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Populärvetenskaplig Sammanfattning

Strålterapi är en vanligt förekommande behandling som ges till hälften av cancerpatienterna i landet.
I fallet för prostatacancer, som utgör den vanligaste diagnosen, beror ofta cancerrelaterade dödsfall på
återkomst av sjukdomen efter genomförd behandling. Vår hypotes är att detta kan minskas genom att
identifiera strålrestistenta volymer i prostatan och öka stråldosen till dessa. Tyvärr finns det idag ingen
pålitlig och icke-invasiv avbildningsteknik i klinisk drift för att kartlägga dessa områden. Enligt kända
kunskaper inom strålningsbiologi beror strålinducerade cellskador på närvaro av syre. Därmed skulle
brist på syre, det vill säga hypoxi, kunna agera som underlag för att identifiera dessa strålresistenta om-
råden.

I en nyligen publicerad studie föreslogs en typ av magnetkameraundersökning för kartläggning av
hypoxi. Bildtagningstekniken manipulerar och kodar in signalen från magnetkameran så att den blir
känslig för slumpmässiga mikroskopiska rörelser i kroppen. Dessa rörelser kan exempelvis vara vatten-
molekylernas slumpmässiga rörelse orsakad av rörelseenergi, eller blodflödet i slumpmässigt orienterade
mikrokapillärer. För att utvinna den här informationen behöver mätningar göras med flera olika styrkor
på inkodningen, då dessa rörelser är i olika storleksordningar. På så sätt kan dessa mätningar användas för
att samtidigt avbilda både blodkärlstäthet och vävnadens mikrostruktur, såsom celltäthet. Det sistnämnda
är möjligt då vattenmolekylernas rörelser begränsas av cellmiljön de rör sig i.

I studien som föreslår denna typ av undersökning för hypoxikartläggning användes informationen
om blodflöde och celltäthet för att ta fram hypoxikartor enligt tillgång och efterfrågan. Tillgången utgörs
av blodflödet, som består av syrebärande blodkroppar. Efterfrågan utgörs av celltätheten, alltså antalet
celler som konsumerar syret. Med dålig cirkulation och hög celltäthet kan alltså hypoxiska områden
identifieras, vilket ofta kan vara fallet för tumörer i prostatan.

Bildtagningstekniken som används för att ta fram underlaget för mikrocirkulationen och celltätheten
är tidigare känd för dålig reproducerbarhet, till exempel på grund av signalbrus. För att lösa detta problem
måste två frågor besvaras. Den första är vilka styrkor på inkodningen som är optimala att använda. Detta
är relevant då olika vävnadstyper kräver olika inkodningsstyrkor för att karakterisera dem, vilket betyder
att optimering behöver göras för varje organ för sig. Den andra frågan är vilken analysmetod som ska
användas för att utvinna informationen om vävnaden från mätningarna. Brus är ett ständigt problem, och
olika analysmetoder är olika känsliga för det. Det är vidare inte alltid uppenbart vilken metod som är
bäst. Syftet med arbetet var att undersöka dessa frågor, med fokus på tillämpning i prostatan.

I arbetet tillämpades simuleringar och patientmätningar för att besvara dessa frågor. Simuleringarna
användes för att utvärdera olika mätprotokoll och analysmetoder kvantitativt, med fokus på att studera
osäkerheterna i informationen som erhålls om prostatans mikrocirkulation och celltäthet. Simuleringarna
verifierades kvalitativt av patientmätningarna, där önskan var att kunna dra motsvarande slutsatser.

Resultaten av simuleringarna antydde att ett mätprotokoll vi optimerat kan prestera bättre än ett typ-
iskt sådant som använts tidigare. Detta var inte lika tydligt i patientmätningarna, vilket skulle kunna bero
på att de var för få. Mer arbete krävs för att dra säkrare slutsater. Gällande analysmetod kunde vi bekräfta
och stärka med både simuleringar och patientdata att en nyligen föreslagen analysmetod presterar bättre
än konventionella sådana som används idag. Vi har därmed visat att resultaten kan förbättras med befint-
lig data. I synnerhet de metoder studien som förelog denna typ av hypoxikartläggning använde. Detta
tyder på att de föreslagna hypoxikartorna som redan verkar lovande skulle kunna förbättras genom att
använda denna nya analys.
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Abstract

Radiotherapy is commonly used for cancer treatment, given to approximately half of all cancer patients
in Sweden. Despite its widespread usage, there is currently no non-invasive and reliable imaging method
that can identify regions of radiation resistance. These regions may be identified by hypoxia, given that
radiobiological research has demonstrated a significant correlation between oxygen levels and the extent
of radiation-induced cellular damage.

A recent study has shown that magnetic resonance imaging (MRI) of intravoxel incoherent motions
(IVIM) using diffusion-weighted MRI of the prostate shows promise for hypoxia mapping. The basis of
these hypoxia maps are the IVIM parameters perfusion fraction and diffusion coefficient.

IVIM is recognized for being sensitive to noise and showing low reproducibility of parameter values.
Existing literature highlights two issues that need to be resolved: optimization of image acquisition and
reliable parameter estimation. The aim of this work is to address these issues by optimizing an acquisition
protocol and to evaluate two new fitting algorithms; MIX and TopoPro; by comparing their estimation
errors with commonly used algorithms to date.

Protocol optimization was performed with respect to diffusion weightings (b-values), and the number
of averages as free parameters. The Cramér-Rao Lower Bound (CRLB) was used to provide estimates
for the variances of the IVIM parameters for a set of b-values. Numerical minimization of the CRLB
was employed to find optimal sets of b-values. Three protocols with different properties were produced
and evaluated on a wide variety of simulated IVIM signals with respect to accuracy and precision. Com-
parison was made to a generic IVIM protocol typically found in literature. The best performing protocol
was used in an in-vivo evaluation on the prostate and compared to the generic protocol with respect to
estimation convergence. The optimized acquisition of in-vivo data improved convergence where the gen-
eric protocol otherwise would have failed to provide estimates due to noisy data. The optimized protocol
increased the number of converged voxels by up to 20% and was found to vary between fitting algorithms.
In conclusion, an optimized acquisition protocol may yield improved parameter estimates.

The evaluation of fitting algorithms was performed on simulated IVIM signals for three signal-to-
noise ratios, where the signals were produced using a wide range of IVIM parameter combinations. MIX
and TopoPro were compared to four conventional algorithms. Three of the conventional algorithms were
found to be the most precise, but less accurate in certain parameter limits. MIX was found to be both
precise and accurate. Furthermore, MIX showed a smaller dependence on the acquisition scheme than
the others, both in simulations and in-vivo. MIX is therefore recommended as it is accurate, precise, and
reduces the acquisition-dependency of IVIM parameter estimates. Furthermore, the usage of the Linear
fit is not recommended as it showed the lowest accuracy, and lowest precision.
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List of Abbreviations and Acronyms

MRI Magnetic resonance imaging
DCE-MRI Dynamic contrast-enhanced MRI
PET Positron emission tomography
IVIM Intravoxel incoherent motion
dMRI Diffusion MRI
MIX Microstructure imaging of crossing, fitting algorithm developed by

Farooq et al.
TopoPro Fitting algorithm that utilizing topological optimizers and variable

projection, developed by Fadnavis et al.
b-value Quantity describing the diffusion weighting
ADC Apparent diffusion coefficient
D Diffusion coefficient
D∗ Pseudo-diffusion coefficient of blood
f Perfusion fraction of the signal
S0 Signal from no diffusion weighting
NEX Number of excitations
AI Artificial intelligence
sIVIM Simplified IVIM
CRLB Cramér-Rao lower bound
SNR Signal-to-noise ratio
Constant single tissue Protocol with few b-values and high SNR. Optimized using the

constant variance matrix on a single parameter set
Constant general Protocol with few b-values and high SNR. Optimized using the

constant variance matrix on ranges of parameter values
NEX general Protocol with many b-values and lower SNR. Optimized using the

NEX-scaled variance matrix on ranges of parameter values
RMSE Root-mean-squared error
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1 Introduction

Approximately half of all cancer patients in Sweden receive radiotherapy as part of their treatment [1],
where prostate cancer constitutes the most common diagnosis [2]. The basic principle of radiotherapy is
to cause lethal DNA damage to the tumour cells [3]. Research in radiotherapy and radiobiology has shown
that a well oxygenated environment is an important factor for effective treatment [4]. Sparsely ionizing
radiation; such as photons, which are often used in radiotherapy; rely on indirect damaging mechanisms
that are dependent on radiation-oxygen interaction [5]. For poorly oxygenated environments (hypoxic),
the delivered radiation dose may have to be up to three times larger in order to achieve the same effect as
in well oxygenated environments [5]. Current clinical treatment planning protocols do not account for
this effect.

This motivates the importance of images with hypoxia-dependent contrast in the planning stages
of radiotherapy treatments. There are a number of potential techniques and modalities for both direct
and indirect measurements of hypoxia, such as dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) and positron emission tomography (PET) [6]. In the case of prostate cancer, DCE-MRI is
not specific enough to be used as a biomarker for hypoxia. Furthermore, the hypoxia-tracers used in PET
have failed to detect hypoxia in the prostate [6]. These methods are also invasive and require injection of
contrast substances to work.

A non-invasive MRI technique that shows promise is intravoxel incoherent motion imaging (IVIM), a
diffusion-MRI (dMRI) technique that can provide information on tissue perfusion without the use of con-
trast agents. In a study by Hompland et al., the creation of hypoxia maps using IVIM was conceptualized
and validated [6]. They showed that the joint use of IVIM parameters that correlate with tissue perfusion
and density could be linked to hypoxia scores derived from histology. They also established correlations
between IVIM parameters and histological ones. All in all making IVIM imaging a candidate for hypoxia
mapping.

