
Evaluation of Deep Neural Networks for Radar
Based Point Cloud Classification

Emil Ronkainen
emil.ronkainen@gmail.com

Alexander Sandelius
sandelius.alexander@gmail.com

Department of Electrical and Information Technology
Lund University

Supervisor: Anna Svensson, Johan Sjögren

Academic Supervisor: Johan Thunberg

Examiner: Michael Lentmaier

June 13, 2024

© 2024
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

Thanks to the ever-increasing computational power, machine learning has become
a staple in computer science. Many computer vision methods have become so
reliable that their implementation in the surveillance industry is now the de facto
standard for many object detection and classification tasks. The use of machine
learning for surveillance is not confined to images and videos, however, it is also
applicable to RADAR. Axis Communications produces several RADAR-based so-
lutions, some use RADAR only, whereas others provide RADAR and video fusion
technology. RADAR generates unordered sets of points, or point clouds. Point
cloud classification is a fairly unexplored area of machine learning, in particular
in the context of RADAR generated point clouds. In this thesis, we address the
classification of moving clusters of RADAR point cloud data, which requires the
classifier to consider several instances of an input cluster, where spatial as well as
temporal information is present. We examine how two main classifier architectures
perform on this data type and compare them to the existing classifier at Axis. Em-
pirically, they show promising performance on the available data. However, the
results also indicate that a more robust study might be required before employing
the classifiers.

i

ii

Popular Science Summary

This study delves into a cutting-edge area: differentiating between humans and
vehicles by combining radar devices with machine learning. Our research shows
promising results but also highlights the need for more extensive testing to ensure
reliability in real-world applications.

Radar surveillance offers the advantage of anonymity by allowing efficient mon-
itoring without capturing personal details, ensuring privacy while still maintain-
ing security. By integrating machine learning, radar systems become even more
efficient and intelligent, capable of distinguishing between different objects and
predicting potential threats with high accuracy. This advanced technology not
only enhances safety and security but also respects individual privacy, providing
a seamless and non-intrusive way to monitor and protect our world.

This thesis looks at how to distinguish objects over time using radar. Radar
systems create groups of points, or "point clouds", which represent objects in their
surroundings. Determining whether these point clouds are vehicles or humans
using machine learning is still a relatively new field of research, especially when
the data comes from radar. As these point clouds are followed over time, there is
even more information than that provided by the radar to consider when tackling
this task.

The study tests two main types of machine learning architectures on this data,
both based on a technique known as PointNet. These are compared to another
technique, developed by Axis Communications.

Our results show that these new techniques perform well on the available data,
and provide novel insights into the possibilities of combining machine learning
and radar. However, it also shows the shortcomings of these newer techniques,
proposing further research opportunities that might find even better outcomes.

iii

iv

Acknowledgements

We would like to extend our most sincere thanks to our supervisors at Axis, Anna
Svensson and Johan Sjögren, for their mentorship and sustained support. We
greatly appreciate their insights, debugging skills, and great humor, both in the
office and over Teams.

We would also like to sincerely thank our LTH supervisor Johan Thunberg, for his
unmatched curiosity. His many questions, ideas, and comments helped tremen-
dously and forced us to think deeper about the vital components of this thesis.

A great thank you to VOI electric scooters which helped traverse the mountainous
terrains of Lund, saving us the hours needed to complete this thesis in time.

v

vi

Table of Contents

1 Introduction 1
1.1 Previous work . 1
1.2 Problem Formulation . 2
1.3 Work Outline . 3

2 Machine Learning 5
2.1 Fundamentals . 5
2.2 Artifical Neural Networks (ANNs) 9
2.3 Layers . 10

3 Frequency Modulate Continuous Wave (FMCW) Radar 17
3.1 Distance estimation . 18
3.2 Velocity estimation . 19
3.3 Angle estimation . 21

4 Data 23
4.1 Pre-processing . 23
4.2 Data Characteristics . 24

5 Models 27
5.1 Baseline . 27
5.2 Keras PointNet . 27
5.3 Radar PointNet . 28

6 Method and Results 29
6.1 Model Variants . 29
6.2 Finding Optimal Hyperparameters 29
6.3 Training and Evaluation . 30
6.4 Results . 30

7 Discussion 33
7.1 Main Findings . 33
7.2 Confidence and Thresholding . 34
7.3 Future Work . 34

vii

A Appendix 41
A.1 Confidence Plots . 41
A.2 Confusion Matrices . 43

viii

List of Figures

2.1 Finding an appropriate model capacity. 7
2.2 The Rectified Linear Unit and Standard Logistic Sigmoid functions. . 10
2.3 An example of a fully connected layer. 11
2.4 Example of a convolutional layer calculation. 12
2.5 The max and average pooling operations. 13
2.6 Block diagram of a traditional recurrent layer. 14
2.7 Block diagram of a GRU cell. 15

3.1 Amplitude-Time plot of a single linear chirp. 17
3.2 Frequency-Time plot of a single linear chirp. 18
3.3 Deriving the Intermediate Frequency signal. 19
3.4 Two receiver (RX) antenna radar setup. 21
3.5 Deriving Angle of Arrival using two receiver (RX) radar setup. 22

4.1 Summary of the data pre-processing pipeline. 23
4.2 A visualization of the three-dimensional matrix describing a radar track. 24
4.3 Distribution of points in a single frame over all frames in the dataset. 25

5.1 Overview of the Keras PointNet architecture. 28
5.2 Overview of the Radar PointNet architecture. 28

6.1 Accuracy and floating point operations of all models. 32
6.2 Accuracy of Radar Pointnet model with different window sizes. . . . 32

A.1 Fraction of confident predictions left as threshold increases. 42
A.2 Confusion Matrices. 43

ix

x

List of Tables

6.1 Descriptions of model variants evaluated. 29
6.2 Accuracy and resource requirements for all models. 30
6.3 Precision and recall for Human (H) and Vehicle (V). 31
6.4 Fraction of confident predictions for correct and incorrect samples. . 31

xi

xii

Chapter 1
Introduction

Thanks to the ever-increasing computational power, machine learning has become
a staple in computer science due to its broad spectrum of applicability. The
surveillance industry has much to gain from different machine learning methods
as it significantly reduces the need for human attention and reduces the margin
of error inherent to human interaction. Computer vision methods have become so
reliable that their camera-based implementations are now the de facto standard
for many image recognition and object detection tasks.

The use of machine learning in surveillance is not confined to images and
video but is also applicable to point-based data, such as LiDAR (light detection
and ranging) and RADAR (radio detection and ranging, subsequently referred to
as "radar"). This master´s thesis will focus on radar. While image recognition uses
images with pixels and RGB values, radar uses unordered sets of points (henceforth
referred to as point clouds), typically in a two- or three-dimensional space. Radar
devices provide several advantages over video in the field of surveillance. They
are often less sensitive to difficult weather conditions, perform well in poorly lit
environments, and allow for greater anonymity [32]. These properties make the
radar technique a promising option for object detection within the context of
surveillance.

Axis Communications AB (henceforth referred to as Axis), produces several
different radar devices. Some are based on radar only whereas others provide radar
video fusion technology. These devices are equipped to run object classification and
currently employ a classification model that separates human and vehicle objects,
developed at Axis. Using data previously gathered by the existing frameworks
for data acquisition and pre-processing present at Axis, this work focuses on the
last part of the classification pipeline, the classifier itself. We aim to provide an
overview of a couple of such classifiers, prevalent in other fields of machine learning
for classification. These will be compared with the current model, to determine
whether these classifiers prove useful for radar classification.

