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Abstract

The development of Artificial Intelligence(AI) and Machine Learning(ML) has
highly increased over the past decades, with numerous research projects devel-
oping AI and ML models for clinical decision support. Many of these projects
showcase promising results in the lab, however, when set in a real-life clinical
setting most models perform significantly worse, resulting in only a few models
transitioning from a lab environment to clinical use. One reason of many for
the discrepancy between research and commercial application is the absence,
and thereof need, for established development processes that deploy and mon-
itor ML models for clinical use in hospital environments.
This thesis aimed to implement a model monitoring framework utilizing Ma-
chine Learning Operations(MLOps), a development process focusing on stream-
lining development, monitoring, and maintenance, to detect performance vari-
ations in clinical decision support systems. The monitoring framework was
implemented and evaluated by creating a use-case utilizing the MIMIC-IV-2.2
data set, which comprises real-life patient data from electronic health records,
for training, validating, and deploying a novel neural network model that pre-
dicts the Length of Stay(LoS) of a patient admitted to the Intensive Care Unit
(ICU) of a hospital. The data was split into training- and inference data,
based on age groups, where the former was used for model training, and the
latter for evaluating real-life performance via model monitoring. Finally, the
performance of the model was evaluated by a set of metrics to determine if
performance drift occurred with the inference data. Resultingly, an end-to-
end framework was implemented with successful monitoring, able to detect a
significant performance drift and loss of performance. The more significant
metrics, Mean Square Log Error (MSLE) and Mean Absolute Percentage Er-
ror (MAPE) detected a performance loss of 44.64% and 41.13% respectively,
compared to model performance on the training data. The MLOps framework
used in the thesis fulfilled the use-case’s intentions, had a clear structure, and
showed efficiency. However, there are limitations involving no retraining of the
ML model implemented in the use-case, the disparity from a real-life clinical
environment, and whether the framework used for the thesis is appropriate
for similar development processes, illustrating questions that need to be ad-
dressed with further research. The MLOps framework however shows promise,
employing tools and practices that can further advance the transition, and
integration of AI and ML-based technology in clinical environments.
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1

Introduction

Clinical Decision Support Systems (CDSS) is a technical software system used
to assist clinicians in complex diagnostic decisions for an optimal patient out-
come, based on diagnostic measurements in a clinical setting. Since the first
use of the technology in the 1970s, current CDSSs are used in web applica-
tions, with electronic health records, computerized provider order entry sys-
tems, and administration in almost all interactive healthcare technology today.
For the longer duration of its usage, the CDSS has used a rule-based system,
programmed IF-THEN-statements that are based on a set of rules or values.
These rules can be knowledge-based, such as literature-based, value-based, or
practice-based, and programmed to follow expert medical knowledge[Sut+20].
Over the last decade, more non-knowledge-based CDSS have been appearing,
based on Artificial Intelligence(AI) and Machine Learning(ML) algorithms,
that utilize clinical data rather than programmed medical knowledge. As more
historical health data sets become available, the usage of ML algorithms fol-
lows suit, being more adopted and integrated[Res21]. These data enable the
use of deep learning techniques in CDSS and the rise of predictive analyt-
ics, methods that use advanced statistics and ML techniques to predict future
events[McC+22].
However, the process from an idea to a potential ML application to a fully
developed product is a very complicated task. Up to 85% of all AI- or ML
projects fail to reach a finalized product[MM18]. For clinical ML applications,
in this case for COVID-19 diagnosis, the statistics are worse[Wyn+20]. The
major reason for failure is mainly credited to unclear objectives for the end
application and faulty research and development processes.
The latter reason can be attributed to that ML research and development
have been primarily driven by teams consisting of data scientists, and not by
software engineer teams. This has resulted in major leaps in development in
the ML field but has resulted in a discrepancy from the standards of today’s
software development processes[ME22]. As ML applications become a more
integrated part of our human-decision making, larger demands are set on the
real-world performance of the models, and establishing standard processes for
the projects that develop them, particularly in the field of healthcare, where
the decision-making potentially directly affects a patient’s health and future
well-being. Regulatory measures for AI applications are already being imple-
mented. Therefore established processes and practices for development and
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operations management that handle the multi-disciplinary challenges of ML
projects are now needed more than ever. There are ML applications for health-
care that do reach commercial usage, specifically in the US. However, due to
old regulations, the ML models that reach clinical platforms are locked from
retraining[FA21a]. However, one of 10 new guiding principles for ML devel-
opment in healthcare, written by the Food and Drug Administration (FDA),
mentions the need for deployed models to be monitored and to manage re-
training risks for improved performance and safety[FA21b]. This opens new
possibilities for model monitoring, and exploring the use of novel practices for
ML deployment in clinical decision support.

1.1 Purpose of the thesis

The project aims to implement a model monitoring and maintenance frame-
work by utilizing resources from a Machine learning Operations(MLOps) frame-
work, or pipeline, to monitor the performance and detect performance drift of
ML models for CDSS. MLOps is a development process focused on streamlin-
ing the deployment of ML models to a live service, where model monitoring is a
major theme. The expected contribution of the project is furthering the devel-
opment of digital autonomous integration of Getinge’s products, contributing
to further digitalization in healthcare, and advancement of knowledge in ML
for CDSS.

1.2 Limitations

The project’s main goal is to detect performance variation with a monitoring-
and maintenance framework for ML models in CDSS. The initial quality of
the model after training is not an objective of the thesis. The focus is the
development and change of the model predictions for their suited task when
exposed to altered clinical data. This project focuses on model monitoring with
a certain set of programs and monitoring parameters applicable for CDSS,
in this use-case, the ICU. More or less success can be achieved with other
resources or other ML model tasks for the ICU or other wards. The project
does not offer a final application for a fully implementable MLOps framework,
but rather a proof-of-concept for monitoring of CDSS and an evaluation of the
development framework.
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1.3 Outline of the Thesis

Firstly some background knowledge is presented in Section 2, where the the-
ory used for the proposed case study is presented, and to familiarise the reader
with Machine Learning and its usage in healthcare applications. The method-
ology is presented in Section 3, with its appurtenant subtasks. The results
are presented in Section 4 and are presented, for certain parts of the method
subtasks, in a graphical manner such as plots and images. A discussion is
presented in Section 5, where the used methodology and the results will be
further evaluated. Finally, conclusions from the thesis are presented in Section
6. Ethical aspects of the project are discussed in Section 7.
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2

Background

2.1 Machine Learning

Machine Learning (ML) is part of the Artificial Intelligence(AI) field. The
term was introduced by the American researcher Arthur Samuel in 1959 as
a tool to empower computers to learn from explicit data. The term was fur-
ther elaborated by Tom Mitchell, in 1997, as a method in which the machine
performs a task, measures, and evaluates the performance over task iterations
to gain experience and optimize the performance[Sin22]. The essence of ma-
chine learning is, based on data with an unknown probability distribution, to
construct a model from the data occurrences that can accurately predict the
outcome of new data occurrences. The ability to accurately predict outcomes
is essential to ML, where the model’s architecture has to be suitable to the new
data. The data points are often stored in vectors of ”features”. A feature is a
property or a parameter of a data set. These features are used as input vari-
ables for the model to train, validate, and test its performance. A high-quality
feature vector is highly important to achieve good results from the machine
learning process, therefore much emphasis is placed on feature engineering over
the machine learning workflow. Examples of feature engineering methods are
normalization of the data, dimension reduction, and encoding [Hea17].

Target- or output variables from the data set are named label data. This
data is associated with a higher-level fact or quantity of interest, such as the
expected price of housing, or determining the existence of a tumor in mam-
mography screenings. A label can be explained as a property of a data point
that can only be determined with some type of human expertise, and the goal
of most Machine Learning models is to predict the correct label based on the
available features. Labels can be numerical for regression problems, categor-
ical for classification problems, or ordinal for a combination of both former
examples [Jun22].

The machine learning method, or the model, has the informal principle
to construct from features x → X and labels y → Y a hypothesis space
such that the hypothesis generated from one or several characteristic values is
approximately equal to the label value, i.e. h : X → Y such that:

h(x) ≈ ŷ

The machine learning method used is based on the nature of the input and
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output data. There are four different types of machine learning methods, that
are considered broad categories, supervised learning, semi-supervised learn-
ing, unsupervised learning, and reinforcement learning. In supervised learning,
there are input features and corresponding output labels, and the goal of the
model is to determine a general hypothesis that maps the correct features to
the proper labels. Unsupervised learning means the data are unlabelled and
the model has to construct its own hypothesis. This can be used to find hidden
patterns in the data. In semi-supervised learning, there are input features, but
a smaller number of output labels. it combines supervised- and unsupervised
learning techniques that handle both labeled and unlabeled data. Reinforce-
ment learning is an approach where the machine learning method interacts
with a dynamic environment, and while acting in it, will provide feedback to
the model in a reward-based manner, based on the model’s actions. The model
will strive to achieve the maximum reward while navigating this space[Mir22].

2.1.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) or Neural Nets is a vast sub-part of the
machine learning field. It is a computational system that mimics the function
of the biological neural networks that constitute the animal brain. The first
computational neural network, based on the neural principles defined by Don-
ald Hebb [Sha86], was modeled by W. Clark and B. Farley, documenting the
earliest machine learning task with a neural network[FC54].
A neural network can be characterized as a graph with a set of nodes connected
with edges. A visual illustration of a fundamental Neural network structure is
seen in Fig. 2.1. The initial nodes are the input values transmitted through
the network. The edges apply weights, a multiplicative factor, and biases, an
additive factor, to the input value. This is defined as a linear transformation
of the input. The nodes further apply an activation function, a linear or non-
linear function that determines whether the node should be activated or not
based on the sum of inputs and added bias. Depending on the function, The
output is usually in the interval of 0 and 1, or -1 and 1. See equation (2.1) for
a typical activation function, the sigmoidal.

f(x) =
1

1 + e−x
(2.1)

These operations follow in a sequence of transformations through several
node layers that result in an output function, that can be either a classification
decision or a value prediction, as seen in equation (2.2).