The question remains on the reliability of these maps, as IVIM is associated with its own challenges
and has historically shown ”modest” reproducibility [7]. Review articles on IVIM consistently point out
two issues [7–13], the first being how to optimally acquire data for parameter estimation. IVIM signal
curves differ from organ to organ depending on their tissue properties (Figure 1a). Therefore, acquisition
protocols must be optimized for specific organs. The second issue is large uncertainties in the parameter
estimations due to the analysis being sensitive to noise. In addition, there is no consensus on how to
analyse the data (Figure 1b).

The purpose of this work to investigate these issues and attempt to improve on previously reported
results. The first aim is to produce a clinically viable and optimized dMRI acquisition protocol for prostate
imaging. The second aim is to evaluate two new analysis methods for IVIM, MIX and TopoPro; and
compare them to more conventionally used methods, with regard to bias and noise sensitivity.

2 Theory

2.1 Diffusion-weighted Magnetic Resonance Imaging

2.1.1 Molecular Diffusion

Diffusion in MRI refers to the Brownian motion of water molecules, which are random translational
motions on a microscopic scale caused by thermal energy [14]. This should not be confused with diffusion
that refers to concentration equalization. The magnitude of the random motions can be described by a
molecular diffusion coefficient Dm, which for water at 25 ◦C is 2.3 µm2ms−1 [14].

This diffusion coefficient is applicable only if self-diffusion of water is occurring, i.e. all of the dis-
placement is caused by the random motion. External factors can affect the net displacement of bulk water.
If the water is flowing, the diffusion coefficient will appear to be larger as the mean square displacement
is increased due to translational motion caused by the flow [14]. Furthermore, if the water is restricted to
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Figure 1: (a) Different types of tissue may yield different signal curves, as they depend on tissue perfusion
and cell density. The liver is an example of an organ that is well perfused, while the brain is less so, and
contains dense nerve networks that restrict the diffusion of water. (b) Different analysis methods may
yield different results based on their accuracy and precision. Examples are shown for three of the six
methods evaluated in this work.

spaces smaller than the mean squared displacement caused by the random motions, the diffusion coeffi-
cient will appear smaller, as the size of the motions are restricted to the bounds of the space [14]. Because
of these effects, MRI-measured diffusion coefficients are called ”apparent diffusion coefficients” (ADC).

Therefore, by measuring molecular diffusion, one may be able to probe these external influences on
the value of the diffusion coefficient. This is of great interest as these influences contain information on
tissue properties. High ADC, i.e. measured diffusion coefficients that are larger than that of free water can
be caused by tissue perfusion and other flowing liquids. Lower ADC can be caused by confined spaces
in the tissue microstructure. Over the years, many techniques and applications have been developed,
including but not limited to more advanced experimental techniques [15].

2.1.2 Diffusion Weighting

Diffusion-weighted MRI sensitizes the MRI signal to the molecular diffusion of water by encoding the
signal in a way that introduces motion-dependent attenuation. This is conventionally achieved using the
Stejskal-Tanner encoding technique [15]. Briefly, the encoding causes a signal loss which is reversed
after a certain time interval. If water molecules have changed position during this time interval, the
compensation will not be perfect, causing a motion-dependent signal attenuation [16].

The scale of motions that affect the magnitude of the signal depends on the strength of the diffusion
encoding. This encoding strength, or diffusion weighting, is summarized by a quantity called the b-value,
which depend on the duration, amplitude, and time spacing between the application of the encoding
magnetic field gradients [14]. The b-value determines the attenuation caused by various degrees of
incoherent motions. Signal contributions of water molecules with high apparent diffusion coefficients
dissipate quickly, while signals from restricted water molecules remain for higher diffusion weightings.

2.2 Intravoxel Incoherent Motion

The imaging of intravoxel incoherent motions using dMRI was first presented in the 80s by Le Bihan,
where it was noted that the ADC was found to be larger than expected in-vivo [14, 16]. This led to the
theory that motions other than the random walk of water contributed to the de-phasing of the signal, such
as blood microcirculation [16]. The theory is that the random architecture of the microvasculature causes
a temporal incoherence in the flow during the application of the diffusion encoding gradients; causing the
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diffusion-like signal loss with a pseudo-diffusion coefficient D∗ which is larger than the ADC of water
molecules that are not affected by fluid motion.

The molecular diffusion coefficient Dm that describes the random motion of molecules can be es-
timated as

Dm =
lv

6
, (1)

where l is the mean length of molecular jumps, and v the mean molecular velocity. For water, l is
typically in the order of 0.1 nm, and v in the order of 100 m s−1, resulting in typical values of Dm in the
order of 1 µm2ms−1. Le Bihan used eq. (1) to estimate the diffusion coefficient for microcirculation,
using a model of randomly bent and oriented capillaries. In his estimation l was the mean capillary
segment length between each bend (60 µm), and v the mean velocity of blood (2 mms−1). The ”pseudo-
diffusion coefficient” D∗ was estimated to be in the order of 10 µm2ms−1 [16]. Therefore, the randomly
oriented blood flow would contribute to the de-phasing of the signal with a diffusion coefficient an order
of magnitude larger than what is assumed for water, enabling the possibility of separating the coefficients.
The following bi-exponential model was proposed for the dMRI-signal which includes a component for
the perfusion effect, or in a stricter sense, all intravoxel incoherent motions:

S(b) = S0

[
fe−bD∗

+ (1− f)e−bD
]
, (2)

where S0 is the unweighted signal, f the perfusion fraction of the signal, b the b-value that characterizes
the strength of the diffusion encoding; which determines the signal attenuation caused by various degrees
of incoherent motions. With this signal equation, the two diffusion coefficients can be separated if the
bi-exponential behaviour is captured by the diffusion weighted acquisitions.

2.3 Interpretation of IVIM Parameter Maps

In a study aiming to produce hypoxia maps by Hompland et al., it was noted that a smörgåsbord of
different methods and modalities have been tried for hypoxia imaging of the prostate, but have either failed
or are challenging to perform [6]. Hompland et al. proposed a method to produce hypoxia maps based on
maps of oxygen consumption and supply. In this case, the supply would be proportional microvasculature,
and the consumption would be proportional to cell density. IVIM shows promise for this kind of imaging,
as it conveniently provides parameters for such an analysis. It does however come with its own set of
challenges (see Section 2.5).

Hompland et al. showed via histology that for the prostate, f can be correlated with blood vessel
density, and D with cell density [6]. While correlation between D and cell density has been shown
previously [7, 15], the correlation between f and microvessel density still needs to be established for
various organs [7]. The correlation has currently been shown for the prostate, rectal cancer, meningioma,
pancreatic carcinoma, and primitive neuro-ectodermal tumours [7].

The D∗ parameter is a measure of the velocity of the blood flow in units of diffusion [17]. Therein
lies the assumption that for the IVIM model of eq. (2) to be applicable; the movement of the blood needs
to mimic a diffusive process during the diffusion encoding time, i.e. that the flow changes direction
multiple times. This assumption is not necessarily true, hence Le Bihan proposed another IVIM model
alongside the diffusive model of eq. (2); a model which assumes a ballistic blood flow, i.e. no directional
changes during the diffusion encoding time. The diffusive and ballistic IVIM models can be considered
as two extremes of temporal incoherence, where the diffusive represents full temporal incoherence, and
the ballistic no temporal incoherence. Between these two extremes lies an intermediary regime for which
no analytical expression of the signal equation currently exist [18].

Numerical simulations have shown that the flow has to change direction at least four times for full
temporal incoherence to be achieved, making the diffusive model applicable [18–20]. This assumption
has been shown to be violated in the brain [21, 22], liver [18, 19, 23], pancreas [18], and placenta [24,
25], where the flow has been either ballistic or intermediary (non-ballistic, but not temporally incoherent
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enough to be diffusive). These results warrant an investigation into the temporal incoherence of the
perfusion in any organ for which IVIM measurements are of interest, as using the wrong model could
lead to biases in the parameter estimates [19]. It is however outside the scope of this thesis, where only
the diffusive IVIM model is considered.

2.4 IVIM Parameter Values in the Prostate

He et al. published a meta-analysis on IVIM imaging of the prostate, pooling the results from 20 studies
and over 400 subjects [26]. The D parameter is suggested to range up to 1.7 µm2ms−1, f up to 50%,
and D∗ varying greatly up to 50 µm2ms−1, but is reportedly mostly under 10 µm2ms−1 [26]. Forest
plots show a difference in D between cancerous and non-cancerous tissue, where it is lower in cancerous
tissue; thus indicating increased cell density in tumours [26]. The differences in D∗ were also found to be
significant; but as pointed out, suffers from large confidence intervals in its estimation. The differences
in f were found to be insignificant, but unlike D∗, its estimation does not suffer from large uncertainties.

Furthermore, a multicentre study [27] performing daily IVIM imaging of patients undergoing ra-
diotherapy on 1.5T MR-Linac systems reported pre-treatment values of f and D∗ in general agreement
with the meta-analysis by He et al. As the aforementioned study by Kooreman et al. points out, the
reported D interval by the meta-analysis is large; however many studies places it in the range of 0.8-
1.0 µm2ms−1 for tumours, and 1.2-1.7 µm2ms−1 for non-cancerous tissue [26]. Kooreman et al. did
report a slightly larger D for tumours, but this could be attributed to the relatively low b-values used
(maximum 500 smm−2).