1.1 Previous work
Here we provide an overview of the radar point cloud classification field by high-
lighting some recent publications in this area. Some general point cloud classifiers

1

2 Introduction

and their applicability to radar are also discussed here. Lastly, the previous work
done at Axis is supplied, seeing as this acts as the main precursor for this thesis.

The field of point cloud classification has seen a great surge of interest in the
recent years. Articles such as [22], [30], and [33] all propose methods of using point
clouds for object classification. However, like much of the work on point cloud clas-
sifiers, these articles consider data gathered by LiDAR rather than radar. While
both LiDAR and radar generate point clouds, the output data differs in some
important aspects. LiDAR generally provides more spatial information thanks to
higher resolution and more sampled points. However, radar includes other mea-
surements such as radial velocity and signal strength. Due to these differences,
some properties of the proposed methods may not apply to radar point clouds.
Moreover, there is no guarantee that the performance of these models is transfer-
able to the radar field.

One approach not explicitly concerned with LiDAR is PointNet [24]. Following
the publication Order Matters: Sequence to Sequence for Sets [28] on deep learning
for unordered sets, PointNet introduces a novel way of directly using point clouds
as input. PointNet studies the inherent features of a point cloud, rather than
exploiting task-specific properties of the data, and is thus much better suited as a
starting point for this thesis.

As stated previously, radar-specific point cloud classification is a far less ex-
plored topic than LiDAR. While much of the literature that is available on the
subject, such as [34] and [11], is not concerned with the field of surveillance, it
still speaks to the legitimacy of radar-based point cloud classification. [2] utilizes
a similar feature vector to us, in combination with the three-dimensional aspect
of point clouds, but does not take advantage of the temporal aspect.

1.2 Problem Formulation
While there exist classifiers that have been proven to be proficient for point cloud
classification, these are commonly developed for LiDAR data. This thesis concerns
point clouds originating from radar devices. More specifically, moving radar point
clouds, sampled over time. We aim to investigate whether existing classifiers can
be modified to accommodate the change from LiDAR to radar data. Capturing
information over time is paramount due to the temporal aspect of the data.

To address this, we explore two main classifier architectures based on the work
of [24], further discussed in Section 1.1, employed on a two-class classification
problem. We use the two classes "human" and "vehicle", seeing as Axis provides a
robust dataset of moving radar point clouds for these classifications.

The limited amount of previous work on moving radar point clouds warrants
employing multiple variants of each architecture to provide a more robust insight
into how different classifiers interact with the data. To address this, we propose as
the overarching problem or objective to examine six different classifiers, comparing
these to the current Axis classifier, which acts as a baseline for the evaluation.

We intend to evaluate and compare the applicability of each potential classifier
by analyzing the following aspects

1. Classification accuracy

Introduction 3

2. Reliability

3. Resource demand

Classification accuracy refers to the classifiers’ capacity to successfully classify
point cloud inputs, while reliability quantifies the robustness of this accuracy. The
resource demand metric considers the computational requirements of a classifier.

1.3 Work Outline
Chapters 2 and 3 provide the necessary preliminaries to understand the descrip-
tions, results, and discussions in subsequent chapters. Chapter 2 focuses on the
machine learning aspect of the work, while Chapter 3 features a brief explanation
of radar technique.

Chapters 4 and 5 outline the data and properties of the models in the thesis,
respectively. Chapter 4 summarizes the pipeline of pre-processing steps applied to
the raw radar data and the prevalent characteristics of the resulting data. Chapter
5 describes the architecture of the classifiers examined in this work.

Chapter 6 details the approach for model training and hyperparameter opti-
mization. The latter part of the chapter presents and briefly explains the results
of the experiments.

Finally, Chapter 7 discusses the implications of the results in Chapter 6 and
motivates design decisions made during the experiments. A section outlining con-
tinuations on this thesis and other future work is also provided here.

4 Introduction

Chapter 2
Machine Learning

2.1 Fundamentals
Here, some of the essentials within the area of machine learning, specifically the
tools and methods pertinent to the later introduced models (see Chapter 5), are
introduced to provide the required context for the remainder of the thesis. Much
of the material in this Chapter is based on [12] and the interested reader may
consult that book for greater detail on the topic.

2.1.1 Machine Learning Model
A machine learning model aims to automate, or learn, the process of discovering
important relationships and patterns between features of a problem space [15]. It
does so by iteratively applying its algorithm to problem-specific data and evaluat-
ing its performance. This contrasts early AI which relied heavily on explicit sets
of rules defined by humans, which defined the behaviour of the computer [12].

When building a handcrafted analytical model, i.e. a quantitative model de-
signed to accomplish a specific task [3], the process can be split into two parts:
feature extraction and model building. Feature extraction seeks to pinpoint
important aspects of the input samples to provide the model with a suitable rep-
resentation of the problem, whereas model building refers to the act of converting
the previously defined features into outputs. In machine learning, the model de-
signer provides a set of trainable parameters that the model learns by evaluating
itself on data from the problem space. A machine learning model that learns only
the model building step, and thus still relies on manual feature extraction, is often
referred to as a shallow machine learning model. Conversely, a model that learns
both feature extraction and model building is known as a deep machine learning
model. Note that while feature extraction is automated by deep models, respecting
external knowledge of features in the input can still prove useful for performance.
[15]

2.1.2 Data and Error
To measure model performance, it is common to introduce an error, or loss,
function. The error function quantifies how much the model output differs from

5

6 Machine Learning

the expected output [14]. During training, a model can be tasked with tuning its
trainable parameters such that they try to minimize the error function in order to
increase performance. One important loss function in the context of classification
is the Categorical Cross-Entropy. For a model with K outputs and trainable
parameter vector p, the categorical cross-entropy error of N samples is given by

CE = −
N∑

n=1

K∑
k=1

tnk ln ynk, where ynk = fk(p) (2.1)

where tnk and ynk is the expected and predicted value of output k for sample n,
respectively, and fk is the output function of output k [5].

Model input is commonly split into two separate sets of data: training data
and test data. The model parameters p are tuned solely on the training data
while the test set is reserved for evaluation. To draw any useful conclusions about
how the test set performance is affected when only the training data is observed,
some assumptions about the data acquisition process have to be made. Common
practice is to assume that both sets of data are collected under the Independent
and Identically Distributed (i.i.d.) assumptions [12]. This means that samples
in the data sets are independent from each other and that the sets are identically
distributed, drawing from some shared, underlying distribution. Hence, under the
i.i.d. assumptions, the expected error for the training and test data will be equal,
since both expectations are derived from the same data acquisition process. In
practice, however, the test set is not evaluated on until the model parameters
have been learned on the training data. Thus, the parameters of the model are
dependent on the training data, and the expected error for the test data will not
necessarily be equal to the training data. The learning process is often referred to
as training the model.[12]

Datasets can be constructed in several ways, depending on the learning paradigm.
There are two main paradigms, supervised and unsupervised learning. Supervised
learning requires that, for a given input, the corresponding expected output, or
label [12], is also provided by the dataset [15]. Conversely, unsupervised learn-
ing assumes that this label information is not available, or ignored at the time of
training [8].

