific 
population counts at district level was recorded at the 2011 nationwide census and 
will be updated with the postponed 2021 census (Statistisches Bundesamt 2021) 
after the deadline of this project. Consequently, a gender specific analysis was not 
performed, and the gender mortality bias could not be accounted for.  
 
In this research, I equated radon soil gas concentration with radon exposure. 
Radon soil gas concentration does not necessarily mean higher radon exhalation 
into the environment. Exhalation into surface air and into the atmosphere is largely 
dependent on geological properties like soil permeability and porosity (Nazaroff 
1992), but is also weather dependent. As radon exhalation from soil into the 
atmosphere is driven by meteorological parameters like surface pressure or rainfall 
(Mudelsee et al. 2020) radon exposure is not constant but prone to hourly, daily, 
and seasonal variations of weather conditions (Tchorz-Trzeciakiewicz and Kłos 
2017;  Sesana et al. 2003). Neither a time-component, nor actual radon exhalation 
are included in this research. 
 
The exposure to radon is influenced on additional factors: 
Sealing of soils can cause a barrier for radon, which again can cause increased 
exhalation in areas of better gas exchange and permeability. Radon usually intrudes 
buildings through the floor, but also through the walls of subsurface basement 
rooms. When radon exhalation happens in non-confined space, radon concentration 
quickly decreases, depending on wind speed, and mixes with atmospheric air. In 
confined spaces, radon concentration increases, especially in colder months or in 
the heating period, in which ventilation with cold outside air is reduced and the 
stack effect creates a pressure gradient that facilitates intrusion from soil air (Rey et 
al. 2022). Many, but not all houses in Germany have an underground level, which 
can act as a large-scale entry for radon into buildings. Radon concentration in 
confined space is not only restricted to basement or ground floors. Depending on 
the design of a house, installed ventilation or fireplaces, radon can be sucked into 
all levels when pressure gradients between inside and outside favour an intrusion 
(Nazaroff 1992). It is common, that a house consists of different flats in each level. 
This results in unequal exposition of inhabitants, depending on the level of their 
flat. 
 
These multiple factors suggest a high variance in individual exposure to radon at 
only little changed circumstances in areas of similar radon soil concentration.  
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Individual data like migration, living habits and housing situation needed to be 
evaluated to account for a radon exposure history. 
 
As the histograms of the independent variables revealed skewed data and outliers, a 
log transformation should be applied. To account for vaccinations, all data should be 
aggregated to a larger scale. Working at a higher NUTS level, could also reduce the 
bias in ICU admission locations. But changing the scale and shape of data aggregation 
can produce very different results. Statistically significant relationships of the data at 
an aggregated higher NUTS level, does not necessarily reproduce in small local scale 
or individual level. That a relationship is true at the detailed level because it is true at 
the aggregated data level, is a common misconception (Grekousis 2020). This is also 
referred to as the modifiable area unit problem, which also poses a restriction at the 
scope of this research. The results in this study are not immune to this phenomenon 
and could suggest wrong conclusions. 
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6 Conclusion 
 
In this research, I tested spatial correlations between mean radon soil gas 
concentrations and COVID-19 case fatality ratio as well as COVID-19 infection 
rates. A testing for correlation between radon soil gas concentrations and COVID-
19 caused ICU admissions could not be performed, due to the lack of quality in the 
underlying data source. 
Although I could not show strong correlations to case fatality ratio or infection rate, 
I demonstrated, that infection rates are weak but significant positive correlated to 
radon soil gas concentration in all analysed time frames. I further identified an 
indication of a significant positive correlation between radon and case fatality ratio 
in the period 01.2020- 02.2022. 
However, the results of analysis in this period must be interpreted with caution, as 
vaccination quotas, a strong influencing factor, were neglected in that period.  
Other large sources of uncertainty are the neglect of multiple unaccounted factors 
and the exclusion of a temporal dimension, necessary to account for the 
autoregressive characteristics of epidemiological processes. 
I suggest the results of this research to be used as a foundation for further research.  
My demonstrated limitations should be considered in the development of more 
elaborated methods for testing and quantifying the impact of radon exposure to the 
severity of the COVID-19 pandemic. 
The additional risk, that is possibly posed to the public health by radon exposure 
should be determined to raise awareness of the importance of radon exposure 
mitigation strategies and reduce not only cases of COVID-19 related infections and 
death, but also other respiratory diseases, such as pneumonia, COPD or lung cancer. 
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8 Appendices 
 
 

 
 

Figure 13 - Case Fatality Ratio of Age Group greater than or equal to 60 Years in Period I. 
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Figure 14 - Case Fatality Ratio of Age Group below 60 Years in Period I. 
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Figure 15 - Case Fatality Ratio of Total Population in Period II. 
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Figure 16 - Case Fatality Ratio of Age Group greater than or equal to 60 Years in Period II. 
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Figure 17 - Case Fatality Ratio of Age Group below 60 Years in Period II. 
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Figure 18 - Case Fatality Ratio of Total Population in Period III. 
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Figure 19 - Case Fatality Ratio of Age Group greater than or equal to 60 Years in Period III. 
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Figure 20 - Case Fatality Ratio of Age Group below 60 Years in Period II. 
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Figure 21 - Infection Rate of Age Group greater than or equal to 60 Years in Period I. 
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Figure 22 - Infection Rate of Age Group below 60 Years in Period I. 
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Figure 23 - Infection Rate of Total Population in Period II. 
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Figure 24 - Infection Rate of Age Group greater than or equal to 60 Years in Period II. 
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Figure 25 - Infection Rate of Age Group below 60 Years in Period II. 
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Figure 26 - Infection Rate of Total Population in Period III. 



 

65 
 

 

 
 
 

Figure 27 - Infection Rate of Age Group greater than or equal to 60 Years in Period III. 
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Figure 28 - Infection Rate of Age Group below 60 Years in Period III. 
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Figure 29 - Population Weighted Mean Radon Soil Gas Concentration. 
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Figure 30 - Mean Radon Soil Gas Concentration. 
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8.1 Scatterplots & Correlations 
 
p < 0.05 significance marked with one asterisk 
p < 0.01 significance marked with two asterisks 
 
8.1.1 Population Weighted Mean Radon Soil Gas Concentration / Case 

Fatality Ratio 
 
 -Total Population: 
   Period I: 0.196**   Period II: 0.229**         Period III: 0.313** 

       
 
 
 
-Age Group greater than or equal to 60 Years: 
     Period I: 0.103  Period II: 0.160**  Period III: 0.213** 

          

 
 
-Age Group < 60 Years: 

Period I: -0.044    Period II: 0.067    Period III: 0.220** 
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8.1.2 Population Weighted Mean Radon Soil Gas Concentration / Infections 
per Inhabitant 

 
-Total Population: 
Period I: 0.409**  Period II: 0.377**          Period III: 0.376** 

 

 
 
-Age Group greater than or equal to 60 Years: 
Period I: 0.423**    Period II: 0.397**        Period III: 0.447** 

 

 
 
-Age Group below 60 Years: 
Period I: 0.393**           Period II: 0.367**        Period III: 0.363**
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8.1.3 Living space per Inhabitant / Infections per Inhabitant 
 
-Total Population: 
Period I: -0.325**      Period II: -0.251**  Period III: -0.420** 

 

 
 
-Age Group greater than or equal to 60 Years: 
Period I: -0.271**  Period II: -0.193**         Period III: -0.350** 
  

 

 
 
-Age Group below 60 Years: 
Period I: -0.331**       Period II: -0.260**        Period III: -0.411** 

 

Mean Living Space per Inhabitant 

In
fe

ct
io

ns
 p

er
 I

nh
ab

ita
nt

 

Mean Living Space per Inhabitant 

In
fe

ct
io

ns
 p

er
 I

nh
ab

ita
nt

 

