Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

Simulation of a Rotational Brake System Regulated by Change in Angular Deceleration

Stenson, Dennis LU and Sarajärvi, Marko LU (2019) FMEM01 20191
Mechanics
Abstract
A fully mechanical rotational brake system activated and regulated by rate of change in angular velocity has been developed by Brillianze Sweden AB. Its field of usage is currently limited and is to be expanded upon. Therefore new models were made to perform multibody dynamics simulations in Adams/View. This is the first time any research or simulations have been made on this specific brake system.

Validating and further exploring the theory behind the brake system was the main objective of this thesis. This was fulfilled by observing how different parameters, such as body mass and friction, influence two already existing prototypes and one untested model implementing a spring.

From the results, the following conclusions can be... (More)
A fully mechanical rotational brake system activated and regulated by rate of change in angular velocity has been developed by Brillianze Sweden AB. Its field of usage is currently limited and is to be expanded upon. Therefore new models were made to perform multibody dynamics simulations in Adams/View. This is the first time any research or simulations have been made on this specific brake system.

Validating and further exploring the theory behind the brake system was the main objective of this thesis. This was fulfilled by observing how different parameters, such as body mass and friction, influence two already existing prototypes and one untested model implementing a spring.

From the results, the following conclusions can be drawn. Lower friction coefficients, but rather not too low, are preferred. Although these coefficients lead to longer brake times, they give smoother behaviour which is more desired. The optimal spring stiffness values are system dependent. No conclusions can be drawn as to which are the best in general and must be altered for different applications. A trade-off between keeping the brake arm activated and slowing down steadily has to be made. When the equilibrium of the brake arm is changed, another trade-off emerges. If the angular velocity needed to avoid activation due to gravity increases the deceleration, or force, needed for activation of the brake arm decreases.

By comparing the results Brillianze Sweden AB already had with those presented in this report, they seem to be consistent with each other. None of the results in this thesis were found to disprove the theory and sequence of events assumed by the company. (Less)
Abstract (Swedish)
Ett fullt mekaniskt rotationsbromssystem aktiverat och reglerat av vinkelacceleration har utvecklats av Brillianze Sweden AB. Bromsens användningsområde ska utökas och därför skapades modeller för flerkroppsdynamiska simuleringar i Adams/View. Det är första gången forskning eller simulationer har gjorts på systemet.

Det huvudsakliga målet med avhandlingen var att bekräfta och fortsatt undersöka bromssystemets teori. Observation av olika parametrars påverkan, så som pendelviktens och friktionskoefficienternas, gjordes för att uppnå detta mål. Två befintliga prototyper och en ny experimentell modell som implementerar en fjäder undersöktes.

Lägre, men ej för låga, friktionskoefficienter föredras. Även om dessa koefficienter leder till... (More)
Ett fullt mekaniskt rotationsbromssystem aktiverat och reglerat av vinkelacceleration har utvecklats av Brillianze Sweden AB. Bromsens användningsområde ska utökas och därför skapades modeller för flerkroppsdynamiska simuleringar i Adams/View. Det är första gången forskning eller simulationer har gjorts på systemet.

Det huvudsakliga målet med avhandlingen var att bekräfta och fortsatt undersöka bromssystemets teori. Observation av olika parametrars påverkan, så som pendelviktens och friktionskoefficienternas, gjordes för att uppnå detta mål. Två befintliga prototyper och en ny experimentell modell som implementerar en fjäder undersöktes.

Lägre, men ej för låga, friktionskoefficienter föredras. Även om dessa koefficienter leder till längre bromstid, är det mjukare beteendet mer önskvärt. Den optimala fjäderstyvheten beror på systemets användning. En avvägning måste göras gällande en aktiv bromsarm och en stadig nedsaktning. När bromsarmens jämnvikt ändras uppstår en annan avvägning. Om rotationsfrekvensen som krävs för att undvika aktivering på grund av gravitation ökar kommer kraften som krävs för aktivering av armen att minska.

Resultaten som Brillianze Sweden AB har försett och de som presenteras i rapporten tycks stämma överens. Inga resultat i avhandlingen motbevisar teorin och det händelseförlopp antaget av företaget. (Less)
Please use this url to cite or link to this publication:
author
Stenson, Dennis LU and Sarajärvi, Marko LU
supervisor
organization
course
FMEM01 20191
year
type
H2 - Master's Degree (Two Years)
subject
language
English
id
8979709
date added to LUP
2019-06-05 11:24:18
date last changed
2019-06-05 11:24:18
@misc{8979709,
  abstract     = {{A fully mechanical rotational brake system activated and regulated by rate of change in angular velocity has been developed by Brillianze Sweden AB. Its field of usage is currently limited and is to be expanded upon. Therefore new models were made to perform multibody dynamics simulations in Adams/View. This is the first time any research or simulations have been made on this specific brake system.

Validating and further exploring the theory behind the brake system was the main objective of this thesis. This was fulfilled by observing how different parameters, such as body mass and friction, influence two already existing prototypes and one untested model implementing a spring.

From the results, the following conclusions can be drawn. Lower friction coefficients, but rather not too low, are preferred. Although these coefficients lead to longer brake times, they give smoother behaviour which is more desired. The optimal spring stiffness values are system dependent. No conclusions can be drawn as to which are the best in general and must be altered for different applications. A trade-off between keeping the brake arm activated and slowing down steadily has to be made. When the equilibrium of the brake arm is changed, another trade-off emerges. If the angular velocity needed to avoid activation due to gravity increases the deceleration, or force, needed for activation of the brake arm decreases.

By comparing the results Brillianze Sweden AB already had with those presented in this report, they seem to be consistent with each other. None of the results in this thesis were found to disprove the theory and sequence of events assumed by the company.}},
  author       = {{Stenson, Dennis and Sarajärvi, Marko}},
  language     = {{eng}},
  note         = {{Student Paper}},
  title        = {{Simulation of a Rotational Brake System Regulated by Change in Angular Deceleration}},
  year         = {{2019}},
}