Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

Scalable Frequency Control in Electric Power Systems

Lindberg, Johan (2020)
Department of Automatic Control
Abstract
In an effort to curb climate change, the electric power system in many countries is transitioning from fossil fuels to more renewable power sources such as wind. At the same time, other countries are decommissioning their old nuclear power, and replacing it with wind power. When replacing synchronous machines with wind power the inertia in the system is decreased. If nothing is done about this the performance of electric power grids will deteriorate. For example, the frequency deviation at a disturbance in power balance will increase.
In this thesis the effects of more wind power in the Swedish electric power system was investigated. This was carried out by building two models of the Swedish electric power system in Matlab Simulink®. The... (More)
In an effort to curb climate change, the electric power system in many countries is transitioning from fossil fuels to more renewable power sources such as wind. At the same time, other countries are decommissioning their old nuclear power, and replacing it with wind power. When replacing synchronous machines with wind power the inertia in the system is decreased. If nothing is done about this the performance of electric power grids will deteriorate. For example, the frequency deviation at a disturbance in power balance will increase.
In this thesis the effects of more wind power in the Swedish electric power system was investigated. This was carried out by building two models of the Swedish electric power system in Matlab Simulink®. The first model was a one node representation of the Swedish system, and the second was a two node representation. For the two models both today’s system, and a future scenario without nuclear power was tested. Simulations with different losses of generation were preformed and the results examined. The usage of wind turbines for frequency control was investigated. To do this, 10% of the power in the wind was curtailed to enable increased
power output when needed. A controller was introduced for the wind turbine, with the grid frequency as the measurement signal. This was tested for different amounts of the wind turbines contributing to the frequency control. The stability of the two node model was also investigated with theory for distributed control. The effects of replacing nuclear power with wind power in Sweden was also investigated by simulations in the existing Nordic 32 model, implemented in the dynamic power system simulation software PSS®E.
The different simulations, and the control theory, showed that if more wind power is being built without controlling the frequency of the grid, the performance at a disturbance will deteriorate as the inertia in the system is reduced. If wind turbines are used for frequency control the performance can be significantly improved, and actually preform better than today’s system (with nuclear power), with no frequency control from wind turbines. (Less)
Please use this url to cite or link to this publication:
author
Lindberg, Johan
supervisor
organization
year
type
H3 - Professional qualifications (4 Years - )
subject
report number
TFRT-6115
other publication id
0280-5316
language
English
id
9029296
date added to LUP
2020-09-15 14:05:10
date last changed
2020-09-15 14:05:10
@misc{9029296,
  abstract     = {{In an effort to curb climate change, the electric power system in many countries is transitioning from fossil fuels to more renewable power sources such as wind. At the same time, other countries are decommissioning their old nuclear power, and replacing it with wind power. When replacing synchronous machines with wind power the inertia in the system is decreased. If nothing is done about this the performance of electric power grids will deteriorate. For example, the frequency deviation at a disturbance in power balance will increase.
 In this thesis the effects of more wind power in the Swedish electric power system was investigated. This was carried out by building two models of the Swedish electric power system in Matlab Simulink®. The first model was a one node representation of the Swedish system, and the second was a two node representation. For the two models both today’s system, and a future scenario without nuclear power was tested. Simulations with different losses of generation were preformed and the results examined. The usage of wind turbines for frequency control was investigated. To do this, 10% of the power in the wind was curtailed to enable increased
power output when needed. A controller was introduced for the wind turbine, with the grid frequency as the measurement signal. This was tested for different amounts of the wind turbines contributing to the frequency control. The stability of the two node model was also investigated with theory for distributed control. The effects of replacing nuclear power with wind power in Sweden was also investigated by simulations in the existing Nordic 32 model, implemented in the dynamic power system simulation software PSS®E.
 The different simulations, and the control theory, showed that if more wind power is being built without controlling the frequency of the grid, the performance at a disturbance will deteriorate as the inertia in the system is reduced. If wind turbines are used for frequency control the performance can be significantly improved, and actually preform better than today’s system (with nuclear power), with no frequency control from wind turbines.}},
  author       = {{Lindberg, Johan}},
  language     = {{eng}},
  note         = {{Student Paper}},
  title        = {{Scalable Frequency Control in Electric Power Systems}},
  year         = {{2020}},
}