2.1.3 Capacity
Capacity is an informal way of defining to which extent a model can represent
different underlying distributions of data [12]. A model with low capacity is very
limited in its ability to represent different distributions whereas high capacity
models might fit properties of the training data which are not present in the test
set. Insufficient capacity, more commonly referred to as underfitting, and abundant
capacity, or overfitting, can be identified by observing the error on the training
and test sets. Underfitting will yield high errors for both datasets due to it not
being able to capture essential feature trends [8]. Overfitting is distinguished by
a low training error but a high test error. This indicates that the model learns
not only the important features of the training set but also random noise in the
training data. An example of how a function is underfitted and overfitted to a set
of points is shown in figure 2.1.

Machine Learning 7

Figure 2.1: A visual example of how a second-order function is inter-
polated using too low (left), too high (right), and appropriate
(middle) capacity (Image from [12], Chapter 5.2).

Ultimately, one wants the model to perform well on previously unseen input
[15]. This generalization performance [12] can be determined by evaluating metrics
such as error on the test data, seeing as this set has not been involved in the
learning process.

2.1.4 Hyperparameters

Hyperparameters are, unlike regular parameters, not tuned by the model during
training. Instead, hyperparameters are set beforehand, either by some external
framework or manually by a model designer [23]. Sometimes, these parameters are
inherently hard to optimize, such as the choice of error or objective function. More
frequently, however, a hyperparameter is related to the capacity of the model [12].
Tuning capacity parameters during training might provide great results initially,
seeing as the model can increase its capacity whenever it deems the underlying
distribution of data too complex to fit with its current capacity. However, as
mentioned in Section 2.1.3, a too large capacity might incentivize overfitting. Thus,
excluding the tuning of these parameters from the learning process reduces this
risk significantly.

Tuning hyperparameters poses an interesting task. Using the training data
for tuning is, as previously discussed, infeasible. However, the test data is not an
option either, seeing as it would no longer retain its property of being previously
unseen data. Common practice is to introduce a third set of data, the validation
set, tasked with this problem specifically [12]. The validation set is typically taken
as a subset of the training data.

8 Machine Learning

2.1.5 Evaluation
This section introduces important metrics and procedures for evaluation. In the
context of this work, the two-class classification models considered provide two
outputs: the predicted class and the prediction probability, or confidence, of the
predicted class.

The confusion matrix is one of the most prevalent procedures of presenting
classification results [19]. For a two-class problem, the confusion matrix can be
defined as

[
mAA mAB

mBA mBB

]
(2.2)

where, for any i and j, mij denotes the number of samples from class i classified
as class j. Hence, when i = j, the corresponding value represents the number of
correctly classified samples of class i whereas when i ̸= j, the value indicates the
number of class i samples incorrectly classified as class j. Alternatively, mij can
be given as the fraction of the total amount of samples from class i, classified as
class j.

Many useful metrics can be derived from the confusion matrix. One such
metric, perhaps the most fundamental for classification problems, is the accuracy
(ACC). Accuracy is calculated as the fraction of samples along the main diagonal,
i.e. the fraction of correctly classified samples. Using the confusion matrix, this is
defined as

ACC = mAA + mBB

mAA + mAB + mBA + mBB
. (2.3)

Two other well-established measurements obtained from the confusion matrix
are precision (PRC) and recall (RCL) [19]. For some class A, precision is the
fraction of class A predictions that are correct and recall the fraction of correctly
identified class A samples [12]. These are derived from the confusion matrix as
follows

PRC = mAA

mAA + mBA
(2.4)

RCL = mAA

mAA + mAB
(2.5)

While accuracy provides a very intuitive way of interpreting model perfor-
mance, metrics such as precision and recall help evaluate the robustness of the
accuracy [12]. In cases where there is an imbalance of samples between classes, a
model might favor only guessing the majority class, seeing as this achieves good
accuracy. However, this would result in a recall score of 0 for the minority class,
suggesting that the model fails to learn the properties of this class.

In addition to the above-mentioned metrics, one can consider the prediction
probability a measure of robustness for a classifier. This is subsequently referred
to as the confidence of a model.

Machine Learning 9

2.2 Artifical Neural Networks (ANNs)

A prevalent subset of machine learning models is Artificial Neural Networks
(ANNs), where the models provide mappings from input data to one or several
output variables through a composition of functions [7]. The function composi-
tion is dependent on a parameter vector p, which is learned by the network [12].
Each part of the function composition produces an intermediate representation, or
embedding, of the input data by sequential application of a linear transformation
and a non-linear output (activation) function [5]. The linear transformation and
output function combination is known as a layer [12] and there exist various types
of layers, each providing advantages for different types of input data. It is common
to represent ANNs as Directed Acyclic Graphs (DAGs) using vertices for inputs
and outputs while weights are conveyed by edges.

In this thesis, the evaluated models are deep neural networks. As eluded to
in section 2.1.1, deep models learn, in contrast to shallow models, to extract their
own set of features from the input data before calculating an output. The notion
of deep networks stems from the multiple function compositions not present in
shallow ANNs [7].

2.2.1 Activation Function

The activation functions introduce non-linearities into the network [5]. This non-
linearity captures properties in the data that would otherwise be difficult or im-
possible to extract [12]. Without activation functions, the composition could be
expressed as a single, linear layer

ABCDx = Ex where E = ABCD (2.6)

where A, . . . , E are linear transformations and x input.
For an input a, common choices of activation functions include the Rectified

Linear Unit (ReLU) [7], defined as

ReLU(a) = max(0, a) (2.7)

and the standard logistic sigmoid [5] (subsequently referred to as the logistic sig-
moid), defined as

σ(a) = 1
1 + exp(−a) . (2.8)

Their graphical representations are provided in Figure 2.2a and 2.2b respec-
tively.

10 Machine Learning

(a) Rectified Linear Unit. (b) Logistic sigmoid.

Figure 2.2: Graphical representation of the Rectified Linear Unit
and Logistic Sigmoid activation functions. The axes are scaled
differently to better highlight the important features of each
function.

2.3 Layers

2.3.1 Fully Connected Layers

The Fully Connected Layer, also referred to as the Dense layer, is one of the
more commonly used layer types [18]. For N inputs, the jth output is calculated
as

yj =
N∑

i=1
xiwij + b (2.9)

where yj is the j:th output, xi the ith input, b a bias term independent of the
input and wij the weight between xi and yj [10]. A fully connected layer is shown
in Figure 2.3.

Machine Learning 11

Figure 2.3: An example of a fully connected layer.

2.3.2 Convolutional Layers

Convolutional Layers specialize in capturing features for grid-like input data
such as images or time series by employing the mathematical convolution operation
[12]. While fully connected layers have weights between each input and output,
convolutional layers leverage a multidimensional array, referred to as the kernel or
filter, of weights which is repeatedly multiplied element-wise with the input and
summed together. A visualization of this is provided in Figure 2.4.

12 Machine Learning

Figure 2.4: Example of a convolutional layer calculation [29].

The convolutional layer provides some useful features. The kernel size is typi-
cally small and every filter is reused for each position of the input [29]. Therefore
parameter storage requirements are much lower than for fully connected layers and
the reuse of each filter across all positions works as a form of regularization called
parameter sharing. Convolutional layers possess another property referred to as
translation equivariance which means that any shift in the input results in an equal
shift in the output [16]. If followed by an activation function that is independent
on the input position, this property can make the output invariant to translations.
Translation invariance is convenient, especially for object classification [7], since
the object will be classified the same regardless of its position in the input.

A neural network featuring mainly convolutional layers is often referred to as
a Convolutional Neural Network, abbreviated as CNN.