Y = f

(
n∑

i=1

wixi + b

)
(2.2)

The network is trained and modified by altering the weights and biases con-
nected to the nodes after each pass forward in the network. The alteration
is based on back-propagation. Back-propagation is the calculation of the gra-
dient for the loss function, the difference between predicted values and label
values, for each respective weight. Loss functions look different based on what
type of task the network has, such as Mean Squared Error (2.3) for regression
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tasks, or Cross-Entropy-Loss (2.4) for classification tasks. The loss function
tells us how much the parameters need to be adjusted for further minimiza-
tion of the functions, i.e. decreasing the difference between predicted- and real
output.

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2 (2.3)

CE = −
n∑

i=1

[Yi log(Ŷi) + (1− Yi) log(1− Ŷi)] (2.4)

With the gradient, the network can be optimized by tuning the weights
properly and informing where the most optimized weights for the best perfor-
mance are found. The optimization of the weights is done with an optimization
algorithm. The optimization of the weights is where the training of the ANN
takes place. See equation (2.5) for a common optimization function, the gradi-
ent descent. θt is the parameter vector, α is the learning rate constant, ∇J(θt)
is the gradient of the cost function J, concerning θt.

θt+1 = θt − α∇J(θt) (2.5)

Figure 2.1: Graph structure of a multi-layer perceptron, a fundamental neural net-
work structure
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2.1.2 Convolutional Neural Network

Convolutional Neural Networks(CNNs), or Convolutional Networks, is a neural
network specializing in reading and performing operations on input data with
a grid-like topology, like matrices with arbitrary dimensions, two-dimensional
images, or one-dimensional time-series data. The first Convolutional Network
architecture was presented by Lecun et al. in 1989. It used novel techniques
of the time, such as incorporating weight constraint, geometric knowledge of
the input in the task domain, and applied back-propagation. The model archi-
tecture saw fast commercial success in reading handwritten postal zip codes
[LeC+89]. The name convolutional neural networks stem from applying the
convolution operation inside the network. To put it simply, A convolutional
network is a network that uses convolution once or more in its layers. See
equation (2.6).

The convolution operation is a linear operation between two functions with
real-valued arguments that produces a third function based on the functions’
shapes.

In a CNN the two components of the operation are the input matrix, which
can be, for example, the initial image data or the output of another layer, and
the convolutional filter, or kernel, which is a smaller matrix, with a value
distribution to extract certain matrix features. The result of the operation
creates a feature map.

(f ∗ g)[n] =
∞∑

k=−∞

f [k] · g[n− k] (2.6)

The convolution operation introduces three concepts for a more efficient
network, sparse interactions, parameter sharing, and equivariant con-
nectivity. Sparse interactions make the kernel in the convolution operation
smaller in dimension than the input. In a typical neural network layer, matrix
multiplication is used, with a matrix filled with separate parameters describing
each input unit’s relation to the output unit. With n inputs and m outputs, a
matrix multiplication of n×m would have a runtime of O(n×m). However, if
introducing a kernel of smaller size k, the resulting convolution operation has
a shorter runtime of O(n × k). So for example when processing a very large
image, with millions of pixels as input, we can detect meaningful features such
as edges with kernels that only consist of tens or hundreds of pixels. This
results in the ability to describe complex interactions while obtaining good
performance. Parameter sharing means that the value of a weight applied to
an input is also applied elsewhere, causing only one set of parameters to be
learned for a location, affecting the storage requirements of the model. As the
number of stored parameters is reduced by a large margin, compared to ma-
trix multiplication, the performance in memory requirements and statistical
efficiency is improved. Parameter sharing also makes the layer in the network
have equivariant connectivity, meaning that, for example, a function f(x) is
equivariant to the function g(x) if f(g(x)) = g(f(x)). This means that if the
input would change, the output will change identically. The convolution oper-
ation is followed by a set of activation functions. The result of the functions
are further modified by the pooling function. The pooling function replaces the

15



result of a layer with a statistic summary of the output. The statistical method
can vary based on the network design. For example, a typical method is max-
pooling, where the largest value is reported from a rectangular neighborhood.
The pooling function results in a layer output becoming approximately invari-
ant to smaller translations to an input, meaning if input values are changed by
a small amount, the resulting layer output will not change. For multiple tasks,
pooling is essential for the CNN to be able to process input of varying sizes,
and the function accomplishes this by varying the offset size between pooling
regions. This results in, for example, a classification model that requires a
fixed output dimension, to receive the correct dimensions regardless of input
size, adding flexibility to the architecture design and input specifications.

The issue with the convolution operation and pooling function is that for
each layer of the network, a dimensional reduction of the original input occurs.
This limits the possible depth of the network, if the kernel is not very small,
and also the spatial extent of the network.

To counteract the dimensional reduction, zero-padding is added to the in-
put. Zero-padding means adding values of zeros to the outer rim of the input,
making it wider, and in turn allowing control of the kernel width and the
output size independently[GBC16].

The CNN-architecture has seen commercial success in several applications
since its initial definition from Lecun et al.[LeC+89]. Since the ImageNet chal-
lenge in 2012, where Krizhevsky et al.[KSH12] designed a CNN architecture
to classify high-resolution imagery, the usage of CNN architecture in image-
recognition applications increased. CNN is known for its efficiency in image
classification but is usable on other types of data that are not grid-like in form.
In this report, for example, the use case for CNN is processing serialized time
series data.
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2.2 Machine Learning in Healthcare

ML and AI have increasingly become a component in healthcare for various
applications, ranging from diagnostics to treatment planning. This section
provides a contextual overview of the evolution and impact of ML and AI tech-
nologies in healthcare. The initial usage of the term ”Artificial Intelligence”
was at the Dartmouth Conference in 1956 and the term ”Machine Learning”
was coined shortly afterward by Arthur Samuel in 1959. The early attempts to
incorporate ML concepts in healthcare would appear after only a few decades.
In 1977, MYCIN, one of the first Expert Systems, systems that solve prob-
lems that human experts would, was a clinical consultation system that used
reasoning techniques from the field of AI to assist physicians with therapy
selection for patients with infections. Through interaction with physicians, it
would consult with the physician, explain its reasoning during the consultation,
and acquire new knowledge from experts without any experience in program-
ming[EH77]. MYCIN was followed shortly by other expert systems such as
Internist-I/QMR in the late 1970s and 1980s, developed at Pittsburgh Univer-
sity. These systems acted as a decision aid but could also critique physician
evaluations and suggest laboratory tests. Using statistical AI methods such as
ranking and partitioning algorithms, exclusion functions, and heuristic rules,
they created ranked list outputs of diagnoses given inputted physician find-
ings. Other expert systems, such as DXplain, Meditel, and Iliad followed in
the 1980s and were considered to be the first CDSS. The Expert Systems were
however rule-based systems that were built on predetermined IF-then state-
ments based on expert knowledge and diagnostic conclusions. Therefore, they
cannot be considered actual AI systems as we understand them today[Fra21].
During the 1990s, researchers began using novel ML techniques such as Artifi-
cial Neural Networks (ANN). ANNs gained prominence as a powerful ML tech-
nique, leading to various research-based systems in healthcare research. The
capability of ANNs to learn complex patterns and their adaptability to various
problems made them an attractive option for addressing healthcare challenges.
One of the applications of ANN-based Computer-Aided Diagnosis (CAD) sys-
tems was in helping radiologists identify suspicious areas in mammograms, such
as masses or microcalcifications, which could be indicative of cancer. For in-
stance, in 1995, Lo et al. published a study demonstrating an ANN-based CAD
system to detect microcalcifications in mammograms. The proposed system
significantly improved detection rates compared to traditional methods, show-
casing the potential of ANNs for cancer detection in mammography[Lo+95].
Another notable application of ANN in the 1990s was in diagnosis of car-
diac disease. Baxt et al. conducted a study using an ANN to diagnose my-
ocardial infarction in emergency department patients based on clinical data.
The ANN-based system outperformed traditional statistical methods, indi-
cating that ANN could enhance diagnostic accuracy in time-sensitive situ-
ations, such as emergency departments[G91]. However, these systems were
only research-based and were not used in clinical settings. It would take until
the 2010s that CDSS utilizing AI systems would be applied in the health-
care industry. Two examples of AI applications being applied in healthcare
are IBM Watson for Oncology and IDx-DR. IBM Watson for Oncology is a
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CDSS that utilizes natural language processing to analyze and extract in-
formation from unstructured data sources, such as medical literature, clinical
guidelines, and patient records to create a personalized treatment plan for can-
cer patients that clinicians can consider[Som+17]. IDx-DR, another example
of CDSS utilizing ML, used deep learning with a CNN to analyze retinal im-
ages to detect diabetic retinopathy, removing the need for human intervention
streamlining diagnostic processes, and improving access to screening where
experts are not available. The system was FDA-approved and CE-marked
and has seen usage in the United States with positive reception[Abr+16].
The previous examples of Clinical Decision Support Systems (CDSS) with
Machine Learning (ML) integration are just the beginning of a significant tech-
nological shift. The integration of ML technologies in healthcare is expected
to improve various aspects of patient care, reduce costs, and enhance overall
efficiency.