Mean Living Space per Inhabitant 

In
fe

ct
io

ns
 p

er
 I

nh
ab

ita
nt

 



 

72 
 

8.1.4 Mean Income / Case Fatality Ratio 
 
-Total Population: 
Period I: -0.155**          Period II : - 0.236**        Period III: -0.307** 

 

 
 
 
-Age Group greater than or equal to 60 Years: 
Period I: -0.038           Period II : -0.176**       Period III: -0.240** 

 

 
 
-Age Group below 60 Years: 
Period I: -0.200**           Period II : -0.153**       Period III: -0.293** 
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8.1.5 Mean Age / Case Fatality Ratio 
 
-Total Population: 
Period I: 0.433**              Period II: 0.330**        Period III: 0.599** 

 

 
 
-Age Group greater than or equal to 60 Years: 
Period I: 0.022              Period II: 0.098     Period III: 0.288** 

 

 
 
-Age Group below 60 Years: 
Period I: 0.144**  Period II: 0.023           Period III: 0.303** 
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8.1.6 Infections per Inhabitant / Case Fatality Ratio 
 
 
-Total Population: 
Period I: 0.248**          Period II: 0.327**       Period III: 0.270** 

 

 
 
 
-Age Group greater than or equal to 60 Years: 
Period I: 0.331**             Period II: 0.280**       Period III: 0.372** 

 

 
 
-Age Group below 60 Years: 
Period I: 0.028            Period II: 0.063        Period III: 0.209** 
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8.2 Histograms 
8.2.1 Independent Variables 
 
 

Mean Income per Inhabitant 
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Population Weighted Mean Radon Soil Gas Concentration 
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8.3 Regression Reports 
 
8.3.1 Case Fatality Ratio 
8.3.1.1 Total Population 
Period I 
SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION 
Data set            : vg250_krs 
Spatial Weight      : vg250_krs_queen1order 
Dependent Variable  :    mort_inf  Number of Observations:  400 
Mean dependent var  :   0.0307698  Number of Variables   :    5 
S.D. dependent var  :   0.0112862  Degrees of Freedom    :  395 
Lag coeff.   (Rho)  :    0.301361 
 
R-squared           :    0.267327  Log likelihood        :     1284.66 
Sq. Correlation     : -            Akaike info criterion :    -2559.32 
Sigma-square        : 9.33263e-05  Schwarz criterion     :    -2539.36 
S.E of regression   :  0.00966055 
----------------------------------------------------------------------------- 
       Variable       Coefficient     Std.Error       z-value    Probability 
----------------------------------------------------------------------------- 
        W_mort_inf      0.301361      0.0623372        4.83437     0.00000 
          CONSTANT    -0.0644504      0.0134753       -4.78285     0.00000 
rn_mean..pweighted   4.17143e-05    1.56161e-05        2.67123     0.00756 
        income2019  -1.07496e-07    1.89846e-07      -0.566226     0.57124 
           avg_age    0.00189545    0.000267983        7.07302     0.00000 

With Infection Rate: 
SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION 
Data set            : vg250_krs 
Spatial Weight      : vg250_krs_queen1order 
Dependent Variable  :    mort_inf  Number of Observations:  400 
Mean dependent var  :   0.0307698  Number of Variables   :    6 
S.D. dependent var  :   0.0112862  Degrees of Freedom    :  394 
Lag coeff.   (Rho)  :    0.246541 
 
R-squared           :    0.303616  Log likelihood        :     1296.07 
Sq. Correlation     : -            Akaike info criterion :    -2580.13 
Sigma-square        : 8.87039e-05  Schwarz criterion     :    -2556.19 
S.E of regression   :  0.00941828 
----------------------------------------------------------------------------- 
       Variable       Coefficient     Std.Error       z-value    Probability 
----------------------------------------------------------------------------- 
        W_mort_inf      0.246541      0.0630477        3.91038     0.00009 
          CONSTANT    -0.0764353      0.0134132       -5.69852     0.00000 
           avg_age    0.00210372     0.00026667        7.88887     0.00000 
        income2019  -1.28137e-07    1.85208e-07      -0.691855     0.48903 
rn_mean..pweighted   1.18137e-05     1.6499e-05       0.716025     0.47398 
           inf_pop      0.331923      0.0700668        4.73724     0.00000 

 
Period II 
SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION 
Data set            : vg250_krs 
Spatial Weight      : vg250_krs_queen1order 
Dependent Variable  :  v2mort_inf  Number of Observations:  400 
Mean dependent var  :  0.00801468  Number of Variables   :    5 
S.D. dependent var  :  0.00381278  Degrees of Freedom    :  395 
Lag coeff.   (Rho)  :    0.267816 
 
R-squared           :    0.227129  Log likelihood        :     1708.86 
Sq. Correlation     : -            Akaike info criterion :    -3407.73 
Sigma-square        : 1.12354e-05  Schwarz criterion     :    -3387.77 
S.E of regression   :  0.00335193 
----------------------------------------------------------------------------- 
       Variable       Coefficient     Std.Error       z-value    Probability 
----------------------------------------------------------------------------- 
      W_v2mort_inf      0.267816      0.0642255        4.16992     0.00003 
          CONSTANT    -0.0065685     0.00466916       -1.40679     0.15949 
rn_mean..pweighted   2.14671e-05    5.45915e-06        3.93231     0.00008 
        income2019  -2.39004e-07    6.61157e-08       -3.61493     0.00030 
           avg_age   0.000366948    9.14811e-05        4.01119     0.00006 
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With Infection Rate: 
SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION 
Data set            : vg250_krs 
Spatial Weight      : vg250_krs_queen1order 
Dependent Variable  :  v2mort_inf  Number of Observations:  400 
Mean dependent var  :  0.00801468  Number of Variables   :    6 
S.D. dependent var  :  0.00381278  Degrees of Freedom    :  394 
Lag coeff.   (Rho)  :    0.215047 
 
R-squared           :    0.249040  Log likelihood        :     1715.66 
Sq. Correlation     : -            Akaike info criterion :    -3419.31 
Sigma-square        : 1.09169e-05  Schwarz criterion     :    -3395.36 
S.E of regression   :  0.00330408 
----------------------------------------------------------------------------- 
       Variable       Coefficient     Std.Error       z-value    Probability 
----------------------------------------------------------------------------- 
      W_v2mort_inf      0.215047      0.0657172        3.27231     0.00107 
          CONSTANT   -0.00387738     0.00466886      -0.830476     0.40627 
           avg_age    0.00030861    9.18426e-05        3.36021     0.00078 
        income2019  -2.51652e-07    6.49681e-08       -3.87346     0.00011 
rn_mean..pweighted    1.5335e-05    5.68073e-06        2.69948     0.00694 
         v2inf_pop     0.0527458      0.0144709        3.64495     0.00027 
----------------------------------------------------------------------------- 

 
Period III 
SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION 
Data set            : vg250_krs 
Spatial Weight      : vg250_krs_queen1order 
Dependent Variable  :  v3mort_inf  Number of Observations:  400 
Mean dependent var  :  0.00874164  Number of Variables   :    5 
S.D. dependent var  :   0.0036832  Degrees of Freedom    :  395 
Lag coeff.   (Rho)  :    0.507299 
 
R-squared           :    0.586951  Log likelihood        :     1839.63 
Sq. Correlation     : -            Akaike info criterion :    -3669.27 
Sigma-square        : 5.60341e-06  Schwarz criterion     :    -3649.31 
S.E of regression   :  0.00236715 
----------------------------------------------------------------------------- 
       Variable       Coefficient     Std.Error       z-value    Probability 
----------------------------------------------------------------------------- 
      W_v3mort_inf      0.507299       0.048081        10.5509     0.00000 
          CONSTANT    -0.0218534     0.00335303        -6.5175     0.00000 
rn_mean..pweighted   1.98028e-05    3.96904e-06        4.98931     0.00000 
        income2019  -1.19302e-07    4.81565e-08       -2.47739     0.01323 
           avg_age    0.00061105    6.93428e-05        8.81202     0.00000 
----------------------------------------------------------------------------- 

