Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

Polymer gel dosimetry - Using MRI-readout, simplified relatively non-toxic mixing procedure tested on FLASH

Blomstedt, Maria (2022) MSFT01 20212
Medical Physics Programme
Abstract
Background: One of the polymer gel dosimeters available today is the N-isopropylamide (NIPAM) polymer gel dosimeter which has a less toxic monomer compared to other polymer gels and the advantage of being able to be manufactured under normal oxygen levels. Polymer gel dosimeters in general are advantageous independent dosimeters to use for verification of new radiation treatment techniques due to its favorable qualities such as very high resolution, 3D coverage, tissue equivalence and independence of energy and incident direction of the radiation beam. One of the new and upcoming treatment techniques today where there is a desire for an independent, high resolution 3D detector is FLASH, an irradiation technique where the radiation is... (More)
Background: One of the polymer gel dosimeters available today is the N-isopropylamide (NIPAM) polymer gel dosimeter which has a less toxic monomer compared to other polymer gels and the advantage of being able to be manufactured under normal oxygen levels. Polymer gel dosimeters in general are advantageous independent dosimeters to use for verification of new radiation treatment techniques due to its favorable qualities such as very high resolution, 3D coverage, tissue equivalence and independence of energy and incident direction of the radiation beam. One of the new and upcoming treatment techniques today where there is a desire for an independent, high resolution 3D detector is FLASH, an irradiation technique where the radiation is delivered using ultra high dose rate of 40 Gy/s or more.

The aim of this thesis was to start up a gel dosimetry laboratory and to investigate the feasibility of creating a NIPAM gel dosimeter with linear dose response using magnetic resonance imaging (MRI) readout, using relatively non-toxic ingredients and a simplified mixing procedure. An additional aim was to investigate the gel dose response when irradiated with FLASH.

Method: NIPAM polymer gels were manufactured using tap water and concentrations of 5 % w/w (weight concentration) gelatin from porcine skin, 3 % w/w NIPAM, 3 % w/w N,N’-methylene-bis-acrylamide (BIS) and 21-26 mM tetrakis-hydroxymethyl-phosphonium-chloride (THPC). Vials containing the gel were irradiated with either 220 kV photons, 10 MeV electrons at conventional doe rates, or FLASH about 24 h after manufacturing. The vials were irradiated with doses up to around 40 Gy. The gel dose response was assessed through its R2 relaxation rate by acquiring T2 weighted MRI images of the vials approximately 24 h after irradiation. The doses delivered to the vials were calculated based on previous output measurements made on the specific machine or measured using film dosimetry.

Results: The results show that intra-batch variations, with respect to the dose response reproducibility, are small with a standard deviation (SD) of the R2 relaxation rate between 0.010-0.021 s-1 for doses up to 10 Gy and with R2 values between 1.405 and 2.231 s-1. However, inter-batch variations are significantly larger with relative difference up to 19 %. The gel exhibits linearity (R2 0,98) of the dose response up to 28 Gy when irradiated with 220 kV photons, up to 23 Gy when irradiated with 10 MeV electrons at conventional dose rates and up to 27 Gy when irradiated with FLASH. Additionally, the results indicate a lower gel dose response when irradiated with FLASH compared to irradiation with 220 kV photons or 10 MeV electrons at conventional dose rates.

