Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

Energy efficiency and profitability of an alkaline electrolyzer with heat and oxygen recovery

Kinnander, Malin LU (2022) MMKM10 20211
Innovation
Abstract
In the face of climate change, hydrogen is an important energy carrier integral to the feasibility of the renewable energy mix. This techno-economic study aims to make an initial assessment of the potential of recycling heat and oxygen from an electrolyzer. The goal is to calculate the internal rate of return and payback time of investing in a 20 MW electrolyzer and necessary auxiliary equipment for system integration with recycling of heat and oxygen. Energy efficiency and profitability for heat recycling of the electrolyzer is examined.

District Heating Networks is the chosen option for heat recovery in this study, mainly for efficiency and prevalence of DHN in Sweden. Also because of positive attitudes towards what was previously... (More)
In the face of climate change, hydrogen is an important energy carrier integral to the feasibility of the renewable energy mix. This techno-economic study aims to make an initial assessment of the potential of recycling heat and oxygen from an electrolyzer. The goal is to calculate the internal rate of return and payback time of investing in a 20 MW electrolyzer and necessary auxiliary equipment for system integration with recycling of heat and oxygen. Energy efficiency and profitability for heat recycling of the electrolyzer is examined.

District Heating Networks is the chosen option for heat recovery in this study, mainly for efficiency and prevalence of DHN in Sweden. Also because of positive attitudes towards what was previously termed “waste” heat recycling, especially for DHN, and these attitudes are quite dominating in all parts of Sweden. Especially for server halls, but of course, for the sake of holistic energy consumption, heat should always be recycled whenever it is possible and economically feasible. Despite some conservative attitudes, some retrofitting but mostly new construction with lower temperature for harvesting industrial heat is happening. DHN and CHP plants all over the country are seizing this opportunity as the outdoor temperatures are rising and now both heat and cold are as valuable products depending on the end customer space or function. There is an ongoing development for lowering temperatures of DHN, so that more waste heat can be recovered.
The project includes a brief overview of necessary components for the entire facility, of which only high temperature heat pumps required R&D to determine feasibility of implementation after determining a relatively low market availability since the technology is still relatively immature. Heat pumps, however, has long since been an integral part of Swedish heating industries and are useful in numerous contexts. Therefor the project initiated the design of a HTHP tailored for the three heat flows of the A3880 alkaline 17-19,5 MW electrolyzer from Nel Hydrogen. 19,5 MW is assumed as including both stack deterioration and energy supply for auxiliary equipment. Price and demand for oxygen gas were investigated for an indication of potential, and the conclusion is that oxygen should always be recovered as it can be shipped and sold at many global markets. The best-case scenario, however, is of course when local consumption can absorb as much of the spare oxygen as possible. But it is worth mentioning that the oxygen
mass produced is 8 times the hydrogen mass generated upon water electrolysis. If the oxygen can be used directly for a combustion process, this is the most convenient solution as combustion and metal working processes were identified as the most oxygen consuming processes discovered in this study. Another somewhat counter-intuitive use is that of steam methane reforming (SMR), a process which ironically requires quite a bit of oxygen since combustion is used to keep the necessary temperature for the SMR-reaction to happen. If green and blue hydrogen were to be co-produced, the oxygen from the electrolyzer could be used for the SMR process, if no other combustion process is present where the oxygen can be used.
The study concludes that heat recycling for the studied cases can increase total energy efficiency by 13,7-19,0 percent units while increasing the profitability by 6-10% in terms of internal rate of return. Both heat and oxygen recycling are profitable and each a valuable business contribution. Recovering the spare products, of course, also reduces the need for building new plants producing these products. (Less)
Popular Abstract (Swedish)
Världen är i ständig utveckling och den mest akuta frågan i vår tid, på ett globalt plan, är klimatkrisen. Vi behöver snabbt bygga ut och utveckla grön energiproduktion i Sverige, Europa och världen, för att ha en chans att undvika de värsta konsekvenser som just nu hotar vår planet. Vätgas har identifierats av EU och ett flertal länder globalt som en grundpelare i energitransitionen till ett fossilfritt samhälle. Vätgas produceras förnybart genom att med elektricitet spjälka vatten till dess beståndsdelar väte (H2) och syre (O2) i en så kallad
elektrolysör, en vätgasmaskin. Vätgasen kan sedan användas inom ett stort antal industriella processer, eller som bränsle i antingen en bränslecell där den åter omvandlas till el, eller som... (More)
Världen är i ständig utveckling och den mest akuta frågan i vår tid, på ett globalt plan, är klimatkrisen. Vi behöver snabbt bygga ut och utveckla grön energiproduktion i Sverige, Europa och världen, för att ha en chans att undvika de värsta konsekvenser som just nu hotar vår planet. Vätgas har identifierats av EU och ett flertal länder globalt som en grundpelare i energitransitionen till ett fossilfritt samhälle. Vätgas produceras förnybart genom att med elektricitet spjälka vatten till dess beståndsdelar väte (H2) och syre (O2) i en så kallad
elektrolysör, en vätgasmaskin. Vätgasen kan sedan användas inom ett stort antal industriella processer, eller som bränsle i antingen en bränslecell där den åter omvandlas till el, eller som förbränningsgas i en turbin eller en motor. Det sistnämnda alternativet är dock en relativt ny teknologi som fortfarande kräver mycket utveckling. Vätgas kan också användas för att producera metangas eller ammoniak för som båda kan användas som bränsle. Syntetisk metangas kan då användas i stället för fossil naturgas, något som knappt görs idag, men som håller på att ske, sakta men säkert. År 2020 producerades 96% av all vätgas genom ångreformering av naturgas. Detta orsakar koldioxidutsläpp om 830 miljoner ton, varje år. Anledningen till att fossil vätgas, även kallad grå vätgas, används i stället för vätgas som producerats med elektrolysör, så kallad grön vätgas, är att det är mycket billigare. Innan kriget i Ukraina, år 2021, kostade grå vätgas 1,5
euro/kg, och grön vätgas kostade 2,5-5,5 euro/kg. Ett annat problem med elektrolysörer är att 20-30% av elektriciteten omvandlas till värme i
processen. I en värld som skriker efter mer grön energi är det avgörande att kunna ta tillvara på all energi och inte låta någonting gå till spillo i onödan.
För att förbättra prisbilden för grön vätgas och ta till vara på all energi undersöktes hur den billigaste elektrolysörteknologin alkaliska elektrolysörer kan få ökad lönsamhet och energieffektivitet genom att återvinna både syre och värme. Det är så att de flesta elektrolsöranläggningar idag tar inte vara på varken syre eller värme, så där finns en stor potential att utforska. I detta syfte studerades fyra case i Sverige, där värmen återvanns genom fjärrvärmenätet i respektive stad, Växjö, Göteborg, Sandviken och Umeå. Syret togs tillvara och såldes för 50
euro/ton, vilket fastställdes i en marknadsundersökning som gjordes under projektets gång. Resultaten av rapporten visade att återvinning av värme och syre från alkaliska elektrolysörer kan öka energieffektivitet och lönsamhet för elektrolysörer rejält. Värmen bidrog med 6-10% av inkomsten och syret bidrog med 12-14%. Totalt kunde en internränta på 13-17% uppnås och investeringen återbetalade sig på 6-7 år. Slutsatsen är att återvinning av värme och syre har stor potential, men är också beroende av lokala förutsättningar och efterfrågan. Rekommendationen blir att alltid undersöka möjligheterna till återvinning av båda restprodukterna när en ny elektrolysör ska byggas samt i de fall de är möjligt även uppgradering av befintliga anläggningar. Det kan också vara en bra idé att geografiskt placera elektrolysören utifrån efterfrågan på samtliga produkter och inte bara vätgasen. (Less)
Please use this url to cite or link to this publication:
author
Kinnander, Malin LU
supervisor
organization
course
MMKM10 20211
year
type
H2 - Master's Degree (Two Years)
subject
keywords
alkaline electrolyzer, green hydrogen, heat recovery, oxygen recovery, oxygen market, hydrogen market, global warming
language
English
id
9097662
date added to LUP
2022-08-18 08:00:11
date last changed
2022-08-18 08:00:11
@misc{9097662,
  abstract     = {{In the face of climate change, hydrogen is an important energy carrier integral to the feasibility of the renewable energy mix. This techno-economic study aims to make an initial assessment of the potential of recycling heat and oxygen from an electrolyzer. The goal is to calculate the internal rate of return and payback time of investing in a 20 MW electrolyzer and necessary auxiliary equipment for system integration with recycling of heat and oxygen. Energy efficiency and profitability for heat recycling of the electrolyzer is examined. 

