Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

Activity quantification of 177Lu using a 360◦ CZT gamma camera - comparison with a dual-head Anger camera

Lindvall, Albin (2023) MSFT02 20232
Medical Physics Programme
Abstract
Background and Aim: New SPECT cameras that use CZT detectors in a 360◦ configuration has recently been introduced. Together with Bayesian reconstruction methods employing Median Root Prior (MRP) and Relative Difference Prior (RDP), this constitutes an alternative to Anger-based SPECT for activity quantification. The aim of this thesis is to, by the use of both OS-EM and Bayesian reconstruction methods, assess the feasibility of 360◦ CZT SPECT (GE Starguide™) for activity quantification of 177Lu, using activity quantification of 99mTc as a baseline and compare its performance to that of an Anger-based SPECT camera (GE Discovery NM/CT 670, 5/8" crystal).

Method: To compare the performance of the cameras for quantitative SPECT, various... (More)
Background and Aim: New SPECT cameras that use CZT detectors in a 360◦ configuration has recently been introduced. Together with Bayesian reconstruction methods employing Median Root Prior (MRP) and Relative Difference Prior (RDP), this constitutes an alternative to Anger-based SPECT for activity quantification. The aim of this thesis is to, by the use of both OS-EM and Bayesian reconstruction methods, assess the feasibility of 360◦ CZT SPECT (GE Starguide™) for activity quantification of 177Lu, using activity quantification of 99mTc as a baseline and compare its performance to that of an Anger-based SPECT camera (GE Discovery NM/CT 670, 5/8" crystal).

Method: To compare the performance of the cameras for quantitative SPECT, various phantoms in different geometries were imaged in both cameras. First, cylindrical uniform phantoms with 177Lu or 99mTc were imaged. The images of the uniform phantom with 177Lu was used to optimise the Signal-to-Noise ratios (SNR) of the 177Lu energy and scatter windows for 360◦ CZT SPECT and compare these to Anger-based SPECT. The dependency of the reconstructed signal on position in the Field-Of-View (FOV) of the 360◦ CZT SPECT was investigated by testing the difference in means of reconstructed signal between Volume-Of-Interests (VOIs) placed in different transaxial and axial positions of the uniform phantoms, for both radionuclides. The dependency of the reconstructed signal on geometry was subsequently investigated by repeated imaging of the same spherical source in different parts of FOV. Then the difference in means of reconstructed signal between the delineated spheres in the different images was tested. Additionally, a point source of 177Lu or 99mTc was imaged repeatedly by using different source-to-collimator distances. Finally, calibration factors for 99mTc and both peaks of 177Lu was determined for both systems by relating reconstructed signal to known phantom activity. These calibration factors were then used to compute recovery for spheres, as function of volume in a NEMA body phantom.

Results: The results show that the reconstructed signal of the 360◦ CZT SPECT has a positional dependency for 99mTc and both peaks of 177Lu in transaxial and axial directions. The optimal energy window of the 360◦ CZT SPECT for 177Lu, was asymmetric and was centred at 205.3 keV with a ±5.5 % width using scatter compensation with Triple-Energy-Window(TEW). This energy session was found to achieve improved SNR compared to the Anger-based SPECT for the same acquisition time and activity. The calibration factor of this energy session, regardless of reconstruction method, was found to be 80.2 s−1 MBq−1 but had a significant positional dependency (p = 1 × 10−4 ) with a 18 % difference at most between the calibration factors found when placing the VOI used for calibration factor determination in different transaxial positions of the uniform phantom. The same energy session used for imaging of a sphere at different FOV positions was similarly found to result in a significant variation in reconstructed signal (p = 2 × 10−17) with a 9 % difference at most. The point source acquisitions with a varying source-to-collimator distance showed that there was a slight difference in reconstructed signal with different FOV sizes. The recovery of 177Lu and 99mTc in spheres with different volumes for Anger-based SPECT followed expected trends while the recovery for 360◦ CZT SPECT displayed unreasonably high recovery for spheres positioned in the upper part of FOV.

