Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

Hur gammal är jordens inre kärna?

Bergström, Tim LU (2023) In Examensarbeten i geologi vid Lunds universitet GEOL02 20231
Department of Geology
Abstract (Swedish)
Åldern för jordens inre kärna är en gåta som har förbryllat forskare i många decennier. Allt från en ålder lika hög som jordens magnetfält (mellan 3,5 och 4,2 Ga) i den ena änden, ner till 0,5 Ga i den andra änden. Eftersom den inre kärnan existerar på en fullkomligt oåtkomlig plats i jordens innersta centrum, medför detta självklara svårigheter när det kommer till direkta observationer (med seismiska vågor har forskare däremot kunnat observera var den inre kärnans gräns är). Det finns inte heller något fast prov för närmare studier. På grund av detta måste forskarna ta till sig indirekta metoder för inre kärnans datering som termodynamisk modellering och paleomagnetisk analys. Det förstnämnda baseras på en del antaganden om bland annat de... (More)
Åldern för jordens inre kärna är en gåta som har förbryllat forskare i många decennier. Allt från en ålder lika hög som jordens magnetfält (mellan 3,5 och 4,2 Ga) i den ena änden, ner till 0,5 Ga i den andra änden. Eftersom den inre kärnan existerar på en fullkomligt oåtkomlig plats i jordens innersta centrum, medför detta självklara svårigheter när det kommer till direkta observationer (med seismiska vågor har forskare däremot kunnat observera var den inre kärnans gräns är). Det finns inte heller något fast prov för närmare studier. På grund av detta måste forskarna ta till sig indirekta metoder för inre kärnans datering som termodynamisk modellering och paleomagnetisk analys. Det förstnämnda baseras på en del antaganden om bland annat de tryck- och temperaturförhållanden som bör råda i jordens inre. Genom termodynamisk modellering är det främst kärnans värmeledande förmåga som är av intresse för fastställning av när inre kärnans solidifiering började. Med hjälp av paleomagnetiska data har det undersökts hur jordens magnetfält, som genereras i kärnan, har förändrats med tiden. Detta kan ge information om när den inre kärnan bildades. En del studier visar att magnetfältet kan ha kollapsat före inre kärnans bildning. Anledningarna till att fastställa åldern för jordens inre kärna är flera. 1. En ålder för den inre kärnan skulle bringa mer klarhet i jordens termala historia. 2. Den inre kärnan anses vara den främsta drivkraften till jordens
magnetfält (geodynamon), således är dess solidifiering av stor vikt för att förstå magnetfältet. 3. Tidpunkten för den inre kärnans bildning kan ha räddat jordens magnetfält. Detta kan ha skett i en tidpunkt i jordens historia som sammanfallit med livets utveckling, därav kan det ha spelat en bidragande roll för livet under Kambriska explosionen. Många av de senaste studierna där experiment med järn under högt tryck och temperatur (förhållanden liknande de i kärnan) utförts, visar höga värden för termisk konduktivitet. Vidare framgår det att en majoritet av studier med termodynamisk modellering visar att höga värden för termisk konduktivitet för jordens kärna antyder en ung inre kärna (<0,7 Ga). Paleomagnetiska data verkar också styrka detta då en del data mellan 0,55 och 0,6 Ga visar låga värden för magnetfältets styrka, medan det finns data från mellan 0,5 och 0,55 Ga som visar starka värden, vilket kan indikera att magnetfältet hade återhämtat sig. Slutsatsen är att det finns många tveksamheter i data, eftersom allt inte är överensstämmande och en del data motsätter de data som tyder på en yngre inre kärna. Bland annat behövs fler studier kring järnlegeringar och deras
förmåga till termisk konduktivitet under tryck och temperatur rådande i kärnan. Det är även väldigt glest i arkivet över paleomagnetiska data från 0.5 till 4,2 Ga, vilket också medför osäkerhet kring ålder för den inre kärnan. (Less)
Abstract
The age of the Earth's inner core is an enigma that has puzzled scientists for many decades. Everything from an age as high as the Earth's magnetic field (between 3.5 and 4.2 Ga) at one end, down to 0.5 Ga at the other end. Since the inner core exists in a completely inaccessible place in the innermost center of the Earth, this presents obvious difficulties when it comes to direct observations (however, with seismic waves, scientists have been able to
observe where the boundary of the inner core is). There is also no solid sample for close studies. Because of this, the scientists must adopt indirect methods of inner core dating such as thermodynamic modeling and paleomagnetic
analysis. The former is based on several assumptions about,... (More)
The age of the Earth's inner core is an enigma that has puzzled scientists for many decades. Everything from an age as high as the Earth's magnetic field (between 3.5 and 4.2 Ga) at one end, down to 0.5 Ga at the other end. Since the inner core exists in a completely inaccessible place in the innermost center of the Earth, this presents obvious difficulties when it comes to direct observations (however, with seismic waves, scientists have been able to
observe where the boundary of the inner core is). There is also no solid sample for close studies. Because of this, the scientists must adopt indirect methods of inner core dating such as thermodynamic modeling and paleomagnetic
analysis. The former is based on several assumptions about, among other things, the pressure and temperature conditions that should prevail in the Earth's interior. Through thermodynamic modelling, it is primarily the core's thermal conductivity that is of interest for determining when solidification of the inner core began. Using paleomagnetic data, it has been investigated how the Earth's magnetic field, which is generated in the core, has changed over