2.3.3 Pooling Layers
Pooling layers capture a group of outputs and reduce them into single values
using an aggregating function [8]. The layer can use any aggregating function but
common choices are maximum and average functions [29]. Max pooling keeps only
the highest value in its group as output while average pooling outputs a (possibly
weighted) average of the group outputs. Visual examples of these are provided in
Figure 2.5. Pooling layers are often used in conjunction with convolutional layers
as a way of achieving translation invariance (see Section 2.3.2). It also reduces the
spatial dimensions of the feature map that the convolutional layer provides [27],
which helps reduce parameter requirements and increase computation speed [27].

Note that while average pooling is linear, max pooling is not. One might deem
using a non-linear activation function unnecessary when using max pooling but,
as highlighted by [20], performance is better when using a non-linear activation,
even though max pooling is used. Hence, despite max pooling being non-linear,
this is not the reason for its usage but rather a mere coincidence and it is not a

Machine Learning 13

replacement for the non-linearity established by an activation function.

Figure 2.5: A visual representation of the non-linear max (left) and
linear average (right) pooling operations.

2.3.4 Recurrent Layers
Recurrent layers consider past inputs when calculating current output, making
them well suited for sequential input data [31]. The most general variant of a
recurrent layer is the Fully Recurrent Layer [6]. In this definition, each node con-
siders a hidden state, based on the calculations for the previous output, and the
current input, producing a new hidden state and the current output. Mathemati-
cally, for a timestep t, these update equations are defined as

ht = f(Wixt + Whht−1 + bh) (2.10)
yt = f(Woht + bo). (2.11)

In the equations above (2.10 and 2.11), ht and ht−1 denote the current and
previous hidden state, xt the current input and yt the corresponding output. Wi,

14 Machine Learning

Wh, and Wo are weight matrices and bh and bo are bias terms. The subscripts i, h
and o denote whether the weight or bias value is related to the input, hidden, or
output part of the architecture respectively. f represents an activation function,
shared by all nodes in the layer. This architecture is displayed as a block diagram
in Figure 2.6.

Figure 2.6: Block diagram of a traditional recurrent layer. Bias is
omitted for improved readability. Inspired by Figure 1 in [31].

This thesis utilizes one specific recurrent layer, the Gated Recurrent Unit
(GRU). Gated Recurrent Layers use control signals to weigh their components
differently depending on the current state and input [12], which has proven to
help derive long-term state dependencies better than traditional recurrent layers
[31]. GRUs specifically, use two signals: the update signal u and the reset signal
r. The update signal controls the trade-off between keeping the previous output
and replacing it with the new output whereas the reset signal determines how the
current output is used when calculating the next output.

The update equations for the GRU differ from the corresponding equations for
the fully recurrent layer (see Equations 2.10 and 2.11). Two additional equations
are required, one for each gating signal, and the current hidden state is dependent
directly on the previous output yt−1 rather than the previous hidden state ht−1.
The resulting update process for the GRU is defined as follows

rt = σ(Wirxt + Woryt−1 + br) (2.12)
ut = σ(Wiuxt + Wouyt−1 + bu) (2.13)
ht = f(Wihxt + Wohrtyt−1 + bh) (2.14)
yt = utyt−1 + (1 − ut)ht. (2.15)

Here Wir, Wiu and Wih are the weights of the connections between the input
and their corresponding second subscript (reset, update, and hidden respectively)
and Wor, Wou and Woh the weights for the corresponding output connections.
Similarly; br, bu, and bh are the biases for the reset, update, and hidden values.
σ is the logistic sigmoid activation function (see Equation 2.8) and f the output

Machine Learning 15

activation function of the GRU. These calculations are illustrated in the block
diagram in Figure 2.7. [31]

Figure 2.7: Block diagram of a GRU cell. Bias and update equations
for gating signals omitted for brevity.

2.3.5 Batch Normalization
Batch normalization provides a novel way of breaking higher-order dependencies
between layers that often occur in deeper networks. Layer weights are often de-
pendent on values from other layers and, especially for deeper networks, these
dependencies tend to be of a rather high order. Thus, when updating its weights,
a layer assumes all other layers to remain unchanged. In practice, however, all lay-
ers are updated simultaneously. The inability to detect these higher-order depen-
dencies introduces the risk of promoting poor-performing weight changes. Batch
normalization counteracts this problem by normalizing small batches of output
from the previous layer, leaving subsequent layers to operate on the normalized
values instead. For a small batch of output vectors H, the batch normalization
output H ′ will be

H ′ = H − µ

σ
, (2.16)

where µ is the vector of mean values for each output vector and σ is the corre-
sponding vector of standard deviations. The values of µ and σ are included in
the weight update process to discourage weight changes that increase the standard
deviation or mean of the values in H. To allow for testing individual samples, the
batch values of µ and σ are replaced with running averages. [12]

16 Machine Learning

Chapter 3
Frequency Modulate Continuous Wave

(FMCW) Radar

This thesis uses radar devices that employ a specific modern radar design tech-
nology, the Frequency Modulated Continuous Wave (FMCW) waveform. FMCW
offers long-range detection and provides accurate range resolution with a low emit-
ting power [9]. It does this by repeatedly emitting chirps. A chirp is a sinusoidal
wave whose frequency increases linearly with time [25], as shown in the plots of
Figure 3.1 and 3.2. The frequency-time plot (see Figure 3.2) is defined by its
starting frequency f0 (Hz), bandwidth B (Hz), and duration Tc (s). Its slope is
denoted as S.

Figure 3.1: Amplitude-Time plot of a single linear chirp.

17

18 Frequency Modulate Continuous Wave (FMCW) Radar

Figure 3.2: Frequency-Time plot of a single linear chirp with band-
width B and duration Tc. Note that the y-axis starts at an
initial frequency f0.

3.1 Distance estimation
Many useful features can be extracted from the emitted chirps reflecting off an
object, one of these being the distance to the object. As the synthesized analog
chirp signal, transmitted by a transmitter (TX) antenna on the radar, is reflected
off an object, the radar receiver (RX) antenna registers the reflection. The RX
signal and TX signals are passed to a mixer device which outputs a sinusoid
with a resulting frequency equal to the difference in frequency between its input
signals [25]. Seeing as the RX signal is simply a delayed TX signal, the mixer
output, referred to as the intermediate frequency (IF) signal, will have a constant
frequency. This frequency is derived by measuring the round trip time τ (s) and
multiplying it by the slope of the chirp, denoted S. The IF signal calculation is

Frequency Modulate Continuous Wave (FMCW) Radar 19

shown in figure 3.3.

Figure 3.3: Deriving the Intermediate Frequency signal.

Since it takes the chirp a duration of τ to travel twice the distance between
the radar and the object causing the reflection, the distance to the object d (m)
can be deduced as

τc = 2d =⇒ d = τc

2 (3.1)

where c (m/s) is the speed of light.

