Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

The water footprint of winter wheat in Sweden

Sundberg, Henrik LU (2012) In TVVR12/5004 VVR820 20121
Division of Water Resources Engineering
Abstract
This study attempts to calculate the green blue and gray water footprint of the crop production of winter wheat and three derived winter wheat products: liquid fuel ethanol, wheat flour and macaroni. The calculations were done for Sweden for the period 2008-2010, covering an average of 80% of the annual winter wheat production. The south of Sweden was divided into 18 climate zones for which sufficient climatic data was available. The crop water use and requirements were then calculated for each of these zones using the CROPWAT model developed by the UN Food and Agriculture Organization, FAO. Other activities such as transportation, energy use and processing water were included in the study but combined these activities contribute to less... (More)
This study attempts to calculate the green blue and gray water footprint of the crop production of winter wheat and three derived winter wheat products: liquid fuel ethanol, wheat flour and macaroni. The calculations were done for Sweden for the period 2008-2010, covering an average of 80% of the annual winter wheat production. The south of Sweden was divided into 18 climate zones for which sufficient climatic data was available. The crop water use and requirements were then calculated for each of these zones using the CROPWAT model developed by the UN Food and Agriculture Organization, FAO. Other activities such as transportation, energy use and processing water were included in the study but combined these activities contribute to less than 1% of the water footprint of raw winter wheat production, referred to as the supply chain system. It is completely dominated by the cultivation component and the total water footprint is 875 m3 (59.4% green, 0.8% blue and 39.8% gray) per ton of wheat with a water content of 14%. Out of the supply chain system the cultivation component stands for 871 m3 (59.5% green, 0.6% blue and 39.9% gray) or about 99.5%. The result compares well to an earlier study by Mekkonen & Hoekstra (2010a).
In the case studies of refined winter wheat products the total water footprint is still dominated by the supply chain in general and the cultivation component within it specifically.
The water footprint of wheat flour from winter wheat at the mill in Malmö is found to be 1.15 m3 (59.1% green 1.2% blue and 39.7% gray) per kg of flour out of which 99% is from the supply chain component.
The water footprint of liquid fuel ethanol from the Agroetanol plant in Norrköping is calculated to 1 477 m3 (57.5% green, 4.2% blue and 38.3% gray) per m3 of ethanol, out of which the supply chain component is almost 95%, while the rest is mostly energy use in the form of bio fuel based steam production and electricity.
The water footprint of the production of macaroni at the Ceralia factory in Järna is calculated to 1.30 m3 (57.7% green, 3.8% blue and 38.5% gray) per kg of macaroni. About 95% of this is from the supply chain component while the remaining 5% is mostly attributed to the energy used in the processes. (Less)
Abstract (Swedish)
Studien syftar till att beräkna det gröna, blå och grå vattenfotavtrycket vid odling och produktion av höstvete och tre fallstudier av höstvete-produkter; drivmedelsetanol, kärnvetemjöl och makaroner. Beräkningarna har utförts för Sverige under perioden 2008-2010 och täcker ungefär 80 % av den svenska produktionen av höstvete under de berörda åren. Södra Sverige delades in i 18 klimatzoner för vilka tillräckliga klimatdata fanns tillgängliga. Grödornas vattenanvändning och behov beräknades sedan för var och en av dessa zoner med hjälp av FN-organet FAOs (Food and Agriculture Organisation) vattenmodell CROPWAT. Andra aktiviteter i systemet som transport, energiproduktion och processvattenanvändning inkluderades, men bidrar med mindre än 1 %... (More)
Studien syftar till att beräkna det gröna, blå och grå vattenfotavtrycket vid odling och produktion av höstvete och tre fallstudier av höstvete-produkter; drivmedelsetanol, kärnvetemjöl och makaroner. Beräkningarna har utförts för Sverige under perioden 2008-2010 och täcker ungefär 80 % av den svenska produktionen av höstvete under de berörda åren. Södra Sverige delades in i 18 klimatzoner för vilka tillräckliga klimatdata fanns tillgängliga. Grödornas vattenanvändning och behov beräknades sedan för var och en av dessa zoner med hjälp av FN-organet FAOs (Food and Agriculture Organisation) vattenmodell CROPWAT. Andra aktiviteter i systemet som transport, energiproduktion och processvattenanvändning inkluderades, men bidrar med mindre än 1 % av vattenfotavtrycket sammanlagt i produktionen av höstvetekärnor. Denna del kallas supply-chain systemet i resten av rapporten.