With the potential for personalized medicine, advanced diagnostics, accel-
eration of drug discovery, and cost savings, the global AI in the healthcare
market is projected to experience substantial growth. Estimates suggest a
compound annual growth rate (CAGR) of 37.5% due to increasing invest-
ments in AI research, technological advancements, and the growing demand
for personalized medicine. This could result in a potential market size increase
from 22.4 billion U.S. dollars in 2023 to a revenue forecast value of 208.2 billion
U.S. dollars in 2030[Res21].

2.3 The Current Challenges of Machine Learn-

ing in Healthcare

The prospects for ML in a healthcare setting are many and revolutionary, with
the promise of providing better care in every aspect of the industry. However,
the integration of the technology is in its infancy, and several challenges in
the healthcare industry limit the current scope of ML applications in juridical,
cultural, technological, and privacy aspects. This section will focus on the
technology and data privacy challenges currently in the healthcare industry
that limit ML applications in the healthcare industry.

2.3.1 Data Privacy Aspect

The data processed in healthcare technology and systems are classified as
highly sensitive data. The data contains personal information of individuals
that, if misused, can put said individuals at risk for discrimination, identity
theft, and misdiagnosis. This can result in distrust in patient-provider relation-
ships. Therefore it is of high interest for the healthcare industry to recognize
the sensitive data and protect it from potential risks of misuse.

Typical approaches to protect personal health data are anonymization and
encryption through de-identification, stringent access controls to the data, and
requirements to sign data use agreements that follow laws such as the Health
Insurance Portability and Accountability Act (HIPAA) and the General Data
Protection Regulation (GDPR) accordingly.
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These approaches lead to more secure data handling and storage but also
limit the amount of regulatory-approved data available. ML software needs
massive amounts of data to train and achieve acceptable results, and if the
amount of data is limited, the development becomes affected[Kay18].

Although the data is anonymized, re-identification of the data is still a
possible issue. In a recent study, a group of researchers developed a generative
copula-based method that estimates the likelihood of re-identifying an indi-
vidual. The model concluded that with 15 demographic attributes, 99.8% of
every American could be correctly re-identified from any data set[Luc19].

Re-identification doesn’t require several attributes either. Another study
had a set of 84 individuals between the ages of 34 to 89, who had undergone
a Magnetic Resonance Imaging (MRI) scan 3 months before the study, where
facial photos of each individual were taken. From the MRI images, three-
dimensional and two-dimensional reconstructions were created from each re-
spective individual. With publicly available facial-recognition software from
Microsoft Azure, it was possible to correctly match 83% of the MRI scans and
the photographs, and for 95% of the images, the correct photograph was one
of the top 5 candidates[Sch+19].

The studies demonstrate that even the most heavily sampled de-identified
data sets still don’t meet modern standards for anonymization set by data
privacy laws, such as the GDPR, and complicates the data handling step in
ML development further.

2.3.2 Performance aspect

If an ML model shows significant promise in the development phase, with
high prediction, validation and test performance, it is not guaranteed that
the model will perform similarly in a final production setting. Commonly,
the model underperforms significantly in the real-world setting compared to
when tested. This phenomenon is called underspecification[DAm+20] and is
a known issue in statistics. For machine learning development, there can be
several high-performance models, with small arbitrary differences, such as dif-
ferent random seed or initial node values that demonstrate high prediction
performance on the test data subset, but in a real-world setting will individu-
ally perform significantly different from each other. In their report, D’amour
et al.[DAm+20], claim that underspecification is a ubiquitous phenomenon in
modern machine learning development. In the paper, an experimental proto-
col in the form of stress tests was applied to several production-grade Deep
learning pipelines. One of these pipelines was a Recurrent Neural Network
model that predicted risk for acute kidney injury(AKI) based on electronic
health records from the paper written by Tomašev et al.[N+19] The model
was able to detect the onset of AKI 48 hours later with a precision of 55,8%
in all episodes and 90, 2% in episodes associated with dialysis administration.
However, the study found that there are operational factors, such as the time
of day when blood tests measure creatinine values, and the number of blood
tests taken that could affect performance. Two interventions were performed,
where the time data were shifted with a fixed offset and blood tests removed
not directly related to the diagnosis of AKI. This was further investigated
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by measuring two different Long-Short Term Memory (LSTM) models. The
interventions resulted in a worse performance of the models with larger dis-
persity, and the further investigated models showed substantial change in risk
prediction after interventions with flipped predictions.

This puts pressure on the manufacturer of the ML application to further
specify the requirements of the system, with rigorous testing with real-world
data on several different models. Firstly it is a very time-consuming task,
and secondly, the real-world data necessary for testing may not be readily
available[Hea20]. This results in models that perform well in a research &
development environment, but do not reach end production.

2.4 Machine Learning Operations

A development process that addresses the recurring issues of ML systems
in development- and production environments is Machine Learning Opera-
tions(MLOps). MLOps is a combination of Development Operations(DevOps),
which is an agile approach to software development- and operations manage-
ment, Data Operations (DataOps), an agile approach for Database develop-
ment and operations management, and Model Operations (ModelOps) which
focuses on lifecycle management and governance of AI and ML models[BN22].
The definition of MLOps enunciated by the Continuous Development- Foun-
dation(CDF) is as follows:
“The extension of the DevOps methodology to include Machine Learning and
Data Science assets as first-class citizens within the DevOps ecology”[ME22].

MLOps is an approach to automate the end-to-end lifecycle of ML devel-
opment, operations and monitoring. It aims to assist developers to establish
cross-functioning teams that builds an application considering the data, the
model, and the end application in small increments that are reproducible and
reliable in short adaptation cycles. See figure 2.2 for a visual representation of
an MLOps pipeline, from development to production.

MLOps has three major assets; Data, Model, and Code. In correspondence
to these three assets, there are three major workflows that MLOps consist of;
Data Engineering, Model Engineering, and Model Deployment.

Data Engineering

Data Engineering involves the acquisition of the data, using exploratory data
analysis to obtain statistical and graphic information of the metadata, trans-
formation, and feature engineering of the data into curated data sets, and
splitting of the data for eventual model training into subsets of data.

The data is the center part of the MLOps lifecycle and prevalent in all
phases of it, from model training, to -inference and -monitoring. The quality
of the application is directly correlated to the data quality, requiring the data
pipeline to be robust[23a].
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Model Engineering

Model Engineering uses the acquired curated data to determine a proper model
architecture for the task, the business inquiry, and the data structure. It
involves the typical ML workflow, where the model is trained and validated
on a training data set and a hold-out validation set respectively. The model is
further evaluated with the test subset, and if the performance is approved, the
model artifact is packaged for deployment, and the artifact is simultaneously
saved in a model registry[23a].

Model Deployment

Model Deployment takes the trained, validated, and approved ML model ar-
tifact and readies it for inference in the application environment. It is firstly
served to the application, and novel data is entered into the model, where
model inference occurs and the resulting predictions, classifications, or gener-
ative results such as phrases or images, are used as part of the application.
While the model operates it is monitored for its performance. This perfor-
mance is evaluated to determine whether the model performs adequately, and
metric-triggers assess whether the model performs well or a re-training is re-
quired. For each inference request, the results of the requests are logged for
evaluation[23a].

Motivation

MLOps is a further development of already the successful development princi-
ples of agile and DevOps-lifecycles. DevOps is the most common development
method in software development globally, where 47% of companies claim they
use the methodology, stating that their products have a faster development
cycle and reach the market faster. The development and operations have bet-
ter security, ensure higher software quality and better communication between
developer teams[Sta22].

MLOps practices differ however from DevOps practices. The Constant
integration/Constant Deployment (CI/CD) practice differs as CI needs to test
and validate further than code and component function, test and validate the
data, evaluate the data schemas used for sorting and storing data, and the
ML model. The CD is not about a single software service or package, but an
entire automated system utilized for model training, validation, and prepared
packaging into a model-prediction service[Tea23].

MLOps shows promise in the field of healthcare, both for the reasons stated
above, but mainly for the potential of model monitoring and for integration of
regulatory compliance in the development process. A case of utilizing MLOps
practices to reach a certified medical device product is the development process
of the medical device software Oravizio, the first CE-certified medical software
that assesses patient’s risks of a joint-replacement surgery, determining the risk
for revision within 1 or 2 years after surgery or risk of mortality after surgery.
The software development process of Oravizio demonstrates the possibility of
having an automated development process while also being regulatory compli-
ant[GT21].
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Figure 2.2: Example of an MLOps-pipeline with a CI/CD-implementation. The
illustration is adapted from Google Cloud MLOps Guide[Tea23]. CI = Continuous
integration, CD = Continuous Delivery.

2.5 Previous Research

The case study model the project uses for the MLOps framework is a neural
network model developed by Rocheteau et al.[RLH21]. The model is designed
to predict the length of stay and mortality in the ICU unit for data from
the electronic health record, showing a methodological proof of concept for
automated patient bed management. The model architecture is based on a
CNN utilizing Temporal Pointwise Convolution.

2.5.1 Temporal Pointwise Convolutional Neural Network

Temporal Pointwise Convolution (TPC) is a combination of two subclasses of
CNN, temporal convolution, and point-wise convolution. Temporal convolu-
tion convolves data over the time dimension and follows two key principles;
no data leakage from the future and an output that is of the same length as
the input, also in this case there is no weight sharing across features, it only
occurs across each time point. Pointwise convolution, or 1x1 convolution, is
typically used for dimension reduction in image processing. The main task
of the pointwise convolution segment of the model is to extract information
between features without information transfer over time. See figure 2.3 for a
visual representation of the network architecture.
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Figure 2.3: (a) Temporal convolution with skip connections (green lines). Each
time series, i (blue dots) and their decay indicators (pale orange dots) are processed
with independent parameters. (b) Pointwise convolution. There is no information
sharing across time, only across features (blue, green, and yellow dots). Illustration
from Rocheteau et al.[RLH21]

A TPC neural network combines the two former methods and runs them in
parallel while adding skip connections to cope with sparse data, and removes
the risk of input pollution by providing an anchor to the input.