With infection rate: 
SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION 
Data set            : vg250_krs 
Spatial Weight      : vg250_krs_queen1order 
Dependent Variable  :  v3mort_inf  Number of Observations:  400 
Mean dependent var  :  0.00874164  Number of Variables   :    6 
S.D. dependent var  :   0.0036832  Degrees of Freedom    :  394 
Lag coeff.   (Rho)  :    0.456152 
 
R-squared           :    0.599260  Log likelihood        :     1848.04 
Sq. Correlation     : -            Akaike info criterion :    -3684.09 
Sigma-square        : 5.43642e-06  Schwarz criterion     :    -3660.14 
S.E of regression   :  0.00233161 
----------------------------------------------------------------------------- 
       Variable       Coefficient     Std.Error       z-value    Probability 
----------------------------------------------------------------------------- 
      W_v3mort_inf      0.456152      0.0495079        9.21373     0.00000 
          CONSTANT    -0.0251228     0.00343351       -7.31695     0.00000 
         v3inf_pop     0.0131293     0.00325047        4.03921     0.00005 
           avg_age   0.000659068    7.01319e-05        9.39756     0.00000 
        income2019  -1.40485e-07    4.72896e-08       -2.97074     0.00297 
rn_mean..pweighted   1.50644e-05    4.09074e-06        3.68255     0.00023 
 
 
 
 



 

79 
 

8.3.1.2 Age Group equal to or greater than 60 years: 
Period I 
Without Age: 
---------- 
SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION 
Data set            : vg250_krs 
Spatial Weight      : vg250_krs_queen1order 
Dependent Variable  :  mort_inf60plus   
Number of Observations:  400 
Mean dependent var  :    0.115508  Number of Variables   :    4 
S.D. dependent var  :   0.0292931  Degrees of Freedom    :  396 
Lag coeff.   (Rho)  :    0.278712 
 
R-squared           :    0.064606  Log likelihood        :     854.848 
Sq. Correlation     : -            Akaike info criterion :     -1701.7 
Sigma-square        : 0.000802647  Schwarz criterion     :    -1685.73 
S.E of regression   :    0.028331 
----------------------------------------------------------------------------- 
       Variable       Coefficient     Std.Error       z-value    Probability 
----------------------------------------------------------------------------- 
      W_mort_inf60      0.278712      0.0663749        4.19905     0.00003 
          CONSTANT     0.0903095      0.0143728        6.28335     0.00000 
rn_mean..pweighted   7.85176e-05    4.47389e-05        1.75502     0.07926 
        income2019  -5.18219e-07    5.17113e-07       -1.00214     0.31628 
----------------------------------------------------------------------------- 
With Age: 
SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION 
Data set            : vg250_krs 
Spatial Weight      : vg250_krs_queen1order 
Dependent Variable  :  mort_inf60plus   
Number of Observations:  400 
Mean dependent var  :    0.115508  Number of Variables   :    5 
S.D. dependent var  :   0.0292931  Degrees of Freedom    :  395 
Lag coeff.   (Rho)  :    0.278644 
 
R-squared           :    0.064629  Log likelihood        :     854.854 
Sq. Correlation     : -            Akaike info criterion :    -1699.71 
Sigma-square        : 0.000802627  Schwarz criterion     :    -1679.75 
S.E of regression   :   0.0283307 
----------------------------------------------------------------------------- 
       Variable       Coefficient     Std.Error       z-value    Probability 
----------------------------------------------------------------------------- 
      W_mort_inf60      0.278644      0.0663881         4.1972     0.00003 
          CONSTANT     0.0946283      0.0400836        2.36077     0.01824 
rn_mean..pweighted   7.93513e-05     4.5304e-05        1.75153     0.07985 
        income2019  -5.38548e-07    5.46353e-07      -0.985715     0.32427 
           avg_age   -8.6276e-05    0.000751243      -0.114844     0.90857 

With Infections / Inhabitant: 
SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION 
Data set            : vg250_krs 
Spatial Weight      : vg250_krs_queen1order 
Dependent Variable  :  mort_inf60plus   
Number of Observations:  400 
Mean dependent var  :    0.115508  Number of Variables   :    5 
S.D. dependent var  :   0.0292931  Degrees of Freedom    :  395 
Lag coeff.   (Rho)  :    0.227334 
 
R-squared           :    0.132110  Log likelihood        :     870.896 
Sq. Correlation     : -            Akaike info criterion :    -1731.79 
Sigma-square        : 0.000744723  Schwarz criterion     :    -1711.83 
S.E of regression   :   0.0272896 
 
----------------------------------------------------------------------------- 
       Variable       Coefficient     Std.Error       z-value    Probability 
----------------------------------------------------------------------------- 
      W_mort_inf60      0.227334      0.0665344        3.41679     0.00063 
          CONSTANT     0.0838094      0.0137443        6.09774     0.00000 
        income2019   -5.0057e-07    4.98134e-07       -1.00489     0.31495 
rn_mean..pweighted  -3.21657e-05    4.72085e-05      -0.681353     0.49565 
     inf_pop60plus       1.12706       0.202332        5.57035     0.00000 
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Period II 
Without Age 
SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION 
Data set            : vg250_krs 
Spatial Weight      : vg250_krs_queen1order 
Dependent Variable  :  v2mort_inf60plus   
Number of Observations:  400 
Mean dependent var  :   0.0441911  Number of Variables   :    4 
S.D. dependent var  :   0.0183542  Degrees of Freedom    :  396 
Lag coeff.   (Rho)  :      0.2041 
 
R-squared           :    0.096373  Log likelihood        :     1050.23 
Sq. Correlation     : -            Akaike info criterion :    -2092.45 
Sigma-square        :  0.00030441  Schwarz criterion     :    -2076.49 
S.E of regression   :   0.0174473 
----------------------------------------------------------------------------- 
       Variable       Coefficient     Std.Error       z-value    Probability 
----------------------------------------------------------------------------- 
      W_v2mort_inf        0.2041       0.067881        3.00674     0.00264 
          CONSTANT     0.0587082     0.00833138        7.04664     0.00000 
rn_mean..pweighted   9.15079e-05    2.78189e-05        3.28942     0.00100 
        income2019  -1.27072e-06    3.21782e-07       -3.94902     0.00008 
 

With Age 
---------- 
SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION 
Data set            : vg250_krs 
Spatial Weight      : vg250_krs_queen1order 
Dependent Variable  :  v2mort_inf60plus   
Number of Observations:  400 
Mean dependent var  :   0.0441911  Number of Variables   :    5 
S.D. dependent var  :   0.0183542  Degrees of Freedom    :  395 
Lag coeff.   (Rho)  :    0.205701 
 
R-squared           :    0.096537  Log likelihood        :     1050.24 
Sq. Correlation     : -            Akaike info criterion :    -2090.47 
Sigma-square        : 0.000304355  Schwarz criterion     :    -2070.52 
S.E of regression   :   0.0174458 
 
----------------------------------------------------------------------------- 
       Variable       Coefficient     Std.Error       z-value    Probability 
----------------------------------------------------------------------------- 
      W_v2mort_inf      0.205701      0.0680539        3.02262     0.00251 
          CONSTANT     0.0619069      0.0243572        2.54162     0.01103 
rn_mean..pweighted   9.19603e-05    2.81131e-05        3.27108     0.00107 
        income2019  -1.28505e-06    3.38482e-07       -3.79652     0.00015 
           avg_age  -6.56662e-05    0.000463923      -0.141545     0.88744 
 
