Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

Xi Production in pp Collisions at Different Multiplicity and Spherocity

Angelsmark, Martin LU (2019) FYSM60 20191
Particle and nuclear physics
Department of Physics
Abstract (Swedish)
The protons and neutrons that make up the atoms in our Universe are part of a larger group of particles called hadrons. Hadrons have an inner structure consisting of the elementary particles called quarks. The interaction of the quarks is described by the quantum field theory quantum chromodynamics. Quantum chromodynamics predicts a confinement of the quarks within the hadrons, but at large temperatures and/or energy densities there will be a phase transition from hadrons into a deconfined state called quark gluon plasma. The study of these two regimes in quantum chromodynamics have, to a large extent, been separate. The deconfined QGP regime has mainly been considered in large systems (heavy-ion collisions). The formation of a possible... (More)
The protons and neutrons that make up the atoms in our Universe are part of a larger group of particles called hadrons. Hadrons have an inner structure consisting of the elementary particles called quarks. The interaction of the quarks is described by the quantum field theory quantum chromodynamics. Quantum chromodynamics predicts a confinement of the quarks within the hadrons, but at large temperatures and/or energy densities there will be a phase transition from hadrons into a deconfined state called quark gluon plasma. The study of these two regimes in quantum chromodynamics have, to a large extent, been separate. The deconfined QGP regime has mainly been considered in large systems (heavy-ion collisions). The formation of a possible medium or significant final state interactions have not been considered in small systems. The two different branches of research are now starting to overlap after similar quark gluon plasma-like signatures have been observed in both small and large systems.

In this thesis, signatures of the quark gluon plasma has been studied in small systems. The goal was to show that the event estimator transverse spherocity could discriminate between the confined and deconfined regime of quantum chromodynamics. Transverse spherocity looks at the produced particle distribution to quantify the topology of the event. Events were most of the momentum is distributed along an axis (called jetty) indicates that there has been a hard parton-parton (a parton is either a quark or a gluon) interaction, and so it is presumably less likely that a quark gluon plasma was formed. If the momentum is instead isotropically distributed it would suggest an event with several soft parton interactions, where it seems more likely that a medium could be formed.

This thesis uses the $\Xi^-$ hadron to control the hypothesis that transverse spherocity can select events where the quark gluon plasma-like effects are more or less pronounced. $\Xi^-$ was chosen since it is sensitive to a signature of the quark gluon plasma called strangeness enhancement. Strangeness enhancement is multiplicity dependent, and the data shows a larger production of $\Xi^{\mp}$ compared to charged particles in high multiplicity events with respect to minimum bias events. The data is compared to the monte carlo generator PYTHIA, which does not include any mechanism for strangeness enhancement, and the generated data does not show any strangeness enhancement.

Comparison between the two transverse spherocity selections shows a larger $\Xi^{\mp}$ production compared to non-strange hadrons in isotropic events than in jetty events. However, there is also an observed bias of the spherocity selection which leads to a separation of isotropic and jetty events. Because of this it is not possible to conclude that transverse spherocity is able to discriminate between the quark gluon plasma regime and the confined regime. (Less)
Popular Abstract (Swedish)
Det ultimata målet med partikelfysik är en förståelse av de (väldigt små) byggstenar som bygger upp vårt universum. Djur, planeter och solsystem är alla uppbyggda av atomer, vars inre kärna består av protoner och neutroner. Dessa protoner och neutroner har även de en inre struktur, och är uppbyggda av partiklar som heter kvarkar. Kvarkarna kommunicerar genom att skicka partiklar som heter gluoner mellan varandra. Dessa gluoner binder ihop kvarkarna så att de inte kan lämna protonerna och neutronerna. Vid väldigt höga temperaturer kan protonerna och neutronerna lösas upp till en soppa av kvarkar och gluoner. Denna soppa heter kvark-gluonplasman, och i den kan kvarkarna nu röra sig fritt.

Historiskt sett har fysiker trott att endast... (More)
Det ultimata målet med partikelfysik är en förståelse av de (väldigt små) byggstenar som bygger upp vårt universum. Djur, planeter och solsystem är alla uppbyggda av atomer, vars inre kärna består av protoner och neutroner. Dessa protoner och neutroner har även de en inre struktur, och är uppbyggda av partiklar som heter kvarkar. Kvarkarna kommunicerar genom att skicka partiklar som heter gluoner mellan varandra. Dessa gluoner binder ihop kvarkarna så att de inte kan lämna protonerna och neutronerna. Vid väldigt höga temperaturer kan protonerna och neutronerna lösas upp till en soppa av kvarkar och gluoner. Denna soppa heter kvark-gluonplasman, och i den kan kvarkarna nu röra sig fritt.

