Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

Life Cycle Assessment of Electric Road Systems - Climate impact in comparison with battery electric vehicles, biogas vehicles and fuel cell electric vehicles

Söderström, Ebba LU and Bengtsson, Emanuel LU (2022) FMIM01 20221
Environmental and Energy Systems Studies
Abstract
One third of Sweden's total annual greenhouse gas emissions originate from the transport sector today and great changes are thus needed in order to reach the net zero emission target by 2045. One of the most important measures discussed is an increased electrification of the transport sector and a solution with potential to contribute to this transition is electric road systems (ERS), where vehicles are charged dynamically. A conductive ERS technology is currently being developed by the company Elonroad, offering a solution involving four main components: rail, pick-up, on-board charger and feed-in station. This study investigates climate impact from Elonroad's ERS solution by conducting a life cycle assessment of the four components.... (More)
One third of Sweden's total annual greenhouse gas emissions originate from the transport sector today and great changes are thus needed in order to reach the net zero emission target by 2045. One of the most important measures discussed is an increased electrification of the transport sector and a solution with potential to contribute to this transition is electric road systems (ERS), where vehicles are charged dynamically. A conductive ERS technology is currently being developed by the company Elonroad, offering a solution involving four main components: rail, pick-up, on-board charger and feed-in station. This study investigates climate impact from Elonroad's ERS solution by conducting a life cycle assessment of the four components. Results from the life cycle assessment are also combined with findings in previous studies on fuel cell electric vehicles, battery electric vehicles and vehicles fuelled with biogas for both heavy-duty vehicles and passenger cars. This in order to compare climate impact between the renewable transport solutions from a life cycle perspective. Lastly, the results from the life cycle assessment of the ERS are used in a case study on the public transport bus line 4 in Stockholm.

It is found that one rail contribute to emissions of 2 590 kg CO2-eq, one pick-up of 200 kg CO2-eq, one OBC of 1 370 kg CO2-eq and one feed-in station of 153 000 kg CO2-eq, with hotspots being aluminium used in the rail and DC/DC converter used in the on-board charger. In the comparison between the propulsion systems it is seen that the ability for the ERS vehicles to downsize the battery reduces life cycle emissions from vehicle production significantly. The variable influencing the climate performance the most is the utilisation rate, determining how many vehicles sharing the environmental burden. For heavy-duty vehicles assessed in gram CO2-eq per tonne kilometre, it is seen that above a utilisation rate of 428 vehicles/day the ERS vehicles have the lowest climate impact amongst the studied propulsion systems. Fuel cell electric vehicles using hydrogen from steam methane reforming of natural gas have the highest impact, followed by biogas vehicles using liquefied biogas and then battery electric vehicles. Lowest impact after ERS vehicles with a high ERS utilisation rate has fuel cell electric vehicles using hydrogen from electrolysis. For passenger cars assessed in gram CO2-eq per vehicle kilometre, a utilisation rate of 4 780 vehicles/day is required for ERS vehicles to perform the best. The highest impact is seen for fuel cell electric vehicles using hydrogen from steam methane reforming of natural gas, followed by the corresponding but with hydrogen from electrolysis and then vehicles fuelled with compressed biogas. Lowest impact after ERS with a high utilisation rate has the battery electric vehicle. In the case study of Stockholm bus line 4 it is seen that ERS can reduce annual emissions from 1 480 tonne CO2-eq/year with today's system of biogas and biodiesel buses to 480 tonne CO2-eq/year with ERS. If instead transitioning to stationary charged electric buses a reduction to 802 tonne CO2-eq/year is seen. (Less)