Conclusion: The reconstructed signal of 360◦ CZT SPECT does display a dependency on geometry which makes its use for activity quantification inaccurate. The same dependency is not seen for Anger-based SPECT, which displayed stable calibration factors thus allowing activity quantification with increased accuracy. The 360◦ CZT SPECT does however, compared to Anger-based SPECT, exhibit an increased SNR as well as a higher recovery, although unstable. Therefore, it displays promising results, should the reason for the unstability be discovered and solved. (Less)
Popular Abstract (Swedish)
Radionuklidterapi är en nuklearmedicinsk behandling där man använder sig av ett radioaktivt läkemedel för behandling av diverse sjukdomar, ofta kan det vara olika former av spridd cancer. Det görs genom att administrera radioaktiviteten i patienten där den söker sig till cancern och där strålar och därmed behandlar tumören. Den utsända strålningen från radionukliden består av laddade partiklar vilka absorberas lokalt och därmed behandlar tumören. Men radionuklider kan också sända ut gammastrålning vilken lämnar kroppen och tillåter bildtagning. Lutetium-177 är ett exempel på en radionuklid som används för radionuklidterapi och sänder ut gammastrålning. Målsökningen till cancertumören görs genom att man märker radionukliden till ett kemiskt... (More)
Radionuklidterapi är en nuklearmedicinsk behandling där man använder sig av ett radioaktivt läkemedel för behandling av diverse sjukdomar, ofta kan det vara olika former av spridd cancer. Det görs genom att administrera radioaktiviteten i patienten där den söker sig till cancern och där strålar och därmed behandlar tumören. Den utsända strålningen från radionukliden består av laddade partiklar vilka absorberas lokalt och därmed behandlar tumören. Men radionuklider kan också sända ut gammastrålning vilken lämnar kroppen och tillåter bildtagning. Lutetium-177 är ett exempel på en radionuklid som används för radionuklidterapi och sänder ut gammastrålning. Målsökningen till cancertumören görs genom att man märker radionukliden till ett kemiskt signalämne som söker sig till så kallade receptorer som cancercellerna uttrycker. I samband med en behandling är det önskvärt att ta bilder av fördelningen av radioaktivitet för att kunna beräkna den absorberade dos av joniserande strålning som patientens friska organ och tumörer har utsatts för. För att beräkna den absorberade dosen måste man först bestämma fördelning och mängd av radioaktivitet i patienten. Detta kallas aktivitetskvantifiering. Det görs genom att använda sig av en gammakamera vilken tar bilder av den kvarvarande radioaktiviteten som tillåter att man beräknar mängden aktivitet i den volym man tar bild av. Traditionellt sett görs detta med en så kallad tvåhövdad Angerkamera vilken använder två kamerahuvuden med strålningsdetektorer vilka roterar runt patienten. De tar då en serie tvådimensionella bilder som tillsammans möjliggör beräkning av en tredimensionell bild av radioaktiviteten.
På senare tid har nya kameratekniker etablerats vilka i stället använder sig av flera detektorer i en cirkulär konfiguration runt patienten. Dessa detektorer skiljer sig också från Angerkameran på så sätt att de använder sig av en annan detektionsteknik där strålningen omvandlas till mätbar ström direkt. Angerkameran går i stället via ett mellansteg där strålningen först omvandlas till ljus innan den omvandlas till ström. Teoretiskt sett ska den nya kameran tillåta noggrannare aktivitetskvantifiering av Lutetium-177 tack vare en bättre rumsupplösning, energiupplösning och känslighet.

I detta arbete undersöks den nya kamerans lämplighet för aktivitetskvantifiering av Lutetium-177 genom att jämföra den med en Angerkamera. Det görs genom att använda sig av olika så kallade fantom, typiskt plastbehållare i olika geometrier, fyllda med Lutetium-177 vilka placeras i kamerorna och avbildas.