 

With Infections per Inhabitant: 
SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION 
Data set            : vg250_krs 
Spatial Weight      : vg250_krs_queen1order 
Dependent Variable  :  v2mort_inf60plus   
Number of Observations:  400 
Mean dependent var  :   0.0441911  Number of Variables   :    5 
S.D. dependent var  :   0.0183542  Degrees of Freedom    :  395 
Lag coeff.   (Rho)  :    0.137687 
 
R-squared           :    0.133363  Log likelihood        :     1059.48 
Sq. Correlation     : -            Akaike info criterion :    -2108.97 
Sigma-square        : 0.000291949  Schwarz criterion     :    -2089.01 
S.E of regression   :   0.0170865 
 
----------------------------------------------------------------------------- 
       Variable       Coefficient     Std.Error       z-value    Probability 
----------------------------------------------------------------------------- 
      W_v2mort_inf      0.137687      0.0691746        1.99042     0.04654 
          CONSTANT     0.0583365     0.00811315        7.19036     0.00000 
        income2019  -1.26394e-06    3.15068e-07       -4.01165     0.00006 
rn_mean..pweighted   4.71734e-05    2.93565e-05        1.60692     0.10807 
   v2inf_pop60plus      0.551143       0.129245        4.26432     0.00002 
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Period III 
Without Age: 
SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION 
Data set            : vg250_krs 
Spatial Weight      : vg250_krs_queen1order 
Dependent Variable  :  v3mort_inf60plus   
Number of Observations:  400 
Mean dependent var  :   0.0560841  Number of Variables   :    4 
S.D. dependent var  :   0.0147713  Degrees of Freedom    :  396 
Lag coeff.   (Rho)  :    0.428753 
 
R-squared           :    0.251182  Log likelihood        :     1168.57 
Sq. Correlation     : -            Akaike info criterion :    -2329.14 
Sigma-square        : 0.000163385  Schwarz criterion     :    -2313.17 
S.E of regression   :   0.0127822 
----------------------------------------------------------------------------- 
       Variable       Coefficient     Std.Error       z-value    Probability 
----------------------------------------------------------------------------- 
      W_v3mort_inf      0.428753      0.0582116        7.36542     0.00000 
          CONSTANT     0.0498807     0.00672526        7.41692     0.00000 
rn_mean..pweighted   8.00399e-05    2.06584e-05        3.87446     0.00011 
        income2019  -9.86538e-07     2.3711e-07       -4.16067     0.00003 
 
 

With Age: 
SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION 
Data set            : vg250_krs 
Spatial Weight      : vg250_krs_queen1order 
Dependent Variable  :  v3mort_inf60plus   
Number of Observations:  400 
Mean dependent var  :   0.0560841  Number of Variables   :    5 
S.D. dependent var  :   0.0147713  Degrees of Freedom    :  395 
Lag coeff.   (Rho)  :    0.391245 
 
R-squared           :    0.258237  Log likelihood        :     1171.85 
Sq. Correlation     : -            Akaike info criterion :     -2333.7 
Sigma-square        : 0.000161846  Schwarz criterion     :    -2313.75 
S.E of regression   :   0.0127219 
----------------------------------------------------------------------------- 
       Variable       Coefficient     Std.Error       z-value    Probability 
----------------------------------------------------------------------------- 
      W_v3mort_inf      0.391245      0.0597913        6.54351     0.00000 
          CONSTANT    0.00813417      0.0177438       0.458423     0.64665 
rn_mean..pweighted   7.51735e-05    2.07148e-05        3.62898     0.00028 
        income2019  -8.24726e-07    2.49539e-07         -3.305     0.00095 
           avg_age   0.000894449    0.000343603        2.60314     0.00924 
 
 
With Infections per Inhabitant: 
SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION 
Data set            : vg250_krs 
Spatial Weight      : vg250_krs_queen1order 
Dependent Variable  :  v3mort_inf60plus   
Number of Observations:  400 
Mean dependent var  :   0.0560841  Number of Variables   :    5 
S.D. dependent var  :   0.0147713  Degrees of Freedom    :  395 
Lag coeff.   (Rho)  :    0.365677 
 
R-squared           :    0.295085  Log likelihood        :      1182.9 
Sq. Correlation     : -            Akaike info criterion :     -2355.8 
Sigma-square        : 0.000153806  Schwarz criterion     :    -2335.84 
S.E of regression   :   0.0124018 
 
----------------------------------------------------------------------------- 
       Variable       Coefficient     Std.Error       z-value    Probability 
----------------------------------------------------------------------------- 
      W_v3mort_inf      0.365677      0.0595299        6.14274     0.00000 
          CONSTANT     0.0437696     0.00645453        6.78122     0.00000 
        income2019  -9.92555e-07    2.29891e-07       -4.31751     0.00002 
rn_mean..pweighted   3.18644e-05    2.19162e-05        1.45392     0.14597 
   v3inf_pop60plus      0.151621      0.0294284        5.15221     0.00000 
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8.3.1.3 Age Group below 60 years: 
Period I 
Without Age: 
SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION 
Data set            : vg250_krs 
Spatial Weight      : vg250_krs_queen1order 
Dependent Variable  :  mort_inf_bl60   
Number of Observations:  400 
Mean dependent var  :  0.00146717  Number of Variables   :    4 
S.D. dependent var  :  0.00117616  Degrees of Freedom    :  396 
Lag coeff.   (Rho)  :   0.0387633 
 
R-squared           :    0.041064  Log likelihood        :     2138.95 
Sq. Correlation     : -            Akaike info criterion :    -4269.91 
Sigma-square        : 1.32656e-06  Schwarz criterion     :    -4253.94 
S.E of regression   :  0.00115176 
----------------------------------------------------------------------------- 
       Variable       Coefficient     Std.Error       z-value    Probability 
----------------------------------------------------------------------------- 
      W_mort_inf_b     0.0387633       0.072716       0.533077     0.59398 
          CONSTANT    0.00335614    0.000521214        6.43908     0.00000 
rn_mean..pweighted  -1.88772e-07    1.80942e-06      -0.104328     0.91691 
        income2019   -8.2046e-08    2.12095e-08       -3.86836     0.00011 
With Age: 
SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION 
Data set            : vg250_krs 
Spatial Weight      : vg250_krs_queen1order 
Dependent Variable  :  mort_inf_bl60   
Number of Observations:  400 
Mean dependent var  :  0.00146717  Number of Variables   :    5 
S.D. dependent var  :  0.00117616  Degrees of Freedom    :  395 
Lag coeff.   (Rho)  :   0.0307465 
 
R-squared           :    0.048949  Log likelihood        :     2140.63 
Sq. Correlation     : -            Akaike info criterion :    -4271.25 
Sigma-square        : 1.31565e-06  Schwarz criterion     :    -4251.29 
S.E of regression   :  0.00114702 
----------------------------------------------------------------------------- 
       Variable       Coefficient     Std.Error       z-value    Probability 
----------------------------------------------------------------------------- 
      W_mort_inf_b     0.0307465      0.0730449       0.420925     0.67381 
          CONSTANT    0.00058674     0.00159613       0.367602     0.71317 
rn_mean..pweighted  -7.29497e-07    1.82648e-06      -0.399401     0.68960 
           avg_age   5.58398e-05    3.06892e-05        1.81953     0.06883 
        income2019  -6.92701e-08    2.22965e-08       -3.10677     0.00189 

