Advanced

Förutsättningar för geoenergi till idrottsanläggningar i Kallerstad, Linköpings kommun : en förstudie

Petersson, Albin LU (2012) In Examensarbete i geologi vid Lunds universitet GEOL01 20121
Department of Geology
Abstract
Because of the sun and geothermal heat the ground has two natural recourses for heat energy, and since the ground changes temperature slower than the air it has a more even temperature fluctuation. This is positive for the use of geothermal energy which is a renewable method that has been given more attention lately due to it positive environmental effects.
The term renewable geothermal energy includes two different methods, shallow and deep geothermal energy. Deep geothermal energy is based on utilization of the heat produced inside the earth, mainly due to radioactive decay. Because the temperatures in the earth wants to be balanced the heat flows towards the earth surface. This results in a geothermal gradient which means that the... (More)
Because of the sun and geothermal heat the ground has two natural recourses for heat energy, and since the ground changes temperature slower than the air it has a more even temperature fluctuation. This is positive for the use of geothermal energy which is a renewable method that has been given more attention lately due to it positive environmental effects.
The term renewable geothermal energy includes two different methods, shallow and deep geothermal energy. Deep geothermal energy is based on utilization of the heat produced inside the earth, mainly due to radioactive decay. Because the temperatures in the earth wants to be balanced the heat flows towards the earth surface. This results in a geothermal gradient which means that the temperature progressively gets higher further in towards the earth core. To utilize deep geothermal heat a hole is drilled from which warm geothermal water is taken.
Shallow geothermal heat utilizes the upper part of the ground which is more affected by the sun and less by the geothermal flow. The systems can be designed in more than one way. The energy can be transported from the ground by providing it with collectors. By circulating a fluid in the collectors heat or cold is obtained and can be distributed to a needing facility. A more effective alternative to collectors is utilizing of groundwater. The groundwater changes, just like the earth, temperature slower than the air. By taking the water directly from the ground and extract the energy from it, no collectors is needed.
An important part in the choice of solution is the geological factors. Even if groundwater methods are a more effective solution it can’t be applied all the times because of the lack of aquifers. To this all the environmental and juridical factors shall be considered when selecting method. As a consequence of all the things that has to be considered it is important to make a feasibility study before the geothermal system is being built.
In Kallerstad, Linköping, sport facilities which are in demand of both heat and cold are located. When the cooling machines are running excess heat is created. This heat is today released into the outside air for no use. The situation has been given attention and has resulted in this essay which aims to give the facilities an alternative for energy source that both makes the environment better and lower the energy costs. The essay is based on literature and describes the possibilities for the investigated buildings to cover their energy demand with geothermal methods.
The conclusion from this work is that the most effective alternative in this case is a borehole thermal energy storage. Any calculations on costs or emissions have not been done, but the investigation implies that the system will be successful. However, some things remains to be investigated before any constructing of the system can start. What clearly can be said though is that the system only should be fitted to support the studied ice facilities with their energy demand, the investigated soccer stadium has, as it appears today, low potential to cover its energy demand with geothermal heat. (Less)
Abstract (Swedish)
Tack vare solen och geotermisk värme har marken två naturliga källor till värmeenergi, och p.g.a. trögheten att ändra temperatur har marken en jämnare temperaturvariation än luften. Detta är gynnsamt för den som vill utnyttja geoenergi. Detta är en förnyelsebar energikälla som fått allt mer uppmärksamhet på marknaden de senaste åren.
Under begreppet förnyelsebar geoenergi ligger två olika metoder; geotermi och ”vanlig” geoenergi. Geotermisk energiutvinning baseras på att utnyttja den värme som bildas inne i jorden, huvudsakligen genom radioaktivt sönderfall. Eftersom temperaturerna i jorden strävar efter jämvikt flödar den bildade värmen utåt mot markytan. Detta ger upphov till en geotermisk gradient vilken innebär att markens temperatur... (More)
Tack vare solen och geotermisk värme har marken två naturliga källor till värmeenergi, och p.g.a. trögheten att ändra temperatur har marken en jämnare temperaturvariation än luften. Detta är gynnsamt för den som vill utnyttja geoenergi. Detta är en förnyelsebar energikälla som fått allt mer uppmärksamhet på marknaden de senaste åren.
Under begreppet förnyelsebar geoenergi ligger två olika metoder; geotermi och ”vanlig” geoenergi. Geotermisk energiutvinning baseras på att utnyttja den värme som bildas inne i jorden, huvudsakligen genom radioaktivt sönderfall. Eftersom temperaturerna i jorden strävar efter jämvikt flödar den bildade värmen utåt mot markytan. Detta ger upphov till en geotermisk gradient vilken innebär att markens temperatur successivt ökar från markytan in mot jordens mittpunkt. För att utnyttja geotermi borras ett eller flera hål i marken varifrån varmt geotermalvatten pumpas.