Supply-chain systemet domineras helt av odlingskomponenten och det totala vattenfotavtrycket är 875 m3 (59.4 % grön, 0.8 % blå och 39.8 % grå) per ton höstvetekärnor med 14 % vatteninnehåll. Av detta står odlingskomponenten för 871 m3 (59.5% grön, 0.6% blå och 39.9% grå) eller ungefär 99.5%. Resultatet kan med fördel jämföras med en tidigare studie av Mekkonen & Hoekstra (2010a) I fallstudierna där vattenfotavtrycket av höstveteprodukter studeras dominerar supply-chain komponenten generellt, och odlingskomponenten inuti den, specifikt.
Vattenfotavtrycket av kärnvetemjöl från kvarnen i Malmö beräknas till 1.15 m3 (59.1 % grön, 1.2 % blå och 39.7 % grå) per kg kärnvetemjöl. Ungefär 99 % av detta härrör från supply-chain systemet.
Vattenfotavtrycket från drivmedelsetanol från Agroetanolfabriken i Norrköping beräknas till ungefär 1 477 m3 (57.5 % grön, 4.2 % blå och 38.3 % grå) per m3 etanol. Supply-chain komponenten står för nästan 95 % av detta, medan övriga avtrycket kommer från produktionen av bioenergi i form av ånga från E.on samt elektricitet.
Makronerna som produceras vid Ceralias anläggning i Järna beräknas ha ett vattenfotavtryck på ca 1.30 m3 (57.7% grön, 3.8% blå och 38.5% grå) per kg makaroner. Ungefär 95% av detta härrör från supply-chain komponeneten, medan kvarvarande 5% mest kommer från produktionen av energi som används i tillverkningsprocessen. (Less)
Please use this url to cite or link to this publication:
author
Sundberg, Henrik LU
supervisor
organization
course
VVR820 20121
year
type
H2 - Master's Degree (Two Years)
subject
keywords
macaroni, Lantmännen, wheat flour, liquid fuel ethanol, winter wheat, Water footprint
publication/series
TVVR12/5004
report number
12/5004
ISSN
1101-9824
language
English
additional info
Examiner: Linus Zhang
id
3127244
date added to LUP
2012-10-09 21:14:58
date last changed
2019-03-27 16:03:47
@misc{3127244,
  abstract     = {{This study attempts to calculate the green blue and gray water footprint of the crop production of winter wheat and three derived winter wheat products: liquid fuel ethanol, wheat flour and macaroni. The calculations were done for Sweden for the period 2008-2010, covering an average of 80% of the annual winter wheat production. The south of Sweden was divided into 18 climate zones for which sufficient climatic data was available. The crop water use and requirements were then calculated for each of these zones using the CROPWAT model developed by the UN Food and Agriculture Organization, FAO. Other activities such as transportation, energy use and processing water were included in the study but combined these activities contribute to less than 1% of the water footprint of raw winter wheat production, referred to as the supply chain system. It is completely dominated by the cultivation component and the total water footprint is 875 m3 (59.4% green, 0.8% blue and 39.8% gray) per ton of wheat with a water content of 14%. Out of the supply chain system the cultivation component stands for 871 m3 (59.5% green, 0.6% blue and 39.9% gray) or about 99.5%. The result compares well to an earlier study by Mekkonen & Hoekstra (2010a).
In the case studies of refined winter wheat products the total water footprint is still dominated by the supply chain in general and the cultivation component within it specifically.
The water footprint of wheat flour from winter wheat at the mill in Malmö is found to be 1.15 m3 (59.1% green 1.2% blue and 39.7% gray) per kg of flour out of which 99% is from the supply chain component.
The water footprint of liquid fuel ethanol from the Agroetanol plant in Norrköping is calculated to 1 477 m3 (57.5% green, 4.2% blue and 38.3% gray) per m3 of ethanol, out of which the supply chain component is almost 95%, while the rest is mostly energy use in the form of bio fuel based steam production and electricity.
The water footprint of the production of macaroni at the Ceralia factory in Järna is calculated to 1.30 m3 (57.7% green, 3.8% blue and 38.5% gray) per kg of macaroni. About 95% of this is from the supply chain component while the remaining 5% is mostly attributed to the energy used in the processes.}},
  author       = {{Sundberg, Henrik}},
  issn         = {{1101-9824}},
  language     = {{eng}},
  note         = {{Student Paper}},
  series       = {{TVVR12/5004}},
  title        = {{The water footprint of winter wheat in Sweden}},
  year         = {{2012}},
}