 
Period II 
Without Age: 
SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION 
Data set            : vg250_krs 
Spatial Weight      : vg250_krs_queen1order 
Dependent Variable  :  v2mort_inf_bl60   
Number of Observations:  400 
Mean dependent var  :  0.00082084  Number of Variables   :    4 
S.D. dependent var  : 0.000849797  Degrees of Freedom    :  396 
Lag coeff.   (Rho)  :   0.0255878 
 
R-squared           :    0.033364  Log likelihood        :     2267.39 
Sq. Correlation     : -            Akaike info criterion :    -4526.78 
Sigma-square        : 6.98062e-07  Schwarz criterion     :    -4510.82 
S.E of regression   : 0.000835501 
 
----------------------------------------------------------------------------- 
       Variable       Coefficient     Std.Error       z-value    Probability 
----------------------------------------------------------------------------- 
      W_v2mort_inf     0.0255878      0.0730734       0.350165     0.72621 
          CONSTANT    0.00184323    0.000367384        5.01719     0.00000 
rn_mean..pweighted   2.59908e-06    1.31742e-06        1.97286     0.04851 
        income2019   -5.2219e-08     1.5339e-08       -3.40432     0.00066 
----------------------------------------------------------------------------- 
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With Age: 
SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION 
Data set            : vg250_krs 
Spatial Weight      : vg250_krs_queen1order 
Dependent Variable  :  v2mort_inf_bl60   
Number of Observations:  400 
Mean dependent var  :  0.00082084  Number of Variables   :    5 
S.D. dependent var  : 0.000849797  Degrees of Freedom    :  395 
Lag coeff.   (Rho)  :   0.0282201 
 
R-squared           :    0.035049  Log likelihood        :     2267.74 
Sq. Correlation     : -            Akaike info criterion :    -4525.47 
Sigma-square        : 6.96845e-07  Schwarz criterion     :    -4505.51 
S.E of regression   : 0.000834772 
 
----------------------------------------------------------------------------- 
       Variable       Coefficient     Std.Error       z-value    Probability 
----------------------------------------------------------------------------- 
      W_v2mort_inf     0.0282201       0.073136       0.385858     0.69960 
          CONSTANT    0.00275881     0.00116219        2.37381     0.01761 
rn_mean..pweighted   2.77386e-06    1.33242e-06        2.08182     0.03736 
        income2019  -5.65235e-08    1.61386e-08       -3.50237     0.00046 
           avg_age  -1.83702e-05    2.21545e-05      -0.829184     0.40700 
----------------------------------------------------------------------------- 

 
 
Period III 
Without Age: 
SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION 
Data set            : vg250_krs 
Spatial Weight      : vg250_krs_queen1order 
Dependent Variable  :  v3mort_inf_bl60   
Number of Observations:  400 
Mean dependent var  : 0.000556737  Number of Variables   :    4 
S.D. dependent var  : 0.000284648  Degrees of Freedom    :  396 
Lag coeff.   (Rho)  :    0.370319 
 
R-squared           :    0.242582  Log likelihood        :     2748.06 
Sq. Correlation     : -            Akaike info criterion :    -5488.11 
Sigma-square        : 6.13692e-08  Schwarz criterion     :    -5472.15 
S.E of regression   : 0.000247728 
----------------------------------------------------------------------------- 
       Variable       Coefficient     Std.Error       z-value    Probability 
----------------------------------------------------------------------------- 
      W_v3mort_inf      0.370319      0.0596404         6.2092     0.00000 
          CONSTANT   0.000864634    0.000117697        7.34627     0.00000 
rn_mean..pweighted   1.96591e-06    4.04638e-07        4.85843     0.00000 
        income2019  -2.75524e-08    4.66023e-09       -5.91225     0.00000 

 
With Age: 
SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION 
Data set            : vg250_krs 
Spatial Weight      : vg250_krs_queen1order 
Dependent Variable  :  v3mort_inf_bl60   
Number of Observations:  400 
Mean dependent var  : 0.000556737  Number of Variables   :    5 
S.D. dependent var  : 0.000284648  Degrees of Freedom    :  395 
Lag coeff.   (Rho)  :    0.325265 
 
R-squared           :    0.254258  Log likelihood        :     2752.52 
Sq. Correlation     : -            Akaike info criterion :    -5495.04 
Sigma-square        : 6.04232e-08  Schwarz criterion     :    -5475.09 
S.E of regression   : 0.000245811 
----------------------------------------------------------------------------- 
       Variable       Coefficient     Std.Error       z-value    Probability 
----------------------------------------------------------------------------- 
      W_v3mort_inf      0.325265      0.0615138        5.28766     0.00000 
          CONSTANT  -9.68992e-05    0.000342408      -0.282993     0.77718 
rn_mean..pweighted   1.84005e-06    4.03277e-07        4.56274     0.00001 
        income2019  -2.37889e-08    4.87527e-09       -4.87951     0.00000 
           avg_age   2.00844e-05    6.70068e-06        2.99737     0.00272 
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8.3.2 Infections per Inhabitant 
 
Period I 
SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION 
Data set            : vg250_krs 
Spatial Weight      : vg250_krs_queen1order 
Dependent Variable  :     inf_pop  Number of Observations:  400 
Mean dependent var  :   0.0208292  Number of Variables   :    4 
S.D. dependent var  :   0.0077055  Degrees of Freedom    :  396 
Lag coeff.   (Rho)  :    0.792601 
 
R-squared           :    0.719961  Log likelihood        :     1600.05 
Sq. Correlation     : -            Akaike info criterion :    -3192.09 
Sigma-square        : 1.66272e-05  Schwarz criterion     :    -3176.13 
S.E of regression   :  0.00407765 
----------------------------------------------------------------------------- 
       Variable       Coefficient     Std.Error       z-value    Probability 
----------------------------------------------------------------------------- 
         W_inf_pop      0.792601       0.030727        25.7949     0.00000 
          CONSTANT     0.0172274      0.0028797        5.98235     0.00000 
rn_mean..pweighted   2.65188e-05     6.6958e-06        3.96051     0.00007 
avg_liv..nhabitant  -0.000324237    5.78708e-05       -5.60277     0.00000 
 

Age >= 60 yrs: 
SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION 
Data set            : vg250_krs 
Spatial Weight      : vg250_krs_queen1order 
Dependent Variable  :  I: Inf/Inhab. >60 yrs   
Number of Observations:  400 
Mean dependent var  :   0.0176936  Number of Variables   :    4 
S.D. dependent var  :  0.00779277  Degrees of Freedom    :  396 
Lag coeff.   (Rho)  :    0.776778 
 
R-squared           :    0.688965  Log likelihood        :     1576.34 
Sq. Correlation     : -            Akaike info criterion :    -3144.68 
Sigma-square        : 1.88883e-05  Schwarz criterion     :    -3128.72 
S.E of regression   :  0.00434607 
----------------------------------------------------------------------------- 
       Variable       Coefficient     Std.Error       z-value    Probability 
----------------------------------------------------------------------------- 
      W_I: Inf/Inh      0.776778      0.0331864        23.4066     0.00000 
          CONSTANT     0.0132216     0.00289988        4.55936     0.00001 
 Mean Living Space  -0.000250177    5.97517e-05       -4.18694     0.00003 
Weighte..ean Radon   2.95128e-05    7.18563e-06         4.1072     0.00004 

 
 
Age below 60 yrs: 
SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION 
Data set            : vg250_krs 
Spatial Weight      : vg250_krs_queen1order 
Dependent Variable  :  I: Inf/Inhab. <60 yrs   
Number of Observations:  400 
Mean dependent var  :   0.0221321  Number of Variables   :    4 
S.D. dependent var  :  0.00786177  Degrees of Freedom    :  396 
Lag coeff.   (Rho)  :    0.779408 
 