”Vanlig” geoenergi utnyttjar den övre delen av marken vilken i större utsträckning påverkas av solens och mindre av det geotermiska flödet. Systemen kan utformas på flera olika sätt. Energin kan dels hämtas genom att värmeväxlare, eller så kallade kollektorer, förs ner i marken. Genom att cirkulera en vätska i kollektorerna hämtas sedan värme eller kyla från berget alternativt jorden beroende på vilket som är lämpligast att utnyttja. Ett mer effektivt alternativ till att utnyttja kollektorer är att använda grundvatten. Grundvattnet ändrar, liksom marken, temperatur långsammare än luften. Genom att pumpa grundvatten från en eller flera brunnar och utvinna detta vatten på energi behövs ingen värmeväxling mellan mark och kollektorer.
En viktig del i valet av geoenergilösning är de geologiska villkoren. Även om grundvattenmetoder i regel är mer effektiva går de inte alltid att tillämpa p.g.a. brist av tillgängliga akvifärer. Till de geologiska faktorerna tillkommer även flera miljömässiga och juridiska aspekter. Som följd av alla de faktorer som måste bejakas är det vitalt med förundersökningar innan geoenergisystem anläggs.
I Kallerstad, Linköpings kommun, ligger idrottsanläggningar som är i behov av både värme och kyla. Från kylmaskiner bildas överskottsvärme som i dagsläget släpps ut till ingen nytta. Förfarandet har uppmärksammats i denna rapport vilken sammanställts för att ge anläggningarna ett mer miljövänligt och kostnadseffektivt alternativ till energikälla. Resultatet är baserat på litteratur och redogör om förutsättningarna för dessa anläggningar att använda geoenergi.
Slutsatsen av detta arbete är att den mest effektiva geoenergimetoden med de rådande förutsättningarna är ett borrhålslager. Några beräkningar på kostnad och utsläpp har inte gjorts, men undersökningen pekar på att systemet kommer kunna drivas med framgång. Ännu återstår emellertid flera undersökningar som måste genomföras innan ett geoenergisystem anläggs. Klart står dock att systemet endast bör dimensioneras för att täcka energibehovet hos de studerade isanläggningarna, den undersökta fotbollsstadion har i dagsläget låg potential att etablera ett effektivt geoenergisystem. (Less)
Please use this url to cite or link to this publication:
author
Petersson, Albin LU
supervisor
organization
course
GEOL01 20121
year
type
M2 - Bachelor Degree
subject
keywords
energibrunn, akvifär, ATES, Geoenergi, BTES, Geothermal energy, aquifer, energy well
publication/series
Examensarbete i geologi vid Lunds universitet
report number
320
language
Swedish
additional info
Extern handledare Malva Abugor-Ahlkrona, WSP Environmental, Stockholm
id
3166036
date added to LUP
2012-11-09 11:02:29
date last changed
2012-11-09 11:02:29
@misc{3166036,
  abstract     = {Because of the sun and geothermal heat the ground has two natural recourses for heat energy, and since the ground changes temperature slower than the air it has a more even temperature fluctuation. This is positive for the use of geothermal energy which is a renewable method that has been given more attention lately due to it positive environmental effects. 
The term renewable geothermal energy includes two different methods, shallow and deep geothermal energy. Deep geothermal energy is based on utilization of the heat produced inside the earth, mainly due to radioactive decay. Because the temperatures in the earth wants to be balanced the heat flows towards the earth surface. This results in a geothermal gradient which means that the temperature progressively gets higher further in towards the earth core. To utilize deep geothermal heat a hole is drilled from which warm geothermal water is taken.
Shallow geothermal heat utilizes the upper part of the ground which is more affected by the sun and less by the geothermal flow. The systems can be designed in more than one way. The energy can be transported from the ground by providing it with collectors. By circulating a fluid in the collectors heat or cold is obtained and can be distributed to a needing facility. A more effective alternative to collectors is utilizing of groundwater. The groundwater changes, just like the earth, temperature slower than the air. By taking the water directly from the ground and extract the energy from it, no collectors is needed.
An important part in the choice of solution is the geological factors. Even if groundwater methods are a more effective solution it can’t be applied all the times because of the lack of aquifers. To this all the environmental and juridical factors shall be considered when selecting method. As a consequence of all the things that has to be considered it is important to make a feasibility study before the geothermal system is being built.
In Kallerstad, Linköping, sport facilities which are in demand of both heat and cold are located. When the cooling machines are running excess heat is created. This heat is today released into the outside air for no use. The situation has been given attention and has resulted in this essay which aims to give the facilities an alternative for energy source that both makes the environment better and lower the energy costs. The essay is based on literature and describes the possibilities for the investigated buildings to cover their energy demand with geothermal methods.
The conclusion from this work is that the most effective alternative in this case is a borehole thermal energy storage. Any calculations on costs or emissions have not been done, but the investigation implies that the system will be successful. However, some things remains to be investigated before any constructing of the system can start. What clearly can be said though is that the system only should be fitted to support the studied ice facilities with their energy demand, the investigated soccer stadium has, as it appears today, low potential to cover its energy demand with geothermal heat.},
  author       = {Petersson, Albin},
  keyword      = {energibrunn,akvifär,ATES,Geoenergi,BTES,Geothermal energy,aquifer,energy well},
  language     = {swe},
  note         = {Student Paper},
  series       = {Examensarbete i geologi vid Lunds universitet},
  title        = {Förutsättningar för geoenergi till idrottsanläggningar i Kallerstad, Linköpings kommun : en förstudie},
  year         = {2012},
}