Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

Klimatoptimering av källargrundläggning för större byggnader

Bitzén, Martin LU and Jacobsson, John LU (2021) In TVBK-5283 VBKM01 20211
Division of Structural Engineering
Department of Building and Environmental Technology
Abstract
Due to increased environmental and climate awareness, great emphasis has been placed on both research and development of environmental impact of buildings. Scientific research on climate optimization of both structural frames and floors is well developed. However, equally large environmental improvements have not yet been made for foundations of large buildings. There are still no obvious alternatives to concrete as a building material for large foundation works. Concrete accounts for large proportions of the carbon dioxide emissions of the world and to reduce the volume used, more work is needed in order to optimize structural elements with regards to the climate footprint.

To reduce the climate footprint of concrete, additives are... (More)
Due to increased environmental and climate awareness, great emphasis has been placed on both research and development of environmental impact of buildings. Scientific research on climate optimization of both structural frames and floors is well developed. However, equally large environmental improvements have not yet been made for foundations of large buildings. There are still no obvious alternatives to concrete as a building material for large foundation works. Concrete accounts for large proportions of the carbon dioxide emissions of the world and to reduce the volume used, more work is needed in order to optimize structural elements with regards to the climate footprint.

To reduce the climate footprint of concrete, additives are usually used to reduce the cement content. Further research on concrete recipes is required to comply with climate goals. In order to further accelerate the reduction of concrete use, constructive optimizations of both volumes and design parameters have to be made. Hence, construction elements can be adapted and designed for their specific purpose, resulting in a reduction in use of materials.

In this report, the use and design of basement walls are analyzed from a climate footprint perspective. This type of construction is often designed on the basis of tougher demands than what is needed. The analysis, in this report, is based on design parameters and how these affect the emission of carbon dioxide. The input parameters that are studied are exposure class, concrete cover and allowable crack widths. Based on these criteria, the basement walls are designed according to different usage and geotechnical conditions. Focus is placed on whether the basement is being used as a vehicle garage or as a normal storage space, which affects the requirements placed on the construction. Another aspect that also is analyzed is to what extent stainless steel reinforcement may be implemented and what possible benefits this may provide for the climate.

Results, from this report, indicate tendencies that environmental improvements can be made by selecting input parameters carefully after thoroughly examining the real preconditions. By reducing the wall thickness by 20 mm, carbon dioxide emissions from basement walls can be decreased by 5–10%. The estimations also indicates that emissions can be reduced by 25% if the basement is planned to be used as a storage space instead of a vehicle garage. The reduction of emissions is based on the selection of a lower exposure class, which leads to a relief in the requirements on the concrete and the reinforcement. The analysis of the implementation of stainless steel reinforcement indicates that reductions also could be made in the requirements for the concrete structure. When used as a vehicle garage, carbon dioxide emissions can be reduced by 5–10% if stainless steel is used instead of classic carbon steel.

A survey on how different companies design and select input parameters for basement walls was also carried out. Results from the survey indicate that both the choice of input data and wall thicknesses differ between the companies. To enable for the construction industry to comply with the climate goals that have been set, it is required that future building parts are specially adapted according to environmental conditions and that an environmental awareness is already introduced in the early design phase. (Less)
Abstract (Swedish)
På grund av ökat miljö- och klimatmedvetande har det under senaste tiden lagts stor kraft på forskning och utvecklingen av byggnaders miljöpåverkan. Betong där för stora andelar av koldioxidutsläppen och för att kunna minska betongmängden som används krävs mer arbete kring optimering av konstruktionsdelar med hänsyn till klimatavtrycket. Forskningen kring klimatoptimering av både husstommar och bjälklag är omfattande men lika stora miljöförbättringar har dock inte gjorts kring grundläggningen för större byggnader. Det finns ännu inget självklart alternativ till att använda betong som byggnadsmaterial vid stora fundamentarbeten.

För att minska klimatavtrycket från betong brukar både tillsatsmedel och tillsatsmaterial användas då det... (More)
På grund av ökat miljö- och klimatmedvetande har det under senaste tiden lagts stor kraft på forskning och utvecklingen av byggnaders miljöpåverkan. Betong där för stora andelar av koldioxidutsläppen och för att kunna minska betongmängden som används krävs mer arbete kring optimering av konstruktionsdelar med hänsyn till klimatavtrycket. Forskningen kring klimatoptimering av både husstommar och bjälklag är omfattande men lika stora miljöförbättringar har dock inte gjorts kring grundläggningen för större byggnader. Det finns ännu inget självklart alternativ till att använda betong som byggnadsmaterial vid stora fundamentarbeten.

För att minska klimatavtrycket från betong brukar både tillsatsmedel och tillsatsmaterial användas då det minskar cementandelarna. Fortsatt forskning kring betongrecept kommer krävas för att nå klimatmålen. För att ytterligare skynda på minskning av betonganvändandet bör konstruktiva optimeringar av bland annat materialvolymer och ingångsparametrar göras. Med utgång från detta blir konstruktioner både specialanpassade för sitt ändamål samtidigt som mängderna material blir lägre.

