Advanced

Safety-Critical Communication in Avionics

Gunnarsson, Dan (2006) In MSc Theses
Department of Automatic Control
Abstract
The aircraft of today use electrical fly-by-wire systems for manoeuvring. These safety-critical distributed systems are called flight control systems and put high requirements on the communication networks that interconnect the parts of the systems. Reliability, predictability, flexibility, low weight and cost are important factors that all need to be taken in to consideration when designing a safety-critical communication system. In this thesis certification issues, requirements in avionics, fault management, protocols and topologies for safety-critical communication systems in avionics are discussed and investigated. The protocols that are investigated in this thesis are: TTP/C, FlexRay and AFDX, as a reference protocol MIL-STD-1553 is... (More)
The aircraft of today use electrical fly-by-wire systems for manoeuvring. These safety-critical distributed systems are called flight control systems and put high requirements on the communication networks that interconnect the parts of the systems. Reliability, predictability, flexibility, low weight and cost are important factors that all need to be taken in to consideration when designing a safety-critical communication system. In this thesis certification issues, requirements in avionics, fault management, protocols and topologies for safety-critical communication systems in avionics are discussed and investigated. The protocols that are investigated in this thesis are: TTP/C, FlexRay and AFDX, as a reference protocol MIL-STD-1553 is used. As reference architecture analogue point-to-point is used. The protocols are described and evaluated regarding features such as services, maturity, supported physical layers and topologies.Pros and cons with each protocol are then illustrated by a theoretical implementation of a flight control system that uses each protocol for the highly critical communication between sensors, actuators and flight computers.The results show that from a theoretical point of view TTP/C could be used as a replacement for a point-to-point flight control system. However, there are a number of issues regarding the physical layer that needs to be examined. Finally a TTP/C cluster has been implemented and basic functionality tests have been conducted. The plan was to perform tests on delays, start-up time and reintegration time but the time to acquire the proper hardware for these tests exceeded the time for the thesis work. More advanced testing will be continued here at Saab beyond the time frame of this thesis. (Less)
Please use this url to cite or link to this publication:
author
Gunnarsson, Dan
supervisor
organization
year
type
H3 - Professional qualifications (4 Years - )
subject
publication/series
MSc Theses
report number
TFRT-5782
ISSN
0280-5316
language
English
id
8847855
date added to LUP
2016-03-18 09:28:31
date last changed
2016-03-18 09:28:31
@misc{8847855,
  abstract     = {The aircraft of today use electrical fly-by-wire systems for manoeuvring. These safety-critical distributed systems are called flight control systems and put high requirements on the communication networks that interconnect the parts of the systems. Reliability, predictability, flexibility, low weight and cost are important factors that all need to be taken in to consideration when designing a safety-critical communication system. In this thesis certification issues, requirements in avionics, fault management, protocols and topologies for safety-critical communication systems in avionics are discussed and investigated. The protocols that are investigated in this thesis are: TTP/C, FlexRay and AFDX, as a reference protocol MIL-STD-1553 is used. As reference architecture analogue point-to-point is used. The protocols are described and evaluated regarding features such as services, maturity, supported physical layers and topologies.Pros and cons with each protocol are then illustrated by a theoretical implementation of a flight control system that uses each protocol for the highly critical communication between sensors, actuators and flight computers.The results show that from a theoretical point of view TTP/C could be used as a replacement for a point-to-point flight control system. However, there are a number of issues regarding the physical layer that needs to be examined. Finally a TTP/C cluster has been implemented and basic functionality tests have been conducted. The plan was to perform tests on delays, start-up time and reintegration time but the time to acquire the proper hardware for these tests exceeded the time for the thesis work. More advanced testing will be continued here at Saab beyond the time frame of this thesis.},
  author       = {Gunnarsson, Dan},
  issn         = {0280-5316},
  language     = {eng},
  note         = {Student Paper},
  series       = {MSc Theses},
  title        = {Safety-Critical Communication in Avionics},
  year         = {2006},
}