Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

Effects of electron exposure on graphene with intercalated oxygen

Widov, Jonathan LU (2024) FYSK02 20211
Combustion Physics
Department of Physics
Abstract
New 2D materials with high electron mobility can potentially be used for small and energy efficient electronic devices in the future. One such material that has been studied intensely is graphene. Despite the large amount of studies, the question of how to create useful shapes of graphene remains unanswered. In this work I studied how graphene may be spatially etched by intercalating oxygen before exposing the graphene to an electron beam. Using scanning tunneling microscopy I studied the morphology of electron exposed graphene without intercalated oxygen. I studied graphene with intercalated oxygen using
x-ray photoelectron spectroscopy to determine the effects of electron exposure on such a surface. I find that it is possible to etch... (More)
New 2D materials with high electron mobility can potentially be used for small and energy efficient electronic devices in the future. One such material that has been studied intensely is graphene. Despite the large amount of studies, the question of how to create useful shapes of graphene remains unanswered. In this work I studied how graphene may be spatially etched by intercalating oxygen before exposing the graphene to an electron beam. Using scanning tunneling microscopy I studied the morphology of electron exposed graphene without intercalated oxygen. I studied graphene with intercalated oxygen using
x-ray photoelectron spectroscopy to determine the effects of electron exposure on such a surface. I find that it is possible to etch the graphene by intercalating oxygen before exposing the surface to an electron beam. When the graphene lacks the intercalated oxygen it shows no changes in its overall structure. My studies provide insight into the requirements for electron induced etching of graphene. (Less)
Popular Abstract (Swedish)
Jakten på alltmer kompakt och komplicerad elektronik fortsätter lika ivrig som den alltid gjort. Med den takt vi idag håller är det inte förvånande att vi snart kommer att möta problem. Hur små kan vi göra våra kretsar utan att vi möter problem? Svaret är att vi kan komma nära ett par atomer i höjd. Detta svar har vi funnit i en speciellt formad kol hinna kallad grafen. Strukturen av grafen är mycket simpel då den utgörs helt av kolatomer placerade så att varje kolatom binder till tre andra, vilket leder till att grafenet får ett mönster som kan liknas till en vaxkaka. Anledning till att detta material kan komma att bli basen för samtlig elektronik är att det inte bara är extremt tunt med bara en atom i höjd, utan att det även är en... (More)
Jakten på alltmer kompakt och komplicerad elektronik fortsätter lika ivrig som den alltid gjort. Med den takt vi idag håller är det inte förvånande att vi snart kommer att möta problem. Hur små kan vi göra våra kretsar utan att vi möter problem? Svaret är att vi kan komma nära ett par atomer i höjd. Detta svar har vi funnit i en speciellt formad kol hinna kallad grafen. Strukturen av grafen är mycket simpel då den utgörs helt av kolatomer placerade så att varje kolatom binder till tre andra, vilket leder till att grafenet får ett mönster som kan liknas till en vaxkaka. Anledning till att detta material kan komma att bli basen för samtlig elektronik är att det inte bara är extremt tunt med bara en atom i höjd, utan att det även är en fantastisk ledare för både ström och värme. (Less)
Please use this url to cite or link to this publication:
author
Widov, Jonathan LU
supervisor
organization
course
FYSK02 20211
year
type
M2 - Bachelor Degree
subject
keywords
Graphene, Intercalation, Etching, Microscopy, Spectroscopy
language
English
additional info
This work was originally done in 2021 but the upload was delayed till 2024.
id
9150382
date added to LUP
2024-04-10 13:41:10
date last changed
2024-04-10 13:41:10
@misc{9150382,
  abstract     = {{New 2D materials with high electron mobility can potentially be used for small and energy efficient electronic devices in the future. One such material that has been studied intensely is graphene. Despite the large amount of studies, the question of how to create useful shapes of graphene remains unanswered. In this work I studied how graphene may be spatially etched by intercalating oxygen before exposing the graphene to an electron beam. Using scanning tunneling microscopy I studied the morphology of electron exposed graphene without intercalated oxygen. I studied graphene with intercalated oxygen using
x-ray photoelectron spectroscopy to determine the effects of electron exposure on such a surface. I find that it is possible to etch the graphene by intercalating oxygen before exposing the surface to an electron beam. When the graphene lacks the intercalated oxygen it shows no changes in its overall structure. My studies provide insight into the requirements for electron induced etching of graphene.}},
  author       = {{Widov, Jonathan}},
  language     = {{eng}},
  note         = {{Student Paper}},
  title        = {{Effects of electron exposure on graphene with intercalated oxygen}},
  year         = {{2024}},
}