Popular Abstract (Swedish)
En tredjedel av Sveriges årliga växthusgasutsläpp kommer idag från transportsektorn, vilket innebär att stora förändringar behöver ske om målet om nettonollutsläpp vid 2045 ska nås. En viktig åtgärd som diskuteras i denna kontext är en ökad elektrifiering och en lösning som har möjlighet att bidra i denna omställning är elvägssystem, där elfordon laddas dynamiskt. En typ av konduktiv elvägsteknik utvecklas av företaget Elonroad, vars lösning innehåller fyra huvudsakliga komponenter: skena, avtagare, ombordladdare och matarstation. För att avgöra om elvägar har möjlighet att bidra till utsläppsmålen undersöker denna studie klimatpåverkan från Elonroads elvägsteknik genom en livscykelanalys av de fyra komponenterna. Resultaten kombineras... (More)
En tredjedel av Sveriges årliga växthusgasutsläpp kommer idag från transportsektorn, vilket innebär att stora förändringar behöver ske om målet om nettonollutsläpp vid 2045 ska nås. En viktig åtgärd som diskuteras i denna kontext är en ökad elektrifiering och en lösning som har möjlighet att bidra i denna omställning är elvägssystem, där elfordon laddas dynamiskt. En typ av konduktiv elvägsteknik utvecklas av företaget Elonroad, vars lösning innehåller fyra huvudsakliga komponenter: skena, avtagare, ombordladdare och matarstation. För att avgöra om elvägar har möjlighet att bidra till utsläppsmålen undersöker denna studie klimatpåverkan från Elonroads elvägsteknik genom en livscykelanalys av de fyra komponenterna. Resultaten kombineras sedan med data från tidigare studier kring klimatpåverkan från elfordon, biogasfordon och bränslecellsfordon gällande både lastbilar och personbilar. Detta för att jämföra klimatpåverkan mellan fordonsslagen ur ett livscykelperspektiv. Slutligen används resultaten från livscykelanalysen i en fallstudie på Stockholms busslinje fyra.
Resultaten visar att en skena ger upphov till en klimatpåverkan om 2 590 kg CO2-ekv, en avtagare 200 kg CO2-ekv ekv, en ombordladdare 1 370 kg CO2-ekv och en matarstation 153 000 kg CO2-ekv, samt att hotspots är aluminium i skenan och spänningsomvandlaren i ombordladdaren. I jämförelsen mellan fordonsslagen visar resultaten att elvägsfordon har en betydligt lägre påverkan från livscykelsteget fordonsproduktion jämfört med stationärt laddade elfordon, då elvägar möjliggör en minskad batterikapacitet. Variabeln med störst påverkan på utfallet i jämförelsen är användningsgraden av elvägen, vilken avgör hur stor del av påverkan som tillskrivs vardera fordon. För tunga transporter, uttryckt i gram CO2-ekv per tonkilometer, innebär en användninggrad över 428 fordon per dag att elvägsfordon har lägst klimatpåverkan bland de studerade fordonsslagen. Bränslecellsfordon med vätgas producerad via ångreformering av naturgas har högst påverkan, följt av biogasfordon med flytande biogas och därefter elfordon laddade stationärt. Lägst påverkan efter elvägsfordon med hög användningsgrad har bränslecellsfordon med vätgas från elektrolys. För personbilar, uttryckt i gram CO2-ekv per fordonskilometer, krävs en användningsgrad över 4 780 fordon per dag för att elvägsfordon ska prestera bäst. Högst påverkan har bränslecellsfordon med vätgas från ångreformering av naturgas, följt av motsvarande med vätgas från elektrolys och därefter biogasfordon med komprimerad biogas. Lägst påverkan efter elvägsfordon med hög användningsgrad har elfordon med stationär laddning. Resultaten från fallstudien av Stockholms busslinje fyra visar att elvägar kan minska de årliga utsläppen från 1 480 ton CO2-ekv/år med nuvarande system av biogas- och biodieselbussar till 480 ton CO2-ekv /år. Vid en övergång till elbussar med stationär laddning kan en reduktion till 802 ton CO2-ekv /år nås. (Less)
Please use this url to cite or link to this publication:
author
Söderström, Ebba LU and Bengtsson, Emanuel LU
supervisor
organization
alternative title