District Heating Networks is the chosen option for heat recovery in this study, mainly for efficiency and prevalence of DHN in Sweden. Also because of positive attitudes towards what was previously termed “waste” heat recycling, especially for DHN, and these attitudes are quite dominating in all parts of Sweden. Especially for server halls, but of course, for the sake of holistic energy consumption, heat should always be recycled whenever it is possible and economically feasible. Despite some conservative attitudes, some retrofitting but mostly new construction with lower temperature for harvesting industrial heat is happening. DHN and CHP plants all over the country are seizing this opportunity as the outdoor temperatures are rising and now both heat and cold are as valuable products depending on the end customer space or function. There is an ongoing development for lowering temperatures of DHN, so that more waste heat can be recovered.
The project includes a brief overview of necessary components for the entire facility, of which only high temperature heat pumps required R&D to determine feasibility of implementation after determining a relatively low market availability since the technology is still relatively immature. Heat pumps, however, has long since been an integral part of Swedish heating industries and are useful in numerous contexts. Therefor the project initiated the design of a HTHP tailored for the three heat flows of the A3880 alkaline 17-19,5 MW electrolyzer from Nel Hydrogen. 19,5 MW is assumed as including both stack deterioration and energy supply for auxiliary equipment. Price and demand for oxygen gas were investigated for an indication of potential, and the conclusion is that oxygen should always be recovered as it can be shipped and sold at many global markets. The best-case scenario, however, is of course when local consumption can absorb as much of the spare oxygen as possible. But it is worth mentioning that the oxygen
mass produced is 8 times the hydrogen mass generated upon water electrolysis. If the oxygen can be used directly for a combustion process, this is the most convenient solution as combustion and metal working processes were identified as the most oxygen consuming processes discovered in this study. Another somewhat counter-intuitive use is that of steam methane reforming (SMR), a process which ironically requires quite a bit of oxygen since combustion is used to keep the necessary temperature for the SMR-reaction to happen. If green and blue hydrogen were to be co-produced, the oxygen from the electrolyzer could be used for the SMR process, if no other combustion process is present where the oxygen can be used.
The study concludes that heat recycling for the studied cases can increase total energy efficiency by 13,7-19,0 percent units while increasing the profitability by 6-10% in terms of internal rate of return. Both heat and oxygen recycling are profitable and each a valuable business contribution. Recovering the spare products, of course, also reduces the need for building new plants producing these products.}},
  author       = {{Kinnander, Malin}},
  language     = {{eng}},
  note         = {{Student Paper}},
  title        = {{Energy efficiency and profitability of an alkaline electrolyzer with heat and oxygen recovery}},
  year         = {{2022}},
}