Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

Machined surfaces as designed cell culture substrates

Sharma, Kunal LU (2021) MMTM05 20211
Production and Materials Engineering
Abstract (Swedish)
De flesta levande celler fäster på ytor av olika slag för att kunna växa, men vilka faktorer som bidrar till deras infästning på metallytor är hittills okänt. Man vet att ytans ojämnhet spelar en roll och att vissa material är cytotoxiska. Målet med den här studien är att vidare undersöka effekten som ojämnheten har på cellproliferation, genom att odla celler från cellinjen A549 på olika metallytor. Metallerna som undersöktes var Ti6Al4V, Ti Grade 2, Ti Grade 11, Al 7075, CW510L, AZ31, och AZ61a. Förhoppningen är att överbrygga klyftan i det nuvarande kunskapsläget vad gäller ojämnhet och att etablera ytor bearbetade för cellodling, genom bl.a. fräsning, och därigenom minska både materialkostnader och tiden det tar att förbereda prover.... (More)
De flesta levande celler fäster på ytor av olika slag för att kunna växa, men vilka faktorer som bidrar till deras infästning på metallytor är hittills okänt. Man vet att ytans ojämnhet spelar en roll och att vissa material är cytotoxiska. Målet med den här studien är att vidare undersöka effekten som ojämnheten har på cellproliferation, genom att odla celler från cellinjen A549 på olika metallytor. Metallerna som undersöktes var Ti6Al4V, Ti Grade 2, Ti Grade 11, Al 7075, CW510L, AZ31, och AZ61a. Förhoppningen är att överbrygga klyftan i det nuvarande kunskapsläget vad gäller ojämnhet och att etablera ytor bearbetade för cellodling, genom bl.a. fräsning, och därigenom minska både materialkostnader och tiden det tar att förbereda prover. Ojämnheten på metallerna som undersöktes i studien var mellan 0.5 – 0.14 μm. Cellerna räknades genom att analysera bilder tagna med svepelektronmikroskop. Den högsta cellproliferationen observerades vid analys av areafraktioner vid en ojämnhet på ca 0.15 μm (Ra). Metallproverna jämfördes med en kontrollgrupp som bestod av glasskivor, vilka för närvarande är allmän praxis att använda vid cellräkning. Alla prover (AZ31, Al 7075, och Ti6Al4V) förutom CW510L visade efter fräsning bättre resultat än kontrollgruppen. Studien beskriver ett lämpligt arbetsflöde för framtida undersökningar av cellproliferation på ytor av metall. Den etablerar även de aktuella metallerna och deras egenskaper vad gäller ojämnhet som optimala för framtida tester, för att så småningom utveckla nya alternativ till implantat att använda i människokroppen. (Less)
Abstract
Most living cells attach and proliferate on surfaces, but the reasons for attachment are scarcely researched when it comes to attachment on metal surfaces. Surface roughness is known to have an effect, and some materials are known to be toxic to cells. The aim of this study is to further investigate the effects of surface roughness on cell proliferation through the use of the A549 cell line planted on metallic surfaces. The metals investigated in this study are: Ti6Al4V, Ti Grade 2, Ti Grade 11, Al 7075, CW510L, AZ31, and AZ61a. The study hopes to bridge the current gap in the scope of surface roughness investigations. As well as to establish machined surfaces i.e. through milling operations as an option for cell culture substrates. Thus,... (More)
Most living cells attach and proliferate on surfaces, but the reasons for attachment are scarcely researched when it comes to attachment on metal surfaces. Surface roughness is known to have an effect, and some materials are known to be toxic to cells. The aim of this study is to further investigate the effects of surface roughness on cell proliferation through the use of the A549 cell line planted on metallic surfaces. The metals investigated in this study are: Ti6Al4V, Ti Grade 2, Ti Grade 11, Al 7075, CW510L, AZ31, and AZ61a. The study hopes to bridge the current gap in the scope of surface roughness investigations. As well as to establish machined surfaces i.e. through milling operations as an option for cell culture substrates. Thus, reducing both costs of materials, and the time for sample preparation. The investigated range of surface roughness values was between 0.5 – 0.14 μm. The cells were counted using image analysis of images obtained from the scanning electron microscope. The highest cell proliferation was seen through area fraction image analysis at approximately 0.15 μm (Ra) surface roughness. The metal samples were compared to a control group, in this case being glass slides currently common practice for cell counting. All the samples (AZ31, Al 7075, and Ti6Al4V) except for CW510L performed better than the control group after undergoing milling operations. The study outlines a suitable workflow for future evaluation of cell proliferation on metal surfaces. This further establishes these metals and their surface roughness conditions as optimal for future testing and development to ultimately achieve new options to be used as implants in the human body. (Less)