In conclusion, parameter values for the prostate are uncertain due to the large presented intervals.
There are however plausible intervals that can be used for optimization and sanity checks.

2.5 The Challenges of IVIM

Reviews on IVIM consistently point out two issues that have to be resolved [7–13]. Namely, that there is
no consensus on optimal acquisition protocols, and no consensus on data processing. This work aims to
tackle both of these issues.

2.5.1 Optimization of Data Acquisition

Optimization of dMRI acquisition protocols for IVIM parameters are often discussed in relation to their
repeatability and reproducibility [7]. Several reviews suggest that a larger number of b-values should
be used (> 10) in order to accurately estimate the IVIM-parameters [11, 13]. These recommendations
are partially based on the findings by ter Voert et al. [28], where the errors of the parameter estimates
were found to be decreasing by adding additional b-values. However, one limitation of that study was
that it did not account for the SNR of the diffusion-weighted images. Clinically, one is often restricted
by the time it takes to perform the MRI measurements. Therefore, it may be more relevant to investigate
different b-value schemes in relation to resource allocation, thus including the number of averages for
each b-value in the optimization. A dMRI protocol with fewer b-values should therefore include more
averages to make the comparison fair. It is therefore one of the aims of this work to investigate this aspect
of b-value optimization.

Simultaneous optimization of b-values and their number of excitations (NEX) has been explored by
others, and has produced improved parameter estimations compared to generic b-value schemes in the
liver [29], brain [30], and kidney [31]. In a review by Federau, it is acknowledged that one also has to
consider the SNR of the images, which is accounted for in this kind of optimization by allowing a variab-
ility in the number of averages for each b-value [8]. Furthermore, Federau mentions that minimization of
motion and susceptibility artefacts is of importance, of which the former could be minimized by short-
ening the measurement time; warranting an optimized protocol based on measurement time, which can
be partially achieved by reducing the number of b-values.
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On the other hand, there seems to be more agreement regarding clustering of b-values versus uniform
distributions, meaning that there are certain intervals on the b-scale that benefits from multiple tightly
sampled measurements. Lemke et al. showed through simulations that when creating a very large set
of b-values, where individual b-values were iteratively added to the set based on their contribution to
lowering the estimation errors of the IVIM parameters, results in a frequency distribution of b-values
where a large portion of the b-values are below 200 smm−2 [32]. It is recognized that low b-values
are important for accurate estimation of D∗, where many studies employing a larger number of b-values
places a greater portion of them in the sub-200 smm−2 range [11, 13]; implying that there is a general
agreement on what could be regarded as the threshold where the IVIM effect becomes a negligible part
of the signal [10]. This threshold is however organ-specific, which can be seen in Figure 1a, where the
perfusion signal becomes negligible at different b-values for different organs. Wurnig et al. [33] showed
that the optimal b-value threshold for well perfused organs could be as low as 20 smm−2, where the
threshold depended heavily on D∗.

The optimal b-value distributions are also organ specific, as concluded by Lemke et al., where they
showed that well perfused organs require a different b-value distribution than low-perfused organs for
optimized parameter estimation [32]. This complicates IVIM even further, as optimized protocols cannot
simply be transferred between organs without thought and evaluation.

2.5.2 Parameter Estimation

Regarding the processing of the dMRI-images, most studies employ the segmented fitting strategies,
which are described in Section 2.6.1 [7, 17]. This is due to the fitting problem being ill-conditioned and
prone to failure [34]. For curve fitting to succeed, the data points have to be able to show bi-exponential
behaviour, and the fitting algorithms need to be able to recognize this. This becomes increasingly difficult
as f approaches 0% and D∗ approaches D. Therefore, simply performing a non-linear least-squares fit
to eq. (2) will result in noise-sensitive estimates due to the flexibility of the model and its parameters
[10, 29].

Alternative strategies are continually being developed and evaluated; such as Bayesian estimation
and AI-based strategies [7]. One of the aims of this work is to continue the evaluation of newly proposed
methods and compare them to the conventional ones.

2.6 Fitting Strategies and Alternative IVIM Models

As previously mentioned, one cannot simply estimate the IVIM parameters by fitting eq. (2) to images
acquired at multiple b-values. The flexibility of the model and its parameters render the results very sens-
itive to noise [10, 29]. Many alternative strategies have emerged over the years, where some overcome the
previously mentioned issue of ambiguity by forcing the algorithm to consider two separate exponentials.
In this work, six algorithms are evaluated. These are further categorized and explained below.

2.6.1 Segmented Bi-exponential Methods

Popular strategies used today are based on segmentation, meaning that parameters are fit to different
ranges of b-values. In this work, two such methods are investigated. The first is what we call the Subtrac-
ted algorithm as described by Le Bihan [10]. The first step consist of fitting a mono-exponential defined
as S = Sdiff

0 e−bD to high b-values. Subsequently, a fit of S = Sperf
0 e−bD∗ is performed to the residual

signal after subtraction with the results of the first fit. Finally, f is estimated as f = Sperf
0 /(Sperf

0 +Sdiff
0 ).

This method is graphically explained by Figure 2.
Another segmentation-based algorithm is the popular Segmented method, which in this work is im-

plemented as described in the DIPY documentation [35]. The segmented method usually consists of
fitting D to b-values above a specified threshold, followed by a fit to the full bi-exponential IVIM model
keeping D fixed. The algorithm described by DIPY involves a few more steps. Before the fit to the
bi-exponential, D∗ is fit to b-values under a specified threshold. The acquired S0 estimates are used to
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Figure 2: Graphical explanation of the fitting strategies. (a) The segmented strategies. The blue mono-
exponential is fitted to high b-values. This is followed by fitting the perfusion-based mono-exponential,
which serves as the second component to the IVIM signal. Note that Sdiff

0 = S0(1−f) and Sperf
0 = S0f .

(b) The linear fit shown in the logarithmic space, where the intercept with the y-axis approximates to f .
In both (a) and (b), an f -value of 20% was used to simulate the signal.

estimate f as in the Subtracted method. Finally, keeping D fixed and using the calculated value of f as
an initial guess, the full bi-exponential IVIM model is fit to the data.

2.6.2 Simplified Mono-exponential Models

The simplified models presented here are models that disregard the D∗ parameter. This allows the IVIM-
parameters f and D to be estimated using only three b-values [10]. It is indeed attractive from a clinical
perspective as it reduces scan time, however another motivation for disregarding D∗ is its poor reprodu-
cibility and sensitivity to noise [36]. Despite this, it shows promise in the diagnosis of prostate cancer
[26]. However, for the purpose of producing hypoxia maps as done in the Hompland study [6], D∗ is not
needed, making these methods viable.

The first simplified method is the so-called Linear fit, where a line is fitted to ln(S/S0) for b-values
over a certain threshold [6]. This threshold is placed where it is assumed that no perfusion signal remains
(generally between 200 and 600 smm−2) [10]. The linear fit gives an estimation of D. The estimate of
f is obtained by extrapolating the line to the intercept with the y-axis, as the intercept is approximately
−f [10].

The second simplified model evaluated in this work is the creatively named simplified IVIM-model
(sIVIM). It is an exponential model defined as

S(b) = S0

[
δ(b)f + (1− f)e−bD

]
, (3)

where δ is the discrete delta yielding 0 for all b ̸= 0 smm−2, and = 1 for b = 0 smm−2 [29]. The
difference between the two simplified models is that sIVIM includes b = 0 smm−2 in a non-linear least
squares fit instead of relying on an extrapolation to estimate f . Similar to the Linear fit, with the exception
for b-value 0 smm−2, the b-values used should be above a threshold where it is assumed that contribution
of perfusion is negligible.
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2.6.3 Variable Projection

Variable projection is a problem formulation that has been proven to be a computationally efficient op-
timization method applicable to linear combinations of non-linear functions [37]. The principle is to
separate the linear and non-linear parameters, reformulating the problem into a pure non-linear least-
squares problem, the solution of which can be used to efficiently solve for the linear parameters [37].
One can note that the bi-exponential IVIM model (eq. (2)) is indeed a linear combination of the non-
linear base functions e−bD∗ and e−bD, hence making it possible to use this method for IVIM parameter
estimation [34].

As described by Golub and Pereyra [37], in general, the residual of a linear combination of non-linear
functions is given by

ri(f⃗ , β⃗) = yi −
n∑

j=1

fjϕj(β⃗; bi), (4)

where y⃗ is the vector of observations dependent on the independent variable values in b⃗; f⃗ the linear
parameters; β⃗ the non-linear parameters. What we can immediately see here by the chosen notation is
that in the case of IVIM, the perfusion and diffusion fractions are represented by f⃗ , the b-values of the
observations by b⃗. And the non-linear parameters in β⃗ would be D and D∗.

Translating eq. (4) into matrix notation, one gets

||r(f⃗ , β⃗)||22 = ||y⃗ − Φ(β⃗)f⃗ ||22, (5)

where Φ is a matrix with columns being the base functions evaluated for β⃗, and rows being the base
functions evaluated for b⃗. This makes it a matrix whose number of columns correspond to the number
of non-linear functions in the linear combination of functions, and number of rows corresponding to the
number of observations.

The linear parameter vector can be determined by solving the linear least-squares problem

f⃗ = Φ(β⃗)†y⃗, (6)

where † denotes the Moore-Penrose inverse, defined as Φ† = (ΦTΦ)−1ΦT [38]. Substituting eq. (6)
into eq. (5), the residual becomes

||r(β⃗)||22 = ||y⃗ − Φ(β⃗)Φ(β⃗)†y⃗||22, (7)

which is independent of the linear parameters. Estimations for all parameters can be obtained by solving
the non-linear least-squares problem in eq. (7) for β⃗, which can in turn be used to solve the linear least-
squares problem in eq. (6) for f⃗ [37].