Historiskt sett har fysiker trott att endast kollisioner mellan tunga atomer kan komma upp i tillräckligt höga temperaturer för att skapa soppan. I sådana experiment används atomer som består av 208 protoner och neutroner och det skapas därför väldigt mycket energi när de två atomerna slår i varandra. För två år sen så hittades bevis som tyder på att kvark-gluonplasman även skapas i kollisioner mellan två protoner. Tidigare har kollisioner mellan tunga atomer och protonkollisioner jämförts, och de effekter som inte syntes i protonkollisioner antog man var unika egenskaper av kvark-gluonplasman. Nu när det finns bevis för att kvark-gluonplasman kan bildas i protonkollisioner försvåras forskningen om kvark-gluonplasman eftersom det inte längre finns något att jämföra med.

Därför söker forskare nu efter andra sätt att studera kvark-gluonplasmans specifika egenskaper. I detta examensarbete så har vi undersökt om formerna på kollisionerna kan användas som ett sätt att hitta de kollisioner där kvark-gluon plasman har bildats. Proton kollisioner som bildat en soppa har väldigt sannolikt en sfärisk form. Hypotesen var att om man väljer ut kollisioner som är väldigt sfäriska så har man valt de kollisioner som har bildat en soppa. På samma sätt kan man välja kollisioner som inte sprider ut sig sfäriskt, dessa är då troligen kollisioner där soppan inte kunde bildas. Resultaten visar en tydlig skillnad mellan de sfäriska och icke-sfäriska kollisionerna. Dock så har det faktum att man väljer mellan sfäriska och icke-sfäriska kollisioner också en effekt på resultatet. Detta betyder att den observerade skillnaden inte enbart beror på om det har (eller inte har) skapats en plasma i kollisionen. Våra resultat antyder att man med hjälp av formen på kollisionen kan skilja på kollisioner där soppan skapades eller icke-skapades, men det går för närvarande inte att säga med säkerhet. (Less)
Please use this url to cite or link to this publication:
author
Angelsmark, Martin LU
supervisor
organization
course
FYSM60 20191
year
type
H2 - Master's Degree (Two Years)
subject
keywords
Particle Physics Quark Gluon Plasma ALICE LHC CERN Xi Baryon Transverse Spherocity Multiplicity
language
English
id
8983483
date added to LUP
2019-06-17 08:17:27
date last changed
2019-06-17 08:17:27
@misc{8983483,
  abstract     = {{The protons and neutrons that make up the atoms in our Universe are part of a larger group of particles called hadrons. Hadrons have an inner structure consisting of the elementary particles called quarks. The interaction of the quarks is described by the quantum field theory quantum chromodynamics. Quantum chromodynamics predicts a confinement of the quarks within the hadrons, but at large temperatures and/or energy densities there will be a phase transition from hadrons into a deconfined state called quark gluon plasma. The study of these two regimes in quantum chromodynamics have, to a large extent, been separate. The deconfined QGP regime has mainly been considered in large systems (heavy-ion collisions). The formation of a possible medium or significant final state interactions have not been considered in small systems. The two different branches of research are now starting to overlap after similar quark gluon plasma-like signatures have been observed in both small and large systems. 

In this thesis, signatures of the quark gluon plasma has been studied in small systems. The goal was to show that the event estimator transverse spherocity could discriminate between the confined and deconfined regime of quantum chromodynamics. Transverse spherocity looks at the produced particle distribution to quantify the topology of the event. Events were most of the momentum is distributed along an axis (called jetty) indicates that there has been a hard parton-parton (a parton is either a quark or a gluon) interaction, and so it is presumably less likely that a quark gluon plasma was formed. If the momentum is instead isotropically distributed it would suggest an event with several soft parton interactions, where it seems more likely that a medium could be formed.

This thesis uses the $\Xi^-$ hadron to control the hypothesis that transverse spherocity can select events where the quark gluon plasma-like effects are more or less pronounced. $\Xi^-$ was chosen since it is sensitive to a signature of the quark gluon plasma called strangeness enhancement. Strangeness enhancement is multiplicity dependent, and the data shows a larger production of $\Xi^{\mp}$ compared to charged particles in high multiplicity events with respect to minimum bias events. The data is compared to the monte carlo generator PYTHIA, which does not include any mechanism for strangeness enhancement, and the generated data does not show any strangeness enhancement. 

Comparison between the two transverse spherocity selections shows a larger $\Xi^{\mp}$ production compared to non-strange hadrons in isotropic events than in jetty events. However, there is also an observed bias of the spherocity selection which leads to a separation of isotropic and jetty events. Because of this it is not possible to conclude that transverse spherocity is able to discriminate between the quark gluon plasma regime and the confined regime.}},
  author       = {{Angelsmark, Martin}},
  language     = {{eng}},
  note         = {{Student Paper}},
  title        = {{Xi Production in pp Collisions at Different Multiplicity and Spherocity}},
  year         = {{2019}},
}