The temporal section is first padded so the input- and output lengths are
the same, batch normalization and dropout are made in the second layer, and
skip connections are added in the third. The pointwise section first adds flat
features and decay indicators repeated for the same length as the time series.
Batch normalization and dropout are done for the second layer. The temporal
and pointwise outputs are concatenated into the TPC-layer, which is used
as input for a Rectified Linear Unit activation function. The output of the
function is combined with static features and diagnosis embedding, and finally
sent through two pointwise layers to obtain the final prediction with a hardtanh
activation function that restricts the output if it is lower than 30 minutes or
larger than 100 days See figure 2.4 and figure 2.5 for a visual illustration of
the TPC network architecture.
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Figure 2.4: The n:th TPC layer. Left-sided padding (off-white) is added to the tem-
poral side before each feature is processed independently. On the pointwise side, flat
features (yellow) and decay indicators (orange) are added before each convolution.
Illustration from Rocheteau et al.[RLH21]
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Figure 2.5: Further explanation of the TPC model. The original Time Series (grey)
and the decay indicators (orange) are processed by N TPC layers before being com-
bined with a diagnosis embedding D* (purple) and static features S (yellow) along the
feature axis. A two-layer pointwise convolution is applied to achieve final predictions
(red). Illustration from Rocheteau et al.[RLH21]

The Length of stay predictions that the model produces have no negative
values making it positive-skewed. this makes the prediction task more chal-
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Figure 2.6: The behaviour of MSLE(blue) and MSE(red) when the true LoS is 1 day.
Illustration from Rocheteau et.al.[RLH21]

lenging, and the training thereof. To address this, the appropriate loss function
for the model is Mean Squared Logarithmic Error (MSLE), an alteration of
the common Mean Square Error(MSE) loss function (2.7).

MSE =
1

n

n∑
i=1

(log Yi − log Ŷi)
2 (2.7)

MSLE is the loss function of choice as it penalizes proportional errors.
Consider an error of 5 days for a 2 day-stay prediction versus a 30 day-stay
prediction. If the MSE was used as the loss function instead of the MSLE,
the 30-day-stay prediction would be strongly penalized resulting in the model
predictions regressing towards the mean and becoming overtly cautious, which
is inappropriate for bed-management prediction as over-predictions must not
be too harshly penalized. Long-stay patients have a disproportionate effect on
bed occupancy that needs to be taken into consideration. See figure 2.6 for a
visual presentation of the behavior for the respective loss functions, where it is
illustrated that the MSLE does not penalize large over-predictions compared
to the MSE.
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3

Methods

The objective of the project is to devise an implementation of model monitoring
with the MLOps framework for CDSS, to determine if performance drift is
detected. Specifically, a published ML model for a clinical task is trained and
validated on a clinical data set. The data is initially split into two, separate
subsets based on age groups to determine if performance drift occurs when
the ML model is trained on one data set, but exposed to the other. This is
done by utilizing MLOps practices and an MLOps environment. From the
set objective, the method has been structured into subtasks to manage each
specific task. The overall method is divided into the following subtasks:

• The choice of MLOps practices applied to the project, their function,
and their usage. This is presented in section 3.1.

• The choice of the data set utilized throughout the project. This is pre-
sented in section 3.2

• The choice of resources and utilization of the resources from the works
of Rocheteau et al. and A. Johnson et al. throughout the project. This
is presented in section 3.3

• The choice of evaluation metrics to determine model performance after
model training and during model monitoring. This is presented in section
3.4.

• Alteration method of the acquired data for model training and model
inference respectively. This is described in section 3.5.

• Model training method, choice of hyperparameter settings, and interpre-
tation of the training performance. This is presented in section 3.6

• Serving of the trained model for inference, how the performance of the
model is monitored on the altered data, and how the model’s performance
is interpreted in comparison to the performance on the training data.
This is described in section 3.7.
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3.1 MLOps practices

MLOps practices are used for the case study to implement a software structure
that supports model monitoring, and a clear division of tasks.

The practices used are adopted from the process suggested in the white pa-
per ”The Big Book of MLOps” written and published by Databricks Inc.[BN22].
See figure 3.1 for a visual representation of the development process utilized
for the project. The development process covers all steps, from data acquisi-
tion to model deployment and -monitoring, that are taken for developing an
ML model. Initially, data preparation occurs, which involves acquiring ap-
propriate data and storing it appropriately. The initial step is followed by
exploratory data analysis, where the acquired data is analyzed thoroughly to
determine the potential ML-use case and the procedures to consider in the fol-
lowing step, feature engineering. Feature Engineering involves cleaning, trans-
forming, or normalizing data into an appropriate shape or scale for the ML
model to interpret the data correctly, based on the model’s architecture. After
feature engineering, Model Training is initiated, where a model of choice is
tuned and optimized on the available training data. Afterwards, the model’s
training performance is validated in the Model Validation step. The model
validation step involves further optimization of the model’s performance on
held-out validation data, tuning eventual hyper-parameters, and determining
the appropriate training time. Finally, model performance is tested on test
data that the model has not been exposed to, to determine if the model is
fit for deployment based on its performance. The deployment step involves
applying the model to the defined use case, where it is exposed to real-life
data and the resulting model output is interpreted for decision-making. The
model’s performance and resulting output are monitored and evaluated dur-
ing the monitoring step to ensure that performance is not worsening. If so,
the development process is iterated from the appropriate step to update and
further improve the model’s performance. The development process has been
utilized to structure the project method tasks presented in 3.

Figure 3.1: the MLOps model-development process, adopted from The Big Book of
MLOps by Databricks Inc.[BN22].

From the ”Big Book of MLOps” white paper, The case study implements
the ML-deployment pattern ”Deploy Models”. A deployment pattern is a divi-
sion of tasks into environments associated with certain parts of the ML model
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development for ease of function. In the deployment pattern published and
suggested by Databricks Inc., an ML-model artifact is generated in a develop-
ment (dev) environment, that is then evaluated, validated, and approved in a
staging (staging) environment before finally being deployed for inference in a
production (prod) environment. The environments are representative of each
step of the development cycle and the names of the environments are adopted
from DevOps practices. See figure 3.2 for a visual representation of the ”De-
ploy Models” deployment pattern. The dev environment is the environment
for experimenting, augmenting, and generating code for the end application.
In the case of ML, dev is the environment where the ML artifact and the asso-
ciated code are trained, and developed, respectively. The staging environment
is the environment for simulating the final environment, prod, by determining
whether the applied software functions properly. For ML, it translates to de-
termining whether the artifact performs as expected in a similar environment
when ingested with data similar to the data it will be exposed to in prod. The
prod environment is the final environment where the developed software is set
up and used for commercial applications. For ML it means model inference on
real-world data where the results are used for commercial applications, which
can directly or indirectly interact with the software user. ”Deploy Models” is
the deployment pattern of choice due to the nature and scope of the project.
The use of the MLOps practices, the development process, and the deployment
patterns’ usage will be further analyzed and evaluated in Section 5.

Figure 3.2: the MLOps ”Deploy Models” deployment pattern, adapted from an illus-
tration in The Big Book of MLOps by Databricks Inc.[BN22].

3.2 The MIMIC-IV data set

The data set used for model training, validation, and testing for the study is the
Medical Information Mart for Intensive Care (MIMIC)-IV data set. MIMIC-IV
is a data set where the data is originally from the MIMIC-III data set. MIMIC-
IV provides critical care data from nearly 300,000 patients admitted to critical
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units at Beth Israel Deaconess Medical Centre (BIDMC). The project is a col-
laboration with BIDMC and the Massachusetts Institute of Technology (MIT).
The data is deidentified and patient identifiers have been removed according to
the HIPAA. MIMIC-IV has further enhanced the original data through mod-
ulation, further distinguishing the data content for clarification. See figure 3.3
for a visual representation of the modularity[al23]. Further reading involving
the management of the MIMIC-IV data can be found in chapter 7.

3.3 Usage of available resources

The resources and earlier works from A. Johnson et al.[Joh+18] and Rocheteau
et al[Roc21]. are used throughout the project. From A. Johnson et al. the
MIMIC code repository is used for creating readable data tables with the use
of the structured query language (SQL) programming language. The MIMIC
data are divided into three separate modules: Hosp, ICU, and Note. Hosp con-
sists of lab tests, demographic and medication data admission/discharge/trans-
fer records, and other hospital-wide data. ICU consists of data documented
from the ICU bedside. The module contains data for charted observations of
the patient, intravenous infusions done, patient outputs, and documentation
of ongoing procedures. Note consists of discharge reports and radiology re-
ports in free text form. the discharge reports are summaries of the patient’s
history and course over the entire hospitalization. Radiology reports are done
for imaging studies, over a wide set of imaging modalities, such as X-rays,
magnetic resonance imaging, and computed tomography. See figure 3.3 for a
visual illustration of the modular structure.

The MIMIC-IV data that are processed and enhanced with the resources
provided by Rocheteau et al[RLH21]. are stored in the Hosp and ICU modules
because they contain data from general hospitalization and ICU. Therefore the
Note module is not used for the project.
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Figure 3.3: The modular structure of the MIMIC-IV dataset with examples of their
respective content. The modules are linked with subject- and hospital-admission iden-
tifiers, and de-identified date and time.