Popular Abstract
Most living cells attach and proliferate on surfaces, but the reasons for attachment are not widely known when it comes to attachment on metal surfaces. Surface roughness is known to have an effect, and some materials are known to be toxic to cells. The aim of this study is to further investigate the effects of surface roughness on cell proliferation through the use of a model adherent cell line. To bridge the current gap in the scope of surface roughness investigations, and establish machined surfaces, i.e. through milling operations, as a valid surface for cell proliferation experiments. Thus, reducing both costs of materials, and the time for sample preparation. The highest cell proliferation was seen at an approximate surface roughness... (More)
Most living cells attach and proliferate on surfaces, but the reasons for attachment are not widely known when it comes to attachment on metal surfaces. Surface roughness is known to have an effect, and some materials are known to be toxic to cells. The aim of this study is to further investigate the effects of surface roughness on cell proliferation through the use of a model adherent cell line. To bridge the current gap in the scope of surface roughness investigations, and establish machined surfaces, i.e. through milling operations, as a valid surface for cell proliferation experiments. Thus, reducing both costs of materials, and the time for sample preparation. The highest cell proliferation was seen at an approximate surface roughness of 0.15 μm. All the samples (AZ31, Al 7075, and Ti6Al4V) except for the Cu-based (CW510L) performed better than the control group after undergoing milling operations. Therefore, establishing these metals and their surface roughness conditions as optimal for future testing and development to ultimately achieve new options to be used as implants in the human body. (Less)
Please use this url to cite or link to this publication:
author
Sharma, Kunal LU
supervisor
organization
course
MMTM05 20211
year
type
H2 - Master's Degree (Two Years)
subject
keywords
Surface topography, cell proliferation, cell adhesion
report number
LUTMDN/(TMMV-5322)/1-66/2021
language
English
id
9053578
date added to LUP
2021-06-13 14:23:34
date last changed
2021-06-13 14:23:34
@misc{9053578,
  abstract     = {{Most living cells attach and proliferate on surfaces, but the reasons for attachment are scarcely researched when it comes to attachment on metal surfaces. Surface roughness is known to have an effect, and some materials are known to be toxic to cells. The aim of this study is to further investigate the effects of surface roughness on cell proliferation through the use of the A549 cell line planted on metallic surfaces. The metals investigated in this study are: Ti6Al4V, Ti Grade 2, Ti Grade 11, Al 7075, CW510L, AZ31, and AZ61a. The study hopes to bridge the current gap in the scope of surface roughness investigations. As well as to establish machined surfaces i.e. through milling operations as an option for cell culture substrates. Thus, reducing both costs of materials, and the time for sample preparation. The investigated range of surface roughness values was between 0.5 – 0.14 μm. The cells were counted using image analysis of images obtained from the scanning electron microscope. The highest cell proliferation was seen through area fraction image analysis at approximately 0.15 μm (Ra) surface roughness. The metal samples were compared to a control group, in this case being glass slides currently common practice for cell counting. All the samples (AZ31, Al 7075, and Ti6Al4V) except for CW510L performed better than the control group after undergoing milling operations. The study outlines a suitable workflow for future evaluation of cell proliferation on metal surfaces. This further establishes these metals and their surface roughness conditions as optimal for future testing and development to ultimately achieve new options to be used as implants in the human body.}},
  author       = {{Sharma, Kunal}},
  language     = {{eng}},
  note         = {{Student Paper}},
  title        = {{Machined surfaces as designed cell culture substrates}},
  year         = {{2021}},
}