3.2 Velocity estimation
By expanding on the principles of distance estimation, the velocity of the object
reflecting the chirps can be obtained. At distance d from the radar unit, i.e. at

20 Frequency Modulate Continuous Wave (FMCW) Radar

the point of reflection, the IF signal will be a sinusoid, which corresponds to

IF = A sin (2πft + ϕ0) where f = S2d

c
(3.2)

for some phase ϕ0 (rad/s). The phase ϕ0 is very sensitive to small changes in
round-trip time τ and two IF signals from the same object may exhibit large
differences in phase due to these small shifts in round-trip time [25]. A round-trip
time delay of ∆τ results in a phase shift ∆ϕ

∆ϕ = 2π
∆τ

T
= 2π

∆τ
1
f

= 2πf∆τ (3.3)

where T (s) is the period of the IF signal. Furthermore, note that a shift in
distance d0 to d1, can be expressed as

∆τ = 2d1

c
− 2d0

c
= 2

c
(d1 − d0) = 2∆d

c
(3.4)

using Equation 3.1. Applying this to Equation 3.3 yields

2πf∆τ = 2π
c

λ

2
c

∆d = 4π∆d

λ
. (3.5)

Hence, two chirps transmitted Tc seconds apart, reflected by the same object, will
differ in distance according to

∆d = vTc, (3.6)

and using Equation 3.5, the velocity of this object can be inferred from the phase
as

∆ϕ = 4π∆d

λ
= 4πvTc

λ
=⇒ v = λ∆ϕ

4πTc
. (3.7)

Frequency Modulate Continuous Wave (FMCW) Radar 21

3.3 Angle estimation

Figure 3.4: Two receiver (RX) antenna setup for angle estimation.
Figure reconstructed from module 5 of [25].

Estimating the angle of arrival θ (rad) shares many similarities with the velocity
approximation. However, angle estimation requires at least a two RX antenna
setup according to Figure 3.4. Recall that the phase ϕ changes with the distance
according to Equation 3.5. Similarly, two RX antennas spaced ∆d meters apart
produce a phase change

∆ϕ = 2π∆dθ

λ
where ∆dθ = ∆d sin θ. (3.8)

Note the difference of a factor 2 compared to Equation 3.5 seeing as the original
calculation refers to the round-trip distance whereas this Equation does not. The
derivation of the relation ∆dθ = ∆d sin θ is provided in Figure 3.5.

22 Frequency Modulate Continuous Wave (FMCW) Radar

Figure 3.5: Derivation of Angle of Arrival (θ) using the two receiver
(RX) antenna setup from Figure 3.4. Figure reconstructed from
module 5 of [25].

Chapter 4
Data

4.1 Pre-processing
Before the radar data can be passed to the model for classification, it is converted
into an appropriate representation through a series of pre-processing steps. This
section aims to give a brief overview of these steps. A flowchart summarizing the
entire pre-processing chain is provided in Figure 4.1.

The initial step includes all processes pertaining to signal processing. The raw
radar data is first converted to a digital representation using an analog-to-digital
converter (ADC). This digital data is passed through a Fast Fourier Transform
(FFT), to extract the phase and amplitude of the input. Further, using the equa-
tions provided in Chapter 3, properties such as the radius, radial velocity, and
angle are derived. Much of the data that belongs to the scenery rather than the
target object can be removed by ignoring points with a velocity or signal strength
below some predefined threshold.

What results from the signal processing step is a point cloud, assumed to only
contain points related to the target object. These points are grouped by a cluster-
ing algorithm, which helps convert the data into a more structured representation
of a single object, composed of points, rather than a set of individual point objects.

Lastly, this point cloud cluster is tracked over a series of radar inputs, sampled
using a set interval. The tracking process yields what this thesis will consider a
single unit of input data, a radar track.

Figure 4.1: Summary of the data pre-processing pipeline.

23

24 Data

4.2 Data Characteristics

Figure 4.2: A visualization of the three-dimensional matrix describ-
ing a radar track.

Here, the important properties of the radar track are outlined to provide the reader
with a greater insight into how the data is shaped and consequently justify the
various design choices of the evaluated models.

The interval at which radar data is sampled during the tracking process (see
Section 4.1) is determined by the radar design. Conventionally, this is expressed
as a frame rate rather than a sampling interval, and consequently, a sample is
referred to as a frame. Frame rates are measured in frames per second (FPS)
rather than seconds. Hence, a radar with a sampling interval of for example 0.2s
is subsequently referred to as having a frame rate of 5FPS.

Each frame in the radar track provides a clustered point cloud. A repre-
sentation of the clustered point cloud is obtained by organizing the frame into
a two-dimensional Np × Nf matrix, for Np points and Nf point features. Con-
sequently, the full radar track can be shaped into a three-dimensional array by
stacking several point cloud matrices. The result is visualized in Figure 4.2. A
fixed number of frames (subsequently referred to as window size) are selected from
each track to preserve a coherent input shape between tracks.

4.2.1 Points per frame
The pre-processing pipeline provides no guarantee about the number of points in
a frame. On the contrary, it is common that the points per frame vary between

Data 25

frames of a single radar track.

Figure 4.3: Distribution of points in a single frame over all frames
in the dataset (Total of 11, 163, 134 frames).

As per Figure 4.3, the distribution of points per frame is spread between 1 and
400, where the majority of all frames contain 100 points or less. For the model to
be viable in practice, this number has to be fixed for all frames. Thus, for frames
with fewer points there is a need to resample points until this number is reached
whereas for frames with more than the required amount of points, only a subset of
these are selected for the training process. Both these methods have drawbacks,
however. Downsampling processes run the risk of removing points that might
prove vital to the frame while upsampling might compromise the data by giving
unnecessary importance to properties that do not contribute to the classification
of the object in question.

4.2.2 Tracking
One of the more important features of the radar track is its tracking characteristic,
which provides continuous measurements of the input rather than a single snap-
shot. This temporal aspect yields multiple views of a single target which should
prove more robust to outliers than a single sample. It is also a higher-level feature
than the likes of radial velocity and angle of arrival, which might benefit models
with large capacity or depth.

4.2.3 Window size
The most obvious drawback with the temporal aspect of the data characteristics
is the delay that comes with the implementation. As one of the dimensions of the

26 Data

input data is a specified "window size", the tracking data of an object must be at
least this many frames before the data can be used. For example, using a window
size of 15 frames and a 2FPS radar would result in a delay of 7.5 seconds.

While a shorter window size is very much desired, so is the accuracy of the
model. This problem of balancing is hard since a low accuracy with low latency
is undesired, while a very high accuracy that requires that the subject is in the
frame for a longer time might be unusable.

Chapter 5
Models

5.1 Baseline
The baseline model is described in the master’s thesis [32] from 2021, by N. Zandler
Andersson. It should be noted that this baseline was originally optimized for three
classes.

5.2 Keras PointNet
The Keras PointNet model1 is a version of the PointNet model, presented in [24].
Some adjustments to the pre-processing steps are made to accommodate the char-
acteristics of the input data. Regarding network architecture, [24] proposes several
fully connected layers in the initial components of the model, whereas the Keras
version achieves the same functionality using convolutional layers with a kernel
size of 1. This model has a very large capacity, approximately 106 parameters,
depending on hyperparameter selection.

The Keras variant has three core components: a convolutional component,
a fully connected component, and a custom component referred to as a "T-net".
The T-net is itself a mini version of the PointNet model [24]. It is made up of a
convolutional block, followed by a global max pooling function, and lastly, a fully
connected block. Its output is calculated by computing the element-wise product
of a transformation matrix, obtained by reshaping the fully connected output into
an N × N matrix, and the original input. Two T-nets (N = 3 and N = 32 respec-
tively) are interleaved with two blocks of CNNs. This is followed by a global max
pooling function and a fully connected component. Figure 5.1 provides a visual
representation of the architecture. The notion of CNN rather than a convolutional
layer refers to Keras considering activation and normalization functions as layers
as well. Each CNN is thus effectively a single, one-dimensional convolutional layer.
All convolutional and fully connected layers use batch normalization and a ReLU
activation function.