The MIMIC data of interest are transferred and unpacked with the provided
code to a local PostgreSQL server, where the Hosp and ICU modules are
unpacked into their separate schemas and the stored data are sequenced into
tables of varying size.
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3.3.1 Featurization of the data

The MIMIC data stored in the PostgreSQL schemas are further edited with
the use of a code repository provided by Rocheteau et al.

A new schema is created, and data from the original MIMIC schemas is
copied and transferred into new tables stored in the new schema. This is done
for the pre-processing scripts. From MIMIC-IV data, all patients over 18 years
of age had a minimum recorded stay in the ICU of 5 hours and had at least
one observation from a doctor. The pre-processing script, written in Python,
makes for the MIMIC-data 2 sets of features. One set consists of static fea-
tures and the other of time series. A total of 101 time series are extracted by
the pre-processing scripts from the following tables: lab, nursecharting, res-
piratorycharting, vitalperiodic and vitalaperiodic. For time-series variables to
be included they had to be present in at least 12,5% of patient-stay variables
or 25% of lab variables. The lab variables were sparsely sampled in the data
set. To deal with the missing data, first, the data is resampled into one-hour
intervals, and then forward-filling over the gaps of the data is done. Forward
filling is a method of data imputation that imputes missing values with the
latest observed value. See figure 3.4 for a visual illustration of the forward
fill-method. Rocheteau et al. argue that this is a more realistic approach to
imputation than other methods, such as linear interpolation, for in a hospital
setting, clinicians would only have the most recent value available[RLH21].
Data that is available before ICU admission is removed, and finally, decay in-
dicators are added to the variables to specify where the data is becoming stale,
using the decay value 0, 75j, where j is the time since the last recording. In
total, 12 static features were extracted from the icustays, admissions, patients,
and chartevents tables. For both static features and time series, discrete and
continuous variables were scaled to the interval [−1, 1] with the 5th and 95th
percentile as boundaries and the interval [−4, 4] as an absolute cut-off to avoid
large or incorrect inputs and avoid assumptions of the variable distribution.
Categorical values were converted to numerical counterparts, where binary
categories were coded as [0, 1] and multi-categorical variables were one-hot
encoded, which means a categorical value is translated into a one-hot value,
consisting of a group of bits where only one bit is ”hot”, e.g. true. For exam-
ple, a one-hot encoding with three states would be represented as [001, 010,
100][HH22].
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Figure 3.4: Illustration of the forward-filling method to impute missing data. Missing
data is imputed with the last observed value.

3.3.2 MLflow

The model monitoring and maintenance are performed with the open-source
library MLflow. MLflow is developed by Databricks Inc. for end-to-end de-
velopment of MLOps workflows. The program has built-in integration with
multiple libraries and can be used with any algorithm, library, or deployment
tool[Mat18].

MLflow has four major components that appear and function differently
for each partial stage in the end-to-end development:

• MLflow Tracking :
MLflow Tracking is a component with an API and UI that logs parame-
ters, code versions, metrics, and output files, that can in later stages be
used for result visualization. It lets you log and query experiments in a
Python API, Java API, R API, and REST API. The REST API will be
used for this project. MLflow tracking is organized around the concept
of runs, which are executions of some data science code. This can be
a model prediction, metrics calculation, or a result visualization from
predictions or metrics. It records information on the code version, the
start and end time of a run, the source file that starts the run, Key-Value
parameters, and metrics, where the metrics can be updated throughout
the run like, for example, when one would plot the loss for each training-
epoch. Runs also store MLflow artifacts, which are output files that can
be in any format. The file can be a PNG image, an ML model, or a data
file, that can be accessed or visualized from the API and UI. Runs are by
default recorded locally, but can also be stored in a database, an HTTP
server, or a Databricks workspace[23f].

33



• MLflow Models:
MLflow models enable us to package a large variety of ML models from
different types of libraries and deploy these models to a variety of model-
serving or inference platforms. An MLflow model is a packaged directory
of different arbitrary files that contain an MLmodel file that defines mul-
tiple flavors the model can be viewed in. Flavors are the main feature
of MLflow Models that makes the model format and code interpretable,
without needing tools that the model is planned to work with integrated
for that specific code library. The package defines several standard flavors
from different kinds of ML code libraries that the built-in development
tools all support[23d]. With the MLflow Models component, a logged
or registered model can be deployed, or ”served”, to a port or a server
of choice for model inference and putting the model into a production
environment. Through the MLflow Models API, the served model can
be given batches of data for predictions.

• MLflow Model Registry:
The MLflow model registry is a component that stores models and tags
them with their development stage. With the use of a set of APIs and UI,
the model registry is used to manage the lifecycle of an MLflow model.
The Model registry uses concepts that facilitate the model lifecycle and
uses earlier component-specifics for that purpose. An MLflow model that
is created from an experiment or run is logged with the model flavor’s
logging function.

mlflow.<model_flavor>.log_model()

Once logged the model can then be registered. A registered model has a
unique name, a version number, and an associated transitional stage[23c].

• MLflow Projects:
MLflow Projects is a packaging format for data science code to make it
reusable and reproducible. It is primarily a convention for code organiza-
tion and -documentation for experiment reproducibility both manually
and for automated tools. The project is a directory or a file that contains
the model code and associated files that contain environment specifica-
tions and library dependencies that are downloaded and run before the
production of the code[23e].

MLflow is the ML lifecycle manager tool of choice in the use case of this
project. The functions and methods in the software library give us a struc-
tured visualization of the performance of the trained models, and efficient tools
for model deployment that replicates a similar inference environment for the
model’s use case, where a clinician would be giving the model available patient
data for a length-of-stay prediction. From the UI and API interactions, MLflow
gives us a built-in monitoring tool for performance metrics. The utilization of
the software library will be further analyzed and evaluated in Section 5.
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3.4 Evaluation Metrics

The Length-of-Stay prediction from the TPC model is a numerical value, and
the most appropriate metrics for such predictions are metrics used for regres-
sion problems[GK22]. Additionally, the evaluation metrics specified for the
model in the work of Rocheteau et al. use regression metrics for the Length-
of-Stay problem[RLH21].

The metrics of choice are chosen based on the metrics used for the model
in the original paper, and their interpretability:

• Mean Absolute Deviation (MAD)
MAD is a method for determining the deviation from the mean data
value. it is a common metric to determine the eligibility of a forecast
prediction. As the performance is based on the deviation disparity, the
smaller the MAD measured, the better the performance

MAD =
1

n

n∑
i=1

|yi − ȳ|, y ∈ {y1, y2, . . . , yn}

• Mean Absolute Percentage Error (MAPE)
MAPE is a method to determine the percentage deviation of the pre-
dicted value from the real prediction value. it is calculated using the
absolute error of the prediction divided by the true value and multiplied
by the percentage factor of the set. The performance of the MAPE is
deemed better the smaller the metric is.

The formula for the MAPE utilized in the project is as follows:

MAPE =
100

n

n∑
i=1

∣∣∣∣∣ yi − ŷi

max
(

4
24
, yi
)∣∣∣∣∣ , yt ∈ {y1, y2, . . . , yn}

The denominator in the MAPE equation is the same as in Appendix D in
the paper by Rocheteau et.al. to manage local unbound values[RLH21].
The modification is to be interpreted as if the duration of the LoS is
smaller than 4 hours, the value is set to 4

24
, to address values too close

to zero.

• Mean Squared Error (MSE)
MSE in regression prediction measures the squared difference of the resid-
ual value. It is interpreted as the lower the value, the better the metric
performance.

The MSE formula is defined as follows:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2, y ∈ {y1, y2, . . . , yn}

• Mean Squared Log Error (MSLE)
MSLE is an altered error method from the MSE, that adds the log func-
tion to the error summation. This reduces the large outlier values and
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reduces their impact on the resulting error margin, which gives a more
balanced impact on the error margin for all values. The performance of
the MSLE is deemed better the smaller the metric is. The MSLE formula
is defined as follows:

MSLE =
1

n

n∑
i=1

(log(1 + yi)− log(1 + ŷi))
2, y ∈ {y1, y2, . . . , yn}

• Coefficient of Determination(R2)
R2 is an indication of the proportion of variation in the prediction values
that can be explained by the independent variables of the regression
model. The metric is in the range of [0, 1], and the larger the metric
value, the better the variance explained by the model, i.e. the ”goodness-
of-fit” of the model, meaning that if the R2-score is 1, the variance is fully
explainable by the independent variables, and 0 means their variance is
not explained by the independent variables. The formula is as follows:

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
, y ∈ {y1, y2, . . . , yn}

The numerator is the sum of all residuals squared, while the denominator
is the sum of squares total.

3.5 Data Alteration

As the focus of the project is the monitoring of deployed ML models, it is
important to detect an apparent change in the model performance. For the
model to perform differently, the MIMIC data has been split and altered into
two data sets, where one is for training, validation, and testing purposes and
the other for inference. The split factor of choice is the retirement age of the
United States population. At older ages, the multitude of physiological changes
that occur in the bodies of elderly people can affect the prediction result[BS81].
The training and validation set consists of patient data with patients in the
age span of 18 - 66, while the inference data set has patient data with patients
aged 67 and older. The MIMIC data set is based on patients in the United
States. Citizens of the U.S. gain full social security benefits if retiring at the
age of 66-67 depending on one’s decade of birth, and access to the government
Medicare insurance package when turning 65. While the normal retirement age
in the U.S. is 64,9 and 64,7 for men and women respectively, the Non-retiree’s
retirement age target has increased beyond age 66, meaning if the targets are
met, the normal retirement age will see an increase in the future[Jon22]. See
figure 3.5 for an illustration of the data alteration and the resulting subsets
from the alteration.
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Figure 3.5: Illustration of the workflow for the pre-processing steps of the data, the
eventual age split, and the separation of training, test, and validation for the 18-66
data, and unique patient, subset, and full set of the 67-and-above data.