Conclusions: It is feasible to use relative non-toxic ingredients (NIPAM), MRI-readout and a simplified mixing procedure with tap water and under normal levels of oxygen to obtain a gel dosimeter with linear dose response. The small intra-batch variations indicate very high dose response reproducibility while the larger inter-batch variations underline the need for calibration of each gel batch. The gel exhibited linearity of the dose response up to 23 Gy for all three radiation beam types used. A lower gel dose response was observed when irradiated with FLASH compared to irradiation with 220 kV photons or 10 MeV electrons at conventional dose rates. (Less)
Popular Abstract
När en ny strålbehandlingsteknik ska introduceras krävs verifiering av metoden och för detta krävs dosimetrar med hög spatial upplösning och att dosen kan mätas i tre dimensioner. En potentiell dosimeter för denna applikation är polymer geldosimetern som, precis som krävs, har hög spatial upplösning i tre dimensioner. Polymer geldosimetern är en dosimeter som består av gelatin och kemikalier som uppvisar ändringar när den exponeras för strålning. En av egenskaperna som förändras kan detekteras med magnetresonanskamera (MR). Geldosimeterns fördelaktiga egenskaper är att den är vävnads ekvivalent, har hög noggrannhet och reproducerbarhet, kan integrera dosen i 3D över hela behandlingstiden och är oberoende av energi och infallsvinkel på... (More)
När en ny strålbehandlingsteknik ska introduceras krävs verifiering av metoden och för detta krävs dosimetrar med hög spatial upplösning och att dosen kan mätas i tre dimensioner. En potentiell dosimeter för denna applikation är polymer geldosimetern som, precis som krävs, har hög spatial upplösning i tre dimensioner. Polymer geldosimetern är en dosimeter som består av gelatin och kemikalier som uppvisar ändringar när den exponeras för strålning. En av egenskaperna som förändras kan detekteras med magnetresonanskamera (MR). Geldosimeterns fördelaktiga egenskaper är att den är vävnads ekvivalent, har hög noggrannhet och reproducerbarhet, kan integrera dosen i 3D över hela behandlingstiden och är oberoende av energi och infallsvinkel på strålningen. En av de nya strålbehandlingsteknikerna idag där det finns önskemål om en oberoende, högupplöst 3D-detektor är FLASH. En teknik där elektronstrålningen levereras med mycket högre dos per tidsenhet än normalt vid strålbehandling, över 40 Gy/s. För att få perspektiv på denna siffra kan det nämnas att normalt är dos per tidsenhet för en behandling runt 0,08 Gy/s, alltså 500 gånger lägre än vid FLASH.

SYFTE
Tidigare har tillverkningen av geldosimetrar varit väldigt tidskrävande och komplicerad då det kräver tillgång till ett labb, en utläsningsteknik, en syrefri miljö, avjoniserat vatten samt då visst innehåll är relativt giftigt. Syftet med detta examensarbete var därför att starta upp ett geldosimetrilaboratorium på universitetssjukhuset i Lund och att undersöka möjligheten att skapa en geldosimeter som har linjär dosrespons med relativt giftfria ingredienser och en förenklad tillverkningsprocedur. Den förenklade tillverkningsproceduren syftar till att kunna tillverka gelen i normala syrenivåer samt att använda vanligt kranvatten i stället för avjoniserat vatten. Ett ytterligare syfte var att undersöka om den tillverkade gelen kunde användas för verifiering av FLASH.

METOD
I det uppstartade labbet tillverkades polymer gelen bestående av vanligt kranvatten, gelatin från grishud, den relativt mindre giftiga monomeren N-isopropylamide (NIPAM), ämnet som gör att tillverkningen kan ske i normala syrenivåer tetrakis-hydroxymethyl-phosphonium-chloride (THPC) och tvärbindaren N,N’-methylene-bis-acrylamide (BIS). Gelen bestrålades till olika dosnivåer med tre olika strålslag; 220 kV fotoner, 10 MeV elektroner med konventionell dos per tidsenhet och FLASH. Efter bestrålningen skedde utläsningen av den absorberade dosen med MR.