I denna rapport analyseras dimensioneringen av källarväggar ur ett klimatperspektiv. Källarväggskonstruktioner brukar ofta dimensioneras med utgång från hårdare krav än vad som behövs. Analysen grundas i hur ingångsparametrar väljs och hur dessa i sin tur påverkar konstruktionens koldioxidutsläpp. De ingångsparametrar som studeras är bland annat exponeringsklasser, täckande betongskikt och tillåtna sprickbredder. Med utgång från detta dimensioneras källarväggarna efter olika användningsområden och geotekniska förutsättningar. Stort fokus riktas på om källarplanet utnyttjas som fordonsgarage eller som vanligt lagerutrymme vilket påverkar kraven som ställs på konstruktionen. En annan aspekt som också analyseras är hur rostfri armering eventuellt skulle kunna implementeras och vilka möjliga vinster det kan ge för klimatet.

Resultaten visar tendenser till att miljövinster kan göras genom att enbart välja ingångsparametrar omsorgsfullt efter att ha utfört noggranna undersökningar av de verkliga förutsättningarna. Genom att minska väggtjockleken med 20 mm kan koldioxidutsläppen för källarväggar reduceras med 5–10 %. Beräkningarna visar också på att utsläppen kan minskas med 25 % om källarutrymmet används som förråd istället för fordonsgarage. Minskningen av utsläpp grundas att i en lägre exponeringsklass väljs vilket medför stora lättnader i kraven som ställs på både betongen och armeringen. Analysen om implementering av rostfri armering indikerar att stora lättnader även kan göras kring kraven på betongkonstruktionen. Vid utnyttjande som fordonsgarage kan koldioxidutsläppen reduceras med 5–10 % om armering av rostfritt stål användas istället för klassiskt kolstål.

En enkätstudie kring hur olika byggkonstruktionsbolag dimensionerar och väljer ingångsparametrar för källarväggar utfördes också. Resultatet från undersökningen visar tydliga tendenser till att både val av ingångsdata och väggtjocklekar skiljer sig åt mellan företagen. För att byggbranschen ska kunna uppfylla de klimatmål som är satta krävs det att konstruktionsdelar dimensioneras efter förutsättningarna och att miljötänket introduceras redan tidigt i projektet. (Less)
Please use this url to cite or link to this publication:
author
Bitzén, Martin LU and Jacobsson, John LU
supervisor
organization
alternative title
Climate optimization of basement foundations for larger buildings
course
VBKM01 20211
year
type
H3 - Professional qualifications (4 Years - )
subject
keywords
källarväggar, betong, kolstålsarmering, rostfri armering, grundläggning, Eurocode, exponeringsklasser, vattentäthet, sprickbredd, koldioxidutsläpp, enkätstudie
publication/series
TVBK-5283
report number
TVBK-5283
ISSN
0349-4969
language
Swedish
additional info
Examinator: Miklos Molnar
id
9046868
date added to LUP
2021-05-28 14:10:14
date last changed
2021-05-28 14:10:14
@misc{9046868,
  abstract     = {{Due to increased environmental and climate awareness, great emphasis has been placed on both research and development of environmental impact of buildings. Scientific research on climate optimization of both structural frames and floors is well developed. However, equally large environmental improvements have not yet been made for foundations of large buildings. There are still no obvious alternatives to concrete as a building material for large foundation works. Concrete accounts for large proportions of the carbon dioxide emissions of the world and to reduce the volume used, more work is needed in order to optimize structural elements with regards to the climate footprint.

To reduce the climate footprint of concrete, additives are usually used to reduce the cement content. Further research on concrete recipes is required to comply with climate goals. In order to further accelerate the reduction of concrete use, constructive optimizations of both volumes and design parameters have to be made. Hence, construction elements can be adapted and designed for their specific purpose, resulting in a reduction in use of materials.

In this report, the use and design of basement walls are analyzed from a climate footprint perspective. This type of construction is often designed on the basis of tougher demands than what is needed. The analysis, in this report, is based on design parameters and how these affect the emission of carbon dioxide. The input parameters that are studied are exposure class, concrete cover and allowable crack widths. Based on these criteria, the basement walls are designed according to different usage and geotechnical conditions. Focus is placed on whether the basement is being used as a vehicle garage or as a normal storage space, which affects the requirements placed on the construction. Another aspect that also is analyzed is to what extent stainless steel reinforcement may be implemented and what possible benefits this may provide for the climate.

Results, from this report, indicate tendencies that environmental improvements can be made by selecting input parameters carefully after thoroughly examining the real preconditions. By reducing the wall thickness by 20 mm, carbon dioxide emissions from basement walls can be decreased by 5–10%. The estimations also indicates that emissions can be reduced by 25% if the basement is planned to be used as a storage space instead of a vehicle garage. The reduction of emissions is based on the selection of a lower exposure class, which leads to a relief in the requirements on the concrete and the reinforcement. The analysis of the implementation of stainless steel reinforcement indicates that reductions also could be made in the requirements for the concrete structure. When used as a vehicle garage, carbon dioxide emissions can be reduced by 5–10% if stainless steel is used instead of classic carbon steel.

A survey on how different companies design and select input parameters for basement walls was also carried out. Results from the survey indicate that both the choice of input data and wall thicknesses differ between the companies. To enable for the construction industry to comply with the climate goals that have been set, it is required that future building parts are specially adapted according to environmental conditions and that an environmental awareness is already introduced in the early design phase.}},
  author       = {{Bitzén, Martin and Jacobsson, John}},
  issn         = {{0349-4969}},
  language     = {{swe}},
  note         = {{Student Paper}},
  series       = {{TVBK-5283}},
  title        = {{Klimatoptimering av källargrundläggning för större byggnader}},
  year         = {{2021}},
}