R-squared           :    0.701076  Log likelihood        :     1580.47 
Sq. Correlation     : -            Akaike info criterion :    -3152.93 
Sigma-square        : 1.84757e-05  Schwarz criterion     :    -3136.97 
S.E of regression   :  0.00429834 
----------------------------------------------------------------------------- 
       Variable       Coefficient     Std.Error       z-value    Probability 
----------------------------------------------------------------------------- 
      W_I: Inf/Inh      0.779408      0.0319888         24.365     0.00000 
          CONSTANT     0.0187048     0.00305686        6.11895     0.00000 
 Mean Living Space  -0.000345281    6.10221e-05       -5.65829     0.00000 
Weighte..ean Radon   2.71111e-05     7.0257e-06        3.85885     0.00011 
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Period II 
SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION 
Data set            : vg250_krs 
Spatial Weight      : vg250_krs_queen1order 
Dependent Variable  :   v2inf_pop  Number of Observations:  400 
Mean dependent var  :   0.0207946  Number of Variables   :    4 
S.D. dependent var  :   0.0132249  Degrees of Freedom    :  396 
Lag coeff.   (Rho)  :    0.863313 
 
R-squared           :    0.834825  Log likelihood        :      1480.1 
Sq. Correlation     : -            Akaike info criterion :    -2952.21 
Sigma-square        : 2.88886e-05  Schwarz criterion     :    -2936.24 
S.E of regression   :  0.00537481 
----------------------------------------------------------------------------- 
       Variable       Coefficient     Std.Error       z-value    Probability 
----------------------------------------------------------------------------- 
       W_v2inf_pop      0.863313      0.0255538        33.7841     0.00000 
          CONSTANT    0.00760159     0.00337845        2.25002     0.02445 
rn_mean..pweighted   2.36797e-05    8.62027e-06        2.74698     0.00601 
avg_liv..nhabitant   -0.00014994     7.1692e-05       -2.09145     0.03649 

 
Age >= 60 years: 
SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION 
Data set            : vg250_krs 
Spatial Weight      : vg250_krs_queen1order 
Dependent Variable  :  II: Inf/Inhab. >60 yrs   
Number of Observations:  400 
Mean dependent var  :   0.0113941  Number of Variables   :    4 
S.D. dependent var  :  0.00753447  Degrees of Freedom    :  396 
Lag coeff.   (Rho)  :     0.84166 
 
R-squared           :    0.802048  Log likelihood        :     1672.13 
Sq. Correlation     : -            Akaike info criterion :    -3336.26 
Sigma-square        : 1.12374e-05  Schwarz criterion     :     -3320.3 
S.E of regression   :  0.00335222 
----------------------------------------------------------------------------- 
       Variable       Coefficient     Std.Error       z-value    Probability 
----------------------------------------------------------------------------- 
      W_II: Inf/In       0.84166      0.0281467        29.9026     0.00000 
          CONSTANT     0.0038437     0.00209022         1.8389     0.06593 
Weighte..ean Radon     1.496e-05    5.37291e-06        2.78435     0.00536 
 Mean Living Space  -7.36595e-05    4.44987e-05       -1.65532     0.09786 

 
Age below60 years: 
SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION 
Data set            : vg250_krs 
Spatial Weight      : vg250_krs_queen1order 
Dependent Variable  :  II: Inf/Inhab. <60 yrs   
Number of Observations:  400 
Mean dependent var  :   0.0250391  Number of Variables   :    4 
S.D. dependent var  :   0.0163784  Degrees of Freedom    :  396 
Lag coeff.   (Rho)  :    0.863344 
 
R-squared           :    0.830989  Log likelihood        :     1389.96 
Sq. Correlation     : -            Akaike info criterion :    -2771.92 
Sigma-square        : 4.53374e-05  Schwarz criterion     :    -2755.96 
S.E of regression   :   0.0067333 
----------------------------------------------------------------------------- 
       Variable       Coefficient     Std.Error       z-value    Probability 
----------------------------------------------------------------------------- 
      W_II: Inf/In      0.863344      0.0255859        33.7429     0.00000 
          CONSTANT     0.0081691     0.00420693        1.94182     0.05216 
Weighte..ean Radon    3.0595e-05    1.08257e-05        2.82615     0.00471 
 Mean Living Space  -0.000162511    8.95377e-05         -1.815     0.06952 
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Period III 
SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION 
Data set            : vg250_krs 
Spatial Weight      : vg250_krs_queen1order 
Dependent Variable  :   v3inf_pop  Number of Observations:  400 
Mean dependent var  :    0.181915  Number of Variables   :    4 
S.D. dependent var  :   0.0410346  Degrees of Freedom    :  396 
Lag coeff.   (Rho)  :     0.75803 
 
R-squared           :    0.759152  Log likelihood        :     965.006 
Sq. Correlation     : -            Akaike info criterion :    -1922.01 
Sigma-square        : 0.000405549  Schwarz criterion     :    -1906.05 
S.E of regression   :   0.0201382 
 
----------------------------------------------------------------------------- 
       Variable       Coefficient     Std.Error       z-value    Probability 
----------------------------------------------------------------------------- 
       W_v3inf_pop       0.75803      0.0327562        23.1415     0.00000 
          CONSTANT      0.129922      0.0165451        7.85259     0.00000 
rn_mean..pweighted   0.000115873    3.24757e-05        3.56801     0.00036 
avg_liv..nhabitant   -0.00206708    0.000295005       -7.00694     0.00000 
----------------------------------------------------------------------------- 

 
Age >= 60 years: 
SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION 
Data set            : vg250_krs 
Spatial Weight      : vg250_krs_queen1order 
Dependent Variable  :  III: Inf/Inhab. >60 yrs   
Number of Observations:  400 
Mean dependent var  :   0.0871758  Number of Variables   :    4 
S.D. dependent var  :   0.0254661  Degrees of Freedom    :  396 
Lag coeff.   (Rho)  :    0.792822 
 
R-squared           :    0.786733  Log likelihood        :     1176.33 
Sq. Correlation     : -            Akaike info criterion :    -2344.67 
Sigma-square        : 0.000138308  Schwarz criterion     :     -2328.7 
S.E of regression   :   0.0117604 
 
----------------------------------------------------------------------------- 
       Variable       Coefficient     Std.Error       z-value    Probability 
----------------------------------------------------------------------------- 
      W_III: Inf/I      0.792822       0.030535        25.9644     0.00000 
          CONSTANT     0.0540796      0.0086732        6.23525     0.00000 
Weighte..ean Radon   8.51519e-05    1.95644e-05        4.35239     0.00001 
 Mean Living Space  -0.000930449    0.000166732        -5.5805     0.00000 

 
 
Age below 60 years: 
SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION 
Data set            : vg250_krs 
Spatial Weight      : vg250_krs_queen1order 
Dependent Variable  :  III: Inf/Inhab. <60 yrs   
Number of Observations:  400 
Mean dependent var  :    0.222853  Number of Variables   :    4 
S.D. dependent var  :   0.0490151  Degrees of Freedom    :  396 
Lag coeff.   (Rho)  :    0.757361 
 
R-squared           :    0.745103  Log likelihood        :     882.652 
Sq. Correlation     : -            Akaike info criterion :     -1757.3 
Sigma-square        : 0.000612384  Schwarz criterion     :    -1741.34 
S.E of regression   :   0.0247464 
 
----------------------------------------------------------------------------- 
       Variable       Coefficient     Std.Error       z-value    Probability 
----------------------------------------------------------------------------- 
      W_III: Inf/I      0.757361      0.0337697        22.4273     0.00000 
          CONSTANT      0.142466      0.0198757        7.16785     0.00000 
Weighte..ean Radon   0.000139358    3.99193e-05          3.491     0.00048 
 Mean Living Space   -0.00216206    0.000354432       -6.10006     0.00000 
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8.4 SQL-Query Samples 
 