Livscykelanalys av elvägssystem - klimatpåverkan jämfört med batterifordon, biogasfordon och vätgasfordon
course
FMIM01 20221
year
type
H3 - Professional qualifications (4 Years - )
subject
keywords
Electric road systems, Elonroad, life cycle assessment, rail, feed-in station, pick-up, on-board charger, climate impact, global warming potential, articulated lorry, lower medium car, bus
report number
LUTFD2/TFEM-22/5182--SE + (1–111)
ISSN
1102-3651
language
English
id
9088584
date added to LUP
2022-06-17 12:32:35
date last changed
2022-06-17 12:32:35
@misc{9088584,
  abstract     = {{One third of Sweden's total annual greenhouse gas emissions originate from the transport sector today and great changes are thus needed in order to reach the net zero emission target by 2045. One of the most important measures discussed is an increased electrification of the transport sector and a solution with potential to contribute to this transition is electric road systems (ERS), where vehicles are charged dynamically. A conductive ERS technology is currently being developed by the company Elonroad, offering a solution involving four main components: rail, pick-up, on-board charger and feed-in station. This study investigates climate impact from Elonroad's ERS solution by conducting a life cycle assessment of the four components. Results from the life cycle assessment are also combined with findings in previous studies on fuel cell electric vehicles, battery electric vehicles and vehicles fuelled with biogas for both heavy-duty vehicles and passenger cars. This in order to compare climate impact between the renewable transport solutions from a life cycle perspective. Lastly, the results from the life cycle assessment of the ERS are used in a case study on the public transport bus line 4 in Stockholm.

It is found that one rail contribute to emissions of 2 590 kg CO2-eq, one pick-up of 200 kg CO2-eq, one OBC of 1 370 kg CO2-eq and one feed-in station of 153 000 kg CO2-eq, with hotspots being aluminium used in the rail and DC/DC converter used in the on-board charger. In the comparison between the propulsion systems it is seen that the ability for the ERS vehicles to downsize the battery reduces life cycle emissions from vehicle production significantly. The variable influencing the climate performance the most is the utilisation rate, determining how many vehicles sharing the environmental burden. For heavy-duty vehicles assessed in gram CO2-eq per tonne kilometre, it is seen that above a utilisation rate of 428 vehicles/day the ERS vehicles have the lowest climate impact amongst the studied propulsion systems. Fuel cell electric vehicles using hydrogen from steam methane reforming of natural gas have the highest impact, followed by biogas vehicles using liquefied biogas and then battery electric vehicles. Lowest impact after ERS vehicles with a high ERS utilisation rate has fuel cell electric vehicles using hydrogen from electrolysis. For passenger cars assessed in gram CO2-eq per vehicle kilometre, a utilisation rate of 4 780 vehicles/day is required for ERS vehicles to perform the best. The highest impact is seen for fuel cell electric vehicles using hydrogen from steam methane reforming of natural gas, followed by the corresponding but with hydrogen from electrolysis and then vehicles fuelled with compressed biogas. Lowest impact after ERS with a high utilisation rate has the battery electric vehicle. In the case study of Stockholm bus line 4 it is seen that ERS can reduce annual emissions from 1 480 tonne CO2-eq/year with today's system of biogas and biodiesel buses to 480 tonne CO2-eq/year with ERS. If instead transitioning to stationary charged electric buses a reduction to 802 tonne CO2-eq/year is seen.}},
  author       = {{Söderström, Ebba and Bengtsson, Emanuel}},
  issn         = {{1102-3651}},
  language     = {{eng}},
  note         = {{Student Paper}},
  title        = {{Life Cycle Assessment of Electric Road Systems - Climate impact in comparison with battery electric vehicles, biogas vehicles and fuel cell electric vehicles}},
  year         = {{2022}},
}