This problem formulation has been used in the proposal of two fitting algorithms for IVIM; MIX by
Farooq et al. [38, 39]; TopoPro by Fadnavis et al. [34]. The difference between the two are the optimizers
that are used to solve the minimization problems above. MIX employs a 3-step fit, where in the first step,
a stochastic search using differential evolution is used to find β⃗ [39]; second step, making use of a convex
optimizer for a constrained search for f⃗ with

∑n
j=1 fj = 1; finalizing the process with a constrained

trust-region solver on eq. (4) using the estimates from step 1 and 2 as initial guesses [38].
TopoPro also employs a 3-step fit, where a simplicial homology global optimizer (SHGO) is used to

solve eq. (7), followed by a convex optimizer to solve eq. (6), finalizing with another SHGO-optimization
of the full functional in eq. (4) using the previous results to tighten the constraints [34].

2.7 Cramér-Rao Lower Bound for b-value Optimization

Cramér-Rao optimization of acquisition protocols has shown to improve parametric maps for the liver
[29, 40] and the brain [30].

The task of a function-fitting algorithm is to estimate a set of parameters such that the function, as
precisely as the uncertainty of the observations allows it to, can describe the variation of the observations.
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If one has knowledge of the probability density function of the stochastic noise, one can determine the
Cramér-Rao lower bound (CRLB), i.e. the lower bound of the variances of the parameter estimates [41].

In the case of MRI, it is known that the noise is Rice distributed [42]. Therefore, there is an a priori
knowledge of the probability density function of the noise. The CRLB of Rice-distributed noise has
been derived, but can be simplified with the assumption that the Rice distribution becomes Gaussian at
signal-to-noise ratios > 6 [41] (the approximation may even be valid at SNR > 3 [42]). This leads to the
following formula for the Fisher information matrix, where the diagonal of its inverse is the lower bound
for the variance of each parameter:

Fi,j =

N∑
n

1

σ2
n

∂An

∂βj

∂An

∂βi
, (8)

where An is the function whose parameters are to be estimated for data point n, βi/j a parameter from
the vector of parameters β⃗, σ2

n the variance of the signal for data point n [41]. In matrix notation, eq. (8)
can be written as

Fi,j =

(
∂A⃗(β⃗)

∂βi

)T

V −1

(
∂A⃗(β⃗)

∂βj

)
, (9)

where V −1 is an inverse variance matrix, a diagonal matrix with the elements 1/σ2
n.

In the case of the bi-exponential IVIM model, A is eq. (2), which in eq. (9) is viewed as a function of
all its parameters, i.e. S(⃗b, S0, f,D

∗, D) = S(⃗b, β⃗) = S⃗(β⃗). Note that the evaluation of S(b, β⃗) for each
b-value yields S⃗; a vector whose length corresponds to the number of b-values N . Finally, by evaluating
the partial derivatives of S, one can construct the Fisher information matrix, whose diagonal gives the
lower bound of the variances for S0, f , D∗, and D.

Now that the CRLB of each parameter can be determined for a set of b-values, one can define a cost
function to minimize. Hence, making it possible to iteratively find a set of b-values that yields the lowest
CRLB; therein using the Cramér-Rao lower bound for b-value optimization.

3 Materials and Methods

Protocols and algorithms were evaluated quantitatively using simulations, verified qualitatively by in-vivo
data. The simulations and data analysis were performed using Python scripts (v. 3.9.12) implemented in
Hero v. 2023.1.0 (Hero Imaging AB, Umeå, Sweden). Python scripts utilized NumPy v. 1.21.5, SciPy
v. 1.9.3, and DIPY v. 1.5.0. Phantom and in-vivo images were acquired using GE SIGNATM Architect
3T v. MR29, denoised using AIRTM Recon DL reconstructions (General Electric, Milwaukee WI) to
improve SNR.

3.1 b-value Optimization Using the Cramér-Rao Lower Bound

To use the Cramér-Rao framework for variance estimation as explained in Section 2.7, information needed
to be acquired regarding the inverse variance matrix, and whether the SNR of the acquired images would
be sufficient to use the Gaussian noise approximation which eq. (9) is based on. This motivated the need
for SNR measurements of our intended protocol parameters.

3.1.1 Measurement and Quantification of Signal- to Noise-Ratio and its NEX-dependence

Measurements were performed on a spherical water phantom to gather information for the inverse vari-
ance matrix in eq. (9). dMRI was performed for b-values 0, 50, 240, 800 smm−2 with NEX 1, 3, 6, 9 for
each b-value. Further measurements details are found in Section 3.4. SNR was quantified by applying a
Gaussian filter to the image, and subtracting it from the original, which corresponds to subtracting low
frequencies in the frequency domain [43]; resulting in a noise image (Figure 3). A square ROI placed in
the centre of the sphere was used to extract the mean and standard deviation of the noise image, where
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Figure 3: The quantification of SNR. A Gauss-blurred image was subtracted from the original, resulting
in an estimated image of the noise. The SNR was determined by extracting the mean and standard
deviation of the noise image. This method of SNR-quantification is described by McCann et al. [43].

image noise = standard deviation/
√
2, and SNR = mean/image noise [44]. The image noise was

plotted as a function of NEX, shown in Figure 4. The noise is proportional to 1/
√
NEX. Furthermore,

we validate the Gaussian approximation used in the Cramér-Rao theory (Section 2.7) by showing that
SNR is at least 3 for a single excitation without noise reduction.
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Figure 4: The results of the SNR vs. NEX measurements for both original and denoised data. The
denoised images were reconstructed using AIR Recon DL. A clear NEX-dependency is observed, in-line
with basic SNR theory.

3.1.2 The Noise Variance Matrix

Two different noise variance matrices were used in the performed optimizations. The purpose of using
both of these matrices was to produce optimized protocols with different properties. These would be
used in the investigation of whether the accuracy and precision of IVIM parameter estimation was better
when using more diverse b-sets, or fewer unique b-values with higher SNR.

The first matrix was a constant (unit) matrix, assuming no difference in image noise across b-values.
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Optimizations performed using this matrix are labelled as Constant. This was used to obtain optimized
b-sets with as few b-values as possible.

The second variance matrix was one derived from the SNR-measurements above. Original image
reconstructions showed a clear NEX-dependency in the SNR. The same dependency was not as clear for
the AIR Recon DL reconstructions, which can be expected due to uncertainties in the noise estimation.

Since the noise was found to be proportional to 1/
√

NEX, the inverse variance matrix becomes a
diagonal matrix of the NEX for that particular b-value. E.g. if the b-set consisted of two acquisitions
of b-value 800 smm−2, two of the diagonal elements would attain the value 2 in indices corresponding
to those b-values in the b-value vector mentioned in Section 2.7. This variance matrix was used to
obtain more diverse b-value sets (labelled as NEX), as a result of accounting for the change in SNR with
increasing NEX.

3.1.3 Calculation of Fisher Matrix Elements

The partial derivatives of eq. (2) were derived to be

∂S

∂S0
= fe−bD∗

+ (1− f)e−bD

∂S

∂f
= S0(e

−bD∗ − e−bD)

∂S

∂D∗ = −S0fbe
−bD∗

∂S

∂D
= −S0(1− f)be−bD.

A matrix was constructed where each column was represented by a partial derivative, and each row
the evaluation of the partial derivatives for a specific b-value. The matrix was used in eq. (9) with one of
the variance matrices described above. The variance for each parameter was extracted from the diagonal
of the resulting matrix, corresponding to the index of the partial derivative for that parameter.

3.1.4 The Objective Function

Similar to the CRLB-based optimizations done for the liver [29, 40], a cost function was defined as the
sum of the coefficients of variation for each parameter, i.e.

ϵ =
σf
f

+
σD∗

D∗ +
σD
D

, (10)

where each standard deviation σ was acquired by determining the square root of eq. (9).
Minimization of eq. (10) was performed with scipy.optimize.minimize using the Nelder-Mead

algorithm.

3.1.5 Optimization for Intervals of Parameter Values

The objective function described above only allows optimization for a specific set of parameter values.
However, tissue would realistically consist of a range of parameter values. To account for this, an attempt
to find a set of b-values optimized for several sets of parameters was made.

This was done by defining ranges for f and D∗ using information from the meta-analysis discussed in
Section 2.3. An array was constructed from the two ranges with 10 elements each, giving an array of 100
unique sets of f and D∗. D was fixed to 1.0 µm2ms−1. Optimizations were performed for each array
element, resulting in an optimized b-set for each element. For each acquired b-set, costs were calculated
for every value of D∗, yielding cost maps dependent on b-set, D∗-value, and f -value. Summation of the
costs for all values of D∗ was performed, and the most optimal b-set was determined to be the one with
the lowest total cost. Hence, an optimal b-set was obtained for each value of f .
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Table 1: Summary of the objectives and variables used to produce the three optimized protocols.

Name Variance matrix Parameter set Objective
Constant single tissue Constant Single parameter set

specific to the pro-
state from He et al.
[26].

Few unique b-values
with more averages
optimized for a single
type of tissue.

Constant general Constant Ranges of parameter
values.

Few unique b-values
with more averages
optimized for general
acquisition.

NEX general NEX-scaled Ranges of parameter
values.

Many unique b-
values with fewer
averages optimized
for general acquisi-
tion.

The final step would be for the user to select the b-set of a desired value of f . In this work, optimal
b-value schemes were finalized by observing a general pattern in the b-values for the different values of
f , selecting a b-value scheme which represented a median in the occurrences of certain b-values.

