In this work we have investigated face verification based on deep representations from Convolutional Neural Networks (CNNs) to find an accurate and compact face descriptor trained only on a restricted amount of face image data. Transfer learning by fine-tuning CNNs pre-trained on large-scale object recognition has been shown to be a suitable approach to counter a limited amount of target domain data. Using model compression we reduced the model complexity without significant loss in accuracy and made the feature extraction more feasible for real-time use and deployment on embedded systems and mobile devices. The compression resulted in a 9-fold reduction in number of parameters and a 5-fold speed-up in the average feature extraction time running on a desktop CPU. With continued training of the compressed model using a Siamese Network setup, it outperformed the larger model.