RESULTAT OCH DISKUSSION
Arbetet visar att det är möjligt att tillverka en geldosimeter som har linjär dosrespons med relativt giftfria ingredienser och förenklad tillverkningsprocedur. Gelen uppvisade mindre skillnader inom samma omgång gel när den strålades med lågenergetiska fotoner vilket tyder på god reproducerbarhet. Större skillnader observerades mellan olika omgångar gel när den bestrålades med samma stråltyp, vilket understryker behovet som finns att varje omgång gel behöver kalibreras. Gelen uppvisade linjäritet av dosresponsen upp till minst 23 Gy för alla strålslag som undersöktes. (Less)
Please use this url to cite or link to this publication:
author
Blomstedt, Maria
supervisor
organization
course
MSFT01 20212
year
type
H2 - Master's Degree (Two Years)
subject
language
English
id
9099254
date added to LUP
2022-09-03 14:51:48
date last changed
2022-09-03 14:51:48
@misc{9099254,
  abstract     = {{Background: One of the polymer gel dosimeters available today is the N-isopropylamide (NIPAM) polymer gel dosimeter which has a less toxic monomer compared to other polymer gels and the advantage of being able to be manufactured under normal oxygen levels. Polymer gel dosimeters in general are advantageous independent dosimeters to use for verification of new radiation treatment techniques due to its favorable qualities such as very high resolution, 3D coverage, tissue equivalence and independence of energy and incident direction of the radiation beam. One of the new and upcoming treatment techniques today where there is a desire for an independent, high resolution 3D detector is FLASH, an irradiation technique where the radiation is delivered using ultra high dose rate of 40 Gy/s or more. 

The aim of this thesis was to start up a gel dosimetry laboratory and to investigate the feasibility of creating a NIPAM gel dosimeter with linear dose response using magnetic resonance imaging (MRI) readout, using relatively non-toxic ingredients and a simplified mixing procedure. An additional aim was to investigate the gel dose response when irradiated with FLASH. 

Method: NIPAM polymer gels were manufactured using tap water and concentrations of 5 % w/w (weight concentration) gelatin from porcine skin, 3 % w/w NIPAM, 3 % w/w N,N’-methylene-bis-acrylamide (BIS) and 21-26 mM tetrakis-hydroxymethyl-phosphonium-chloride (THPC). Vials containing the gel were irradiated with either 220 kV photons, 10 MeV electrons at conventional doe rates, or FLASH about 24 h after manufacturing. The vials were irradiated with doses up to around 40 Gy. The gel dose response was assessed through its R2 relaxation rate by acquiring T2 weighted MRI images of the vials approximately 24 h after irradiation. The doses delivered to the vials were calculated based on previous output measurements made on the specific machine or measured using film dosimetry. 

Results: The results show that intra-batch variations, with respect to the dose response reproducibility, are small with a standard deviation (SD) of the R2 relaxation rate between 0.010-0.021 s-1 for doses up to 10 Gy and with R2 values between 1.405 and 2.231 s-1. However, inter-batch variations are significantly larger with relative difference up to 19 %. The gel exhibits linearity (R2 0,98) of the dose response up to 28 Gy when irradiated with 220 kV photons, up to 23 Gy when irradiated with 10 MeV electrons at conventional dose rates and up to 27 Gy when irradiated with FLASH. Additionally, the results indicate a lower gel dose response when irradiated with FLASH compared to irradiation with 220 kV photons or 10 MeV electrons at conventional dose rates.

Conclusions: It is feasible to use relative non-toxic ingredients (NIPAM), MRI-readout and a simplified mixing procedure with tap water and under normal levels of oxygen to obtain a gel dosimeter with linear dose response. The small intra-batch variations indicate very high dose response reproducibility while the larger inter-batch variations underline the need for calibration of each gel batch. The gel exhibited linearity of the dose response up to 23 Gy for all three radiation beam types used. A lower gel dose response was observed when irradiated with FLASH compared to irradiation with 220 kV photons or 10 MeV electrons at conventional dose rates.}},
  author       = {{Blomstedt, Maria}},
  language     = {{eng}},
  note         = {{Student Paper}},
  title        = {{Polymer gel dosimetry - Using MRI-readout, simplified relatively non-toxic mixing procedure tested on FLASH}},
  year         = {{2022}},
}