3.1.6 Performed Optimizations

Three optimizations were performed. For all of these, an upper b-value limit was set to 800 smm−2 to
avoid signal dependecies at high b-values that are not accounted for in the bi-exponential IVIM model.
Furthermore, the total number of data points was limited to 14, which corresponds to 14 NEX. The
objectives of the optimizations are summarized in Table 1.

Firstly, a b-set was optimized for a single set of parameters using the constant variance matrix, in
order to obtain a set of few unique b-values optimized for a single type of tissue. The parameters were
set to f = 0.1, D∗ = 20 µm2ms−1, D = 0.5 µm2ms−1. The purpose of the low D was to optimize the
b-values for tumours. This set is denoted as Constant single tissue.

Secondly, an attempt was made to acquire a b-set with few unique b-values that was optimized for
multiple types of tissues by using the constant variance matrix on ranges of parameter values, as de-
scribed in Section 3.1.5. The ranges were set to f ∈ [0, 0.5], D∗ ∈ [5, 30] µm2ms−1, with fixed
D = 1.0 µm2ms−1. The acquired b-set is denoted as Constant general, where general refers to the
set being optimized for multiple types of tissue.

Thirdly, the second optimization was repeated using the NEX-scaled variance matrix in order to
acquire a diverse b-set optimized for multiple types of tissue, hence labelled as NEX general.

3.2 Quantitative Evaluation of Fitting Algorithms

3.2.1 Implementation of Fitting Algorithms

The fitting algorithms were implemented in Python using the NumPy, SciPy, and DIPY libraries. The
code for all implementations can be accessed through GitHub (https://github.com/IvanARashid/
MSFT02-Masters-project-IVIM-optimization/).

The Linear fit was implemented as described by Hompland et al. [6]. A linear function was defined
and fitted to b-values greater than 200 smm−2 in the logarithmic space, where the signals were normal-
ized against the signal for b-value 0 smm−2. The fit was performed by the scipy optimize.lsq_linear
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Figure 5: Schematic figure of the simulations. An array of parameter combinations was defined, where
each element constituted a set of f , D∗, and D values. Noised signals were simulated for these, account-
ing for the number of averages of each b-value. This was followed by parameter estimation using the six
algorithms.

function.
The sIVIM fit was implemented by using the scipy curve_fit to fit data to eq. (3). The b-values

used were 0 and ≥ 200 smm−2.
The Subtracted and Segmented fits were both implemented using the scipy curve_fit function

for the steps described in Section 2.6.1. The upper b-value threshold for the perfusion fit was set to
100 smm−2, and the lower b-value threshold of the diffusion fit 200 smm−2.

For the variable projection methods, the DIPY-implementation of MIX was copied and slightly modi-
fied (https://github.com/dipy/dipy/blob/master/dipy/reconst/ivim.py). The modification
was to loosen hard-coded bounds of the fits, as they were found to be too stringent. Similarly, TopoPro
was taken from the authors GitHub (https://github.com/ShreyasFadnavis/topopro/), where the
hard-coded bounds for the first level of SHGO were loosened. Furthermore, the number of SHGO iter-
ations were increased from 2 to 5, as it provided more stable estimations. At 2 iterations, it was found
to frequently fail and produce near-constant signal fits. This modification came with the downside of
greatly increased computation time.

Bounds were set for all algorithms such that estimates were restricted to f ∈ [0, 1], D∗ ∈
[5, 100] µm2ms−1, and D ∈ [0, 4] µm2ms−1.

3.2.2 Simulations

To account for various tissue properties, a total of 1000 parameter combinations ordered in a 10 × 10
× 10 array was defined; with each dimension corresponding to increasing f , D∗, and D, such that
each element consisted of a unique parameter combination (Figure 5). Linear ranges were used, where
f ∈ [0.02, 0.5], D∗ ∈ [5, 30] µm2ms−1, and D ∈ [0, 3] µm2ms−1. Signals were simulated using eq.
(2) for the b-value scheme the simulations were performed for.

To investigate noise sensitivity, Rician noise was simulated 100 times for each parameter combination
such that a specific SNR was obtained for S(800 smm−2), giving a total of 100 000 signal curves. The
noise was applied by sampling real and imaginary components from a Gaussian distribution with standard
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deviation S(800 smm−2)
SNR , thus weighting the SNR for the highest b-value. The sampled real and imaginary

noise components nr and ni were added to the signal S, followed by taking the magnitude, according to
[45]

M =
√
(S + nr)2 + n2

i . (11)

For instances where multiple NEX of a certain b-value was simulated, noised signals corresponding to
the number of NEX was generated and averaged in the complex domain before taking the magnitude.

The parameters were estimated by performing fits with the six algorithms to the 100 × 1000 sig-
nal curves. The 100 noised signals of each parameter combination were used to obtain a standard de-
viation of the estimates. The bias of the algorithms were determined by subtracting the ground truth
from the estimates obtained from fits to the un-noised signal. The root-mean-square error (RMSE
=
√
bias2 + standard deviation2) was used as a metric for total error. To study the RMSE trends

as a function of an individual parameter, the RMSE of the planes made up of the two other parameters
were summed along the aforementioned parameter axis.

3.3 Error Dependency on b-value Threshold and SNR for Segmentation-based Methods

To further understand the impact of the b-value threshold of the Linear, sIVIM, Subtracted, and Segmen-
ted methods on the RMSE, simulations were performed using the Generic protocol with b-values 250
and 350 smm−2 added. The simulations were performed for SNR ∈ [3, 21] with step size 3, and b-value
thresholds ∈ [100, 400] smm−2 with step size 50 smm−2. The RMSE for all parameter combinations
were summed for each parameter, and plotted against SNR and b-value threshold to investigate how SNR
could affect the choice of b-value threshold when performing a fit using the conventional methods.

3.4 In-vivo Measurements and Evaluation

Diffusion-weighted images were acquired using a standard 3-directional SE-EPI sequence with FOCUS
and linear shimming applied over the field-of-view. Twenty non-spaced slices with a thickness of 3 mm
were acquired with matrix size 160 × 80 and in-plane voxel size of 1.5 × 1.5mm2, resulting in a field-
of-view of 24 × 12 cm2 in the frequency and phase encoding directions respectively. TE 62 ms, TR
4727 ms, with scan time approximately 3 minutes and 40 seconds for each protocol.

Multiple excitations of b-values were geometrically averaged in the image reconstruction by the scan-
ner. For every protocol, the number of excitations for b-value 0 smm−2 were multiplied by 3 to account
for the fact that the non-zero b-values effectively get three excitations in different diffusion directions per
input NEX on the GE MRI system, if three directional diffusion is enabled. The acquired images were
reconstructed with AIR Recon DL for image noise reduction. Screenshots of the pulse sequence settings
are presented in Appendix A.

A total of six patients were scanned with both the Constant single tissue and Generic b-value schemes.
One patient was excluded from the evaluation due to severe susceptibility artefacts in the diffusion-
weighted images. Whole-prostate and tumour regions of interest (ROI) were drawn by oncologists. Res-
ults of T2- and diffusion-weighted images from prior diagnostic examinations was taken into account for
tumour contouring on non-diagnostic T2-weighted images acquired for radiation treatment planning.

The diffusion-weighted images were registered to the non-weighted image, which in turn was re-
gistered to the T2-weighted image which was the basis for the tumour ROI. These registrations accoun-
ted for inter-b-value motion. Diffusion-weighted images with motion artefacts were discarded from the
curve fitting. Only one diffusion-weighted image was discarded for this reason.

Parameter estimates were obtained using the six algorithms with the same bounds and settings de-
scribed in Section 3.2.1.
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3.4.1 Protocol Evaluation

The MRI acquisition protocols were evaluated by quantifying their success in the depiction of bi-
exponential signal behaviour. This was done by defining a percentage of success as the ratio of the
number of voxels with parameter estimates within certain bounds divided by the total number of
voxels in a whole-prostate ROI, i.e. Success = # voxels depicting bi-exponential

Total # voxels . The bounds were set by
studying histograms of parameter estimates. Bounds were set such that voxels with f ∈ [0.01, 0.9]
and D∗ ∈ [5, 90] µm2ms−1 were counted as successful bi-exponential fits. The success-metric was
determined for f and D∗ independently for both protocols. The quotient of these, i.e. Success opt.

Success gen. was
used to evaluate how well the optimized protocol performed compared to the generic. A value > 1
would indicate that the optimized protocol provided data that depicted the bi-exponential behaviour
better than the generic protocol, while values < 1 would indicate that the generic protocol performed
better.

3.4.2 Algorithm Evaluation

The algorithms were qualitatively evaluated by studying the probability densities of their voxelwise para-
meter estimates. Histograms of all patients were averaged for two regions: 1) of parameter estimates from
voxels in an ROI surrounding the tumour and 2) from voxels in the prostate minus the tumour ROI. Both
the tumour ROI and prostate ROI were drawn by oncologists.

4 Results

4.1 b-value Optimization Using the Cramér-Rao Lower Bound

The three optimized protocols described in Section 3.1.6 and a generic protocol are presented in Table
2. An example of the cost maps used to determine the optimal b-value scheme for a range of parameters
is shown in Figure 6, where the b-set with the lowest sum along the D∗-axis was determined to be the
most optimal for this particular combination of f and D. It can be noted that the value of the objective
function is often large when D∗ approaches the range of D.

