Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

Systematisk sammanställning av större geoenergianläggningar i Sverige

Thuresson, Emma LU (2014) In Examensarbeten i Geologi vid Lunds universitet GEOL01 20141
Department of Geology
Abstract (Swedish)
En sammanställning av större geoenergianläggningar i Sverige har i samband med detta arbete gjorts. Arton anläggningar med bergvärme, borrhålslager, högtemperaturlager samt akfiverlager ingår i denna. Utifrån information om dessa anläggningars drift har rekommendationer för mätpunkter getts för att bättre säkra mätning och driftuppföljning.
Geoenergi är Sveriges tredje största förnybara energikälla. Lagrad solenergi hämtas från mark, berg, sjö- och grundvatten genom ett kollektorsystem med cirkulerande köldbärarvätska. Det går att utvinna både värmeenergi och kylenergi ur dessa system. Anläggningar dimensioneras redan på planeringsstadiet för att systemet ska vara i balans. Exempelvis minskar anläggningens effektivitet vid ett för stort... (More)
En sammanställning av större geoenergianläggningar i Sverige har i samband med detta arbete gjorts. Arton anläggningar med bergvärme, borrhålslager, högtemperaturlager samt akfiverlager ingår i denna. Utifrån information om dessa anläggningars drift har rekommendationer för mätpunkter getts för att bättre säkra mätning och driftuppföljning.
Geoenergi är Sveriges tredje största förnybara energikälla. Lagrad solenergi hämtas från mark, berg, sjö- och grundvatten genom ett kollektorsystem med cirkulerande köldbärarvätska. Det går att utvinna både värmeenergi och kylenergi ur dessa system. Anläggningar dimensioneras redan på planeringsstadiet för att systemet ska vara i balans. Exempelvis minskar anläggningens effektivitet vid ett för stort uttag av bergvärme, då berget får sänkt temperatur. Vanligtvis används värmepump eller kylmaskin för att höja, respektive sänka temperaturen innan energin levereras till aktuell fastighet. Det går emellertid även att utvinna frivärme och frikyla genom att enbart använda sig av cirkulationssystem.
En geoenergianläggning är sällan dimensionerad för att täcka fastighetens totala värmebehov. Vid behov köps därför spetsvärme från annan energikälla in. Det behövs även elenergi för drift av värmepump och kylmaskin.
Hur effektivt ett geoenergisystem är ges av energifaktorn. Denna faktor anger hur många delar energi som levereras av systemet för varje del inköpt elenergi.
Större fastigheter som spenderar stora summor på både uppvärmning och komfortkyla kan, trots höga investeringskostnader, spara mycket pengar genom att installera geoenergi. Anläggningar har lång livstid och litet behov av underhåll, dessutom är de ej skrymmande då större delen av anläggningen finns under jord.
Vid inhämtning av uppgifter noterades att information sällan var samlad och lättillgänglig för fastighetsägaren. Systematisk insamling av data är nödvändig för att underlätta utvärdering av en geoenergianläggning. Med ett detaljerat dataunderlag kan möjliga åtgärder för effektivisering och maximering av anläggningens potential identifieras. (Less)
Abstract
Shallow geothermal energy is the third biggest renewable source of energy in Sweden. Low-temperature energy stored in the ground and groundwater is collected by a ground heat exchanger with circulating brine and a ground source heat pump, GSHP. It is possible to extract both heating energy and cooling energy in these systems; in the winter the earth is utilised as a heat source, and in the summer as a heat sink. The systems are dimensioned to be in balance with the surroundings for the foreseeable future. Large systems are called Borehole Thermal Energy Storage, BTES, and Aquifer Thermal Energy Storage, ATES. Before the energy is distributed, a heat pump or a cooling machine will commonly be utilized to either raise or lower the... (More)
Shallow geothermal energy is the third biggest renewable source of energy in Sweden. Low-temperature energy stored in the ground and groundwater is collected by a ground heat exchanger with circulating brine and a ground source heat pump, GSHP. It is possible to extract both heating energy and cooling energy in these systems; in the winter the earth is utilised as a heat source, and in the summer as a heat sink. The systems are dimensioned to be in balance with the surroundings for the foreseeable future. Large systems are called Borehole Thermal Energy Storage, BTES, and Aquifer Thermal Energy Storage, ATES. Before the energy is distributed, a heat pump or a cooling machine will commonly be utilized to either raise or lower the temperature. However, it is also possible to use the system without the aforementioned apparatus and extract free heating and free cooling with the help of only a circulation system. Big properties that spend large sums on heating as well as chilling can save much money by investing in systems for BTES or ATES. These systems have long life and need little in the way of maintenance, they also need little space since most of the construction is below ground.