3.6 Model Training

A TPC model is trained on the pre-processed MIMIC-IV data that contains
patient data with an age span between 18 and 66. This is done locally in the
Python programming language, and the trained model is then registered in
the MLflow framework.

The hyperparameters of the TPC model are set based on the table values
presented in the report by Rocheteau et al.[RLH21]. The parameters of choice
are set for the MIMIC-IV data set, that acquired the best performance result
presented from their work. The prediction task of focus is the Length of
Stay of the patient in the ICU, and the mortality prediction task will not be
utilized[RLH21].
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TPC-Specific

Temporal Specific Pointwise Specific
Temporal Channels: 11 Pointwise Channels: 5
Temporal Dropout 0.05 Main Dropout*: 0

Kernel Size: 5

TPC Common
Batch Normalisation*: True

No. TPC Layers: 8

Non-TPC-Specific Global Parameters
Main Dropout*: 0 Batch Size: 8

Final FC Layer Size*: 36 Learning Rate: 0.00221
Batch Normalisation*: True

Table 3.1: Best Hyper Parameters for the TPC-Network with the MIMIC-IV data
for LoS prediction. From Rocheteau et al.[RLH21].

The performance of the trained model is evaluated with the evaluation
metrics described in section 3.4 with the test set from the data. The values
calculated from the metrics are used as the valid baseline performance when
evaluating the model prediction performance on the inference data. A perfor-
mance variation is deemed significant if larger than a 5% error margin.

3.7 Model Inference

Using the MLflow component MLflow Models, the trained TPC-model, now
logged and registered, is served to a local server port for model inference.
The model will be ingested with the altered MIMIC-IV data, with patients
of ages 67 and older. The resulting prediction data from the model is saved
and evaluated with the metrics mentioned in section 3.4, and the metrics’
performance will be compared to the baseline determined with the test-set
from the data containing patients in the ages of 18 to 66.
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4

Results

The results section showcases the results for certain subtasks of the method
subtasks. The results are presented in the following way:

• The resulting data distribution after pre-processing and the data alter-
ation. This is presented in section 4.1.

• The resulting feature shape of the data, the difference from the original
MIMIC-IV data set, and how the data alteration affected the final data.
This is described in section 4.2.

• Illustrations of the result from the TPC-model training, with the calcu-
lated evaluation metrics, and graphs showcasing the performance of the
model on the training data set. This is presented in section 4.3

• Illustration of the result from TPC-model inference, with similar perfor-
mance metrics and illustrative graphs as in section 4.3 to showcase the
performance of the TPC-model on the inference data set, and the perfor-
mance variation compared to the training- and validation performance.
This is presented and described in section 4.4.
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4.1 Distribution of the MIMIC-IV Data

The resulting distribution, after pre-processing, of the MIMIC-IV data, is
showcased in table 4.1. The splitting of the data based on age resulted in an
approximate 50/50-split of the data, both patient-wise and time-series point-
wise. The data consisting of patients in the age span of 18-66 were used as the
training data for the TPC model, and after pre-processing were split further
into training, validation, and test subsets.

The other half of the data, consisting of patients in the age group 67 and
older, are used for the model inference. The data are not split but instead
merged into a larger data set that the trained TPC model, after being served,
performs predictions on for model inference, and the performance is monitored.

From table 4.2, we can see the mean age gap between the two data sets,
and that there is a notable age difference of approximately 27 years between
the data sets. However, The LoS of the two patient groups are very similar,
with a minuscule time difference when comparing the mean LoS (0.01 days,
14.4 minutes), and a minor time difference when comparing the median (0.15
days, 3.6 hours)

MIMIC-IV
Total Patients: 299,712

Patients admitted to the ICU: 73172

ICU Patient Distribution Post-Processing
Training Data(age 18-66) Inference Data(Age 67+)
Total patients: 36900 (50,43%) Total Patients: 36272 (49,57%)

Training Set: 26032 Merged
Validation Set: 5473 Merged

Test Set: 5395 Merged
Mean Age(years): 51.32 Mean Age(years): 78.26
Mean LoS(days): 3.45 Mean LoS(days): 3.46
Median Los(days): 1.85 Median LoS(days): 2.00

Time-Series-Points Distribution Post-Processing
Training Data(age 18-66) Inference Data(Age 67+)

Total: 2748326 Total: 2751119
Training Set: 1939110 Merged
Validation Set: 403881 Merged

Test Set: 405335 Merged

Table 4.1: Distribution of patients, their mean age, mean and median Length of
Stay(LoS) in the ICU, and distributions of time-series-points in the altered MIMIC-
IV Data sets.

4.2 Data Alteration

Before the pre-processing of the MIMIC-IV data is made to match the expected
input shape for the TPC model, the data is split into two separa te data sets,
where the data used for training purposes consist of patients in the age span
of 18 to 66 and the data for inference purposes consist of patients in the age
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span of 67 and older.
After pre-processing, a set of flat features in both data sets was excluded

from each respective feature file. Feature exclusion is determined based on the
occurrence of the feature data for each patient. The exclusion rule is if the
feature is not measured or present for more than 1000 patients in the data set,
then the feature is excluded from the final, pre-processed flat feature file.

The flat features that were excluded after pre-processing, what data set
they were removed from, and the type of data they represented, are showcased
in table 4.2.

Table 4.2: Flat features excluded from the altered flat feature data sets

Feature: Type: Excluded
from:

Admission location
transfer from skilled
nursing facility

Categorical(Boolean) Both

Admission Location
Walk-in/Self-Referral

Categorical(Boolean) Both

First Care Unit
Neuro-Intermediate

Categorical(Boolean) Inference set

First Care Unit
Neuro-Stepdown

Categorical(Boolean) Both

First Care Unit
Neuro-surgical Inten-
sive Care Unit (Neuro
SICU)

Categorical(Boolean) Both

Insurance MedicAid Categorical(Boolean) Inference set
Race, White-Other,
European

Categorical(Boolean) Both

Insurance Misc. Categorical(Boolean) Training set

To make the input features have the same dimensions, all the features in
table 4.2 were excluded from both the training- and inference flat features.

4.3 Model Training

Table 4.3 contains the evaluation metrics of the result from the test set from the
18-66 data set. These metric results are used as the baseline for determining
drift in the inference performance.

µ σ MAD MSE MAPE MSLE R2

4.067 4.893 2.401 27.404 61.089 0.598 0.459

Table 4.3: TPC-network performance on the test-set of the patient data within the
age-span 18 to 66.

The model reaches the best performance for the training data set after
10 epochs, and the best performance for the validation data set also after 10
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Figure 4.1: Learning curve of the loss for each epoch for the training- and validation
data sets. The loss function utilized was Mean Square Log Error(MSLE).

epochs. At epoch 8, the loss of the performance for the training- and validation
data is very similar, with the training loss being 0.2254 and the validation loss
0.2219. See figure 4.1 where the training loss curve, and validation loss curve,
are respectively displayed.
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Figure 4.2: Plot of the model’s predicted Length of Stay and the actual length of stay
for a unique patient in the age group of 18 to 66.

The time series of a unique patient is displayed in figure 4.2. The figure
illustrates the predicted LoS and the actual LoS of one patient, from the patient
group within the age span of 18 to 66. The predictions (blue) are made in
1-hour periods, where the model predicts the LoS of a patient for each hour.
The actual LoS (orange) is illustrated as a linear-receding line where the initial
value is the total length of stay, and the line recesses towards 0 in a 1-hour time
scale. For each hour, the length-of-stay prediction for the patient is illustrated.

43



Figure 4.3 and 4.4 illustrates, beyond the patient in 4.2, 11 more unique pa-
tients with their length-of-stay prediction and actual length-of-stay co-plotted.

Figure 4.3: Length of stay prediction and actual length of stay for 6 patients in the
age group of 18 to 66.
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Figure 4.4: Length of stay prediction and actual length of stay for 6 patients in the
age group of 18 to 66.

For further clarification of the prediction distribution and accuracy, a his-
togram of the residual prediction values was made. Figure 4.5 illustrates the
residual histogram of the test set from the training data, showcasing the quan-
titative distribution of the residuals, with the residual values on the x-axis,
and quantity on the right y-axis. On top of the histogram, a kernel density
estimate of the residuals is co-plotted, illustrating the percentage distribution
of the residuals, with the values shown on the left y-axis.
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Figure 4.5: Histogram and Kernel Density Estimate-plot of the residual values of
the inference prediction on the 18-66 data.

4.4 Model Inference

The results showcased in this section are from monitoring of the model predic-
tions when it predicts the inference data. The performance when the model
processes the inference data is showcased in table 4.4. The performance is
determined on the entire inference dataset. All the patients and data points
quantified in the inference data showcased in 4.1 are used for calculating the
performance. As showcased in table 4.4, compared to the baseline performance
from 4.3, The model shows a significant drop in performance. The most severe
drops in performance are for the MSLE and MAPE metrics, with a perfor-
mance loss of 44.64% and 41.13% respectively. The R2-coefficient was reduced
by 29.85% from the baseline, meaning that the variance is less explainable by
the independent variable features. The MSE metric had a 17.93% reduction
from the baseline metric, showcasing also a significant performance loss. The
MAD metric had the lowest reduction from the baseline metric with a 6.08%
reduction, which is a significant performance loss if applying a 5% error margin
from the baseline metrics. The mean prediction of LoS on the patient data is
very accurate when compared to the mean LoS of patients in the age group 67
and older in table 4.1.
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µ σ MAD MSE MAPE MSLE R2

3.450 4.250 2.547 32.318 83.316 0.865 0.322
performance loss (%) 6.08% 17.93% 41.13% 44.64% 29.85%

Table 4.4: TPC-network performance on the test set of the patient data within the
age-span 67 and older.