As expected, the optimizations performed using the constant variance matrix yielded fewer unique
b-values with a larger NEX allocated per b-value. This in comparison to NEX general and Generic which
employ larger number of unique b-values with fewer NEX, and are therefore expected to yield lower SNR
in the diffusion-weighted images. An overview and ranking of protocol performance is presented in Table
3. These ranks are based on the results of the following sections.

Table 2: The protocols used for evaluation of the Cramér-Rao optimization, and the evaluation of the
fitting algorithms. Note that the optimized protocols originally allocated 1 NEX for 0 smm−2. An extra
excitation was added to obtain a preciser measurement of S0. The sum of all NEX for each protocol is
15, yielding comparable measurement times.

Protocol b-valueNEX [smm−2]
Constant single tissue 02, 503, 2405, 8005

Constant general 02, 803, 3506, 8004
NEX general 02, 601, 701, 2201, 3103, 3501, 5203, 8003

Generic 02, 201, 401, 601, 801, 1001, 1501, 2001, 3001, 4001, 5001, 6001, 7001,
8001
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Figure 6: The value of the objective function used for protocol optimization (eq. (10)) for different b-
value schemes and values of D∗, with fixed D = 1.0 µm2ms−1 and f = 5%. The protocol with the
lowest total cost was the one labelled as index 3, which in this report is called NEX general.

Table 3: Overview of qualitative ranking of protocol performance. The basis for these scores can be
found in the Figures in Appendices B, C, and D. The protocols are ranked 1-4, with lower rankings being
better.

Protocol f bias f RMSE D∗ bias D∗ RMSE D bias D RMSE Sum
Constant single tissue 2 1 4 2 1 1 11

Constant general 1 2 1 4 2 2 12
NEX general 3 3 3 3 3 3 18

Generic 4 4 2 1 4 4 19

4.2 Quantitative Evaluation of Fitting Algorithms and Acquisition Protocols

Figure 7 shows the RMSE trends for f , D∗, and D respectively, at the lowest tested SNR of 3. Results are
shown for the Constant single tissue and Generic protocols as they were the best and worst performing
respectively. Results for all protocols and SNR are found in Appendix B.

For both f and D, the Constant single tissue protocol in combination with the conventional fitting
strategies (barring the Linear fit) showed generally lower RMSE than the MIX and TopoPro combinations,
along with any combination made with the Generic protocol. Although MIX showed a lower bias in f
when D∗ was low. For estimation of D∗, MIX in combination with the Generic protocol showed the best
performance, although the Constant single tissue together with the sIVIM, Subtracted, and Segmented
methods were not far off.

The RMSE trends give a quick overview of the best performing protocol-algorithm combinations,
however to further understand the errors in the parameter estimates, the RMSE and bias maps presented
in Figures 8-13 need to be studied. Results are only shown for D = 1.0 µm2ms−1 as the patterns were
similar for all simulated D. Results for all ground truth values of D are presented in Appendices C and
D.

Figure 8 shows that the RMSE of f approached the bias at SNR 10 for the conventional methods,
while MIX and TopoPro required a larger SNR to approach their respective biases. It can be noted that
sIVIM, Subtracted, and Segmented performed well at low SNR with an RMSE of approximately 15-
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protocols. All protocol-algorithm combinations can be found in Appendix B.
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20%, except the bias which pushed it up towards 30%. MIX did not suffer from any bias and quickly
moved towards lower errors with increased SNR. The negative bias of the conventional fits can be seen
to arise when D∗ approaches D. Similar results can be observed for D in Figure 9, although the sIVIM
fit can be seen to perform slightly better than the rest. Errors in D can be expected to range from 0.4 to
0.6 µm2ms−1 at low SNR.

For D∗, Figure 10 shows MIX to be the best estimator. One may note the clearer distinction in these
maps, compared to the gap between the curves in Figure 7. Although, looking at the RMSE scale, the
errors appear to be in the same range of where one is expected to find D∗, or as many studies in the
meta-analysis by He et al. suggest, multiple times larger than the expected values of D∗ [26].

For f , Figure 11 shows both a negative and positive bias for the Linear fit, a strictly negative bias
for the sIVIM, Subtracted, and Segmented fits, and essentially zero bias for MIX and TopoPro. It is also
notable that the Constant general protocol showed a slightly lower bias than the rest. It can be seen on
the scale that the bias of the conventional fitting algorithms have the ability to range beyond the RMSE
of 15-20%. Again, similar results can be seen for D in Figure 12.

The bias in D∗ was the lowest for Constant general (Figure 13). Similar patterns can be seen for
the conventional fits, where D∗ became harder to estimate as it approached D. The biases observed for
MIX mostly consisted of outliers which indicate that the method is sensitive to the degeneracy of f as it
approaches 0. Although, these biases are negligible compared to the RMSE, which can be seen to be an
order of magnitude larger.

4.3 Error Dependency on b-values and SNR

Figure 14 shows the contribution of the bias and standard deviation to the total error for different SNR-
levels and b-value thresholds. For f and D, the bias can be seen to increase with thresholds, while the
standard deviation increases with larger b-values. This results in a minimum for each simulated SNR,
which is to be considered as the optimal b-value threshold for that particular b-value. For both f and D,
the optimal b-value threshold can be seen to be as low as 150 smm−2 for an SNR-level of 3. For D∗,
the bias is negligible in comparison to the standard deviation, making lower thresholds result in lower
RMSE.

An additional trend of note is that higher b-values are permitted as SNR increases, as can be seen by
the flattening of the surface along the b-axis, compared to the greater curvature seen at the lowest SNR.

4.4 In-vivo Measurements and Evaluation

Figure 15 shows an example of parametric maps of f and D obtained using the MIX algorithm on data
provided by the Generic protocol. The tumour ROI can be seen to be in agreement with the parametric
maps, indicating feasibility of obtaining diffusion and perfusion data from the same measurement.

The observed parameter distributions for f and D∗ were skewed, as depicted by the box plots for
all protocol-algorithm combinations in Figure 16, with histograms of Segmented and MIX estimates in
Figure 17. The effect of protocol optimization can be seen in the box plots of f and D, where a reduced
skewness is observed for f , and a negative shift for D, which is the same difference observed between
Segmented and MIX in the histograms.

The medians of the box plots in Figure 16 show that f can be expected to be slightly larger (10-12%) in
the healthy prostate, compared to the lower values found in the tumour (5-10%). The values are however
dependent on both protocol and fitting algorithm. Similar results can be seen for D, where the medians
are lower in the tumour compared to the counterparts in the healthy prostate. The D∗ distributions of
TopoPro (Figure 16) can be seen to exceed the upper bound, with pile-ups at several values of D∗.

Table 4 shows the success ratios of bi-exponential fitting. The conventional methods can be seen
to benefit from optimization. While results are more inconclusive for MIX and TopoPro, they do lean
towards better performance with the Generic protocol.

22



10

20

30
L

in
ea

r
D
∗

[µ
m

2
/m

s]

SNR = 3 SNR = 10 SNR = 30

10

20

30

sI
V

IM
D
∗

[µ
m

2
/m

s]

10

20

30

S
u

b
tr

ac
te

d
D
∗

[µ
m

2
/m

s]

10

20

30

S
eg

m
en

te
d

D
∗

[µ
m

2
/m

s]

10

20

30

M
IX

D
∗

[µ
m

2
/m

s]

10 30 50

f [%]

10

20

30

T
op

oP
ro

D
∗

[µ
m

2
/m

s]

10 30 50

f [%]

10 30 50

f [%]

1

5

9

13

17

21

25

29

33

f
R

M
S

E
[%

]
fo

r
D

=
1
.0

µm
2
/
m

s

Figure 8: The RMSE of f estimates for different ground truth values of f and D∗ with a fixed D of 1.0
µm2ms−1. Data simulated using the Constant single tissue protocol. Note that the colours are mapped
to f in terms of absolute percentage units, and should not be interpreted as relative errors.
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Figure 9: The RMSE of D estimates for different ground truth values of f and D∗ with a fixed D of 1.0
µm2ms−1. Data simulated using the Constant single tissue protocol.
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Figure 12: The bias in D estimates for different ground truth values of f and D∗ with a fixed D of 1.0
µm2ms−1. Note the different scales for positive and negative values.
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Figure 13: The bias in D∗ estimates for different ground truth values of f and D∗ with a fixed D of 1.0
µm2ms−1. Note the different scales for positive and negative values.

Figure 14: The RMSE and its two contributors as a function of SNR and b-value. Note that the green
standard deviation surface in the plot of D∗ error is just under the RMSE surface, and is thus not visible.
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D f

Figure 15: Parametric maps of D and f with tumour delineations by an oncologist. Two different slices
of the same patient. The ROI can be seen to correspond with regions that show lower values of D and f .
This indicates higher cell density and lower perfusion respectively.