time. This can provide information about when the inner core formed. Some studies show that the magnetic field may have collapsed shortly before the inner core formed. The reasons for determining the age of the Earth's inner core are several. 1. An age of the inner core would bring more clarity to the Earth's thermal history. 2. The inner core is considered the main driving force for the
Earth's magnetic field (the geodynamo); thus, it’s solidification is of great importance for understanding the magnetic field. 3. The timing of the formation of the inner core may have saved the Earth's magnetic field. This may
have occurred at a time in the Earth's history that coincided with the development of life, hence it may have played a contributing role for life during The Cambrian explosion. Many of the most recently conducted studies with experiments with iron alloys under high pressure and temperature (conditions like those in the core), show high values for thermal conductivity. Furthermore, it appears that most thermodynamic modeling studies show that high thermal conductivity values for the Earth's core suggest a young inner core (<0.7 Ga). Paleomagnetic data also seem to support this as some data between 0.55 and 0.6 Ga show low values for the magnetic field strength (consistent with a dying magnetic field), while there are data from between 0.5 and 0.55 Ga that show strong values, which may indicate that the magnetic field had recovered (reinvigorated by the growth of the inner core). The conclusion is that there is a lot of uncertainty in the data, as not everything is consistent, and some data contradicts the data suggesting a younger inner core. Among other things, more studies are needed around iron alloys and their ability to thermal conductivity under pressure and temperature prevailing in the core. It’s also very sparse in the archive of paleomagnetic data from 0.5 to 4.2 Ga, which also brings uncertainty regarding the age of the inner core (Less)
Please use this url to cite or link to this publication:
author
Bergström, Tim LU
supervisor
organization
course
GEOL02 20231
year
type
M2 - Bachelor Degree
subject
keywords
Inner core, thermal conductivity, convection, Earth’s magnetic field, paleomagnetism
publication/series
Examensarbeten i geologi vid Lunds universitet
report number
656
language
Swedish
id
9125102
date added to LUP
2023-06-14 16:39:31
date last changed
2023-06-14 16:39:31
@misc{9125102,
  abstract     = {{The age of the Earth's inner core is an enigma that has puzzled scientists for many decades. Everything from an age as high as the Earth's magnetic field (between 3.5 and 4.2 Ga) at one end, down to 0.5 Ga at the other end. Since the inner core exists in a completely inaccessible place in the innermost center of the Earth, this presents obvious difficulties when it comes to direct observations (however, with seismic waves, scientists have been able to
observe where the boundary of the inner core is). There is also no solid sample for close studies. Because of this, the scientists must adopt indirect methods of inner core dating such as thermodynamic modeling and paleomagnetic
analysis. The former is based on several assumptions about, among other things, the pressure and temperature conditions that should prevail in the Earth's interior. Through thermodynamic modelling, it is primarily the core's thermal conductivity that is of interest for determining when solidification of the inner core began. Using paleomagnetic data, it has been investigated how the Earth's magnetic field, which is generated in the core, has changed over
time. This can provide information about when the inner core formed. Some studies show that the magnetic field may have collapsed shortly before the inner core formed. The reasons for determining the age of the Earth's inner core are several. 1. An age of the inner core would bring more clarity to the Earth's thermal history. 2. The inner core is considered the main driving force for the
Earth's magnetic field (the geodynamo); thus, it’s solidification is of great importance for understanding the magnetic field. 3. The timing of the formation of the inner core may have saved the Earth's magnetic field. This may
have occurred at a time in the Earth's history that coincided with the development of life, hence it may have played a contributing role for life during The Cambrian explosion. Many of the most recently conducted studies with experiments with iron alloys under high pressure and temperature (conditions like those in the core), show high values for thermal conductivity. Furthermore, it appears that most thermodynamic modeling studies show that high thermal conductivity values for the Earth's core suggest a young inner core (<0.7 Ga). Paleomagnetic data also seem to support this as some data between 0.55 and 0.6 Ga show low values for the magnetic field strength (consistent with a dying magnetic field), while there are data from between 0.5 and 0.55 Ga that show strong values, which may indicate that the magnetic field had recovered (reinvigorated by the growth of the inner core). The conclusion is that there is a lot of uncertainty in the data, as not everything is consistent, and some data contradicts the data suggesting a younger inner core. Among other things, more studies are needed around iron alloys and their ability to thermal conductivity under pressure and temperature prevailing in the core. It’s also very sparse in the archive of paleomagnetic data from 0.5 to 4.2 Ga, which also brings uncertainty regarding the age of the inner core}},
  author       = {{Bergström, Tim}},
  language     = {{swe}},
  note         = {{Student Paper}},
  series       = {{Examensarbeten i geologi vid Lunds universitet}},
  title        = {{Hur gammal är jordens inre kärna?}},
  year         = {{2023}},
}