Advanced

Development of Wet Electrostatic Precipitator for Generation of Nanoparticle-Protein Solution

Adner, Julia LU (2015) MAM720 20151
Ergonomics and Aerosol Technology
Abstract
To examine nanoparticle toxicity there is a need to produce defined nanoparticles dispersed in a colloidal suspension. Such a solution could also be interesting for other fields such as nano-medicine. In order to disperse the particles in the liquid there are often surfactant added to the process that alternates the surface of the particles. As the research shows that the surface of a nanoparticle can play a large role of its effects in biological systems, the relevance of these methods have been questioned. By depositing the airborne particles directly in a liquid this mentioned primary treatment can be avoided. A new method for depositing on liquid has been developed that appears to avoid the formation of a film consisting of stagnant... (More)
To examine nanoparticle toxicity there is a need to produce defined nanoparticles dispersed in a colloidal suspension. Such a solution could also be interesting for other fields such as nano-medicine. In order to disperse the particles in the liquid there are often surfactant added to the process that alternates the surface of the particles. As the research shows that the surface of a nanoparticle can play a large role of its effects in biological systems, the relevance of these methods have been questioned. By depositing the airborne particles directly in a liquid this mentioned primary treatment can be avoided. A new method for depositing on liquid has been developed that appears to avoid the formation of a film consisting of stagnant nanoparticle-protein complexes. Particles deposited on a recirculating liquid by the means of electrostatic forces, the method is realized in a device-named Aeroid. The methodology also allow larger volumes of fluid with suitable concentration. Also the size of nanoparticles can be produced which, from an application perspective, is desirable.
Design, loss measurements and efficiency measurements were included in the method development for the Aeroid. Analyses in the form of materials, volume of the liquid and on how the particles are expected to move in the electric field was performed. For deposition in the Aeroid an aerosol of spherical goldnanoparticles was employed, with size about 60 nm, produced by means of a spark generator in series with a high-temperature-oven. The aerosol is then passed through a bipolar charger to obtain a well known charge distribution, Boltzmann-Fuch. To determine which type of protein solution that could be used to produce a colloid solution with 60 nm gold particles in the Aeroid a control measurements in an ESP where made. There was two types of proteins IgG and BSA added into water, PBS and TRISS. The deposit was made with the same length of time and with the same aerosol concentration for all control measurements. The reddest membrane i. e. the highest concentration of gold nanoparticle-protein complex was found when the BSA was dissolved in PBS. This solution was used for depostion in the Aeroid.
When the voltage with a field strength of 1.2 kV/cm, was turned on in the Aeroid 17 % of the produced particles where deposited. It resutled in losses between 13 and 37% at 60 nm, most likely due to diffusion. Efficiency measurements were carried out partly in a SMPS by comparing the penetration of particles in the Aeroid when high voltage was on/off. A complement to the deposition measurement PIXE analysis to determine the concentration of gold in the liquid.

Analysis by spectrophotometry and visual inspection shows that generation of a 65 ml solution of dispersed gold nanoparticles was successfull. Future research and development should put emphasis on the analysis of the proportion of the particles which are dispersed in order to evaluate whether the Aeroid may be used for the production of other types of particle-protein solution combinations. (Less)
Popular Abstract (Swedish)
För att undersöka nanopartiklars toxicitet finns behov av att producera väldefinierade nanopartiklar dispergerade i en kolloid suspension. Men även för andra områden så som nanomedicin finns ett behov av denna typ av lösningar. För att dispergera partiklarna i vätska används ofta ytaktiva ämnen. När dessa ämnen tillsätts adderas de på ytan av partikeln och förändrar partiklarnas yta. Då forskning visar att ytan på en nanopartikel kan spela stor roll för dess effekt i biologiska system har dessa metoders relevans ifrågasatts. Genom deponering av luftburna nanopartiklar direkt på vätska, kan tillsatsen av ytaktiva ämnen undvikas. En ny metod, som innebär deponering på vätska har utvecklats som syftar till att undvika bildandet av en hinna... (More)
För att undersöka nanopartiklars toxicitet finns behov av att producera väldefinierade nanopartiklar dispergerade i en kolloid suspension. Men även för andra områden så som nanomedicin finns ett behov av denna typ av lösningar. För att dispergera partiklarna i vätska används ofta ytaktiva ämnen. När dessa ämnen tillsätts adderas de på ytan av partikeln och förändrar partiklarnas yta. Då forskning visar att ytan på en nanopartikel kan spela stor roll för dess effekt i biologiska system har dessa metoders relevans ifrågasatts. Genom deponering av luftburna nanopartiklar direkt på vätska, kan tillsatsen av ytaktiva ämnen undvikas. En ny metod, som innebär deponering på vätska har utvecklats som syftar till att undvika bildandet av en hinna bestående av ansamlade nanopartikel–protein komplex. Partiklar deponeras här på en recirkulerande vätska med hjälp av elektrostatiska krafter och metoden realiseras i en anordning med arbetsnamnet Aeroid. Metodiken tillåter även att större vätskevolymer med önskvärd koncentration och storlek av nanopartiklar kan produceras vilket ur ett tillämpningsperspektiv är eftersträvansvärt.