//update table and add to each district the corresponding sum of all fatalities 
before 01.01.2021: 

 
ALTER TABLE public.vg250_krs 
ADD summort integer; 
UPDATE public.vg250_krs 
SET summort=t.summort 
FROM 
( SELECT SUM("AnzahlTodesfall") as summort, 
   "IdLandkreis" as id 
    FROM public.rki_covid19 
    WHERE "AnzahlTodesfall" >= 1 --Todesfälle 
    and "Refdatum" <='2021-01-01' --vor dem 01.01.2021 
  GROUP BY "IdLandkreis" 
    ) t 
WHERE cast(vg250_krs.ars AS INT) = t.id 
 

//assign the sum of all fatalities in Berlin RKI district IDs (between 11000 
and 12000) (Berlin districts) to the Berlin district ID (ID: 11000) of the 
Administration Boundary Table  (vg250_krs) 
 

UPDATE public.vg250_krs 
SET summort=t.summort 
FROM 
( SELECT SUM("AnzahlTodesfall") as summort 
    FROM public.rki_covid19 
    WHERE "AnzahlTodesfall" >= 1 --Todesfälle 
    and "Refdatum" <='2021-01-01' --vor dem 01.01.2021 
    and "IdLandkreis" >= 11000 and "IdLandkreis" < 12000 
    ) t 
WHERE cast(vg250_krs.ars AS INT) = 11000 
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8.5 Vaccination Dataset  
Translated: 
Source: https://github.com/robert-koch-institut/COVID-19-
Impfungen_in_Deutschland 

Variable Type Values Description 

Datum Date YYYY-MM-DD Date of Vaccination 

LandkreisId_Impfort  Text 

01001 bis 16077: district 
ID 
17000 : Federal Deparment 
u: unknown 

District ID basing on „ 
amtlicher 
Gemeindeschlüssel“ (AGS). 
Vaccination of the Federal 
Department are listed 
seperately, as the federal 
vaccination centres don’t 
report an exact location. 

Altersgruppe Text 

05-11: Ages 5 to 11 years 
12-17: Ages 12 to 17 years 
18-59: Ages 18 to 59 years 
60+: Ages 60 years and 
older 

Age groups of reported 
vaccination cases based on 
The National Association of 
Statutory Health Insurance 
Physicians (NASHIP; 
KBV: Kassenärztliche 
Bundesvereinigung) 

Impfschutz integer 
1: incomplete vaccination 
2: complete vaccination  
3: booster vaccination 

Vaccination protection 
information: 
Complete vaccination 
protection is given with two 
vaccinations, vaccination 
with Janssen, single 
vaccination with recovered 
SARS-CoV-2 infection. 

Anzahl integer ≥5 
Count of vaccinations of 
reported group 
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8.6 RKI-COVID JSON Table: 
 
The included dataset is presented in CSV and JSON format, and features the 
following columns: 

 FID (ObjectId): Unique ID for reach entry in the dataset 
 IdBundesland (StateId): Id of the federal state of the case 
 Bundesland (State): Name of state 
 Landkreis (County): Name of the county 
 Altersgruppe (AgeGroup): Age group of the case from the 6 groups 0-4, 5-

14, 15-34, 35-59, 60-79, 80+, and unknown 
 Geschlecht (Gender): Gender of case 
 AnzahlFall (NumberOfCases): Number of cases in the corresponding group 
 AnzahlTodesfall (NumberOfDeaths): Number of deaths in the 

corresponding group 
 Meldedatum (RegistrationDate): Date when the case became known to the 

health department 
 IdLandkreis (CountyId): Id of the county of the case 
 Datenstand (DateStatus): Date when the data record was last updated 
 NeuerFall (NewCase): 

o 0: Case is included in the publication for the current day and in the 
one for the previous day 

o 1: Case is only included in the current publication 
o -1: Case is only included in the previous day's publication 

 NeuerTodesfall (NewDeath): 
o 0: In the publication, there is one death for the current day and one 

for the previous day 
o 1: In the current publication, the case is a death, but not in the 

previous day's publication 
o -1: The case is not a death in the current publication, but it was a 

death in the previous day's publication 
o -9: The case is neither a death in the current publication nor in the 

previous day 
 Refdatum (RefDate) 
 NeuGenesen (NewRecovery): 

o 0: The case is in the publication for the current day and in the one for 
the previous day 

o 1: Case is recovered in the current publication, but not in the 
previous day's publication 

o -1: Case is not recovered in the current publication, but it was 
recovered in the publication of the previous day 

o -9: The case is neither recovered in the current publication nor in the 
previous day 

 AnzahlGenesen (NumberOfRecoveries): Number of recoveries in the 
corresponding group 

 IstErkrankungsbeginn (IsOnsetOfIllness): 1 if Refdatum is the onset of 
illness, 0 otherwise 

 Altersgruppe2 (AgeGroup2): Age group of the case from 5-year groups 0-4, 
5-9, 10-14, ..., 75-79, 80+, and unknown 
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Series from Lund University 
 

Department of Physical Geography and Ecosystem Science 
 

Master Thesis in Geographical Information Science 
 

1. Anthony Lawther: The application of GIS-based binary logistic regression 
for slope failure susceptibility mapping in the Western Grampian 
Mountains, Scotland (2008). 

2. Rickard Hansen: Daily mobility in Grenoble Metropolitan Region, France. 
Applied GIS methods in time geographical research (2008). 

3. Emil Bayramov: Environmental monitoring of bio-restoration activities 
using GIS and Remote Sensing (2009). 

4. Rafael Villarreal Pacheco: Applications of Geographic Information 
Systems as an analytical and visualization tool for mass real estate 
valuation: a case study of Fontibon District, Bogota, Columbia (2009). 

5. Siri Oestreich Waage: a case study of route solving for oversized 
transport: The use of GIS functionalities in transport of transformers, as 
part of maintaining a reliable power infrastructure (2010). 

6. Edgar Pimiento: Shallow landslide susceptibility – Modelling and 
validation (2010). 

7. Martina Schäfer: Near real-time mapping of floodwater mosquito breeding 
sites using aerial photographs (2010). 

8. August Pieter van Waarden-Nagel: Land use evaluation to assess the 
outcome of the programme of rehabilitation measures for the river Rhine 
in the Netherlands (2010). 

9. Samira Muhammad: Development and implementation of air quality data 
mart for Ontario, Canada: A case study of air quality in Ontario using 
OLAP tool. (2010). 

10. Fredros Oketch Okumu: Using remotely sensed data to explore spatial and 
temporal relationships between photosynthetic productivity of vegetation 
and malaria transmission intensities in selected parts of Africa (2011). 

11. Svajunas Plunge: Advanced decision support methods for solving diffuse 
water pollution problems (2011). 
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12. Jonathan Higgins: Monitoring urban growth in greater Lagos: A case 
study using GIS to monitor the urban growth of Lagos 1990 - 2008 and 
produce future growth prospects for the city (2011). 

13. Mårten Karlberg: Mobile Map Client API: Design and Implementation for 
Android (2011). 

14. Jeanette McBride: Mapping Chicago area urban tree canopy using color 
infrared imagery (2011). 

15. Andrew Farina: Exploring the relationship between land surface 
temperature and vegetation abundance for urban heat island mitigation in 
Seville, Spain (2011). 

16. David Kanyari: Nairobi City Journey Planner:  An online and a Mobile 
Application (2011). 

17. Laura V. Drews:  Multi-criteria GIS analysis for siting of small wind 
power plants - A case study from Berlin (2012). 

18. Qaisar Nadeem: Best living neighborhood in the city - A GIS based multi 
criteria evaluation of ArRiyadh City (2012). 