1Source code available at https://github.com/keras-team/keras-io/blob/master/
examples/vision/pointnet.py

27

28 Models

Figure 5.1: Overview of Keras PointNet architecture. Figure in-
spired by Figure 2 in [24].

5.3 Radar PointNet
The Radar PointNet model is, like Keras PointNet (see Section 5.2), a variant
of the proposed architecture in [24], developed at Axis. While Keras PointNet
is rather true to the actual PointNet, Radar PointNet is a much smaller network
(approximately 103 parameters), with a few important structural changes. Both
T-nets are removed and the convolutional component uses two rather than five
convolutional layers. The first fully connected layer after the global max pooling
function is replaced by a GRU layer to capture important properties of the tem-
poral aspect present in the track. Convolutional and fully connected layers still
utilize batch normalization and the ReLU activation function. The full network
architecture is provided in Figure 5.2.

Figure 5.2: Overview of the Radar PointNet architecture.

Chapter 6
Method and Results

6.1 Model Variants
The six model variants which are evaluated against the baseline are summarized
in Table 6.1. First, we use the plain Keras and Radar PointNet models, acting
as baselines for their respective architectures. Since Keras PointNet and Radar
PointNet share many similarities in architecture except for the T-net, we imple-
ment two variants of the Keras architecture with one or both T-nets removed,
respectively. Similarly, we employ a Radar PointNet architecture where the GRU
has been replaced with an additional CNN. Furthermore, as the Keras architecture
has a much higher parameter count than the Radar architecture, a smaller Keras
version is used to compare the architectures when the magnitude of parameters is
similar.

Table 6.1: Descriptions of model variants evaluated.

Name Description
RadarPointnet Original Radar model (see Section 5.3)
RadarCNN GRU replaced with CNN
KerasPointnet Original Keras model (see Section 5.2)
Keras1Tnet First T-Net removed
KerasNoTnet Both T-Nets removed
KerasSmall Number of layer weights downscaled by a factor 8

6.2 Finding Optimal Hyperparameters
To find appropriate values for the hyperparameters we employ the Optuna [1]
framework for hyperparameter optimization. Optuna allows for using algorithms
like TPE [4], which sample hyperparameters independently, and algorithms like
CMA-ES [13] and GP-BO [26], that take relations between hyperparameters into
account when conducting the search. Furthermore, it uses the Asynchronous Suc-
cessive Halving Algorithm (ASHA) [17] to terminate instances that display poor
intermediate performance early.

29

30 Method and Results

Frameworks like Optuna greatly reduces the amount of manual work required
to find suitable parameters. However, it should be noted that Optuna still re-
quires its users to define the search space for each parameter. Consequently, the
optimization performance is limited by the choice of search space. This search
space must in turn be limited for the whole process to remain computationally
feasible. Only the best trial, based on validation performance, is used for model
comparisons.

6.3 Training and Evaluation
Each model is trained on 80% of a training set of 88k radar tracks, reserving the
last 20% for validation, repeated 5 times for different training and validation data
splits. We run this process for 10 sets of hyperparameters, configured by Optuna,
and select the hyperparameters with the greatest average performance on the
corresponding 5 validation splits. Model performance is measured by applying the
model, using the selected hyperparameters, on a test set of 2.4k samples.

6.4 Results
This section presents the relevant performance metrics for all models presented in
Section 5.

To give an initial indication of how the models compare, we first provide some
of the more general metrics, such as the overall accuracy. These measurements
are provided in table 6.2. Seeing as some models are very similar in performance,
the number of trainable parameters and floating point operations (FLOPs) are
also displayed here, highlighting potential trade-offs between resource use and
performance.

Table 6.2: Accuracy and resource requirements for all models. The
best results are highlighted in bold.

Model Accuracy (%) Number of parameters FLOPs
Baseline Model 87.14 2038k 7.6M
RadarPointnet 91.85 3k 1.7M

RadarCNN 91.97 46k 1.8M
KerasPointnet 86.16 751k 170M

Keras1Tnet 83.17 416k 101M
KerasNoTnet 90.46 209k 52M
KerasSmall 91.11 12k 3.1M

The precision and recall metrics for human and vehicle are provided in table
6.3. We also present two variants of the average recall and precision: the raw
(macro) average and a weighted average, scaled by the distribution of classes in
the test set. In Appendix A.2, we supply the confusion matrices from which the
table values are derived.

Method and Results 31

Table 6.3: Precision and recall for Human (H) and Vehicle (V). The
best results are presented in bold.

Method Precision Recall
H V Macro Weighted H V Macro Weighted

Baseline Model 0.73 0.94 0.83 0.88 0.84 0.89 0.86 0.87
RadarPointnet 0.81 0.97 0.89 0.92 0.91 0.92 0.92 0.92

RadarCNN 0.82 0.96 0.89 0.92 0.89 0.93 0.90 0.92
KerasPointnet 0.69 0.94 0.82 0.88 0.86 0.86 0.86 0.86

Keras1Tnet 0.66 0.91 0.78 0.84 0.77 0.86 0.81 0.83
KerasNoTnet 0.85 0.92 0.89 0.90 0.78 0.95 0.86 0.90
KerasSmall 0.84 0.94 0.89 0.91 0.82 0.94 0.88 0.91

In addition to evaluating the number of correct outputs, we also consider how
confident the model is in its predictions. A prediction is considered confident if
its output probability is above some threshold, defined ahead of time. Table 6.4
presents the fraction of confident outputs each model provides, in the context of
correct predictions and incorrect predictions.

Table 6.4: Fraction of confident predictions for correct (C) and
incorrect (I) samples. The best results of each column are shown
in bold.

Method
Threshold 0.7 0.8 0.9 0.95

C I C I C I C I
Baseline Model 0.97 0.84 0.95 0.73 0.91 0.55 0.84 0.36
RadarPointnet 0.97 0.73 0.92 0.57 0.71 0.29 0.52 0.10

RadarCNN 0.95 0.68 0.83 0.46 0.60 0.17 0.55 0.13
KerasPointnet 0.92 0.37 0.86 0.23 0.69 0.09 0.54 0.05

Keras1Tnet 0.92 0.74 0.82 0.62 0.67 0.45 0.54 0.30
KerasNoTnet 0.96 0.70 0.91 0.59 0.82 0.37 0.71 0.24
KerasSmall 0.94 0.62 0.87 0.47 0.76 0.28 0.67 0.19

32 Method and Results

Figure 6.1: Accuracy and floating point operations of all models.

Figure 6.2 depicts how the accuracy of a model changes with different window
sizes. It is, however, important to note that the hyperparameters used when
generating Figure 6.2 were gathered from a hyperparameter optimization for a
fixed window size.

Figure 6.2: Accuracy of Radar PointNet model (see Section 5.3)
with different window sizes.

Chapter 7
Discussion

7.1 Main Findings
Evaluating PointNet-based deep learning has provided an initial insight into its
validity for radar track data applications. Both the Keras and Radar PointNet
architectures show promising results, with three out of five contenders beating out
the baseline model in overall accuracy of the test set (see Table 6.2). We have
found that varying the Keras architecture impacts performance greatly and iden-
tified several configurations where performance is worse than the baseline. While
some of our results suggest that the T-net (see Section 5.2) module in the Keras
model decreases performance, the high accuracy of KerasSmall indicates that the
root cause of the poor performance might not be related to the T-net configura-
tion, but rather the overhead of parameters added by including it in the network.
We have concluded that the RadarPointnet model exhibits the best performance,
improving upon the overall accuracy of the baseline model by 4.22 percentage
points. It also accomplishes this using far fewer parameters than the other mod-
els. While KerasSmall provides a similar magnitude of parameters, RadarPointnet
outperforms KerasSmall by 0.74 percentage points of overall accuracy.