Table 4: The success ratios of f (upper table) and D∗ (lower table) for each patient and fitting algorithm.
Note that > 1 indicates that the optimized protocol provides more successful bi-exponential fits, vice
versa for < 1. One standard deviation is reported with the averages.

f Linear sIVIM Subtracted Segmented MIX TopoPro
Patient 1 1.20 1.19 1.19 1.12 1.03 1.01
Patient 2 1.05 1.02 1.04 1.00 0.96 0.96
Patient 3 1.08 1.11 1.10 1.07 1.02 1.01
Patient 4 0.94 1.06 1.04 0.99 0.87 0.88
Patient 5 0.97 1.06 1.05 1.01 0.90 0.90
Average 1.05(9) 1.09(6) 1.08(6) 1.04(5) 0.96(6) 0.95(5)

D*
Patient 1 1.18 1.14 0.94 0.95
Patient 2 1.11 1.06 0.89 0.94
Patient 3 1.09 1.07 0.95 1.00
Patient 4 1.13 1.06 1.18 0.85
Patient 5 1.05 0.98 1.05 0.91
Average 1.11(4) 1.06(5) 1.00(10) 0.93(5)
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Figure 16: Box plots of parameter distributions acquired for different algorithm-protocol combinations.
Note that the Linear and sIVIM algorithms do not provide estimates of D∗. Data points are jittered under
the tumour ROI boxes to show the underlying distribution. Note the pile-up at the bounds of the f and
D∗ distributions, these are voxels with data points that failed to depict bi-exponential signal behaviour.
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5 Discussion

5.1 Evaluation of Fitting Algorithms

The results of the RMSE trends and RMSE maps show that the conventional sIVIM, Subtracted, and
Segmented methods perform well regarding noise sensitivity. However, they do show a bias as D∗ ap-
proaches D, therefore making them less ideal for usage in tissues that are known to have low D∗. In such
cases, bias free methods such as MIX and TopoPro should be looked into.

The Linear fit showed profoundly greater RMSE in f compared to the other methods, while the
comparable sIVIM did not. This is due to the Linear fit relying on the SNR of b-values greater than the
b-value threshold, where SNR is lower, making it sensitive to noise. The sIVIM fit on the other hand
handles noise well. This is due to b-value 0 smm−2 being included in the fit, which contributes with
better SNR, thus more certain estimation of f . It is therefore recommended that sIVIM is used in any
instance where the Linear fit is intended to be used, as it is a fast method that similar to the Linear fit,
only requires three b-values. Furthermore, sIVIM is a good alternative to the slower Subtracted and
Segmented methods, as the latter two require more non-linear least-squares fit to be performed, while
sIVIM only requires a single fit. However, this is only if D∗ is not of interest, as sIVIM is unable to
estimate it.

Looking at the bias maps (Figures 11-13) for the conventional methods, the bias can be seen to vary
more depending on the protocol rather than fitting method, especially in Figure 13, where Constant
general shows the lowest bias. This is due to two of the protocols having different ”effective” b-value
thresholds in the fits, as they do not all sample b-value 200 smm−2. Interestingly, although the Constant
general showed worse RMSE (Appendix B) than Constant single tissue, its bias was lower. It was this
revelation that prompted the investigation into the b-value threshold for the segmentation-based fitting
methods and its impact on the RMSE.

MIX and TopoPro show no bias, making them better at higher SNR where the other methods show
a bias, especially if D∗ is known to be low in the tissue of interest. Figure 7 show that MIX has lower
RMSE than TopoPro at low SNR. Furthermore, MIX shows to be the best estimator of D∗ in Figure 10.
MIX is therefore a well performing bias-free alternative to the conventional methods. However, with the
current implementations, the computation time of both MIX and TopoPro were approximately 15 times
longer, which is worthy of consideration if time is a factor.

Another point of note regarding MIX and TopoPro, they both show less variations in performance
between the different protocols (Appendix B). The gaps between the best and worst protocols are gen-
erally narrower than the ones observed for the conventional methods. Therefore, MIX and TopoPro are
candidates for fitting algorithms which could be used to compare results of different studies where b-value
schemes are known to vary. Furthermore, MIX and TopoPro do not depend on any b-value thresholds,
which is another variable that can differ between studies. This can further be seen in the box plots of
Figure 16, where the difference in medians between the two protocols is smaller for MIX and TopoPro,
compared to the other methods.

In-vivo, MIX was the only method that provided meaningful estimates of D∗, as seen in Figure
17, where a distribution can be observed, in contrast to the regularization pattern seen in the distribution
from the Segmented method. MIX further provides more bi-exponential fits, as can be seen by the smaller
pile-up at f = 0%. Using the results of the simulations as reference, this pile-up could be caused by the
negative bias seen for the conventional methods (Figure 11). The algorithm essentially fails to identify
the bi-exponential behaviour of the signal when D∗ is low, hence the mono-exponential fit by setting f
to zero. This is a relevant issue in the prostate, as many studies included in the meta-analysis by He et al.
[26] reported D∗ values less than 10 µm2ms−1. It is indeed in this range of D∗-values where degeneracy
occurs, as seen in the bias maps of Figure 11.

The differences in the distribution of D estimates manifest as a shift, where MIX shows lower es-
timates than the Segmented method. This is due to D being overestimated when f = 0%, as only a
mono-exponential fit is performed. These mono-exponential fits are less frequent when MIX is used,
and should therefore be regarded as the more truthful distribution compared to the Segmented method.
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One may note that it was indeed this overestimation of D that lead to the bi-exponential IVIM model, as
discussed in Section 2.2.

Histograms for the rest of the conventional algorithms were not shown as the distribution of the
Segmented method showed that it performed the best out of the four. Regarding TopoPro, it did show
slightly more successful bi-exponential fits. However, D∗ was heavily regularized and showed unreliable
pile-ups across the entire scale, likely caused by dynamic bound setting in its third optimization step. It
should be recognized that TopoPro could still be improved by fine-tuning the bounds, which was not
done in this work. One could argue that our results, shown and not shown, indicate that MIX works
better straight out of the box, while TopoPro would need more modifications to it in order to provide
reliable estimates.

Pooling the results of the simulations and in-vivo evaluation, it can be concluded that MIX may be
the superior fitting algorithm, as it is able to identify the bi-exponential signal more frequently compared
to the other methods, and was the only algorithm able to provide a parameter distribution for D∗. The
clinical implication this carries is that the reliability of IVIM-derived perfusion and diffusion data can
be increased by simply changing fitting algorithm. Furthermore, our evaluation showed that the Linear
fitting algorithm which has currently been used in creation of hypoxia maps was the algorithm that showed
the lowest performance. Future IVIM-derived hypoxia maps can therefore be improved, which could
potentially yield even more promising results and strengthen their candidacy for standardized hypoxia
mapping of the prostate.

5.2 Error Dependency on b-value Threshold and SNR for Segmentation-based Methods

The optimal b-value threshold of 150 smm−2 found for low SNR is lower than the usually recommended
interval of 200 to 400 smm−2 [10], where 200 smm−2 is most commonly used [46]. However, our results
are in agreement with Wurnig et al. [33], who also found that lower thresholds performed better when
evaluated in-vivo. They found that a threshold as low as 20 smm−2 could be the most optimal for well
perfused organs such as the liver, while as in our case, 150 smm−2 proved optimal for e.g. the kidney.
A limitation of our evaluation is that it was general, and incorporated the errors for a wide range of
tissue properties. Previous knowledge, and indeed the results of Wurnig et al., show that optimal b-value
thresholds need to be found for the organ of interest, as general recommendations such as 200 smm−2,
or even 150 smm−2 may not result in the best possible parameter estimation.

Another insight provided by this evaluation of b-value thresholds is the error contributions of the
bias and noise sensitivity of the conventional fitting algorithms. As the b-value threshold is lowered, data
points with better SNR are included in the estimation of D, making its estimation more certain. Thus,
lower errors are propagated to f and D∗, as D is fixed in their estimation. However, as the lowering of
the threshold may decrease noise sensitivity, the bias in increased. Therefore, one sacrifices accuracy in
the pursuit of better precision. At some point, the best accuracy and best precision is achieved, such that
their combination; the RMSE; is minimized. This point is the optimal b-value threshold, which is seen
in Figure 14 to be dependent on SNR.

As discussed earlier, a side effect of only sampling four b-values is that the sparsity may lead to ef-
fective b-value thresholds, as even if the threshold is set to e.g. 200 smm−2, if only b-values 350 smm−2

and 800 smm−2, exist in that range, the threshold for the fit effectively becomes 350 smm−2. This is
the case for the Constant general protocol, which showed the lowest bias. This tells us that b-value op-
timization needs to account for the bias of the fitting algorithm that will be used to analyse the data. This
is currently not accounted for in Cramér-Rao optimizations, whereas optimizations based on estimation
uncertainty do, as done by e.g. Paganelli et al. for the Linear fit [47].

5.3 b-value Optimization and Protocol Finalization

In this work, as Table 1 shows, we have compared a diverse b-value set optimized for several types of
tissue properties (NEX general) to one typically seen in literature (Generic), where the optimized protocol
showed better performance (Appendix B). Although, NEX general only performed marginally better than
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Generic. We also compared two protocols with fewer b-values and higher SNR, where the protocol that
was optimized for a specific IVIM parameter set; and can also be characterized by its lower b-values,
thus even better SNR; showed better performance than a protocol optimized for a wide range of tissues.
Ultimately, the conclusion of Table 3 is that any Cramér-Rao optimized protocol performed better than
the Generic.

In-vivo, the reduced skewness of the f box plots in Figure 16 show that by improving the acquisition,
the mono-exponential f estimates of 0% can be reduced. The histograms of Figure 17 show that the
skewness is mainly caused by mono-exponential fits. Hence the reduced skewness of the optimized
acquisitions may be due to more bi-exponential fits. Although the quantitative measure of the successful
bi-exponential fits proved this for the conventional methods, it did not for MIX. This could be attributed to
the averaging of the histograms, as the values in Table 4 can be seen to not only depend on the algorithm
used, but also on the patient imaged. Hence, effects of a single patient may affect the entire distribution.

The reason for employing histogram averaging was due to the small sample size. Ideally, the dif-
ferences in medians between tumour and healthy tissue for each patient and protocol would have been
determined. Using such differences would have further allowed for proper statistical testing and elimin-
ated confounding effects caused by e.g. prostate and tumour size (affecting the number of voxels in the
ROI, hence the distributions). Our sample size of 5 patients was deemed too small to draw any certain
conclusions from such an analysis.