When comparing the figures illustrating the predictions of the unique pa-
tient from group 18-66 in figure 4.2 and the unique patient from group 67 and
older in figure 4.6, the predictions in the latter figure has a larger variance and
residual. This can be observed when comparing the Y-axes (The LoS in days)
of the two figures. It is of note however that the LoS of the patient in figure 4.2
is longer than for the patient in figure 4.6. This is also not a significant result
for the entire performance, as it is only one patient. However, similar results
are showcased in the figures 4.7 and 4.8, which are group plots of a sample
size of all patients from the patient group 67 and older, when compared to
the group plots 4.3 and 4.4, of the same sample size. The larger variance and
residual can be observed when comparing the Y-axes of the figures.

Figure 4.6: Plot of the model’s predicted Length of Stay and the actual length of stay
for a unique patient in the age group of 67 and older.
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Figure 4.7: Length of stay prediction and actual length of stay for 6 patients in the
age group of 67 and older.

Figure 4.8: Length of stay prediction and actual length of stay for 6 patients in the
age group of 67 and older.
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The histogram and kernel density estimate plot from figure 4.9, in compar-
ison to the similar plots in figure 4.5, have a smaller quantity and density of
residual values surrounding zero. Figure 4.9 also showcases a larger spread of
outlying residual values, and a larger positive skew from zero and outwards.
The histogram is generated from a subset of the 67-and older patient data that
contains the same amount of data points as the histogram in figure 4.9.

Figure 4.9: Histogram and Kernel Density Estimate-plot of the residual values from
a subset of the inference prediction on the 67+ data. a subset of values are chosen
to match the residual-value set size in figure 4.5.
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5

Discussion

5.1 The MLOps Practices

The development process suggested by Databricks Inc. and illustrated in 3.1
was utilized as the structure for the method tasks. The data acquisition, -
preparation, and exploratory data analysis steps covered the MIMIC-IV data
acquisition and analysis. Based on the data, the TPC model became the choice
of use case model. For the project’s purpose, the monitoring and detection of
performance drift, the data set was featurized and split into age-demographic
subsets. The model training and validation steps were followed similarly as
described in section 3.1, utilizing the optimal hyper-parameters presented in
the report by Rocheteau et.al.[RLH21]. The serving of the trained TPC model,
ingestion of data into the model, and evaluation of the model’s performance
followed the structure of the deployment and monitoring steps. The resulting
utilization of the development process structure was beneficial for the project
as it structured and segmented the necessary tasks appropriately with a data-
centric approach in mind. The nature of the project not being iterative made it
difficult to determine the iterative benefits of the development process, which
are in large-scale operations necessary to consider for model updating, and
what the triggers are for model retraining initiation.

The ”Deploy Models” deployment pattern was the framework of choice as
it matched the scope of the thesis project. It is the appropriate choice when
model-training is non-iterative, or when the training load is too big and takes
a long time. The deployment pattern is preferable when the development en-
vironments also have no strict separations. For example, in the use-case of
the project, the dev- and staging environments were, in a sense, merged, as
the evaluation and testing of the model occurred in the dev environment. The
reason for merging the environments was data-oriented, as the model was au-
tomatically tested on the test set after model training. For the course of the
project, the dev environment and the prod environment for both the model
artifact and ancillary code were highly analogous to each other. This fea-
ture made updating the model in the prod environment faster after training a
new model artifact in the dev environment. Databricks[BN22] does, however,
recommend using the second pattern, ”Deploy Code”, for MLOps frameworks,
instead of the ”Deploy Models” pattern. The ”Deploy Code” pattern promotes
the code and the model towards the prod environment, where a new model is
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trained in each environment. First in dev for model development, second in
staging for integration testing, and finally in prod for the final model artifact
that will be used in the application. The deployment pattern’s environments
are more strictly separated which makes development more structured. Both
code and model performance are tested in staging, making the development
process safer, and making it easier to automate retraining in locked-down en-
vironments, ensuring the reproducibility of ML models and ancillary code.
The deployment pattern requires a CI/CD -infrastructure however that makes
larger model artifacts, or models that are to be one-off developed, more cum-
bersome time-wise to train and deploy to production. The deployment pattern
requires the adoption of modular code practices to be used efficiently, which
demands more prior knowledge from team members unfamiliar with software
engineering practices, such as Data Scientists. The ”Deploy Code” deploy-
ment pattern is preferred over ”Deploy Models” when a more strict structure
and better scaling opportunities of the pipeline are required. However, for the
use case in this project ”Deploy Models” was favored, and similarities with
the deployment pattern and the framework utilized for developing Oravizio
showcases that it is applicable for certain development cases for clinical ap-
plications[GT21]. Further interest exists in determining what is a suitable
deployment pattern, but that is beyond the scope of the project. It is im-
portant to consider that the development process and deployment patterns
offered by Databricks Inc. are one of several alternatives for implementing
MLOps practices and a more suitable approach may exist for clinical purposes.
Furthermore, it is worth noting that MLOps-framework development is an on-
going process, and the best practices that are currently recommended based
on the current knowledge and experience may evolve, slightly or significantly.

5.2 The MIMIC-IV Data

The MIMIC-IV data was the data set of choice for the project as it is a large
set of real-life clinical data. It is imperative to utilize real-life numerical cir-
cumstances when training AI and ML models to enhance the feasibility and
credibility of the resulting predictions for clinical application. The project team
behind the resulting data consists of a team of interdisciplinary competencies,
with data scientists, clinicians, and researchers who work to develop and main-
tain the data. This collaboration is crucial for interpreting the clinical context
of the data. In the context of ML development, it highlights the importance of
interdisciplinarity in defining the use case for the extracted data and the appli-
cation of the ML model. The data is de-identified using a neural network with
a transformer-architecture[JBP20] combined with a rule-based approach from
a software package[Nea+08]. The deidentification process follows the stipu-
lation formulated by the HIPAA Safe Harbor to remove 18 identifiers from a
dataset to classify it as deidentified. The technique can be replicated when
the deidentification of other electronic health records is necessary for approved
regulatory use. However, the HIPAA is solely applicable in the United States.
If an ML application is utilized in medical devices or other software appli-
cations in another regulatory market, for example, the EU, the data used to
train the model must follow the requirements of the GDPR to be considered
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de-identified. As HIPAA considers solely personal health information, and
GDPR considers general personal information, the scope is larger for GDPR,
the definition of the data to protect is different, and the acquisition requires
different forms of consent[KD18]. this showcases the importance of respon-
sibly processing the data acquisition to make the data and ML application
compliant with current regulations in different areas. Databricks Inc. suggests
that a Data governance officer should be involved in the MLOps team during
the MLOps workflow, to ensure that data governance, data privacy, and other
measures for compliance are adhered to across the data acquisition, model de-
velopment, and deployment process. A vital consideration is the acquisition of
data for MIMIC-IV. The data was collected from 2008 to 2019 from the ICU of
Beth Israel Deaconess Medical Center(BIDMC) in Boston, Massachusetts, and
is generated and archived as part of routine clinical care, monitoring, provider
orders, and billing. To extract EHR data, it was collected from a MetaVi-
sion[IMD] clinical information system for bedside critical care[al23]. The data
is first collected into a single data warehouse system and then transferred to
secure servers for further processing. The process described was functional for
MIMIC-IV, though a similar process to collect real-life clinical data from an-
other hospital may need to differ considerably. If data acquisition is to occur
at multiple hospitals, a highly adaptable acquisition method is necessary for
minimal disruptions.

5.3 MLflow

MLflow proved to be a necessary component for enabling MLOps practices
throughout the project, in particular the model monitoring. It was the software
library of choice for model management as it was recommended, and developed,
by Databricks Inc.[BN22] It was therefore a natural choice as the MLOps
practices utilized were based on the content from the white book.

5.3.1 Usage of the MLflow package

MLflow usage was based on the MLOps development process and -development
pattern showcased respectively in figures 3.1 and 3.2. As data was collected,
analyzed, and feature-engineered based on earlier research and available re-
sources, MLflow was mainly used for model training, validation, deployment,
and monitoring. For model training, The MLflow Tracking 3.3.2 component,
together with the MLflow Model Registry 3.3.2, were used to track artifacts
produced from model training showcased in the MLflow UI. After testing the
trained models’ performance, the evaluation metric artifacts were logged with
the corresponding model artifact. Model validation occurred using the MLflow
UI, where the metric performance for each model was visually compared, and
the model with the highest overall metrics performance was selected for model
deployment and -monitoring. Model deployment used the 3.3.2 component to
serve the model artifact to a local host for model inference with data ingested
using the MLflow Tracking REST API. The MLflow Projects 3.3.2 component
was unused during the project. The component is designed for reproducibility
of data science code, either for code-sharing or for automation purposes such
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as unit testing or automated runs for model retraining. This was, however,
in some aspects both irrelevant and beyond the scope of the project as the
software was managed in a local environment with the required software li-
brary dependencies readily available, and to scale the project for automation,
an iterative development process or further model utilization was considered
beyond the objective for the project. The MLflow Projects component can be
considered a necessary component for automation and simplified code distri-
bution.