A geothermal plant is more often than not dimensioned not to cover the buildings’ total energy need. Therefore, auxiliary heat is used when needed. There is also need of electrical energy to run the heat pump and chiller, and the circulation system. The efficiency of a system is determined by the coefficient of performance, COP. This can be calculated, and specifies how many kWh of energy that is produced for every kWh that is invested in the system.
A survey of BTES and ATES systems in Sweden has been made in connection with this thesis. Eighteen systems participated in the survey, contributing information and operation data. Based on the survey, recommendations for measurements to secure operation data and monitoring of the system have been given. During the execution of the survey it was noted that the property owners rarely had information about their systems readily accessible. To monitor the drift and collect data is vital to facilitate evaluation of a BTES or ATES. With detailed data it is possible to identify measurements to increase efficiency and optimize the potential of the system. (Less)
Please use this url to cite or link to this publication:
author
Thuresson, Emma LU
supervisor
organization
alternative title
Survey of BTES and ATES systems in Sweden
course
GEOL01 20141
year
type
M2 - Bachelor Degree
subject
keywords
borehole thermal energy storage, GSHP, geoenergi, bergvärme, bergkyla, akviferlager, borrhålslager, sammanställning, mätpunkter, COP, shallow geothermal energy, survey, BTES, aquifer thermal energy storage, ATES
publication/series
Examensarbeten i Geologi vid Lunds universitet
report number
388
language
Swedish
additional info
Extern handledare Signhild Gehlin Tekn. Dr. Teknisk Expert, Svenskt Geoenergicentrum, Lund
id
4465331
date added to LUP
2014-06-26 16:59:06
date last changed
2014-06-26 16:59:06
@misc{4465331,
  abstract     = {{Shallow geothermal energy is the third biggest renewable source of energy in Sweden. Low-temperature energy stored in the ground and groundwater is collected by a ground heat exchanger with circulating brine and a ground source heat pump, GSHP. It is possible to extract both heating energy and cooling energy in these systems; in the winter the earth is utilised as a heat source, and in the summer as a heat sink. The systems are dimensioned to be in balance with the surroundings for the foreseeable future. Large systems are called Borehole Thermal Energy Storage, BTES, and Aquifer Thermal Energy Storage, ATES. Before the energy is distributed, a heat pump or a cooling machine will commonly be utilized to either raise or lower the temperature. However, it is also possible to use the system without the aforementioned apparatus and extract free heating and free cooling with the help of only a circulation system. Big properties that spend large sums on heating as well as chilling can save much money by investing in systems for BTES or ATES. These systems have long life and need little in the way of maintenance, they also need little space since most of the construction is below ground.
	A geothermal plant is more often than not dimensioned not to cover the buildings’ total energy need. Therefore, auxiliary heat is used when needed. There is also need of electrical energy to run the heat pump and chiller, and the circulation system. The efficiency of a system is determined by the coefficient of performance, COP. This can be calculated, and specifies how many kWh of energy that is produced for every kWh that is invested in the system. 
	A survey of BTES and ATES systems in Sweden has been made in connection with this thesis. Eighteen systems participated in the survey, contributing information and operation data. Based on the survey, recommendations for measurements to secure operation data and monitoring of the system have been given. During the execution of the survey it was noted that the property owners rarely had information about their systems readily accessible. To monitor the drift and collect data is vital to facilitate evaluation of a BTES or ATES. With detailed data it is possible to identify measurements to increase efficiency and optimize the potential of the system.}},
  author       = {{Thuresson, Emma}},
  language     = {{swe}},
  note         = {{Student Paper}},
  series       = {{Examensarbeten i Geologi vid Lunds universitet}},
  title        = {{Systematisk sammanställning av större geoenergianläggningar i Sverige}},
  year         = {{2014}},
}