Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

Development and Evaluation of Additive Manufactured Cellular Heat Exchanger

Engelin, Markus LU and Zejnullahu, Arbias LU (2023) MMKM05 20221
Innovation
Abstract
Heat exchangers are systems commonly used in many different applications such as cooling, heating, ventilation, and other areas where maximizing the heat transfer between fluids is desirable. Common manufacturing techniques of heat exchangers include hydraulic pressing of heat-transferring plates, or otherwise creating a heat-transferring area of pipes, corrugated sheet metal, or similar materials. These conventional manufacturing techniques often limit the development of heat exchanges to a certain type of standardized geometry that is not always optimal.

Additive manufacturing enables the creation of complex geometries that would otherwise not be possible with conventional techniques. With regards to heat exchangers, additive... (More)
Heat exchangers are systems commonly used in many different applications such as cooling, heating, ventilation, and other areas where maximizing the heat transfer between fluids is desirable. Common manufacturing techniques of heat exchangers include hydraulic pressing of heat-transferring plates, or otherwise creating a heat-transferring area of pipes, corrugated sheet metal, or similar materials. These conventional manufacturing techniques often limit the development of heat exchanges to a certain type of standardized geometry that is not always optimal.

Additive manufacturing enables the creation of complex geometries that would otherwise not be possible with conventional techniques. With regards to heat exchangers, additive manufacturing can have the benefit of enabling higher design freedom for a larger range of applications, and a higher-performing, leakage-free, heat exchanger.

In this thesis, a counter-flow air-to-air cellular heat exchanger, complete with intake and outlet headers, was designed for additive manufacturing using computer-aided design software. Factors related to the limitations of additive manufacturing technologies were considered in the design.

Computational fluid dynamics simulations were conducted to determine how different parameters, such as wall thickness and cross-sectional cell area affected performance factors such as temperature efficiency and pressure drop.

Finally, a cellular heat exchanger was additively manufactured. The performance was evaluated by laboratory testing and compared to the expected performance seen in the simulations. A complete laboratory setup had to be constructed to facilitate the laboratory testing, which then confirmed the pressure drop of the simulations but showed a large difference in expected temperature efficiency (Less)
Abstract (Swedish)
Värmeväxlare är system som ofta används i många olika tillämpningsområden så som kylning, uppvärmning, ventilation eller andra områden där man strävar efter att maximera värmeutbytet mellan fluider. Vanliga tillverkningsmetoder för värmeväxlare inkluderar hydraulisk pressning av värmeöverförande plattor, eller att på andra sätt skapa värmeöverförande ytor av rör, korrugerad plåt eller liknade material. Dessa konventionella tillverkningsmetoder begränsar ofta utvecklingen av värmeväxlare till en viss typ av standardiserad geometri som inte alltid är optimal.

Additiv tillverkning tillåter skapandet av komplexa geometrier som inte hade varit möjligt att skapa med konventionella tillverkningsmetoder. Kopplat till värmeväxlare så kan additiv... (More)
Värmeväxlare är system som ofta används i många olika tillämpningsområden så som kylning, uppvärmning, ventilation eller andra områden där man strävar efter att maximera värmeutbytet mellan fluider. Vanliga tillverkningsmetoder för värmeväxlare inkluderar hydraulisk pressning av värmeöverförande plattor, eller att på andra sätt skapa värmeöverförande ytor av rör, korrugerad plåt eller liknade material. Dessa konventionella tillverkningsmetoder begränsar ofta utvecklingen av värmeväxlare till en viss typ av standardiserad geometri som inte alltid är optimal.

Additiv tillverkning tillåter skapandet av komplexa geometrier som inte hade varit möjligt att skapa med konventionella tillverkningsmetoder. Kopplat till värmeväxlare så kan additiv tillverkning medföra fördelar så som möjligheten att uppnå en större designfrihet för större bredd av tillämpningar. Med additiv tillverkning kan man även uppnå en högre presterande läckagefri värmeväxlare.

I denna uppsats så designades en fullständig luft/luft motströms cellvärmeväxlare för additiv tillverkning genom datorstödd konstruktion. Värmeväxlaren designades med headers för både inlopp och utlopp, och faktorer beroende av avgränsningar inom additiv tillverkning utreddes i designen.

Simuleringar av beräkningsströmningsdynamik utfördes för att utreda hur olika parametrar så som väggtjocklek och cellernas tvärsnittsarea påverkade faktorer relaterade till värmeväxlarens prestanda, så som temperaturverkningsgrad och tryckfall.

Slutligen så tillverkades en cellvärmeväxlare med additiv tillverkning. Dess prestanda utvärderades genom testning i labbmiljö och jämfördes med den förväntade prestandan från tidigare utförda simuleringar. En komplett labbuppställning behövde utvecklas och tas fram för att möjliggöra testningen, som i sin tur sedan bekräftade tryckfallen från simuleringarna, men visade på en skillnad i förväntad temperaturverkningsgrad. (Less)
Please use this url to cite or link to this publication:
author
Engelin, Markus LU and Zejnullahu, Arbias LU
supervisor
organization
course
MMKM05 20221
year
type
H2 - Master's Degree (Two Years)
subject
keywords
Heat exchanger, Additive manufacturing, 3D-printing, air-to-air, heat transfer, pressure drop, CFD, Värmeväxlare, additiv tillverkning, 3D-printning, luft/luft, värmeöverföring, tryckfall
language
English
id
9120136
date added to LUP
2023-06-14 09:13:29
date last changed
2023-06-14 09:13:29
@misc{9120136,
  abstract     = {{Heat exchangers are systems commonly used in many different applications such as cooling, heating, ventilation, and other areas where maximizing the heat transfer between fluids is desirable. Common manufacturing techniques of heat exchangers include hydraulic pressing of heat-transferring plates, or otherwise creating a heat-transferring area of pipes, corrugated sheet metal, or similar materials. These conventional manufacturing techniques often limit the development of heat exchanges to a certain type of standardized geometry that is not always optimal.

Additive manufacturing enables the creation of complex geometries that would otherwise not be possible with conventional techniques. With regards to heat exchangers, additive manufacturing can have the benefit of enabling higher design freedom for a larger range of applications, and a higher-performing, leakage-free, heat exchanger.

In this thesis, a counter-flow air-to-air cellular heat exchanger, complete with intake and outlet headers, was designed for additive manufacturing using computer-aided design software. Factors related to the limitations of additive manufacturing technologies were considered in the design.

Computational fluid dynamics simulations were conducted to determine how different parameters, such as wall thickness and cross-sectional cell area affected performance factors such as temperature efficiency and pressure drop.

Finally, a cellular heat exchanger was additively manufactured. The performance was evaluated by laboratory testing and compared to the expected performance seen in the simulations. A complete laboratory setup had to be constructed to facilitate the laboratory testing, which then confirmed the pressure drop of the simulations but showed a large difference in expected temperature efficiency}},
  author       = {{Engelin, Markus and Zejnullahu, Arbias}},
  language     = {{eng}},
  note         = {{Student Paper}},
  title        = {{Development and Evaluation of Additive Manufactured Cellular Heat Exchanger}},
  year         = {{2023}},
}