From Table 6.3 we have noted that, except for KerasNoTnet, all models ex-
hibit much greater difference in precision between human and vehicle than the
corresponding values for recall. This indicates that the models tend to misclassify
vehicle samples as human. Seeing as vehicles generally provide a greater area that
can reflect chirps, we believe that a poorly sampled vehicle could exhibit features
closely resembling that of the average human sample.

Furthermore, we observed a negative correlation between the performance of
our models and trainable parameters and FLOPS (see Table 6.2 and Figure 6.1)
which merits further speculation. The top 3 models with regard to overall accu-
racy achieve this performance using far fewer parameters and FLOPS than their
competitors. This might be related to the sparsity of the radar data.

A low parameter count is a prerequisite for deploying a model on a device,
seeing as resource availability can be rather limited. This advocates for Radar-
Pointnet, RadarCNN, or KerasSmall being possible candidates for replacing the
baseline considering on-device classification, seeing as they outperform the baseline
model in both resource requirement and accuracy.

33

34 Discussion

7.2 Confidence and Thresholding
In Table 6.4, we introduce the confidence of predictions from all models, at different
thresholds. All models retain higher confidence in their correct predictions than
their incorrect ones but diverge differently when the threshold increases. We found
that the baseline model retains high trust in all of its predictions, including the
incorrect ones. While confidence in incorrect predictions is undesirable, the impact
of this metric decreases as model accuracy is improved, seeing as the total number
of incorrect predictions is lower. We noted that the Keras and Radar models
reach promising confidence at the threshold of 0.8, decreasing their confidence
of incorrect prediction substantially whilst preserving confidence in the range of
[0.82, 0.91] for correct predictions. For higher thresholds, we concluded that the
steep decrease in correct prediction confidence outweighs the performance gain in
weakening the incorrect prediction confidence further.

In a real-world scenario, the confidence metric helps give additional feedback
about the reliability of a model. The area of surveillance generally demands a
higher guarantee of robustness in its resources than other fields, seeing as malfunc-
tions can be detrimental to the user [21]. We have found that using confidence in
conjunction with accuracy provides more information about the reliability of the
classifier than using any of these metrics individually.

7.3 Future Work
This work shows multiple potential deep learning classifiers that prove proficient
in the field of radar-based point cloud classification and while we believe these in-
sights to be notable additions to the field, there are many characteristics of these
classifiers left to explore. One such characteristic is the window size. As briefly
discussed in Section 4.2, we use a fixed window size for all models. Varying the
window size and investigating its impact on the confidence and accuracy metrics
is of great interest for determining whether a model is suitable for running on-
device, seeing as the window size directly influences the delay of the classification
output. Presented in Figure 6.2, there seems to be a correlation, where the accu-
racy increases by some percentage points for every additional frame at first, but
this increase stagnates after some 10 to 20 frames. This does suggest that a good
window size is somewhere in this range of frames and should be an optimal trade-
off between delay, in terms of how many frames the model requires, and accuracy.
However, a more thorough hyperparameter optimization for all window sizes could
prove a different range of window sizes to be optimal. Another possible approach
could be defining a method for processing partial inputs, e.g. by padding tracks
shorter than the window size. While the delay can be reduced to a great extent
using this technique, the inherent delay from pre-processing the raw radar data
prevents the delay from being eliminated. Furthermore, padding would require
reevaluating the structure of the model to account for this new aspect.

While we note the importance of considering not only accuracy but also con-
fidence, determining the relation of these two metrics is outside the scope of this
thesis. Appendix A.1 displays the fraction of confident correct and confident in-
correct predictions left as the threshold increases.

Discussion 35

Furthermore, the hyperparameter optimization performed in this study is not
very extensive. Given the inherently large search space of hyperparameters and
the scope of our thesis, we have intentionally limited the amount of work on
this optimization. While substantial enough to indicate how models compare and
perform, a real-world application of these techniques would most likely warrant
further optimization of the hyperparameters.

36 Discussion

References

[1] T. Akiba et al. “Optuna: A Next-generation Hyperparameter Op-
timization Framework”. In: Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining.
KDD ’19. Anchorage, AK, USA: Association for Computing Ma-
chinery, 2019, pp. 2623–2631. isbn: 9781450362016. doi: 10.1145/
3292500.3330701. url: https://doi.org/10.1145/3292500.
3330701.

[2] J. Bai et al. “Traffic participants classification based on 3D radio
detection and ranging point clouds”. en. In: IET Radar, Sonar &
Navigation 16.2 (Feb. 2022), pp. 278–290. issn: 1751-8784, 1751-8792.
doi: 10.1049/rsn2.12182. url: https://onlinelibrary.wiley.
com/doi/10.1049/rsn2.12182 (visited on 06/04/2024).

[3] G. Baudic et al. “14 - Using emulation to validate applications on
opportunistic networks”. In: Advances in Delay-Tolerant Networks
(DTNs) (Second Edition). Ed. by J. P. C. Rodrigues. Second Edi-
tion. Woodhead Publishing Series in Electronic and Optical Materi-
als. Woodhead Publishing, 2021, pp. 273–280. isbn: 978-0-08-102793-
6. doi: https://doi.org/10.1016/B978-0-08-102793-6.00014-X.
url: https://www.sciencedirect.com/science/article/pii/
B978008102793600014X.

[4] J. Bergstra et al. “Algorithms for Hyper-Parameter Optimization”.
In: Advances in Neural Information Processing Systems. Ed. by J.
Shawe-Taylor et al. Vol. 24. Curran Associates, Inc., 2011. url: htt
ps://proceedings.neurips.cc/paper_files/paper/2011/file/
86e8f7ab32cfd12577bc2619bc635690-Paper.pdf.

[5] C. M. Bishop. Pattern recognition and machine learning. Information
science and statistics. New York: Springer, 2006. isbn: 9780387310732.

[6] J. A. Bullinaria. “Recurrent neural networks”. In: Neural Computa-
tion: Lecture 12.1 (2013).

37

38 REFERENCES

[7] Deep Learning in a Nutshell: Core Concepts. en-US. Nov. 2015. url:
https://developer.nvidia.com/blog/deep-learning-nutshell
-core-concepts/ (visited on 04/05/2024).

[8] M. Deprez and E. C. Robinson. “Chapter 11 - Convolutional neural
networks”. In: Machine Learning for Biomedical Applications. Ed. by
M. Deprez and E. C. Robinson. Academic Press, 2024, pp. 233–270.
isbn: 978-0-12-822904-0. doi: https://doi.org/10.1016/B978-0-
12-822904-0.00016-9. url: https://www.sciencedirect.com/
science/article/pii/B9780128229040000169.

[9] Design of new Frequency Modulated Continuous Wave (FMCW) tar-
get tracking radar with digital beamforming tracking – A scientific
report on high fidelity radar electronic warfare modelling and simula-
tion and hardware in-the-loop. Dec. 2019. url: https://pubs.drdc-
rddc . gc . ca / BASIS / pcandid / www / engpub / DDW ? W % 3DSYSNUM =
811367&r=0 (visited on 05/09/2024).