19. Ahmed Mohamed El Saeid Mustafa: Development of a photo voltaic 
building rooftop integration analysis tool for GIS for Dokki District, Cairo, 
Egypt (2012). 

20. Daniel Patrick Taylor: Eastern Oyster Aquaculture: Estuarine Remediation 
via Site Suitability and Spatially Explicit Carrying Capacity Modeling in 
Virginia’s Chesapeake Bay (2013). 

21. Angeleta Oveta Wilson: A Participatory GIS approach to unearthing 
Manchester’s Cultural Heritage ‘gold mine’ (2013). 

22. Ola Svensson: Visibility and Tholos Tombs in the Messenian Landscape: 
A Comparative Case Study of the Pylian Hinterlands and the Soulima 
Valley (2013). 

23. Monika Ogden: Land use impact on water quality in two river systems in 
South Africa (2013). 

24. Stefan Rova: A GIS based approach assessing phosphorus load impact on 
Lake Flaten in Salem, Sweden (2013). 

25. Yann Buhot: Analysis of the history of landscape changes over a period of 
200 years. How can we predict past landscape pattern scenario and the 
impact on habitat diversity? (2013). 



 

93 
 

26. Christina Fotiou: Evaluating habitat suitability and spectral heterogeneity 
models to predict weed species presence (2014). 

27. Inese Linuza: Accuracy Assessment in Glacier Change Analysis (2014). 

28. Agnieszka Griffin: Domestic energy consumption and social living 
standards: a GIS analysis within the Greater London Authority area 
(2014). 

29. Brynja Guðmundsdóttir: Detection of potential arable land with remote 
sensing and GIS - A Case Study for Kjósarhreppur (2014). 

30. Oleksandr Nekrasov: Processing of MODIS Vegetation Indices for 
analysis of agricultural droughts in the southern Ukraine between the years 
2000-2012 (2014). 

31. Sarah Tressel: Recommendations for a polar Earth science portal in the 
context of Arctic Spatial Data Infrastructure (2014). 

32. Caroline Gevaert: Combining Hyperspectral UAV and Multispectral 
Formosat-2 Imagery for Precision Agriculture Applications (2014). 

33. Salem Jamal-Uddeen:  Using GeoTools to implement the multi-criteria 
evaluation analysis - weighted linear combination model (2014). 

34. Samanah Seyedi-Shandiz: Schematic representation of geographical 
railway network at the Swedish Transport Administration (2014). 

35. Kazi Masel Ullah: Urban Land-use planning using Geographical 
Information System and analytical hierarchy process: case study Dhaka 
City (2014). 

36. Alexia Chang-Wailing Spitteler: Development of a web application based 
on MCDA and GIS for the decision support of river and floodplain 
rehabilitation projects (2014). 

37. Alessandro De Martino: Geographic accessibility analysis and evaluation 
of potential changes to the public transportation system in the City of 
Milan (2014). 

38. Alireza Mollasalehi: GIS Based Modelling for Fuel Reduction Using 
Controlled Burn in Australia. Case Study: Logan City, QLD (2015). 

39. Negin A. Sanati: Chronic Kidney Disease Mortality in Costa Rica; 
Geographical Distribution, Spatial Analysis and Non-traditional Risk 
Factors (2015). 
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40. Karen McIntyre: Benthic mapping of the Bluefields Bay fish sanctuary, 
Jamaica (2015). 

41. Kees van Duijvendijk: Feasibility of a low-cost weather sensor network for 
agricultural purposes: A preliminary assessment (2015). 

42. Sebastian Andersson Hylander: Evaluation of cultural ecosystem services 
using GIS (2015). 

43. Deborah Bowyer: Measuring Urban Growth, Urban Form and 
Accessibility as Indicators of Urban Sprawl in Hamilton, New Zealand 
(2015). 

44. Stefan Arvidsson: Relationship between tree species composition and 
phenology extracted from satellite data in Swedish forests (2015). 

45. Damián Giménez Cruz: GIS-based optimal localisation of beekeeping in 
rural Kenya (2016). 

46. Alejandra Narváez Vallejo: Can the introduction of the topographic 
indices in LPJ-GUESS improve the spatial representation of environmental 
variables? (2016). 

47. Anna Lundgren: Development of a method for mapping the highest 
coastline in Sweden using breaklines extracted from high resolution digital 
elevation models (2016). 

48. Oluwatomi Esther Adejoro: Does location also matter?  A spatial analysis 
of social achievements of young South Australians (2016). 

49. Hristo Dobrev Tomov: Automated temporal NDVI analysis over the 
Middle East for the period 1982 - 2010 (2016). 

50. Vincent Muller: Impact of Security Context on Mobile Clinic Activities A 
GIS Multi Criteria Evaluation based on an MSF Humanitarian Mission in 
Cameroon (2016). 

51. Gezahagn Negash Seboka: Spatial Assessment of NDVI as an Indicator of 
Desertification in Ethiopia using Remote Sensing and GIS (2016). 

52. Holly Buhler: Evaluation of Interfacility Medical Transport Journey Times 
in Southeastern British Columbia. (2016). 

53. Lars Ole Grottenberg:  Assessing the ability to share spatial data between 
emergency management organisations in the High North (2016). 

54. Sean Grant: The Right Tree in the Right Place: Using GIS to Maximize 
the Net Benefits from Urban Forests (2016). 
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55. Irshad Jamal: Multi-Criteria GIS Analysis for School Site Selection in 
Gorno-Badakhshan Autonomous Oblast, Tajikistan (2016). 

56. Fulgencio Sanmartín: Wisdom-volkano: A novel tool based on open GIS 
and time-series visualization to analyse and share volcanic data (2016). 

57. Nezha Acil: Remote sensing-based monitoring of snow cover dynamics 
and its influence on vegetation growth in the Middle Atlas Mountains 
(2016). 

58. Julia Hjalmarsson: A Weighty Issue:  Estimation of Fire Size with 
Geographically Weighted Logistic Regression (2016). 

59. Mathewos Tamiru Amato: Using multi-criteria evaluation and GIS for 
chronic food and nutrition insecurity indicators analysis in Ethiopia (2016). 

60. Karim Alaa El Din Mohamed Soliman El Attar: Bicycling Suitability in 
Downtown, Cairo, Egypt (2016). 

61. Gilbert Akol Echelai: Asset Management: Integrating GIS as a Decision 
Support Tool in Meter Management in National Water and Sewerage 
Corporation (2016). 

62. Terje Slinning: Analytic comparison of multibeam echo soundings (2016). 

63. Gréta Hlín Sveinsdóttir: GIS-based MCDA for decision support: A 
framework for wind farm siting in Iceland (2017). 

64. Jonas Sjögren: Consequences of a flood in Kristianstad, Sweden: A GIS-
based analysis of impacts on important societal functions (2017). 

65. Nadine Raska: 3D geologic subsurface modelling within the Mackenzie 
Plain, Northwest Territories, Canada (2017). 

66. Panagiotis Symeonidis: Study of spatial and temporal variation of 
atmospheric optical parameters and their relation with PM 2.5 
concentration over Europe using GIS technologies (2017). 

67. Michaela Bobeck: A GIS-based Multi-Criteria Decision Analysis of Wind 
Farm Site Suitability in New South Wales, Australia, from a Sustainable 
Development Perspective (2017). 

68. Raghdaa Eissa: Developing a GIS Model for the Assessment of Outdoor 
Recreational Facilities in New Cities Case Study: Tenth of Ramadan City, 
Egypt (2017). 

69. Zahra Khais Shahid: Biofuel plantations and isoprene emissions in Svea 
and Götaland (2017). 
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70. Mirza Amir Liaquat Baig: Using geographical information systems in 
epidemiology: Mapping and analyzing occurrence of diarrhea in urban - 
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