Design av Aeroiden, förlustmätningar av aerosolen och effektivitetsmätningar med avseende på deponering av aerosolen i Aeroiden ingick i metodutvecklingen. Analyser i form av materialval, storlek på vätskevolym samt beräkningar på hur partiklarna förväntas röra sig i det elektriska fältet genomfördes. För att bestämma vilken typ av proteinlösning som skulle användas för att producera en kolloid lösning med 60 nm guldpartiklar i Aeroiden gjordes referensexperiment, var vid olika proteiner testades vatten och två andra buffertsystem. Den högsta koncentrationen av guldnanopartikel-protein komplex, dvs då vätskehinnan blev somrödast, återfanns då ett blodprotein, albumin, var löst i fosfatbuffert. Denna lösning användes sedan vid de fortsatta testerna av Aeroiden.

Då spänningen var påslagen i Aeroiden deponerades ca 17 % av partiklarna. De största förlusterna skedde på grund av partiklarnas diffusion, men vissa förluster kunde även observeras på grund av statisk elektricitet. Som ett komplement till effektivitetsmätnigarna bestämdes koncentrationen av guld i vätskan med hjälp av PIXE.
Analys med spektrometri samt visuell inspektion visar att Aeroiden kan framställa 65 ml albuminlösning med dispergerade guldnanopartiklar. Framtida forskning och utveckling borde lägga stor vikt vid analys av hur stor del av partiklarna som är dispergerade för att kunna utvärdera huruvida Aeroiden kan användas för produktion av andra typer av partikel-proteinlösningskombinationer.

Snabblexikon:.
Pixe: står för proton induced x-ray emission. Protoner bombarderas på ett filter med substratet, detta leder till att elektromagnetisk strålning specifik för vart ämne skapas. Denna strålning fångas upp och ger svar på vilka ämnen samt hur mycket av dessa ämnen som finns i substratet. (Less)
Please use this url to cite or link to this publication:
author
Adner, Julia LU
supervisor
organization
alternative title
Utveckling av en våt elektrostatisk precipitator för generering av nanopartikel-proteinlösning
course
MAM720 20151
year
type
H2 - Master's Degree (Two Years)
subject
keywords
WESP, Nanoparticle, bioligical identity, protein solution
language
English
id
7371730
date added to LUP
2015-06-23 11:56:19
date last changed
2015-06-23 11:56:19
@misc{7371730,
  abstract     = {To examine nanoparticle toxicity there is a need to produce defined nanoparticles dispersed in a colloidal suspension. Such a solution could also be interesting for other fields such as nano-medicine. In order to disperse the particles in the liquid there are often surfactant added to the process that alternates the surface of the particles. As the research shows that the surface of a nanoparticle can play a large role of its effects in biological systems, the relevance of these methods have been questioned. By depositing the airborne particles directly in a liquid this mentioned primary treatment can be avoided. A new method for depositing on liquid has been developed that appears to avoid the formation of a film consisting of stagnant nanoparticle-protein complexes. Particles deposited on a recirculating liquid by the means of electrostatic forces, the method is realized in a device-named Aeroid. The methodology also allow larger volumes of fluid with suitable concentration. Also the size of nanoparticles can be produced which, from an application perspective, is desirable.
Design, loss measurements and efficiency measurements were included in the method development for the Aeroid. Analyses in the form of materials, volume of the liquid and on how the particles are expected to move in the electric field was performed. For deposition in the Aeroid an aerosol of spherical goldnanoparticles was employed, with size about 60 nm, produced by means of a spark generator in series with a high-temperature-oven. The aerosol is then passed through a bipolar charger to obtain a well known charge distribution, Boltzmann-Fuch. To determine which type of protein solution that could be used to produce a colloid solution with 60 nm gold particles in the Aeroid a control measurements in an ESP where made. There was two types of proteins IgG and BSA added into water, PBS and TRISS. The deposit was made with the same length of time and with the same aerosol concentration for all control measurements. The reddest membrane i. e. the highest concentration of gold nanoparticle-protein complex was found when the BSA was dissolved in PBS. This solution was used for depostion in the Aeroid.
When the voltage with a field strength of 1.2 kV/cm, was turned on in the Aeroid 17 % of the produced particles where deposited. It resutled in losses between 13 and 37% at 60 nm, most likely due to diffusion. Efficiency measurements were carried out partly in a SMPS by comparing the penetration of particles in the Aeroid when high voltage was on/off. A complement to the deposition measurement PIXE analysis to determine the concentration of gold in the liquid. 

Analysis by spectrophotometry and visual inspection shows that generation of a 65 ml solution of dispersed gold nanoparticles was successfull. Future research and development should put emphasis on the analysis of the proportion of the particles which are dispersed in order to evaluate whether the Aeroid may be used for the production of other types of particle-protein solution combinations.},
  author       = {Adner, Julia},
  keyword      = {WESP,Nanoparticle,bioligical identity,protein solution},
  language     = {eng},
  note         = {Student Paper},
  title        = {Development of Wet Electrostatic Precipitator for Generation of Nanoparticle-Protein Solution},
  year         = {2015},
}