Regarding TopoPro, Figure 16 shows clusters of estimates at multiple values of D∗. These are caused
by dynamic bound setting, as the bounds in the third step of the TopoPro algorithm are based on parameter
estimates from the first and second steps. Hence, failed estimates are piled up on the lower and upper
edges of these new bounds, instead of the typical values seen for the other algortihms. Therefore, these
should not be interpreted as peaks of distributions that reflect tissue properties. Furthermore, because of
these clusters of estimates, our definition of successful bi-exponential fits for D∗ becomes invalid, hence
invalidating the results of theD∗ evaluation shown in Table 4. For these reasons, TopoPro-derived results
of protocol evaluation in-vivo should be interpreted with caution, as the results may greatly depend on
the settings of the algorithm.

A further point of note regarding the quantifications of successful bi-exponential fits presented in
Table 4. These values only compare the two protocols for a given patient and algorithm. They cannot
be used for comparisons between algorithms as the magnitude of the quantity measures the performance
increase or decrease for a particular algorithm given two protocols, i.e. protocol dependency in perform-
ance. If an algorithm shows greater performance with one or the other protocol, it does not mean that it
performs better than an algorithm that is less dependent on the protocol that is being used.

Further limitations of the in-vivo tumour versus healthy prostate comparison are that the tumour ROI
were drawn by an oncologist and not a radiologist, which would have been more appropriate. Further-
more, the tumours were delineated on T2-weighted images acquired for the purposes of radiotherapy
treatment planning, and were acquired in the same examination as the diffusion acquisition for the IVIM
analysis. These T2-weighted images are not of diagnostic quality as their purpose is to delineate the
outer contours of the prostate. These T2-weighted images have worse contrast within the prostate when
compared to diagnostic quality T2-weighted images. Therefore, discrepancies were expected. Ideally,
diagnostic quality T2-weighted images should have been acquired during the same exam as the IVIM
diffusion-weighted images. Our ethical permission set limits on how much measurement time we could
add to an exam, which in our case, was used for the IVIM acquisition.

There are also a number of limitations in our simulations and optimizations. The first being that the
parameter values used for the Cramér-Rao optimization for the Constant single tissue protocol are not
certain to be optimal as the ranges presented in the meta-analysis by He et al. [26] were large. Therefore,
Constant single tissue may not be fully optimized for the prostate. Furthermore, the simulations only
accounted for Rician noise and not physiological noise. Such simulations would require a more intricate
virtual phantom.

As discussed earlier, the Cramér-Rao lower bound does not account for estimation bias. Protocols
could be optimized further by including these effects. However, our simulation results show that all three
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Cramér-Rao-based protocols performed better than the Generic, in agreement with previous studies [29,
30, 40]. Some of these studies were able to show a lowered standard deviation of prameter estimates
in-vivo, either by ROI analysis, or by voxel-wise analysis after repeated measurements. We were not
able to evaluate our in-vivo data in the same way due to known confounding variables or methodological
limitations.

Regarding ROI analysis, some tumours were too small, thus consisting of too few voxels to draw
certain conclusions from differences seen between the two protocols. This issue is further amplified by
the relatively small size of the prostate, where resolution is often limited to increase SNR. Furthermore,
there were the previously discussed discrepancies in the tumour ROI delineations. Ideally, since the
purpose of this work is to optimize and evaluate IVIM for hypoxia maps, voxel-wise error quantification
would have been more useful than ROI analysis, as performed by Jalnefjord et al. [29]. However, this
would have required with repeated acquisitions with the same protocol. Due to time constraints in the
examination of the patients, we were not able to do this. The allocated time was used to acquire images
using two different protocols. Therefore, it would have been more suitable to do such an experiment on
healthy volunteers. Despite these methodological limitations, we were able to identify a key issue that
has to be resolved with experimental changes. Namely, to reduce the number of mono-exponential fits.

A point of note is that in our in-vivo evaluation, the GE image reconstruction software AIR Recon
DL was used. Figure 4 showed that it increased SNR from 3 to 6 at b-value 800 smm−2 for a single
excitation of a spherical water phantom. Assuming the same SNR is achieved in-vivo, Figure 14 shows
that the optimal b-value threshold for f and D can be seen to be in the range 200-250 smm−2. Table
2 tells us that it is indeed in this range the second highest b-value is located, thus making the effective
b-value threshold 240 smm−2. The properties of the protocol therefore theoretically minimized the
RMSE of the Segmented method. Had AIR Recon DL not been used, this would have not happened, as
the optimal b-value threshold would have been lower than what was sampled.

The ultimate conclusion of the simulations is that protocols with fewer and lower b-values with better
SNR perform better than any other constellation of number of b-values and SNR that was tested in this
work. The in-vivo evaluation of the optimized protocol was more inconclusive due to a small sample
size, but did show increased ability to fit the bi-exponential IVIM model to data for the Linear, sIVIM,
Subtracted, and Segmented algorithms.

5.4 Future Prospects

In this work, the diffusive IVIM model of eq. (2) was studied. This is a very basic study, useful in
learning the limitations and problems of IVIM. There are a number of future paths where different models
and experimental methods can explore to further increase the reliability of IVIM parameter estimates.
Furthermore, there are a number of methods that have been applied to other organs such as the brain and
the liver, which has not yet had their usefulness evaluated on the prostate.

The diffusive IVIM model assumes that the blood flow changes direction several times during the
diffusion encoding time. As mentioned in Section 2.3, this assumption has been violated in other organs
and to our knowledge, has not been evaluated for the prostate. Flow-compensated measurements with
short diffusion times are therefore warranted to probe the ballistic limit. Depending on the prostates
vascular characteristics, such experiments may require MR-systems with strong magnetic field gradients.

Accounting for partial volume effects has shown to improve results in the brain by considering T2
relaxation [48, 49]. It remains to be seen how partial volume effects affect the results in prostate IVIM.
Chatterjee et al. [50, 51] have shown how a combination of diffusion and T2 properties can be used to
perform tissue decomposition. Furthermore, there are partial volume effects in the diffusion coefficient
caused by different types of tissue microstructure. These can be separated using tensor-valued diffusion
encoding [15]. The usefulness of this in combination with IVIM remains to be evaluated for the prostate.

Regarding the topics of this work, optimization of data points and parameter estimation; these issues
will have to be revisited for emerging experimental techniques that show promise for prostate applications.
A relevant example is a recent study on optimizing flow-compensated abdominal measurements [23].
Consensus regarding optimization method is yet to be reached. New and current fitting algorithms should
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continually be evaluated and standardized, which is the objective of the newly formed IVIM task force
within the Open Science Initiative for Perfusion Imaging project [52].

6 Conclusions

Our evaluation on both simulated and in-vivo data has shown that the reliability of IVIM-derived per-
fusion and diffusion parameters can be improved by optimizing acquisition protocols, and by changing
fitting algorithms and their settings. These results can be used to optimize acquisitions and improve
analysis for the purposes of non-invasive hypoxia mapping of the prostate, and IVIM in general.

We showed via simulations that three of the four conventional fitting algorithms handle noise well,
but with a negative bias for low D∗. The Linear fit is very sensitive to noise. We instead recommend
the use of sIVIM, as it is a more robust alternative that similar to the Linear fit, only requires three b-
values. Out of the two new methods, MIX is an accurate and precise algorithm that excelled in the in-vivo
evaluation, but does however have an approximately 15 times longer computation time.

We recommend usage of lower b-value threshold in the Linear, sIVIM, Subtracted and Segmented
algorithms, as we found it to reduce noise sensitivity. A general recommendation would be 150 smm−2.

Cramér-Rao optimization of b-values has in simulations shown to produce more robust protocols
than typical ones found in literature. We showed that fewer and lower b-values with higher SNR perform
better than many b-values with lower SNR. The use of such protocols increased the in-vivo performance
of the Linear, sIVIM, Subtracted and Segmented algorithms.
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A Appendix: Pulse Sequence Settings

Below are screenshots with the settings of the used pulse sequences on the GE 3T system.

39



40



41



B Appendix: RMSE Trends

The RMSE maps presented in Appendix C were summed along different axes. The resulting curves for
each fit and b-value scheme is presented below.
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B.2 RMSE Trends for D∗
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B.3 RMSE Trends for D
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C Appendix: RMSE Maps

C.1 RMSE of f

In this section, the RMSE maps of the f estimates for varying ground truth values of D in the slice
direction are presented. The RMSE is presented in absolute units, i.e. the percentage unit of the maps
should not be interpreted as a relative error.
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C.2 RMSE of D∗

In this section, the RMSE maps of the D∗ estimates for varying ground truth values of D in the slice
direction are presented.
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C.3 RMSE of D

In this section, the RMSE maps of the D estimates for varying ground truth values of D in the slice
direction are presented.
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D Appendix: Bias Maps

D.1 Bias in f

In this section, bias maps for the f estimates are presented for all tested protocols, with varying ground
truth values of D in the slice direction. The bias is presented in absolute units, i.e. the percentage unit
of the maps should not be interpreted as a relative error. Note that the scales for the positive (red) and
negative (blue) colours differ from each other.
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D.2 Bias in D∗

In this section, bias maps for the D∗ estimates are presented for all tested protocols, with varying ground
truth values of D in the slice direction. Note that the scales for the positive (red) and negative (blue)
colours differ from each other.
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D.3 Bias in D

In this section, bias maps for the D estimates are presented for all tested protocols, with varying ground
truth values of D in the slice direction. Note that the scales for the positive (red) and negative (blue)
colours differ from each other.
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