Resultatet av detta arbete visar på att det finns ett oönskat positionsberoende i den nya kamerans bildfält, upp till 18 %. Samma radioaktiva källa ger inte samma signal oavsett var den är placerad i kameran. Det innebär att det blir en osäkerhet när man använder kameran för aktivitetskvantifiering. Uppenbarligen vill man kunna vara så säker som möjligt när man använder en kamera för att beräkna stråldosen till en patient vid en behandling och därför är detta negativt. Samma positionsberoende finns inte i den gamla kameran och även om det krävs längre mättider på den så är den säkrare i nuläget. Men då tillverkaren har gjorts medvetna om det oönskade positionsberoendet är det inte omöjligt att en mjukvaruppdatering lanseras i framtiden som löser problemen. (Less)
Please use this url to cite or link to this publication:
author
Lindvall, Albin
supervisor
organization
course
MSFT02 20232
year
type
H2 - Master's Degree (Two Years)
subject
language
English
id
9138749
date added to LUP
2023-09-18 11:41:05
date last changed
2023-09-18 11:41:05
@misc{9138749,
  abstract     = {{Background and Aim: New SPECT cameras that use CZT detectors in a 360◦ configuration has recently been introduced. Together with Bayesian reconstruction methods employing Median Root Prior (MRP) and Relative Difference Prior (RDP), this constitutes an alternative to Anger-based SPECT for activity quantification. The aim of this thesis is to, by the use of both OS-EM and Bayesian reconstruction methods, assess the feasibility of 360◦ CZT SPECT (GE Starguide™) for activity quantification of 177Lu, using activity quantification of 99mTc as a baseline and compare its performance to that of an Anger-based SPECT camera (GE Discovery NM/CT 670, 5/8" crystal). 

Method: To compare the performance of the cameras for quantitative SPECT, various phantoms in different geometries were imaged in both cameras. First, cylindrical uniform phantoms with 177Lu or 99mTc were imaged. The images of the uniform phantom with 177Lu was used to optimise the Signal-to-Noise ratios (SNR) of the 177Lu energy and scatter windows for 360◦ CZT SPECT and compare these to Anger-based SPECT. The dependency of the reconstructed signal on position in the Field-Of-View (FOV) of the 360◦ CZT SPECT was investigated by testing the difference in means of reconstructed signal between Volume-Of-Interests (VOIs) placed in different transaxial and axial positions of the uniform phantoms, for both radionuclides. The dependency of the reconstructed signal on geometry was subsequently investigated by repeated imaging of the same spherical source in different parts of FOV. Then the difference in means of reconstructed signal between the delineated spheres in the different images was tested. Additionally, a point source of 177Lu or 99mTc was imaged repeatedly by using different source-to-collimator distances. Finally, calibration factors for 99mTc and both peaks of 177Lu was determined for both systems by relating reconstructed signal to known phantom activity. These calibration factors were then used to compute recovery for spheres, as function of volume in a NEMA body phantom. 

Results: The results show that the reconstructed signal of the 360◦ CZT SPECT has a positional dependency for 99mTc and both peaks of 177Lu in transaxial and axial directions. The optimal energy window of the 360◦ CZT SPECT for 177Lu, was asymmetric and was centred at 205.3 keV with a ±5.5 % width using scatter compensation with Triple-Energy-Window(TEW). This energy session was found to achieve improved SNR compared to the Anger-based SPECT for the same acquisition time and activity. The calibration factor of this energy session, regardless of reconstruction method, was found to be 80.2 s−1 MBq−1 but had a significant positional dependency (p = 1 × 10−4 ) with a 18 % difference at most between the calibration factors found when placing the VOI used for calibration factor determination in different transaxial positions of the uniform phantom. The same energy session used for imaging of a sphere at different FOV positions was similarly found to result in a significant variation in reconstructed signal (p = 2 × 10−17) with a 9 % difference at most. The point source acquisitions with a varying source-to-collimator distance showed that there was a slight difference in reconstructed signal with different FOV sizes. The recovery of 177Lu and 99mTc in spheres with different volumes for Anger-based SPECT followed expected trends while the recovery for 360◦ CZT SPECT displayed unreasonably high recovery for spheres positioned in the upper part of FOV. 

Conclusion: The reconstructed signal of 360◦ CZT SPECT does display a dependency on geometry which makes its use for activity quantification inaccurate. The same dependency is not seen for Anger-based SPECT, which displayed stable calibration factors thus allowing activity quantification with increased accuracy. The 360◦ CZT SPECT does however, compared to Anger-based SPECT, exhibit an increased SNR as well as a higher recovery, although unstable. Therefore, it displays promising results, should the reason for the unstability be discovered and solved.}},
  author       = {{Lindvall, Albin}},
  language     = {{eng}},
  note         = {{Student Paper}},
  title        = {{Activity quantification of 177Lu using a 360◦ CZT gamma camera - comparison with a dual-head Anger camera}},
  year         = {{2023}},
}