5.3.2 Interpretation of utilization

An important consideration is that the MLflow implementation used was cu-
rated for this certain use case, and will differ when fully applied to a clinical
setting. In the case of ventilator devices in the ICU, a full implementation
of the MLOps framework would have to consider how to curate and deiden-
tify patient data, how the distribution of model artifacts should occur, and
how re-training would consider data locality, as demonstrated with the altered
MIMIC-IV data. Furthermore, The MLflow library has developed considerably
throughout the project. At the initial implementation of MLflow, the library
was at version 2.2.2. Now the library is in version 2.9.2, where the amount
of concepts has increased with less rigid definitions, such that MLflow is no
longer defined primarily by the components described in section 3.3.2. This
does not deprecate the utilization of the MLflow library throughout the project
as the features and functions detailed in section 3.3.2 are still highly relevant.
Rather, they are no longer the main features of the software library[23b], as
it has been expanded upon throughout the year 2023 in conjunction with the
commercialization of the Large Language Model(LLM) architecture[Cav23].
These additions to the software library would have also contributed to the
MLOps framework in the project, though implementing these additions would
go beyond the limitations set in section 1.2.

5.4 Data Alteration

The alteration of the MIMIC-IV data set and the resulting exclusion of features
are significant in the performance aspect of the TPC model and the implica-
tions of the features selected for the model to interpret. The motivation for the
split was to cause an alteration of the data that would result in a performance
drift, which it did in this case, and to illustrate how a minor alteration such as
age difference can cause a major loss of performance. The model performance
will be further discussed in section 5.6.
The exclusion of features from both sets of the altered data is significant as it
might lead to variation and alteration in model performance. The motivation
for feature exclusion is understandable as features with low occurrence should
not be considered in predictions as it can cause overfitting and reduce model
accuracy. The issue that occurs with the altered data is that exclusion for a
feature in one data set does not hold validity for the exclusion of the same
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feature in the other. For the resulting training data set showcased in table
4.1, 5020 of the patients, approximately 13.6% of the patients, had Medicaid
insurance. However, the prevalence of Medicaid insurance was a lot smaller,
507 patients, in the inference data set, which resulted in the exclusion of the
feature in said data set. For the feature shapes to match, the Medicaid in-
surance feature was also excluded from the training data set, which resulted
in these patients being labeled with no insurance. It is however difficult to
determine the significance of the feature exclusion based on model prediction
performance, as it is unknown whether the features excluded were significant
in the original model usage. This causes a ”Black Box”-problem, where it is
uncertain how the decision-making of the model functions. The original paper
uses integrated gradients to determine feature importance for the eICU data
set[RLH21]. This clarifies the decision-making of the model as the features
and values of the eICU and MIMIC-IV data sets were feature-engineered to
be similar. They are however still two different data sets, and to make con-
clusions about the MIMIC-IV data set’s feature’s importance based on the
results from the eICU data set is not valid. It would therefore be of interest
to observe the SHAP-values[LL17] of the MIMIC-IV data set’s features when
the TPC model would use all available data, and what features are attributed
to be the most important for the resulting predictions. The exclusion of fea-
tures also brings into question the importance of feature selection. A Deep
Learning model, such as the TPC model, should utilize select features based
on their significance in affecting the resulting prediction. If there are features
that can be excluded due to lack of prevalence or significance they should not
be initially present. It is important to note the demographic of the patients
in the MIMIC-IV data when considering the inclusion of the insurance fea-
ture for the TPC model. As most patients in the data set are citizens of the
United States, the insurance matters as it determines the range of treatment
a patient can get, and the quality of treatment. However in other countries,
where insurance is not required for eligible healthcare, this feature would be
considered a redundancy.

5.5 Model Training

It is important to distinguish how the resulting evaluation metrics in table 4.3
describe the model training performance. The MAD and the MSE are both
metrics that naturally perform well the closer the predictions are to the mean
and the labeled value respectively, as defined in section 3.4. However, both
metrics are sensitive to large outliers and skewness in the data value. The
LoS prediction is naturally positively skewed, as no negative values exist for
these predictions. Therefore, while the metrics are valuable in determining
performance, they are at risk of showcasing a faulty perception of the acquired
results. The MAPE and MSLE are both metrics that are more robust to skew-
ness. The MAPE is a percentage deviation relative to the predicted value. The
MSLE utilizes the log function to reduce large outliers’ effect on the resulting
error margin. A consideration for the MAPE is that very small true values
affect the error majorly, as a division with values closer to zero produces values
closer to infinity. This error is addressed with the modification of the denomi-
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nator value for the MAPE in section 3.4. The MSLE is utilized as an evaluation
metric for similar arguments presented in section 2.5.1. Although it is used
as the loss function for model training it is still a valid metric for evaluating
the results. The R2 is significant as it gives us an understanding of how the
independent variables affect model variance. However, altering the number of
independent variables can affect the performance of the metric, which com-
promises the resulting metric values. For a better understanding of how the
independent variable amount affects the performance, it would be of interest to
evaluate a multi-regression model, such as the TPC model, with the adjusted
R2 metric, as the number of independent variables is of accounted for. Another
approach for validating usage of the R2 metric is careful initial consideration
of what features to include, and not alter feature quantity. conclusively, re-
garding the evaluation metrics in table 4.3, the MAPE and MSLE metrics are
the performances to further consider when determining model performance.
The learning-loss curve illustrated in 4.1 shows that the lowest for both the
training- and validation loss are at epoch 10. However, a consideration is that
the training loss keeps reducing to values below the validation curve. This is
an indication of the potential overfitting of the data during model training.
However, the validation-loss curve does not increase in value but decreases,
indicating that overfitting may not have occurred. The disparity between the
loss curves is still a matter of discussion. For further model training, it would
be of consideration to include early stopping to avoid model training poten-
tially resulting in an overfitted model.
The mortality prediction task of the TPC model was excluded from the project.
Mortality prediction did benefit the performance of the model in the origi-
nal work when utilized in conjunction with LoS prediction[RLH21], however,
the ethical aspects of the prediction task are necessary to regard. Predict-
ing the potential mortality of an ICU patient is a major task with ultimate
outcomes, where faults in the model predictions potentially lead to disastrous
consequences. It can harbor psychological strain on both patient and clini-
cian[Pet+23]. Therefore, because of these difficulties that could occur in a
clinical setting, the task was excluded.

5.6 Model Inference

It is important to note that the model serving solution used in this project
would look different when utilized towards a medical device, such as a venti-
lator used in an ICU. For the project, inference predictions occurred utilizing
the model-serving function from the MLflow Models component. The model
artifact was served to a local HTTP port and was given data by utilizing the
MLflow REST API. For a similar solution in a clinical setting, there would
require scaling regarding the amount of software required, and consideration
of safely connecting the ventilator to the framework.

From the results showcased in section 4.4, performance-monitoring of the
TPC model was successful with the MLflow library functions, and it is clear
there is a reduction in performance with the altered data being the culprit.
In the case of the performance, it can be stated that underspecification has
occurred when exposed to the altered data. The purpose of altering the data
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was to determine whether there would be a significant drift in performance
if demographic alterations to the data occurred. From a clinical perspective,
demographic variety is anticipated, and if not considered during model develop-
ment increases the risk of a demographic bias in resulting predictions[Che+23].
If eventual data drift occurs it is imperative to retrain the model for perfor-
mance improvement. The iterative process of MLOps practices would benefit
efficiency and safety while reducing effort. The project did not initiate model
retraining as it would require more data for retraining. An alternative would
be to add a subset of the inference data to the training data and evaluate the
new inference performance on the remaining subset. This was however not
considered due to time restrictions. Resultingly, the method detected poor
performance, but no retraining was initiated. The retraining itself is a dif-
ficult task, however, if considered for a clinical setting. The acquisition of
novel data has to regard the regulatory aspect of data governance and privacy
for data sets containing patient information. An alternative for addressing
the emerging data issues when facing model retraining would be implement-
ing decentralized Federated Learning techniques while establishing the MLOps
framework [BS23]. Data would not have to be exchanged or transferred, re-
sulting in governance and privacy not being compromised. Furthermore, it
would address issues with data disparity, such as demographic locality, where
the re-trained model would be generalized and optimized.
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6

Conclusion

Based on the scope of the thesis set in section 1.2 and 1.1, a proof-of-concept
for model monitoring, utilizing an MLOps framework for clinical decision sup-
port, has been achieved. The results showcase a clear detection of performance
drift during model monitoring, due to the altered demographic data, result-
ing in a major loss in performance of 41.13% and 44.64% for the MAPE and
MSLE respectively. Based on the results and the discussion that followed, the
appropriate metrics for monitoring are the MAPE and MSLE, and, with future
consideration of feature quantity, the R2 metric.
Limitations of the project are apparent, with the absence of model retraining,
the need for evaluation metrics that showcase the important features, and the
disparity between the project- and the potential clinical setting. Furthermore,
it is debatable whether the MLOps practices utilized in the paper are appropri-
ate for ML development for projects at a larger scale and for clinical purposes.
There is, however, potential for implementation with the usage of other novel
ML techniques with the systems that Getinge provides, showing promising de-
velopment in further digitalization and ML support in clinical settings where
CDSS is used, such as the ICU.
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7

Ethical Aspects

7.1 Managing health record data

The MIMIC-IV data set used in the project is collected from routine clinical
practice at Beth Israel Deaconess Medical Center (BIDMC) in the United
States. As the data is based on private health records and data from telehealth
systems, the user of the data must be certified by the website physionet.org.
To be credentialed for usage of the MIMIC data, a user has to participate in an
online course from the Collaborative Institutional Training Initiative program
website (CITIprogram.org). The course, Data or Specimens Only Research,
Covers the history of human subjects research for clinical studies and current
laws and practices in the United States. The reason is not based on legal
measurement, but that the user is knowledgeable and capable of proper care
of sensitive data and good clinical research practice when handling said type
of data. No consensual process has to be made due to the de-identified nature
of the data.
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