[10] A. D. Dongare, R. R. Kharde, A. D. Kachare, et al. “Introduction to
artificial neural network”. In: International Journal of Engineering
and Innovative Technology (IJEIT) 2.1 (2012), pp. 189–194.

[11] Z. Feng et al. “Point Cloud Segmentation with a High-Resolution
Automotive Radar”. In: AmE 2019 - Automotive meets Electronics;
10th GMM-Symposium. 2019, pp. 1–5.

[12] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016.

[13] N. Hansen and A. Ostermeier. “Completely Derandomized Self-
Adaptation in Evolution Strategies”. In: Evolutionary Computation
9.2 (2001), pp. 159–195. doi: 10.1162/106365601750190398.

[14] IBM Developer. url: %5Curl % 7Bhttps : / / developer . ibm . com /
learningpaths/get-started-with-deep-learning/an-introduc
tion-to-deep-learning/%7D (visited on 04/15/2024).

[15] C. Janiesch, P. Zschech, and K. Heinrich. “Machine learning and deep
learning”. en. In: Electronic Markets 31.3 (Sept. 2021), pp. 685–695.
issn: 1422-8890. doi: 10.1007/s12525-021-00475-2. url: https:
//doi.org/10.1007/s12525-021-00475-2 (visited on 04/05/2024).

[16] O. S. Kayhan and J. C. Gemert. “On Translation Invariance in CNNs:
Convolutional Layers Can Exploit Absolute Spatial Location”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). June 2020.

REFERENCES 39

[17] L. Li et al. “A System for Massively Parallel Hyperparameter Tun-
ing”. In: Proceedings of Machine Learning and Systems. Ed. by I.
Dhillon, D. Papailiopoulos, and V. Sze. Vol. 2. 2020, pp. 230–246.
url: https : / / proceedings . mlsys . org / paper _ files / paper /
2020/file/a06f20b349c6cf09a6b171c71b88bbfc-Paper.pdf.

[18] Linear/Fully-Connected Layers User’s Guide. en. url: https://d
ocs.nvidia.com/deeplearning/performance/dl-performance-
fully-connected/index.html (visited on 04/09/2024).

[19] A. Luque et al. “The impact of class imbalance in classification per-
formance metrics based on the binary confusion matrix”. In: Pattern
Recognition 91 (2019), pp. 216–231. issn: 0031-3203. doi: https :
//doi.org/10.1016/j.patcog.2019.02.023. url: https://www.
sciencedirect.com/science/article/pii/S0031320319300950.

[20] D. Mishkin, N. Sergievskiy, and J. Matas. “Systematic evaluation of
convolution neural network advances on the imagenet”. In: Computer
vision and image understanding 161 (2017), pp. 11–19.

[21] CNN Newsource. Texas high school goes into lockdown due to AI
security system’s false alarm
. en. Oct. 2023. url: https://news4sanantonio.com/newsletter-
daily/texas-high-school-goes-into-lockdown-due-to-ai-
security- systems- false- alarm- students- friends- family-
scared-security-system-campus (visited on 05/29/2024).

[22] J. Niemeyer, F. Rottensteiner, and U. Soergel. “Conditional Ran-
dom Fields for LiDAR Point Cloud Classification in Complex Ur-
ban Areas”. In: ISPRS Annals of the Photogrammetry, Remote Sens-
ing and Spatial Information Sciences I-3 (2012), pp. 263–268. doi:
10.5194/isprsannals- I- 3- 263- 2012. url: https://isprs-
annals.copernicus.org/articles/I-3/263/2012/.

[23] P. Probst, A. Boulesteix, and B. Bischl. “Tunability: Importance of
Hyperparameters of Machine Learning Algorithms”. In: Journal of
Machine Learning Research 20.53 (2019), pp. 1–32. url: http://
jmlr.org/papers/v20/18-444.html.

[24] C. R. Qi et al. “PointNet: Deep Learning on Point Sets for 3D Classi-
fication and Segmentation”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). July 2017.

[25] S. Rao. Introduction to mmwave Sensing: FMCW Radars - Module
1: Range Estimation
. url: https://www.ti.com/content/dam/videos/external-vide

40 REFERENCES

os/en-us/2/3816841626001/5415203482001.mp4/subassets/mmw
aveSensing-FMCW-offlineviewing_0.pdf (visited on 05/09/2024).

[26] B. Shahriari et al. “Taking the Human Out of the Loop: A Review
of Bayesian Optimization”. In: Proceedings of the IEEE 104.1 (2016),
pp. 148–175. doi: 10.1109/JPROC.2015.2494218.

[27] P. Singh, P. Raj, and V. P. Namboodiri. “EDS pooling layer”. In:
Image and Vision Computing 98 (2020), p. 103923. issn: 0262-8856.
doi: https://doi.org/10.1016/j.imavis.2020.103923. url:
https : / / www . sciencedirect . com / science / article / pii / S
026288562030055X.

[28] O. Vinyals, S. Bengio, and M. Kudlur. “Order matters: Sequence to
sequence for sets”. In: arXiv preprint arXiv:1511.06391 (2015).

[29] What are Convolutional Neural Networks? | IBM. en-us. url: https:
//www.ibm.com/topics/convolutional-neural-networks (visited
on 04/05/2024).

[30] N. Yastikli and Z. Cetin. “Classification of LiDAR Data with Point
Based Classification Methods”. In: The International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences
XLI-B3 (2016), pp. 441–445. doi: 10.5194/isprs-archives-XLI-
B3-441-2016. url: https://isprs-archives.copernicus.org/
articles/XLI-B3/441/2016/.

[31] F. Ye and J. Yang. “A Deep Neural Network Model for Speaker Iden-
tification”. en. In: Applied Sciences 11.8 (Apr. 2021), p. 3603. issn:
2076-3417. doi: 10.3390/app11083603. url: https://www.mdpi.
com/2076-3417/11/8/3603 (visited on 04/10/2024).

[32] N. Zandler Andersson. Moving Target Classification with Radar Point-
Clouds and Supervised Contrastive Learning. 2021.

[33] J. Zhang, X. Lin, and X. Ning. “SVM-Based Classification of Seg-
mented Airborne LiDAR Point Clouds in Urban Areas”. In: Remote
Sensing 5.8 (2013), pp. 3749–3775. issn: 2072-4292. doi: 10.3390/
rs5083749. url: https://www.mdpi.com/2072-4292/5/8/3749.

[34] Z. Zhao et al. “Point Cloud Features-Based Kernel SVM for Human-
Vehicle Classification in Millimeter Wave Radar”. In: IEEE Access 8
(2020), pp. 26012–26021. doi: 10.1109/ACCESS.2020.2970533.

Appendix A

Appendix

A.1 Confidence Plots

Here, we provide visualizations for the confidence of each model’s prediction. Con-
fidence values are sampled evenly in the threshold range of 0.5 to 1.0. The confi-
dence values for correct predictions and incorrect predictions are processed sepa-
rately.

41

42 Appendix

(a) Baseline. (b) KerasPointnet.

(c) Keras1Tnet. (d) KerasNoTnet.

(e) KerasSmall. (f) RadarPointnet.

(g) RadarCNN.

Figure A.1: Fraction of confident predictions left as threshold in-
creases.

Appendix 43

A.2 Confusion Matrices

Figure A.2: Confusion Matrices.

