Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

Tangled Up in Blue: Future Cobalt Scarcity and Environmental Effects of Cobalt Usage in Lithium- Ion Batteries

Gustafsson, Oscar LU and Tyberg, Filip (2023) FMIM01 20231
Environmental and Energy Systems Studies
Abstract
The aim of this study was to investigate future scarcity and environmental effects of cobalt. This was done by creating three scenarios based on different prognoses concerning the future use of cobalt up to the year 2050, Business as usual (Scenario I), Recycling Rate Improvements (Scenario II) and Technological Advancements (Scenario III). Regarding scarcity, Scenario III had the lowest overall cobalt use, 3.68 megatonnes, whilst Scenario I had the highest, 10.8 megatonnes. Comparing this to existing cobalt reserves of 8.3 megatonnes and resources of 25 megatonnes implied that there was no major risk of cobalt scarcity in any scenario and that the green transition is not threatened, as long as some resources are turned into reserves. The... (More)
The aim of this study was to investigate future scarcity and environmental effects of cobalt. This was done by creating three scenarios based on different prognoses concerning the future use of cobalt up to the year 2050, Business as usual (Scenario I), Recycling Rate Improvements (Scenario II) and Technological Advancements (Scenario III). Regarding scarcity, Scenario III had the lowest overall cobalt use, 3.68 megatonnes, whilst Scenario I had the highest, 10.8 megatonnes. Comparing this to existing cobalt reserves of 8.3 megatonnes and resources of 25 megatonnes implied that there was no major risk of cobalt scarcity in any scenario and that the green transition is not threatened, as long as some resources are turned into reserves. The opposite relationship was true for environmental impact where Scenario I, II and III had global warming potentials of 18.0, 15.9 and 7.51 kg CO2-eq/kg cobalt in batteries, respectively. Consequently, the most important action to reduce the environmental effects of cobalt is improving technology which, specifically, involves lowering fuel consumption, reducing cobalt content in LIBs and introducing greener electricity mixes. However, for the cobalt life cycle to be sustainable long-term, improving cobalt recycling is also instrumental. (Less)
Abstract (Swedish)
Målet med denna studie var att undersöka riskerna för koboltbrist och hur dess miljöeffekter kan se ut i framtiden. Detta gjordes genom att skapa tre scenarier baserade på olika framtidsprognoser gällande kobolt till år 2050. Business as usual (Scenario I), Recycling Rate Improvements (Scenario II) och Technological Advancements (Scenario III). Scenario III hade lägst koboltanvändning, 3,68 megaton, medan Scenario I hade högst, 10,8 megaton. Eftersom det finns 8,3 megaton reserver och 25 megaton resurser pekade detta resultat på att det inte finns någon större, omedelbar risk för koboltbrist och att den gröna omställningen inte är hotad av detta så länge en del resurser omvandlas till reserver. Vad gäller miljöeffekter så orsakade Scenario... (More)
Målet med denna studie var att undersöka riskerna för koboltbrist och hur dess miljöeffekter kan se ut i framtiden. Detta gjordes genom att skapa tre scenarier baserade på olika framtidsprognoser gällande kobolt till år 2050. Business as usual (Scenario I), Recycling Rate Improvements (Scenario II) och Technological Advancements (Scenario III). Scenario III hade lägst koboltanvändning, 3,68 megaton, medan Scenario I hade högst, 10,8 megaton. Eftersom det finns 8,3 megaton reserver och 25 megaton resurser pekade detta resultat på att det inte finns någon större, omedelbar risk för koboltbrist och att den gröna omställningen inte är hotad av detta så länge en del resurser omvandlas till reserver. Vad gäller miljöeffekter så orsakade Scenario I, II och III, utsläpp av 18,0, 15,9 respektive 7,51 kg CO2-eq/kg kobolt i batterier. Scenario I hade störst miljöpåverkan och Scenario III lägst. Följaktligen, är det mest effektiva sättet att minska kobolts miljöeffekter att förbättra teknologin inom dess livscykel. Detta innefattar, mer specifikt, minskad bränsleanvändning, lägre koboltinnehåll i litiumjonbatterier och att introducera grönare elmixar. Återvinning anses dock fortfarande vara viktig för att kobalts livscykel ska bli hållbar på lång sikt. (Less)
Please use this url to cite or link to this publication:
author
Gustafsson, Oscar LU and Tyberg, Filip
supervisor
organization
alternative title
En studie om koboltbrist och potentiella framtida effekter av fortsatt användning av kobolt i litiumjonbatterier
course
FMIM01 20231
year
type
H3 - Professional qualifications (4 Years - )
subject
keywords
Cobalt, cobalt scarcity, environmental effects, recycling, technological advancements
report number
ISRN LUTFD2/TFEM—23/5198--SE + (1-132)
ISSN
1102-3651
language
English
id
9126068
date added to LUP
2023-06-19 07:18:21
date last changed
2023-06-19 07:18:21
@misc{9126068,
  abstract     = {{The aim of this study was to investigate future scarcity and environmental effects of cobalt. This was done by creating three scenarios based on different prognoses concerning the future use of cobalt up to the year 2050, Business as usual (Scenario I), Recycling Rate Improvements (Scenario II) and Technological Advancements (Scenario III). Regarding scarcity, Scenario III had the lowest overall cobalt use, 3.68 megatonnes, whilst Scenario I had the highest, 10.8 megatonnes. Comparing this to existing cobalt reserves of 8.3 megatonnes and resources of 25 megatonnes implied that there was no major risk of cobalt scarcity in any scenario and that the green transition is not threatened, as long as some resources are turned into reserves. The opposite relationship was true for environmental impact where Scenario I, II and III had global warming potentials of 18.0, 15.9 and 7.51 kg CO2-eq/kg cobalt in batteries, respectively. Consequently, the most important action to reduce the environmental effects of cobalt is improving technology which, specifically, involves lowering fuel consumption, reducing cobalt content in LIBs and introducing greener electricity mixes. However, for the cobalt life cycle to be sustainable long-term, improving cobalt recycling is also instrumental.}},
  author       = {{Gustafsson, Oscar and Tyberg, Filip}},
  issn         = {{1102-3651}},
  language     = {{eng}},
  note         = {{Student Paper}},
  title        = {{Tangled Up in Blue: Future Cobalt Scarcity and Environmental Effects of Cobalt Usage in Lithium- Ion Batteries}},
  year         = {{2023}},
}